
Netherite: Efficient Execution of Serverless Workflows
Sebastian Burckhardt

Microsoft Research
sburckha@microsoft.com

Badrish Chandramouli
Microsoft Research

badrishc@microsoft.com

Chris Gillum
Microsoft Azure

cgillum@microsoft.com

David Justo
Microsoft Azure

dajusto@microsoft.com

Konstantinos Kallas
University of Pennsylvania
kallas@seas.upenn.edu

Connor McMahon
Microsoft Azure

comcmaho@microsoft.com

Christopher S. Meiklejohn
Carnegie Mellon University

cmeiklej@cs.cmu.edu

Xiangfeng Zhu
University of Washington
xfzhu@cs.washington.edu

ABSTRACT
Serverless is a popular choice for cloud service architects because
it can provide scalability and load-based billing with minimal de-
veloper effort. Functions-as-a-service (FaaS) are originally stateless,
but emerging frameworks add stateful abstractions. For instance,
the widely used Durable Functions (DF) allow developers to write
advanced serverless applications, including reliable workflows and
actors, in a programming language of choice. DF implicitly and
continuosly persists the state and progress of applications, which
greatly simplifies development, but can create an IOps bottleneck.

To improve efficiency, we introduce Netherite, a novel archi-
tecture for executing serverless workflows on an elastic cluster.
Netherite groups the numerous application objects into a smaller
number of partitions, and pipelines the state persistence of each
partition. This improves latency and throughput, as it enables work-
flow steps to group commit, even if causally dependent. Moreover,
Netherite leverages FASTER’s hybrid log approach to support larger-
than-memory application state, and to enable efficient partition
movement between compute hosts.

Our evaluation shows that (a) Netherite achieves lower latency
and higher throughput than the original DF engine, by more than
an order of magnitude in some cases, and (b) that Netherite has
lower latency than some commonly used alternatives, like AWS
Step Functions or cloud storage triggers.

PVLDB Reference Format:
Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo,
Konstantinos Kallas, Connor McMahon, Christopher S. Meiklejohn,
and Xiangfeng Zhu. Netherite: Efficient Execution of Serverless Workflows.
PVLDB, 15(8): 1591 - 1604, 2022.
doi:10.14778/3529337.3529344

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/microsoft/durabletask-netherite/tree/vldb-oct-2021.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.
doi:10.14778/3529337.3529344

1 INTRODUCTION
The term serverless is often considered as a synonym for Functions-
as-a-Service (FaaS), which was pioneered by Amazon [1] and is now
ubiquitous [4, 6, 15, 18]. In FaaS, a function is a piece of application
code designed to respond to an individual event, called the trigger.
Compared to a virtual machine or a compute instance, a function
is significantly more fine-grained, which allows for faster schedul-
ing and better load balancing given a pool of compute resources.
Furthermore, FaaS platforms support per-invocation billing. This
means that a service built on FaaS is not only highly available, but
is both (1) very cheap to operate under low load, and yet (2) can
scale automatically to a high load, at a proportional cost. Given
the potential developer productivity boost that the serverless par-
adigm provides, it is anticipated to become prominent for cloud
applications [45, 55].

Originally, serverless functions were used primarily for small,
stateless applications. However, both practitioners and researchers
quickly discovered the appeal of connecting event-driven functions
with stateful services, such as cloud storage, to build fully serverless
applications with persistent state, elastic scaling and load-based
billing. To meet this demand, cloud platform providers now support
many types of triggers, and offer services that help to orchestrate
stateless functions into stateful workflows [5, 17, 19, 23].

Stateful serverless applications use storage not just for persis-
tent application data, but also for checkpointing communication
channels or intermediate computation results. As they can pro-
vide failure, availability, and scalability isolation between service
components, persistent queues (such as Kafka [3]) have become a
standard architectural pattern for cloud services.

The practical significance of storage-connected triggers is borne
out by the data: in Azure Functions, for instance, stateless HTTP
triggers make up less than 50% of invocations [59]. The rise in state-
ful serverless offerings is also met by an recent increase of research
in this area (e.g., [51, 62, 65–67]). A notable example is Starling [54],
a scalable database query engine on top of AWS Lambda.

Implicit Persistence. Using pure FaaS to develop nontrivial,
stateful applications is not straightforward, as it provides limited
execution guarantees [43]. For example, a function may be restarted
many times before completing, possibly concurrently, and must
complete within strict time limits. Furthermore, all state manage-
ment and synchronization must be performed via explicit calls or
triggers connected to external storage services. This can create

1591

https://doi.org/10.14778/3529337.3529344
https://github.com/microsoft/durabletask-netherite/tree/vldb-oct-2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3529337.3529344
https://www.acm.org/publications/policies/artifact-review-and-badging-current

significant challenges for developers. For that reason, a new gener-
ation of frameworks either wrap storage services to provide APIs
that can deal with partial or duplicate executions [61, 62, 66], or
provide serverless abstractions that can implicitly persist applica-
tion progress and/or application state and fully automate recovery
[5, 9, 19, 23, 67].

While implicit and frequent persistence is highly desirable from
a developer perspective, it creates significant challenges from a
systems efficiency perspective. Run-of-the-mill implementations
or ad-hoc composition techniques1 can easily generate an exces-
sive number of storage accesses that negatively impact latency,
throughput, and cost.

Durable Functions. In this paper, we focus on the Durable
Functions (DF) programming model. DF is part of Azure Functions,
Microsoft’s FaaS platform [6]. It allows programmers to compose
tasks into orchestrations, which are task-parallel workflows written
from within mainstream programming languages. It also lets them
conveniently store application state in shared objects called enti-
ties, which process operations reliably and serially, and supports
synchronization and concurrency control via critical sections. DF
is widely used in practice; at the time of writing, about 6% of all
function apps deployed on Azure used DF.

Serverless Message-Passing Model. DF applications are in-
ternally translated to an intermediate representation. This repre-
sentation, which we call the serverless message-passing model, is
an extension of stateless FaaS that introduces addressable, stateful
instances. The serverless message-passing model, like the original
FaaS, is fine-grained and offers ample opportunity for parallelism
and distribution. Thus, like FaaS, it enables scalability and load-
based billing.

Original DF implementation. The original DF implementa-
tion uses individual storage operations to update instance states
and to enqueue or dequeue messages. Under load, this creates a
throughput bottleneck due to the limited number of I/O operations
that nodes and storage permit per second (IOPS).

1.1 Netherite
The main contribution of this paper is Netherite, a distributed elastic
architecture that implements the serverless message-passing model.
Netherite groups fine-grained state and computation into coarse-
grained partitions (shards). Then it load-balances these partitions
over a variable number of hosts to achieve elasticity. Partitions
communicate exclusively through asynchronous channels.

Communication. Each stateful instance is assigned to a fixed
partition, by hashing its key. To delivermessages between partitions,
Netherite uses a reliable ordered queue service, with one queue per
partition.

No two-phase commit. As messages, not transactions, are
the fundamental synchronization primitive, Netherite does not
require costly distributed two-phase commit: a partition can commit
messages to a send channel without having to coordinate with the
receiving partition. This makes Netherite well suited for efficient
execution of workflow and actor workloads.

1For example, workflows are often expressed by representing each intermediate state
using a file in storage, or a message in a persistent queue.

Local Partition Recovery and Mobility. An individual par-
tition can be moved without requiring coordination with other
partitions, by simply persisting and then recovering its state and
receive position on a different host. This partition mobility is im-
portant, as it enables Netherite to run in an autoscaled context
where hosts are dynamically added and removed depending on
load, which requires re-balancing the partitions.

Commit Log and Checkpoints. Netherite persists the state
of each partition (including its receive position) both continuously
using a commit log, and occasionally using checkpointing. Themain
benefit of the commit log is that partitions can quickly commit a
batch of transitions using a single storage write, which addresses
the throughput bottleneck mentioned above. This group commit
significantly improves performance compared to the original DF
implementation.

FASTER Netherite uses the FASTER [14, 34] open-source frame-
work to help manage memory, logging, and interactions with stor-
age. For example, partition persistence and recovery are handled
by FasterKV, a hybrid (spans memory and storage) key-value store
that uses a log-structured storage interface on top of Azure Page-
Blob Storage. FASTER provides significant benefits; for example, it
can handle over-subscribed partitions whose state does not fit into
memory, and it can support instant recovery, which loads instance
states lazily as needed.

Persistence Pipelining. Consider two transitions A, B that are
causally dependent.2 A conservative workflow engine waits for A to
be persisted before starting execution of B. This is not necessary, as
execution and persistence are successive stages of a pipeline: we can
start executing B immediately after A completes execution, even
before A is persisted; as long as we respect causal dependencies
during persistence, i.e. do not commit B before committing A.

