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ABSTRACT

Maximal bicliques are e�ective to reveal meaningful information

hidden in bipartite graphs. Maximal biclique enumeration (MBE)

is challenging since the number of the maximal bicliques grows

exponentially w.r.t. the number of vertices in a bipartite graph in

the worst case. However, a large bipartite graph is usually very

sparse, which is against the worst case and may lead to fast MBE

algorithms. The uncharted opportunity is taking advantage of the

sparsity to substantially improve theMBE e�ciency for large sparse

bipartite graphs. We observe that for a large sparse bipartite graph,

a vertex 𝑣 may converge to a few vertices in the same vertex set

as 𝑣 via its neighbours, which reveals that the enumeration scope

for a vertex could be very small. Based on this observation, we

propose novel concepts: unilateral coreness for individual vertices,

unilateral order for each vertex set and unilateral convergence (𝜍)

for a large sparse bipartite graph. 𝜍 could be a few thousand for a

large sparse bipartite graph with hundreds of million edges. Using

the unilateral order, every vertex with 𝜏 unilateral coreness only

needs to check at most 2
𝜏
combinations so that all maximal bicliques

can be enumerated and 𝜏 is bounded by 𝜍 , which leads to a novel

MBE algorithm running in O∗ (2𝜍 ). We then propose a batch-pivots

technique to eliminate all enumerations resulting in non-maximal

bicliques, which guarantees that every maximal biclique is reported

in O(𝜍𝑒)-delay, where 𝑒 is the number of edges. We devise novel

data structures that allow storing subgraphs at omissible space for

further speeding up MBE. Extensive experiments are conducted

on synthetic and real large datasets to justify that our proposed

algorithm is faster and more scalable than the existing algorithms.
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1 INTRODUCTION

Biclique and its applications. A bipartite graph𝐺=(𝐿,𝑅,𝐸) consists
of two disjoint vertex sets 𝐿 and 𝑅 and the edges 𝐸⊆𝐿×𝑅. Given a

pair of vertex sets (𝐴⊆𝐿,𝐵⊆𝑅), if for every (𝑢,𝑣) ∈𝐴×𝐵, (𝑢,𝑣) ∈𝐸, (𝐴,𝐵)
is a biclique. If a biclique (𝐴,𝐵) cannot be further enlarged, (𝐴,𝐵) is
a maximal biclique.

Finding bicliques in a bipartite graph is critical for bipartite

graph data analytics and has a myriad of applications such as text

mining [31, 35, 45], biological data analysis [4, 23, 38, 44], web

community discovery [3, 20, 22, 29, 30, 32], and so on.

In this paper, we focus on devising e�cient algorithms for maxi-

mal biclique enumeration (MBE). MBE has been recognised as the

foundation of various biclique problems and studied in [2, 12, 17, 47].

We further justify the importance of solving the MBE problem e�-

ciently as follows.

Importance of e�cient MBE algorithm. An e�cient maximal

biclique enumeration algorithm can improve time complexities for

various biclique problems and provide insightful hints for users to

search for desired bicliques.

Improving time complexities for various biclique problems. For real
applications, additional constraints, such as minimum number

of vertices or edges, can be applied for discovering desired bi-

cliques, which makes the biclique search problems inside the𝑊 [𝑖 ]-
hierarchy [27] with 𝑖≥1, i.e., they are not in the �xed-parameter

tractable (FPT) class. This means, for those problems, even when

speci�c parameters are provided, it is unlikely to have algorithms

that run better than exponential time w.r.t. the size of a bipartite

graph in the worst case. As such, e�cientMBE is critical to a myriad

of such biclique problems that are not in FPT. For instance, consid-

ering the size-constrained maximum edge biclique problem (MEB),
the state-of-the-art algorithm [30] still has the same time complex-

ity as its base which is inherently maximal clique enumeration

although elegant pruning techniques were proposed. Improving

the practical performance and time complexity of MBE are indeed

important and can bene�t variants of non-FPT biclique problems.

Providing searching hints. In real applications, users face challenges

to �nd the desired bicliques by specifying precise size or edge

constraints based on both their desiderata and the characteristics

of datasets. Users may try di�erent constraints, which not only is

user-unfriendly but also causes extra burden to a search engine.