Netherite exploits that independence using local pipelining, that
is, directly processing work items without waiting for their local
dependencies to be persisted. Local pipelining improves latency
significantly for workflows that execute within a single partition.
We stuck with local (as opposed to global) pipelining because it
enables simple local partition recovery, which is important in a
context where partitions move frequently.

StrongExecutionGuarantees. Netherite guarantees that each
individual workflow step commits like a serializable transaction.
This implies that messages appear to be processed exactly once.

1.2 Evaluation
Our evaluation is organized into two parts, focusing on through-
put and latency, respectively. First, we compare the throughput of
Netherite and the original DF implementation. To this end, we run
a series of experiments where both implementations are run on
the same fixed-size cluster of machines. Second, we compare the
latency of executing an individual workflow for a number of typical
solutions, including both DF and common DF alternatives, such as
storage-based triggers and AWS step functions.

2We define causality of two transitions A, B as follows: B is causally dependent on A
if B consumes a message produced by A, if B reads an instance state written by A, or
if there is a transitive chain of such dependencies.

1592

Results. Our results show that Netherite significantly outper-
forms the original DF implementation and the most common alter-
natives. The experiments demonstrate that Netherite successfully
addresses the IOPS bottleneck, a common challenge for stateful
serverless models, by drastically reducing the number of storage
accesses. Therefore, Netherite scales much better than the original
DF implementation, improving throughput by over an order of mag-
nitude in some cases. Netherite also has better latency than some
commonly used alternatives. For example, Netherite outperforms
trigger-based composition by orders of magnitude, both on AWS
and Azure. Also, Netherite achieves lower latency than AWS Step
Functions: a workflow composing AWS lambdas completes faster
on Netherite (even though deployed in Azure and invoking lamb-
das in AWS via HTTP) than the same workflow in Step Functions
(deployed in AWS and invoking lambdas directly).

1.3 Contributions
We make the following contributions:

(1) We propose a message-passing model for stateful serverless.
It extends FaaS with stateful instances that can exchange
messages, and allows fine-grained parallelism, distribution,
and load-based billing. We also show how this model serves
as an intermediate representation for DF, a stateful serverless
programming model with support for multiple languages
and paradigms (§3).

(2) We show how the original DF engine, which is widely used
in production, implements the message-passing model, and
explain how its excessive number of storage accesses can
limit the efficiency of the system (§4).

(3) We propose Netherite, an alternative engine that divides the
application state into a fixed number of partitions. Optimiz-
ing the continuous persistence of each partition, Netherite
exploits locality, supports pipelining, and reduces the num-
ber of storage accesses (§5).

(4) We evaluate the performance of Netherite and the optimiza-
tions on several applications, demonstrating performance
improvements compared to the original DF implementation
and alternative solutions (§6).

Our work shows that a major efficiency challenges for serverless
workflows, namely the excessive number of storage accesses caused
by the compute-storage separation, can be mitigated by a better
engine architecture. Lowering this cost widens the range of appli-
cations that benefit from stateful serverless programming models.

We anticipate that serverless will become the default for the
majority of cloud service development, while serverful program-
ming remains relevant for lower layers of the stack only. Strong
reliability plays an important role in this future; but to get there, we
must adapt the classic state management techniques so they stay
relevant even as the application development paradigms undergo a
major transformation.

2 DURABLE FUNCTIONS
We start with a quick overview of Durable Functions (DF) and
the programming abstractions that it offers for building stateful
serverless applications. DF lets programmers write applications
that combine (a) orchestrations, which reliably compose tasks to

1 [FunctionName("SimpleSequence")]
2 public static async Task<int> Run(
3 [OrchestrationTrigger] IDurableOrchestrationContext c)
4 {
5 try
6 {
7 var x = c.GetInput<int>();
8 var y = await c.CallActivityAsync<int>("F1", x);
9 var z = await c.CallActivityAsync<int>("F2", y);
10 return z;
11 }
12 catch (Exception) {
13 // Error handling or compensation can go here.
14 }
15 }

Figure 1: Sequencing two functions F1 and F2using a durable
functions orchestration in C#.

perform sequential or parallel composition and iteration, (b) entities,
which are persistent shared objects that reliably process operations
serially, and (c) critical sections, which provide mutual exclusion
and concurrency control. Its implementation is open-source [8,
11–13], and is built on top of the Azure Functions framework [7].
The currently supported languages are JavaScript, Python, C#, and
PowerShell. For a in-depth description of the DF programming
model, including a formal semantics, we refer to [30].

Orchestrations are reliable workflowswritten in a task-parallel
style. An example illustrating a simple orchestration, a sequential
composition of two functions, is shown in Fig. 1. Lines 1–3 de-
clare that this is an orchestration function named SimpleSequence.
When invoked, this orchestration reads its input (line 7) and then
calls an activity with name F1. The term "activity" is DF terminol-
ogy for a stateless serverless function, that can take an input and
return an output. We have omitted the code for the activities in
our examples. The await on line 8 indicates that the orchestration
should resume execution only after F1 is complete. The returned
result is then passed to the next function F2 (line 9). When the
latter finishes, the orchestration returns the final result (line 10).
If anything goes wrong, the exception handler (line 13) can take
appropriate action.

A slightly more interesting example containing parallel iteration
is shown in Fig. 2. It shows a JavaScript example of an orchestration
that creates thumbnails for all pictures in a directory. It receives a
directory name as input (line 4), and then calls an activity "GetIm-
ageList" (line 6) to obtain the list of files. The yield on line 6 serves
as a JavaScript equivalent of await. Next, to create the thumbnails
in parallel, the orchestration starts an activity for each of them,
without yield, thus not waiting for the result, but storing the tasks
in an array (line 12). Next, it calls yield to indicate that the orches-
tration should resume after all the parallel tasks are complete (line
16). Finally, it aggregates (sums) all the returned numbers (sizes)
and returns the result (line 18).

Entities are addressable units that can receive operation re-
quests and execute them sequentially and reliably. Fig. 3 shows
a C# example of an entity representing a bank account. The state
of the entity is an integer (line 3) that is read by an operation Get
(line 4) and updated by an operation Modify (line 5). An entity ID
consists of two strings, the entity name and the entity key. For

1593

1 const df = require("durable-functions");
2 module.exports = df.orchestrator(function*(context) {
3 // Get the directory input argument
4 const directory = context.df.getInput();
5 // Call an activity and wait for the result
6 const files = yield context.df.callActivity(
7 "GetImageList", directory);
8 // For each image, call activity without waiting
9 // and store the task in a list
10 const tasks = [];
11 for (const file of files) {
12 tasks.push(context.df.callActivity(
13 "CreateThumbnail", file));
14 }
15 // wait for all the tasks to complete
16 const results = yield context.df.Task.all(tasks);
17 // return sum of all sizes
18 return results.reduce((prev, curr) => prev + curr, 0);
19 });

Figure 2: Example orchestration using the Durable Func-
tions JavaScript API. It calls an activity GetImageList, and
then, in parallel, CreateThumbnail for each image. It then
waits for all to complete and returns the aggregated size.

1 public class Account
2 {
3 public int Balance { get; set; }
4 public int Get() => Balance;
5 public void Modify(int Amount) { Balance += Amount; }
6
7 // boilerplate for Azure Functions (feel free to ignore)
8 [FunctionName(nameof(Account))]
9 public static Task Run([EntityTrigger]
10 IDurableEntityContext ctx)
11 => ctx.DispatchAsync<Account>();
12 }

Figure 3: Example entity using the Durable Functions C#
API. Its state is an integer Balance, and it has operations Get
and Modify to read or update it.

example, an account entity may be identified by ("Account", "000-
7-17-12-0-14-26"). All entity operations are serialized, that is, their
execution does not overlap, which provides a simple solution to
basic synchronization challenges. The concept of entities is similar
to virtual actors, or grains, as introduced by Orleans [29, 31].

Critical sections help to address synchronization challenges
involving durable state stored in more than one place, such as in
multiple entities and/or in external services. For example, consider
an orchestration that intends to transfer money between accounts.
Fig. 4 shows such an orchestration, using the C# API. First, we
obtain the input parameters (source, destination, and amount) on
line 5. Then, we construct entity IDs for the two accounts (line 7,
8). The LockAsync call on line 10 locks both account entities for
the duration of the critical section (lines 11 through 23), enforcing
exclusive access. On line 12, we read the current balance of the
source account by calling the Get operation.3 If the balance does
not cover the amount (line 13) we return false (line 15), otherwise
we modify both accounts by calling the two account entities in
parallel (lines 20, 21). After both entities finish the operation, the

3Our .NET interface also offers an interface-and-proxy-based syntax for calling entities
that provides type checking for operations and arguments. It takes a bit more space so
we chose the untyped syntax for this small demonstration example.

1 [FunctionName("Transfer")]
2 public static async Task<bool> Transfer(
3 [OrchestrationTrigger] IDurableOrchestrationContext ctx)
4 {
5 (string source, string dest, int amount) =
6 ctx.GetInput<string,string,int>();
7 EntityId sourceId = new EntityId("Account", source);
8 EntityId destId = new EntityId("Account", dest);
9
10 using (await ctx.LockAsync(sourceId, destId))
11 {
12 int bal = await ctx.CallEntityAsync<int>(sourceId, "Get");
13 if (bal < amount)
14 {
15 return false;
16 }
17 else
18 {
19 await Task.WhenAll(
20 ctx.CallEntityAsync(sourceId, "Modify", -amount),
21 ctx.CallEntityAsync(destId, "Modify", +amount));
22 return true;
23 } } }

Figure 4: Example of an orchestration with a critical section
that reliably transfers money between account entities.

await (line 19) completes and we return true, exiting the critial
section, and releasing both locks.

Transactional Guarantees The individual processing steps of
orchestrations and entities commit like serializable transactions;
but the orchestration as a whole does not, as it does not fail or
roll back, and because the steps of multiple orchestrations are al-
lowed to interleave observably. This is the desired default semantics
for workflows. However, as mentioned above, stronger isolation
is sometimes still desirable. Critical sections fill this gap, as they
guarantee serializability. Yet, unlike transactions, they do not have
an implicit fail-and-roll-back behavior.

3 SERVERLESS MESSAGE-PASSING MODEL
To aid understanding and to enable the development of different
back-end engines, we propose a reliable message-passing layer. This
layer acts as an intermediate representation that can decouple the
feature-rich high-level stateful serverless programmingmodels (like
DF, step functions, or other workflow definition languages) from
the execution engines that operate at a lower level of abstraction.

This separation is important to reduce complexity and allow
each side to evolve independently. For example, when considering
engine optimizations, we do not have to reason about orchestra-
tions, entities, or critical sections, but can focus just on how to
process messages correctly and efficiently. Similarly, advanced fea-
tures can be added easily to the high-level programming model
without requiring revisions of the engine, as long as we express
those features using message-passing. To the best of our knowledge,
we are the first to propose the use of a serverless, reliable message
passing layer for this purpose.

In the following, we first give a precise definition of how the
serverless message passingmodel combines stateless functions with
stateful instances that communicate via messages (§3.1). Then we
explain how arbitrary Durable Functions code can be compiled to
it (§3.2), and finally discuss the execution guarantees that can be
achieved by implementations of this model (§3.3).

1594

application state work items

task
queue

kn vn

q1k1 v1

k2 v2q2

qn

instance
id

instance
state

instance
queue

stateless task
𝑚 ↦→𝑚′

stateful instance
𝑘,𝑚1 . . .𝑚𝑛, 𝑣

↦→ 𝑣 ′,𝑚′
1, . . .𝑚

′
𝑘

Figure 5: The serverless message-passing model. Messages
in the task queue represent stateless functions scheduled
for execution. The key-queue-value stores the current state
and message queue of each instance. The application pro-
gresses by fetching, executing, and committing work items.
Work items can consume and produce messages and update
instance states.

3.1 Model Definition
3.1.1 State. We show how the application state is structured on
the left of Figure 5. All of the state of an application is persisted in
storage (different strategies are used by different implementations
§4,§5). At the top is a queue for stateless tasks; its messages repre-
sent stateless functions scheduled for executions. The bottom half is
a "key-queue-value" store that contains the stateful instances. Each
instance is identified by a unique key, the instance id, which can be
used as a routing destination for messages. For each instance, the
store contains a queue of incoming messages, and the current state.

3.1.2 Transitions. The application makes progress at the granular-
ity of transitions called work items, of which there are two types
(see Figure 5 on the right):

(1) Stateless task work items consume a message𝑚 from the task
queue, compute a result, and then enqueue this result in the
form of a response message𝑚′ to the queue of the instance
that produced𝑚.

(2) Stateful instance work items, for an instance with id 𝑘 and cur-
rent state 𝑣 , consume a batch of incomingmessages𝑚1 . . .𝑚𝑛

(𝑛 ≥ 1) from the instance queue, update the instance state to
𝑣 ′, and produce outgoing messages𝑚′

1, . . .𝑚
′
𝑘
(𝑘 ≥ 0) that

are enqueued in the task queue and relevant instance queues.

Note that the queues are not required to be entirely FIFO: that is,
a transition may dequeue messages from positions other than the
head of the queue. However, we do guarantee that messages from
the same source are processed in order.

The system continuously identifies work items, schedules them
for execution, and commits their results; the precise execution
details vary by implementation (§4,§5). All stateless work items

can execute in parallel; for stateful work items there is parallelism
across keys but only one work item per key is executing at a time.

Work items can be seen as a generalization of stateless FaaS func-
tions, since they execute arbitrary application code, are individually
billed, and are also subject to timeouts.

3.2 Compiling DF to Message-Passing
All DF applications are internally compiled into instances, tasks,
and messages. Instances represent the state of orchestrations and
entities, tasks represent activities, and messages represent calls and
responses.

Orchestrations. A significant challenge for workflows-as-code
approaches like DF is that orchestrations are mostly written in
languages that do not provide easy checkpointing of intermediate
states. To solve this, DF represents the state of an orchestration as
a partial history of events, which can be replayed to reconstruct
the state. The history replay is transparent; it does not re-execute
completed tasks but reuses the results recorded in the history.

Entities. Entities are directly translated to instances by serial-
izing their state fields as instance state, and by translating each of
their methods as a work-item that processes a call or signal to the
entity, update the state, and possibly send signals to other entities.

Critical Sections. Mutual exclusion is achieved using a dis-
tributed two-phase locking protocol, which is expressed in the
message passing model as follows. When entering the critical sec-
tion, a single lock message is passed around to all the entities to
be locked, i.e., each entity that processes it passes it on to the next,
respecting a fixed global order to avoid deadlocks. When exiting the
critical section, release messages are sent in parallel to all locked
entities. See Figure 6 for an illustration of the two-phase locking,
on the example of the bank transfer critical section from Figure 4.

The two-phase locking protocol is layered on top of the message
model, which already handles persistence and recovery. This is an
interesting benefit of using reliable messages as the fundamental
synchronization primitive.

3.3 Execution Guarantees
In this section we first describe serializable commit (§3.3.1), a sim-
ple but strong requirement for implementations of the serverless
message passing model. Then we discuss what serializable commit
means at a higher level, in terms of the execution guarantees for
the application state (§3.3.2) and for external effects (§3.3.3).

3.3.1 Serializable Commit. We say the engine satisfies serializ-
able commit if the transitions (1) and (2) defined in §3.1.2, which
represent the committing of work items, behave like serializable
transactions. For example, committing a stateful work item means
(1) removing the consumed messages from the instance queue, (2)
updating the instance state, and (3) enqueueing the produced mes-
sages. Serializable commit implies that all of these effects must
appear to execute atomically and in isolation.

3.3.2 Exactly-once Execution. Serializable commit means that if
committing a work item does not succeed for some reason, the
application remains in its original state. In particular, no messages
are consumed or produced, and the runtime can retry the execution
and the commit of the work item. Since failed commits do not have

1595

E1

lock E1,E2

E2

ack

O

Get

Modify

lock E2

release

Figure 6: Illustration of the distributed two-phase locking
protocol, on the example of the bank transfer critical section
from Figure 4.

any visible effect on the application state, all messages appear to
be processed exactly once. This is a much stronger guarantee than
the "at-least-once" or "at-most-once" execution that some workflow
systems settle for.

Note that automatic retries of message delivery happen only for
transient runtime-internal faults, which unavoidably happen in a
distributed system but should be hidden from the application. In
contrast, application-level errors, including function timeouts, are
not automatically retried, but are handled in a manner defined by
the programming model; in the case of DF, there are multiple error
handling mechanisms available, such as exception handling, and
limited retries. Importantly, these are implemented on top of the
message-passing layer, and do not involve the execution engine.

For a formal treatment of how serializable commit guarantees
exactly-once processing of DF, we refer to [30].

3.3.3 External Effects. Since there can be multiple execution at-
tempts of a work item before it commits successfully, calls to
external services may be duplicated. This issue is an unavoidable
property of fault-tolerant workflow systems permitting external
calls, and sometimes requires the application code to take extra pre-
cautions. In practice, common solutions (other than simply ignoring
the problem) are to test whether a prior execution has already per-
formed the effect, or to rely on deduplication via unique request
identifiers. It is also possible to use libraries that wrap calls to
storage services, e.g., with logging [66], to provide exactly-once
execution transparently to the user.

Note that in many cases one can avoid these problems by using
DF entities to store data, instead of an external service. In that case,
the serializable commit already guarantees exactly-once.