For a large sparse bipartite graph, if there is an algorithm running

MBE fast to provide biclique distribution information for di�erent

users, the above drawbacks can be mitigated. Let us treat Figure 1(a)

as a comment-contain-stem bipartite graph that is typical for the

text-mining application scenario, say, vertices 1 to 4 are comments,
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vertices 5 to 9 are stems, and an edgemeans that a comment contains

a stem. Suppose that a user wants to cluster comments by the

biclique semantic, i.e., comments sharing at least 𝑘 common stems

are considered as a cluster. Using MBE, a search engine can provide

useful hints such as: when 𝑘=1, all comments are in the same cluster;

when 𝑘=2, comments 2 and 3 are in a more re�ned cluster, and so

on. As such, the user can determine 𝑘 with fewer attempts.

State-of-the-art. Recent works [2, 12] are built based on the MBE
algorithm iMBEA [47], dedicated for bipartite graphs.

Enumeration schema [47]. iMBEA takes the advantage that all the

maximal bicliques in a bipartite graph 𝐺=(𝐿,𝑅,𝐸) can be enumer-

ated by visiting the sets in either 2
𝐿
or 2

𝑅
(the powerset for 𝐿 or 𝑅)

and proposes to enumerate maximal bicliques from the vertex set

with the minimum number of vertices recursively. In this paper,

we always assume that 𝑅 is the set of vertices that an MBE algo-

rithm works on. The rationale that visiting 2
𝑅
leads to bicliques is

as follows. Given a vertex set 𝐵∈2𝑅 and let 𝐴 be the common neigh-

bours for the vertices in 𝐵, if 𝐴≠∅, (𝐴,𝐵) is a biclique. iMBEA uses

a �xed order of 𝑅 to enumerate 2
𝑅
with no repeating. iMBEA runs

in O( |𝑅 |𝑑𝑚𝑎𝑥 (𝑅)2|𝑅 |) or O(𝑑2

𝑚𝑎𝑥 (𝑅) |𝑅 |2B) , where 𝑑𝑚𝑎𝑥 (𝑅) denotes the
maximum degree of vertices in 𝑅 and B denotes the actual number

of maximal bicliques contained in 𝐺 .

Recent speeding-up [2, 12]. In [2], they discover that given two ver-

tices 𝑢,𝑢′∈𝑅, if the neighbours of 𝑢′ are a subset of the neighbours of
𝑢, then the maximal biclique containing 𝑢′ can always be expanded

by adding 𝑢. 𝑢 is called a pivot. They propose a pivot-based algo-

rithm that outperforms iMBEA in practice but still has the same

time complexity as iMBEA. On the other hand, in [12], they show

that given an order of 𝑅, the input bipartite graph can be partitioned

into a set of subgraphs. Therefore, they divide the MBE problem

for 𝐺 into |𝑅 | MBE problems, which achieves practical speeding-up.

In this paper, we focus on devising an e�cient algorithm for

enumerating all the maximal bicliques for a real large sparse bi-

partite graph with parameterised complexity much better than the

existing algorithms, which enables solving theMBE problem in a

reasonable time even with a single machine when a dataset is large.

Uncharted opportunity for MBE. We observe that real large

bipartite graphs are sparse, i.e., the bipartite edge density
|𝐸 |
|𝐿 |×|𝑅 | is

small. Based on the statistics from [21], when the number of edges

is at the million scale, the edge density is usually smaller than 10
−5

and when the number of edges is at a hundred million scale, the

edge density is smaller than 10
−6
. The theory indicating that the

sparsity could lead to an e�cientMBE algorithm is below.

The parameterised approach. One promising way to solve the MBE
problem e�ciently for a large sparse bipartite graph is transforming

the MBE problem to a set of parameterised problems. A parame-

terised problem is �xed-parameter tractable if the problem with

input size 𝑛 and a parameter 𝑝 can be solved in 𝑓 (𝑝)𝑛O(1) , where 𝑓 is

allowed to grow exponentially w.r.t. 𝑝 but is independent of 𝑛 [14].