4 ORIGINAL IMPLEMENTATION
We now give a brief description of the original backend architecture.
Note that this implementation is not just a strawman prototype;
it is currently used by nearly all DF applications in production; at
the time of writing, these account for about 6% of all serverless
function apps deployed on Azure.

Elastic Environment. The DF engine supports invocation-
based billing by running on an elastic host abstraction provided by
the Azure Functions system. At any time, a function app contains
some number of hosts. The number of hosts is scaled automatically

based on load, and goes to zero when the app is idle. The runtime
load-balances functions over hosts, and can run multiple functions
on the same host concurrently. It also detects failures and replaces
failed hosts. Like FaaS functions, hosts are unreliable, and cannot
connect to each other directly.

Architecture. The application state from Figure 5 is persisted
in storage, and the work items are executed by task and instance
workers that are distributed over the hosts, as shown in Figure 7a:

• Stateless tasks are stored in an Azure Queue. Each host runs
a task worker that fetches and executes work items from
this queue. This is also known as the "competing consumers"
pattern.

• Instance queues are partitioned statically by computing a
hash of the key. For each partition, there is a single Azure
Queue, and a single instance worker to process work items.
This is enforced by using storage leases.

• Instance states are stored in Azure Storage Tables. The in-
stance workers read and update these tables.

By design, Azure Queues guarantee at-least-once delivery only. To
counter that, the workers deduplicate messages where necessary.

Performance and Cost. Under load, the efficiency of this exe-
cution engine suffers from having to perform an excessive number
of storage accesses. For example, the execution of a simple two-task
sequence involves 5 enqueues, 5 dequeues, 3 state reads, and 3 state
updates. This causes high latency. Also, it limits throughput, as the
number of storage accesses cannot exceed the IOPS limits imposed
per host and per storage account. Finally, it drives up cost, because
storage accesses are directly billed to the user.

5 NETHERITE
In this section, we introduce Netherite, an execution engine that
implements the serverless message passing model (§3) and can
execute efficiently and reliably in the context of a distributed elastic
runtime environment. We start with an overview of the architecture
(§5.1) and then we zoom in on a single partition (§5.2). We then
describe how Netherite implements the message-passing model
state (§5.2.1). Finally, we describe how Netherite improves latency
by pipelining the execution and persistence stages (§5.3).

5.1 Architecture
Figure 7(b) shows the Netherite architecture. Like the original DF
implementation, Netherite is designed to execute on an auto-scaling
collection of hosts. The particulars of the auto-scaling and failure-
detection components are orthogonal, and beyond the scope of
this work. What is significant is that compute hosts may appear
or disappear; this means that Netherite must continuously save
progress to storage, and must rebalance across the available hosts.

As a fundamental design choice, Netherite packs all of the appli-
cation state (Figure 5) into partitions. The rationale is that because
the number of partitions (typically 12–32) is much smaller than
the number of tasks and instances (multiple thousands), it is more
efficient to implement load-balancing, persistence, and reliable com-
munication at the granularity of partitions. Also, partitions can im-
prove locality, as we can optimize intra-partition communication.

A load balancer places partitions on the available hosts, and
moves them if there is an imbalance (i.e. if the number of partitions

1596

Instance States

FunctionApp

Azure Storage Account

Task
Queue

Instance
Queues
Partition

1

Instance
Queues
Partition

2

autoscaler
Host

Host

add/remove
hosts

Host

Instance
Queues
Partition

3

Host Host

instance
worker 2

instance
worker 3

instance
worker 1

task
worker

task
worker

task
worker

task
worker

task
worker

Function App

Azure Storage Account

autoscaler

add/remove
hosts

Host

Host

P0
state

P1
state

P2
state

P3
state

P4
state

stateful
worker

stateless
worker
instance
worker

task
worker

stateful
worker

stateless
worker
instance
worker

task
worker

P0

P4

P1
P2

P3

Azure EventHubs

P0
queue

P1
queue

P2
queue

P3
queue

P4
queue

Azure Storage

P1 state

page
blobs

part.
state

EventHubs

FA
ST

ER
KV

 s
to

re

page
blobs

FA
ST

ER
lo

g

receiver sender

event
queue

P1 queue

commit
log

P1

(a) (b) (c)

Figure 7: (a) Illustration of the original AzureStorage engine architecture, showing 6 hosts. A single task queue delivers task
work items to all hosts. Instance work items are partitioned over 3 control queues, each connected to one affinitized worker.
The instance states are stored in tables. (b) Illustration of the Netherite engine architecture, showing 5 partitions 𝑃0, . . . , 𝑃4
distributed over 2 hosts. Workers do not connect to storage directly, but to locally hosted partitions. Each partition has its own
state and uses an optimized persistence mechanism. Partitions communicate with each other via ordered persistent queues
(EventHubs). (c) Partition-internal event processing, state management, and persistence with FASTER.

on two hosts differs by more than one). To ensure that the same
partition is running on at most one host, we use storage leases.

Each partition has an ordered persistent input queue, provided
by EventHubs [24] (an Azure-hosted queue service analogous to
Apache Kafka [3]). Input queues are used both for inter-partition
communication, and to receive requests from clients. An input
queue can receive messages even when its corresponding partition
is not loaded on any host, for example, while it is being moved, or
if the cluster has been scaled to zero.

Each partition persists its internal state continuously to storage
using an incremental commit log and incremental asynchronous
checkpoints. We describe these below (§5.2). We chose to provide
continuous persistence (not just sporadic checkpointing) because
it minimizes re-execution of tasks on recovery. This is desirable for
workflow applications because tasks can have external effects, such
as sending an e-mail, and applications may not always de-duplicate
such effects. Continuous persistence also allows easy movement
of a partition to a different host, as it can be quickly shut down
and then recovered on the destination host. The partition state
stores the last processed input queue position. This means that on
recovery, a partition continues processing input messages at the
correct position.

5.2 Partition State Persistence
To achieve efficient continuous persistence, Netherite employs event
sourcing, a dual persistence model using a combination of a commit
log and checkpoints. With event sourcing, the partition state is a

deterministic function of the sequence of events that were processed.
We persist the partition state both continuously as an event log,
and occasionally as a checkpoint—limiting the number of events
that have to be replayed on recovery.

Figure 7(c) shows the internal architecture of a partition. At
the center is the event queue, which orders all events into a lin-
ear sequence. This sequence of events is then duplicated into two
streams that are processed in parallel and independently, decou-
pling persistence and processing. The stream on the left is persisted
to storage as-is, creating a commit log. The stream on the right is
applied to the current in-memory state of the partition (described
below in §5.2.1). That state is also saved to storage periodically, to
create checkpoints.

Events are generated by multiple sources, such as messages re-
ceived from the input queue, completed work items from the task
and instance workers, and persistence acknowledgments from stor-
age. Each event can represent an atomic update to multiple internal
components of the partition (we describe events and the partition
state in detail in §5.2.1). Since each event’s effect on the partition
state must be deterministic, it is often necessary to decompose pro-
cesses into chains of multiple events. Because the log persistence
is decoupled from the processing of events on the partition state,
such event chains can be executed without having to wait for I/O
in between. This enables the pipelining optimization (§5.3).

Group commit. As explained earlier, performing a large num-
ber of storage accesses can easily become a throughput bottleneck
of a workflow processing system under load. Netherite solves this

1597

problem because, when under load, a partition can group commit,
i.e. commit multiple events at once using a single storage access.
This is possible because the commit log improves storage locality:
in contrast to storing updated instance states in a table, consecutive
events are stored to consecutive locations.

FASTER. Netherite uses FASTER [14, 34] to manage memory,
logging, and interactions with storage. FASTER offers two abstrac-
tions: FasterLog is a scalable persistent log that uses epoch pro-
tection to perform fast and reliable log group-commits and reads
directly to and from storage. FasterKV is a larger-than-memory
key-value store backed by a hybrid log across memory and stor-
age. FASTER is built on a simple and general storage abstraction
called IDevice – this allows us to use the low-level, low-cost page-
blob APIs of Azure Storage directly, and affords us the flexibility
to experiment with other storage alternatives (e.g., Amazon S3) in
future.

As shown at the bottom of Figure 7c, each Netherite partition
uses FasterLog to persist (and recover) the commit log and FasterKV
to host the partition state. Using FasterKV for persisting the parti-
tion state has several additional benefits:

• It allows the partition state to be larger than memory.
• It acts as a LRU cache for instance states.
• It supports asynchronous, incremental checkpointing.
• It allows instant recovery (lazy loading).
• It can index the instances, to support analytical DF queries
over state.

Instant recovery is particularly important in the elastic context
where we run Netherite; because unlike most databases, partitions
must frequently move between hosts.

5.2.1 Partition State. Figure 8 contains a visual representation of
the partition state and its correspondence with the application state.
The most important components are:

I. A map from instance IDs to instance states.
P. The queue position of the last processed input, and a dedu-

plication vector.
S. Buffers for incoming messages, by instance ID.
O. A buffer for outgoing messages.
T. A list of pending tasks.

An event updates the partition state deterministically, and can mod-
ify multiple components atomically. Partition state update events
are more coarse-grained than instance transitions in the sense that
they usually contain a lot of instance transitions batched together.
The 4 most important event types are:

• MessagesReceived. Updates P (advances position and dedu-
plication vector) and S (enqueues messages).

• MessagesSent. This updates O (removes messages).
• TaskCompleted. This updates S (enqueues response) and T
(removes completed task).

• StepCompleted. This updates I (updates instance state), S
(removes consumed messages), O (adds produced messages),
and T (adds produced tasks).

Note that all the components of the state of partition as well as
the update events are serializable and therefore can be persisted as
checkpoints or in the commit log respectively.

O

S

T

id1 id7

P

10729

I id1 S1
id2 S2
id7 S7
id9 S9

TaskCompleted

StepCompleted

MessagesSent

MessagesReceived

Figure 8: Illustration of the partition-internal state.

5.2.2 Recovery. On recovery, a partition first recovers its latest
persisted state. It does so by retrieving the latest checkpoint (if any),
and then replaying the commit log (if the commit log has persisted
events beyond what is in the checkpoint). After this step, the states
of P, S, O, I, and T have been reestablished. Next, we restart tasks:

(1) Start a stateful work item for each session in S.
(2) Start a stateless work item for each task in T.
(3) Start a sender loop, which (re-)sends all messages in O.
(4) Start a receiver loop, which starts receiving from the position

stored in P.

5.2.3 Correctness. Netherite satisfies serializable commit because
it commits work items as a single StepCompleted event in the com-
mit log. Writes to the commit log are atomic, thus the transition
commits at the moment this event is persisted in the log. All local
effects of the transition (such as updating the instance state, or
sending messages) are also committed by this single event.

Within each partition, causality is guaranteed because causally
dependent events always appear in correct order in the totally or-
dered event queue. This queue is processed and persisted in order
(Figure 7(c)). Dependent events may thus be committed simultane-
ously, but never out of order.

Messages destined for local instances or the local task queue are
enqueued instantly. As for messages headed for other partitions,
they are first stored in the outbox. Only after the producing event
has been persisted in the commit log are they actually sent, and only
after the send has been acknowledged are they removed from the
outbox. This ensures causally consistent commit across partitions,
and that messages are never lost in transit.

If a partition crashes after sending a message, but before record-
ing the ack, it will resend the message upon recovery. To avoid
duplicate processing in such cases, receivers use a deduplication
vector, which records the position of the last-processed incoming
message from each remote partition. Since EventHubs guarantees
in-order delivery of messages, and since we can checkpoint the
receive position along with the partition state, this is sufficient to
guarantee reliable, ordered delivery of messages.

1598

5.3 Pipelining
The original DF implementation is conservative: when a work item
completes, its effects are first persisted to storage before executing
dependent work items. This slows workflows down considerably.
For example, consider the simple sequence shown in Figure 1 which
is internally represented as a sequence of 5 work items. If each work
item is persisted before the next work item is started, then the entire
sequence takes at least as long as 5 storage round-trips.

To improve this, the Netherite architecture supports pipelining
within each partition. Since the commit log persistence happens in
parallel to the event processing on the partition state (Figure 7c),
Netherite can start executing the next work item before the previous
work item has been persisted. Causal dependencies within each
partition are handled correctly because the commit log preserves
the order, and always recovers to a consistent prefix. To ensure
causally consistent commit across partitions, Netherite simply holds
back all messages to remote partitions in the outbox 𝑂 until the
work item that produced the message has been persisted.

Correctness. Pipelining is a sound optimization that does not
compromise serializable commit. The important bit is that the
pipeline never commits a transition that has a dependency on an
uncommitted transition. In fact, a case can be made that the pipelin-
ing optimization is analogous to a combination of group commit
and early lock release, two well-known optimizations in transaction
processing.

In particular, the pipelining optimization does not compromise
the exactly-once guarantee for internal state (§3.3.2) or the at-least-
once guarantee for external effects (§3.3.3). The only minor differ-
ence is that without pipelining, the scope of reexecution of external
effects is limited to those belonging to a single transition, while
pipelining can lead to a reexecution of external effects belonging
to more than one transition.

Global Pipelining. In a previous version, Netherite also sup-
ported pipelining across partition, i.e., propagating messages across
partitions before persisting them. However, we decided to disable
it and limit pipelining to a single partition because global pipelin-
ing requires significant coordination during recoveries: when one
partition crashes, multiple other partitions may have to roll back to
a previous state which can disrupt service of the whole system. We
leave a further investigation of how to improve recovery for global
pipelining, and whether the benefits outweigh the costs, for future
work.

6 EVALUATION
We start by formulating the research questions and then describe
the experiments and results (§6.1–§6.3). We use the original DF
implementation that runs in production as the baseline for most of
the evaluation since it can be configured and deployed in a similar
way with Netherite making measurements directly comparable.

Q1 Does Netherite improve throughput compared to the original
DF implementation?

Q2 Does Netherite reduce storage traffic compared to the original
DF implementation?

Q3 How does pipelining affect the latency of Netherite?
Q4 How does Netherite compare with DF alternatives when con-

sidering the latency of a single workflow?

6.1 Throughput Experiments (Q1, Q3)
We start our evaluation with the following four benchmarks that
measure the throughput of Netherite and the original DF imple-
mentation.

• Hello5. A "hello world" workflow, each of which calls five
tasks in sequence.

• Bank The workflow from Figure 4 that implements a reliable
transfer of currency between accounts.

• WordCount. AMapReduce style workflow to analyze word
frequency in books sourced from the Gutenberg dataset [46].
Mappers and reducers are represented by entities. Mappers
parse the books and, for each word, send a message to the
corresponding reducer.

• CollisionSearch. A workflow that searches an integer in-
terval for hash collisions. It is implemented using recursive
divide-and-conquer: the interval is divided and sent to 10
sub-orchestrations, until is 1 billion or smaller, at which
point it is searched in a sequential loop.

Each benchmark’s size is variable: for the first two, we vary the num-
ber of parallel invocations. For WordCount, we vary the number of
words, and for CollisionSearch, we vary the size of the interval.

Methodology. To get a meaningful comparison, we run both
engines (original DF and Netherite) on the same deployment. We
use Azure Elastic Premium plans (EP1, EP2, or EP3), configured to
use a fixed number of hosts (1, 4, 8, or 12) with different numbers
of cores per host (1 on EP1, 2 on EP2, 4 on EP3). We write NxC
to indicate nodes and cores in a configuration; For example, 4x2
indicates a 4-node cluster where each node has 2 cores. The partition
count is always 12. We compute throughput by dividing the size of
the benchmark by the total time taken.

Throughput Results (Q2). Figure 9 shows that even on a sin-
gle core (1x1), Netherite has higher throughput than the original
implementation (1.1x – 3.5x). When adding nodes and cores, the dif-
ference becomes much more pronounced, indicating that Netherite
can take better advantage of them. Compared to the original imple-
mentation, Netherite improves the throughput by up to x12.2 for
Hello5, x7.8 for Bank Application, x18.6 for Word Count, and x2.35
for Collision Search applications.

The improvements are largest on benchmarks that send large
number of messages (e.g. WordCount) and less pronounced on
benchmarks that are dominated by coarse-grained CPU-intensive
tasks (e.g. CollisionSearch).

PipeliningResults (Q3). Our experiments showed that pipelin-
ing does not significantly affect the throughput. This is expected, as
pipelining is a latency optimization - it does not reduce the amount
of work. Still, we saw minor improvements: 6%, 1.2%, 0.8% and 0.4%
for Hello5, Bank, WordCount, and Collision, respectively.

Take away: Netherite shows significantly better throughput
and than the original implementation in all configurations, and
especially at larger scales, exceeding an order of magnitude in
some cases (x18.6).

1599

Figure 9: Throughput and Scalability. For each benchmark, each engine and each configuration NxC we show the mean
throughput over 5 runs, normalized to the throughput of the original implementation on 1x1 (a single node and core).

6.2 Storage Traffic (Q2)
To better understand the throughput gains enabled by batching, we
measure Netherite’s improvement over the original DF implemen-
tation in terms of storage traffic.

Number of Storage Requests (Q2). Figure 10 (top) shows that
the batching optimization very significantly reduces the number of
storage accesses (x4.4 – x71.6). The effect is particularly extreme
on the WordCount benchmark, which transmits many messages.

Amount of Data (Q2). Figure 10 (bottom) shows that even
though each partition is continuously writing to a commit log,
Netherite does not increase the overall amount of data written. In
fact, fewer bytes are read and written compared to the original
implementation. This reduction is primarily due to Netherite repre-
senting and transmitting messages and instance states in a more
compact, binary format. Again, the effect is most pronounced on
WordCount, which transmits a large number of messages.

Take away: Netherite drastically reduces the number of storage
accesses compared to the original DF implementation, addressing
its main performance limitation.

6.3 Comparison to Common Alternatives (Q4)
In this section we compare the performance of Netherite with com-
monly used solutions for serverless workflows that are offered by
cloud providers. Our baselines include workflow solutions offered
by both Azure and AWS: (i) composition of serverless functions
with queues or triggers, (ii) AWS Step Functions [5], a declarative
solution for authoring serverless workflows using JSON, and (iii)
the existing Durable Functions implementation.

We compare latency only, i.e. the time taken to execute an indi-
vidual workflow, because for solutions other than DF we cannot
control the provisioning of machines. Thus, we cannot determine
the resource efficiency, i.e. the "throughput per core" for these

Figure 10: Number of storage accesses (top) and storage ac-
cess volume (bottom).

implementations. Moreover, since we do not have access to the
implementations of AWS Step Functions, triggers, and queues, we
only report the results but do not justify the differences.

Applications. We use four representative workflows that vary
in complexity and execution characteristics. The first two corre-
spond to sequences of tasks: Hello3 is the same as the one used
in Section 6.1 but with 3 instead of five tasks, and Sequence is a
sequential workflow that takes the number of tasks 𝑛 as its input
argument. In our experiments, 𝑛 = 10. The other two applications
are more complex workflows that are taken from real applications
implemented using AWS Step Functions on Github. Both of the
latter two extensively use AWS Lambda and other services provided

1600

by AWS, such as Amazon Rekognition and DynamoDB. The first
is a workflow that recognizes objects in a given image and creates
a thumbnail for it. It is part of a larger image processing applica-
tion4. The second is taken from a real application used for database
snapshot obfuscation5. The workflow state machine in Step Func-
tions contains 27 states that interact with a variety of AWS services.
Some of the tasks that it calls include user authorization, creation of
database snapshots, validation of the snapshots, obfuscation of the
snapshots, and publishing the snapshots in a production environ-
ment. We do not use all of the applications from Section 6.1 because
some of them contain entities and critical sections and therefore
cannot be implemented directly by the DF alternatives.

Methodology. For all workflows except the snapshot obfusca-
tion, requests are issued at a fixed, low rate (0.1–25 requests per
second) for 3–60 minutes. We then compute the empirical cumu-
lative distribution function (eCDF) of the orchestration latency,
i.e. the time it takes for an orchestration to complete, using the
timestamps reported by the system. We use the system-reported
latency of workflows, as opposed to the client-observed latency,
because not all solutions provide a way to synchronously wait for
the completion of a workflow.

Results. Latency results for three of the four workflows are
shown in Figure 11. For the fourth, the snapshot obfuscation work-
flow, there is no appreciable performance difference between the
implementations (Original DF, Step Functions, and Netherite); the
total latency (20-25 minutes) is dominated by executing the time-
consuming tasks (taking a snapshot, obfuscating it, restoring the
database from a snapshot, etc). An interesting observation is that
this snapshot obfuscation workflow, which is the most complex by
far, showcases programmability differences in DF and Step Func-
tions: the Step Functions definition contains 27 states and is written
using 700 lines of JSON with a lot of redundancy for error handling,
while the DF implementation is more concise (about 200 lines of
C# code) and uses functions for abstracting error handling.

FaaS Sequences with Queues/Triggers. Composition of func-
tions with queues or triggers can be used to implement the Task
Sequence workflow. As can be seen in Figure 11, in the middle, trig-
gers6 have significantly higher latencies (x1k-x10k) than Netherite.
Using queues for constructing sequential workflows performs bet-
ter than triggers but Netherite still achieves an order of magnitude
lower latencies (median x19, 95th x29).

Step Functions. Step Functions does not support Sequence so
it is not included in that experiment. For the other two workflows
Netherite achieves better latencies (Hello3: median x30, 95th x25,
image recognition: median 5%, 95th .8%). An interesting take-away
is that Netherite achieves lower latency in the image recognition
experiment even though Netherite is deployed on Azure and in-
vokes AWS lambdas as its tasks using their HTTP interfaces, while
AWS Step Functions invoke the lambdas directly (avoiding both
the network RTT and the HTTP overhead).

Original Durable Functions Implementation. Compared
to the original implementation of Durable Functions, Netherite
achieves better latency in all experiments. In particular, it shows x16,
x14, 17%, improvements in median and x31, x19, 33% improvements
4Source at: https://github.com/aws-samples/lambda-refarch-imagerecognition
5Source at: https://github.com/FINRAOS/maskopy
6Blob in Azure and S3 in AWS.

in 95th percentile latency, for the Hello3, Sequence, and Image
Recognition workflows, respectively.

Pipelining Benefits (Q3). The benefits of pipelining are appar-
ent in all plots of Figure 11. In image recognition, the pipelining
benefits are smallest because workflow latency is dominated by the
execution time of the image recognition tasks. In total, the median
/ 95th percentile latency are improved by x7.3 / x7.1 for the Hello3
experiment, by x7.7 / x7.7 for the Sequence experiment, and by 8%
/ 6% for the Image Recognition experiment.

Take away: Netherite achieves better latencies than all other
solutions in all of our experiments. Pipelining significantly im-
proves Netherite’s latency. For a workflow taken from an AWS
application, Netherite achieves better latency than Step Functions
even though it pays communication and HTTP costs due to being
deployed in Azure and calling stateless functions deployed in
AWS.

7 RELATEDWORK
The need to augment FaaS with support for state and synchroniza-
tion has been acknowledged by both the research and industrial
communities [42, 45, 58, 64]. We compare DF to existing frame-
works in terms of their programming abstraction and support.

Reliable Workflows. Many systems have acknowledged the
challenges of providing reliable execution guarantees for long-
running workflows. Most follow the declarative approach: Net-
flix’s Conductor [20], Zeebe [26], and AWS Step Functions [5] use
a JSON schema for authoring workflows, Fission Workflows [15]
supports YAML, and Azure Logic Apps [9] supports visual design
tools. Apache Airflow [2] and its productization, Google Cloud
Composer [17], and Fn Flow [16], are somewhat more code-based,
as the schema is constructed in code. Temporal [21] uses the same
workflows-as-code approach as DF. Not all of these workflow sys-
tems are truly serverless (i.e. support scale-to-zero and load-based
billing), and their internal design is not always documented or pub-
licly available. Nevertheless, it is conceivable that some the benefits
of the Netherite architecture that we have described in this paper
could be applicable to them as well.

Actors. Entities in DF, and the instances in the computation
model, are inspired by traditional actor systems like Erlang [28] or
Akka [41], and especially the virtual actors of Orleans [29, 31]. The
latter support persistence, but may lose actor messages, guaran-
teeing only "at-most-once" delivery. Similarly, the execution guar-
antees for Cloudflare’s Durable Objects7 [22, 25] and Lightbend’s
Akka Serverless8 [10], apply only to a single object; they do not pro-
vide causal consistency guarantees or synchronization primitives
that span multiple objects, like DF orchestrations.

Ray [51] a recently proposed framework for developing AI ap-
plications extends actors with tasks and provides exactly-once exe-
cution guarantees (without accounting for external effects) in the
presence of faults. However, Ray does not continuously persist state
in a commit log, therefore more progress is lost when recovering
from a crash.

7Durable Objects closed beta was announced on September 28th, 2020.
8Akka Serverless was formerly known as Lightbend CloudState.

1601

https://github.com/aws-samples/lambda-refarch-imagerecognition
https://github.com/FINRAOS/maskopy

Figure 11: Latency (workflow completion time) for Netherite and other workflow solutions. Each plot shows the eCDF (empiric
cumulative distribution function) on a logarithmic time scale.

Storage Extensions for Stateful Serverless. There are sev-
eral frameworks that extend existing storage services with stronger
guarantees to hide FaaS crashes and re-executions from developers
and users; these frameworks usually come together with a coordina-
tor that orchestrates execution. PyWren [44], mu [38], and gg [37]
all propose simple programming frameworks for developing paral-
lel serverless applications by exploiting the scalability of serverless
functions. Beldi [66] is a framework that supports serverless func-
tion compositions that can perform transactions on a key-value
store service. Kappa [67] proposes a programming framework for
serverless that addresses two issues with serverless functions: the
execution time limit and the lack of coordination between different
function invocations. Cloudburst [62] is a framework that extends
a storage service to guarantee causal consistency for DAG compo-
sitions of serverless functions.

Durable Functions and Netherite differ from these frameworks
in three ways. First, orchestrations support async-await code en-
abling complex dynamic parallelism patterns in workflows (such
as the parallel thumbnail creation orchestration shown in Figure 2).
Second, DF follows an object-oriented approach for application
state, supporting entities—complex stateful objects that offer richer
interfaces than just the read-write interface that is supported by
the other frameworks. Finally, DF supports critical sections that
guarantee isolation, i.e., a workflow holding a critical section is the
only one that can call the locked entities, but, unlike transactions,
do not fail requiring rollback.

Recent work [61, 65] investigates how to guarantee causal consis-
tency for serverless applications, but for a workload of transactions
over replicated data, not message-passing workflows. The differ-
ence is that in our model, only each message-processing step, not
the entire workflow, executes transactionally.

Engine. The Netherite architecture is inspired by, and similar to,
Ambrosia’s virtual resiliency [40], with the partitions correspond-
ing to immortals. However, instead of a single queue, Netherite
separates the commit log and input queue, and parallelizes the per-
sistence of events with their application to the partition state, which
enables pipelining. Also, Netherite keeps cold state in storage by
virtue of FASTER [34].

Partitioning. Data and task partitioning is a concept that has
been widely used in many domains, such as relational databases [27,
32, 33, 53, 56], distributed file systems [39, 47, 60], and key-value
stores [35, 36]. Partitioning allows systems to scale memory, CPU,

and I/O bandwidth beyond the limits of a single machine. Specific
constraints of each domain influence which resource and what
challenges are the focus. For example, partitioning in relational
databases optimizes for transaction processing and aggregation
queries, partitioning in key-value stores optimizes for scalability,
availability, and recovery time, and partitioning of computations
into tasks enables parallelization and load balancing. Those latter
two, parallelization and load balancing, are the most significant
benefits of partitioning in Netherite.

Serverless Functions Semantics. Jangda et al. [43] present a
formal model for FaaS and explain its limitations. They also show
how to compose functions using a language called SPL and describe
an operational semantics for the composition of FaaS and a key-
value store service. However, unlike our work, they do not combine
state, messages, and functions into a single serverless model with
reliable and causally consistent execution guarantees. Burckhardt
et al. [30] present an idealized fault-free semantics for the Durable
Functions programming model, as well as show how to correctly
implement it in a serverless context. However, they do not dis-
cuss how to realize the abstract model as a distributed serverless
implementation that can execute efficiently on an elastic cluster.

8 CONCLUSION
Our work shows that the efficiency of stateful serverless program-
ming models like DF, which represent applications as fine-grained
instances, tasks, and messages, and which implicitly and continu-
ously persist the application state, can be significantly improved
by using a combination of partitioning and per-partition persis-
tence optimizations. This lowers the cost and broadens the scope
of applications, enabling the development of stateful, serverless
applications that extend far beyond the original FaaS concept.

As future work, we would like to more thoroughly investigate
whether the benefits of global pipelining can outweigh its cost, us-
ing protocols such as [48]. Also, there is a rich literature in recent
database work [49, 50, 52, 57, 63] in the areas of workload-adaptive
optimization and computation placement, which could prove very
useful, in particular for computation-heavy applications. Finally,
we are interested in further exploring how the strong execution
guarantees can be extended to external effects in specialized cir-
cumstances.

1602

REFERENCES
[1] [n.d.]. AWS Lambda – Serverless Compute – Amazon Web Services. https:

//aws.amazon.com/lambda/.
[2] 2022. Apache Airflow. https://airflow.apache.org/.
[3] 2022. Apache Kafka. http://kafka.apache.org.
[4] 2022. Apache OpenWhisk. https://openwhisk.apache.org/.
[5] 2022. AWS Step Functions. https://aws.amazon.com/step-functions/.
[6] 2022. Azure Functions. https://azure.microsoft.com/en-us/services/functions/.
[7] 2022. Azure Functions Host repository. https://github.com/Azure/azure-

functions-host.
[8] 2022. Azure Functions PowerShell repository. https://github.com/Azure/azure-

functions-powershell-worker.
[9] 2022. Azure Logic Apps Service. https://azure.microsoft.com/en-us/services/

logic-apps/.
[10] 2022. CloudState—Towards Stateful Serverless by Jonas Bonér. https://www.

youtube.com/watch?v=DVTf5WQlgB8.
[11] 2022. Durable Functions Extension (C-sharp) repository. https://github.com/

Azure/azure-functions-durable-extension.
[12] 2022. Durable Functions JavaScript repository. https://github.com/Azure/azure-

functions-durable-js.
[13] 2022. Durable Functions Python repository. https://github.com/Azure/azure-

functions-durable-python.
[14] 2022. FASTER. https://github.com/microsoft/FASTER.
[15] 2022. Fission: Open source, Kubernetes-native Serverless Framework. https:

//fission.io/.
[16] 2022. Fn Flow. https://github.com/fnproject/flow/.
[17] 2022. Google Cloud Composers. https://cloud.google.com/composer/.
[18] 2022. Google Cloud Functions. https://cloud.google.com/functions/docs/.
[19] 2022. Google Workflows. https://cloud.google.com/workflows.
[20] 2022. Netflix Conductor. https://netflix.github.io/conductor/.
[21] 2022. Temporal. https://temporal.io/.
[22] 2022. Using Durable Objects, Cloudflare Docs. https://developers.cloudflare.com/

workers/learning/using-durable-objects.
[23] 2022. What are Durable Functions? - Microsoft Azure. https://docs.microsoft.

com/en-us/azure/azure-functions/durable/durable-functions-overview.
[24] 2022. What is Azure Event Hubs? - Microsoft Azure. https://docs.microsoft.com/

en-us/azure/event-hubs/event-hubs-about.
[25] 2022. Workers Durable Objects Beta: A New Approach to Stateful Serverless.

https://blog.cloudflare.com/introducing-workers-durable-objects/.
[26] 2022. Zeebe: A Workflow Engine for Microservices Orchestration. https://zeebe.

io/.
[27] Peter MG Apers. 1988. Data allocation in distributed database systems. ACM

Transactions on Database Systems (TODS) 13, 3 (1988), 263–304.
[28] Joe Armstrong. 1997. The development of Erlang. In ICFP, Vol. 97. 196–203.
[29] Phil Bernstein. 2018. Actor-Oriented Database Systems. In Proceedings of the

2018 IEEE 34th International Conference on Data Engineering (proceedings of the
2018 ieee 34th international conference on data engineering ed.). IEEE Computer
Society, 13–14. https://www.microsoft.com/en-us/research/publication/actor-
oriented-database-systems/

[30] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, Connor
McMahon, and Christopher S Meiklejohn. 2021. Durable Functions: Semantics
for Stateful Serverless. Proceedings of the ACM on Programming Languages 5,
OOPSLA (2021), Article–133.

[31] Sergey Bykov, Alan Geller, Gabriel Kliot, James R Larus, Ravi Pandya, and Jorgen
Thelin. 2011. Orleans: Cloud Computing for Everyone. In Proceedings of the 2nd
ACM Symposium on Cloud Computing. ACM, 16.

[32] Stefano Ceri, Shamkant Navathe, and Gio Wiederhold. 1983. Distribution design
of logical database schemas. IEEE Transactions on Software Engineering 4 (1983),
487–504.

[33] Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. 1982. Horizontal data parti-
tioning in database design. In Proceedings of the 1982 ACM SIGMOD international
conference on Management of data. 128–136.

[34] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A concurrent key-value store
with in-place updates. In Proceedings of the 2018 International Conference on
Management of Data. 275–290.

[35] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.
ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[36] Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2012. HyperDex: A dis-
tributed, searchable key-value store. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols for computer
communication. 25–36.

[37] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From laptop to lambda:
Outsourcing everyday jobs to thousands of transient functional containers. In

2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19). 475–488.
[38] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-

maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, fast and slow: Low-latency video processing
using thousands of tiny threads. In 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17). 363–376.

[39] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file
system. In Proceedings of the nineteenth ACM symposium on Operating systems
principles. 29–43.

[40] Jonathan Goldstein, Ahmed S. Abdelhamid, Mike Barnett, Sebastian Burck-
hardt, Badrish Chandramouli, Darren Gehring, Niel Lebeck, Christopher Meik-
lejohn, Umar Farooq Minhas, Ryan Newton, Rahee Peshawaria, Tal Zaccai,
and Irene Zhang. 2020. A.M.B.R.O.S.I.A: Providing Performant Virtual Re-
siliency for Distributed Applications. Proc. VLDB Endow. 13, 5 (2020), 588–601.
http://www.vldb.org/pvldb/vol13/p588-goldstein.pdf

[41] Philipp Haller. 2012. On the integration of the actor model in mainstream tech-
nologies: the Scala perspective. In Proceedings of the 2nd Edition on Programming
Systems, Languages and Applications based on Actors, Agents, and Decentralized
Control Abstractions. ACM, 1–6.

[42] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2019. Serverless Com-
puting: One Step Forward, Two Steps Back. In CIDR 2019, 9th Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 13-16, 2019, On-
line Proceedings. http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

[43] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal
Foundations of Serverless Computing. Proceedings of the ACM on Programming
Languages (PACMPL) 3, OOPSLA (2019).

[44] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the
2017 Symposium on Cloud Computing. 445–451.

[45] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khan-
delwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yad-
wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.
2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
CoRR abs/1902.03383 (2019). arXiv:1902.03383 http://arxiv.org/abs/1902.03383

[46] Shibamouli Lahiri. 2014. Complexity of Word Collocation Networks: A Prelim-
inary Structural Analysis. In Proceedings of the Student Research Workshop at
the 14th Conference of the European Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, Gothenburg, Sweden,
96–105. http://www.aclweb.org/anthology/E14-3011

[47] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014.
Tachyon: Reliable, memory speed storage for cluster computing frameworks. In
Proceedings of the ACM Symposium on Cloud Computing. 1–15.

[48] Tianyu Li, Badrish Chandramouli, Jose M. Faleiro, Samuel Madden, and Donald
Kossmann. 2021. Asynchronous Prefix Recoverability for Fast Distributed Stores.
In SIGMOD 2021 (Virtual Event, China, June 2021). 1090–1102.

[49] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. 2019. Learning Scheduling Algorithms for Data Pro-
cessing Clusters. In Proceedings of the ACM Special Interest Group on Data Commu-
nication (Beijing, China) (SIGCOMM ’19). Association for Computing Machinery,
New York, NY, USA, 270–288. https://doi.org/10.1145/3341302.3342080

[50] Hyun Moon, Hakan Hacıgümüş, Yun Chi, and Wang-Pin Hsiung. 2013. SWAT: A
lightweight load balancing method for multitenant databases. ACM International
Conference Proceeding Series (03 2013). https://doi.org/10.1145/2452376.2452385

[51] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging AI applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
561–577.

[52] Vivek Narasayya and Surajit Chaudhuri. 2021. Cloud Data Services: Workloads,
Architectures and Multi-Tenancy. Foundations and Trends® in Databases 10, 1
(2021), 1–107. https://doi.org/10.1561/1900000060

[53] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. 1984. Vertical
partitioning algorithms for database design. ACM Transactions on Database
Systems (TODS) 9, 4 (1984), 680–710.

[54] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden.
2020. Starling: A scalable query engine on cloud functions. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 131–141.

[55] R. A. P. Rajan. 2018. Serverless Architecture - A Revolution in Cloud Computing.
In 2018 Tenth International Conference on Advanced Computing (ICoAC). 88–93.

[56] Domenico Sacca and Gio Wiederhold. 1985. Database partitioning in a cluster of
processors. ACM Transactions on Database Systems (TODS) 10, 1 (1985), 29–56.

[57] Jan Schaffner, Tim Januschowski, Megan Kercher, Tim Kraska, Hasso Plattner,
Michael J. Franklin, and Dean Jacobs. 2013. RTP: Robust Tenant Placement for
Elastic in-Memory Database Clusters. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (New York, New York, USA) (SIG-
MOD ’13). Association for Computing Machinery, New York, NY, USA, 773–784.
https://doi.org/10.1145/2463676.2465302

1603

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://airflow.apache.org/
http://kafka.apache.org
https://openwhisk.apache.org/
https://aws.amazon.com/step-functions/
https://azure.microsoft.com/en-us/services/functions/
https://github.com/Azure/azure-functions-host
https://github.com/Azure/azure-functions-host
https://github.com/Azure/azure-functions-powershell-worker
https://github.com/Azure/azure-functions-powershell-worker
https://azure.microsoft.com/en-us/services/logic-apps/
https://azure.microsoft.com/en-us/services/logic-apps/
https://www.youtube.com/watch?v=DVTf5WQlgB8
https://www.youtube.com/watch?v=DVTf5WQlgB8
https://github.com/Azure/azure-functions-durable-extension
https://github.com/Azure/azure-functions-durable-extension
https://github.com/Azure/azure-functions-durable-js
https://github.com/Azure/azure-functions-durable-js
https://github.com/Azure/azure-functions-durable-python
https://github.com/Azure/azure-functions-durable-python
https://github.com/microsoft/FASTER
https://fission.io/
https://fission.io/
https://github.com/fnproject/flow/
https://cloud.google.com/composer/
https://cloud.google.com/functions/docs/
https://cloud.google.com/workflows
https://netflix.github.io/conductor/
https://temporal.io/
https://developers.cloudflare.com/workers/learning/using-durable-objects
https://developers.cloudflare.com/workers/learning/using-durable-objects
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://blog.cloudflare.com/introducing-workers-durable-objects/
https://zeebe.io/
https://zeebe.io/
https://www.microsoft.com/en-us/research/publication/actor-oriented-database-systems/
https://www.microsoft.com/en-us/research/publication/actor-oriented-database-systems/
http://www.vldb.org/pvldb/vol13/p588-goldstein.pdf
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
http://www.aclweb.org/anthology/E14-3011
https://doi.org/10.1145/3341302.3342080
https://doi.org/10.1145/2452376.2452385
https://doi.org/10.1561/1900000060
https://doi.org/10.1145/2463676.2465302

[58] Johann Schleier-Smith. 2019. Serverless Foundations for Elastic Database Sys-
tems. In CIDR 2019, 9th Biennial Conference on Innovative Data Systems Re-
search, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. http:
//cidrdb.org/cidr2019/gongshow/abstracts/cidr2019_140.pdf

[59] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Irfan Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russi-
novich, and Ricardo Bianchini. 2020. Serverless in the Wild: Characterizing
and Optimizing the Serverless Workload at a Large Cloud Provider. In
Proceedings of the USENIX Annual Technical Conference (ATC). USENIX.
https://www.microsoft.com/en-us/research/publication/serverless-in-the-
wild-characterizing-and-optimizing-the-serverless-workload-at-a-large-
cloud-provider/

[60] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 1–10.

[61] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E. Gonzalez,
Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A Fault-Tolerance Shim for
Serverless Computing. In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys ’20). Association for Computing
Machinery, New York, NY, USA, Article 15, 15 pages. https://doi.org/10.1145/
3342195.3387535

[62] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph E. Gonzalez, JosephM. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. Proceedings of the VLDB Endowment (2020),
2438–2452.

[63] Rebecca Taft, Willis Lang, Jennie Duggan, Aaron J. Elmore, Michael Stonebraker,
and David DeWitt. 2016. STeP: Scalable Tenant Placement forManaging Database-
as-a-Service Deployments. In Proceedings of the Seventh ACM Symposium on Cloud
Computing (Santa Clara, CA, USA) (SoCC ’16). Association for Computing Ma-
chinery, New York, NY, USA, 388–400. https://doi.org/10.1145/2987550.2987575

[64] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Ut,ă, and A. Iosup. 2018. Serverless
is More: From PaaS to Present Cloud Computing. IEEE Internet Computing 22, 5
(Sep. 2018), 8–17. https://doi.org/10.1109/MIC.2018.053681358

[65] ChenggangWu, Vikram Sreekanti, and JosephM. Hellerstein. 2020. Transactional
Causal Consistency for Serverless Computing. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (Portland, OR, USA)
(SIGMOD ’20). Association for Computing Machinery, New York, NY, USA, 83–97.
https://doi.org/10.1145/3318464.3389710

[66] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Sebastian Angel, and Vincent
Liu. 2020. Fault-tolerant and Transactional Stateful Serverless Workflows. In 14th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
20).

[67] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020. Kappa: A
Programming Framework for Serverless Computing. In Proceedings of the 11th
ACM Symposium on Cloud Computing. ACM, 16.

1604

http://cidrdb.org/cidr2019/gongshow/abstracts/cidr2019_140.pdf
http://cidrdb.org/cidr2019/gongshow/abstracts/cidr2019_140.pdf
https://www.microsoft.com/en-us/research/publication/serverless-in-the-wild-characterizing-and-optimizing-the-serverless-workload-at-a-large-cloud-provider/
https://www.microsoft.com/en-us/research/publication/serverless-in-the-wild-characterizing-and-optimizing-the-serverless-workload-at-a-large-cloud-provider/
https://www.microsoft.com/en-us/research/publication/serverless-in-the-wild-characterizing-and-optimizing-the-serverless-workload-at-a-large-cloud-provider/
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/2987550.2987575
https://doi.org/10.1109/MIC.2018.053681358
https://doi.org/10.1145/3318464.3389710