As such, if we can discover an e�ective and e�cient transformation

such that 1) the parameter for every transformed parameterised

problem is no greater than 𝑝, 2) 𝑝 is considerably smaller than |𝐿 |
or |𝑅 |, 3) the total number of parameterised problems is |𝐿 | or |𝑅 |
and 4) the transformation runs in polynomial time w.r.t. the size of

the bipartite graph, then theMBE problem can be solved substan-

tially fast. Since all the existing algorithms for MBE do not bear

1 2 3 4

5 6 7 8 9

(a) Sparse bipartite graph

5 9 7 8 6

1 2 3 4

(b) The proposed order

Figure 1: Examples

the parameterised approach in mind when devising the algorithms,

after adapting them to parameterised approaches, 𝑝 can only be

bounded by |𝑅 |. As such, although there could exist 𝑝 in a large

sparse bipartite graph with 𝑝 signi�cantly less than |𝑅 |, the existing
algorithms still run in O∗ (2|𝑅 |). Novel techniques are sought after.
Our approach. We propose a novel MBE algorithm ooMBEA run-

ning in O∗ (2𝜍 (𝑅) ) by transforming theMBE problem on 𝐺 into up to

|𝑅 | parameterised problems, where 𝜍 (𝑅) is our proposed parameter

named as unilateral convergence. 𝜍 (𝑅) is small. For datasets such

as 𝐿𝑖𝑣𝑒 𝐽 𝑜𝑟𝑢𝑛𝑎𝑙 containing more than 112 million edges, 𝜍 (𝑅) is only
7616. Major technical highlights of ooMBEA are as follows.

E�ective and e�cient transformation. We propose novel concepts:

the unilateral coreness for individual vertices, the unilateral order

for each vertex set and the unilateral convergence (𝜍 (𝑅)) for a large
sparse bipartite graph. We reveal that, by enforcing the unilateral

order on the vertices in 𝑅, for every vertex 𝑣∈𝑅 with the unilateral

coreness of 𝜏 (𝑣) , ooMBEA only needs to check at most 2
𝜏 (𝑣)

subsets

of 𝑅 recursively and 𝜏 (𝑣) is bounded by 𝜍 (𝑅) . We prove that ooMBEA
only needs to check at most |𝑅 |2𝜍 (𝑅) subsets of 𝑅 to enumerate all

the maximal bicliques, which is clearly much smaller than the

existing bound 2
|𝑅 |
. We also show that the transformation runs

in O(𝑑𝑚𝑎𝑥 (𝐿) |𝐸 (𝐺) |) and much faster in practice since the degree

distribution for a large sparse bipartite graph is skewed.

More e�ective pruning. Although the transformation reduces the up-

per bound of the number of subsets of 𝑅 that we have to check, there

still exist subsets that lead to non-maximal bicliques. To further

reduce the subsets to be checked, we propose the batch-pivots tech-

nique. The main ideas are as follows. For each recursive subproblem

expanding new subsets from a checked subset 𝐵, we further explore

the subgraph 𝐻 ⊆𝐺 induced by the vertices 𝐴⊆𝐿 that are common

neighbours of vertices in 𝐵 and every vertex 𝑣∈𝑅\𝐵 such that the

intersection of the neighbours of 𝑣 with 𝐴 is not an empty set. We

choose a batch of pivots consisting of 𝑒𝑣𝑒𝑟𝑦 vertex 𝑣∈𝑅 (𝐻 ) whose
neighbours are not a subset of the neighbours of any other 𝑣′ in

𝑅 (𝐻 ). We prove that, every vertex in the batch of pivots must lead

to a maximal biclique and any other vertex of 𝑅 (𝐻 ) cannot lead
to a maximal biclique and therefore shall not be used to generate

new subsets. This means, every recursive subproblem to be solved

after the batch-pivots optimisation must report a maximal biclique,

which shaves the necessity of maximality checking and guarantees

that ooMBEA reports a maximal biclique in O(𝜍 (𝑅) |𝐸 (𝐺) |)-delay. In
contrast, the best existing polynomial delay algorithm for MBE
reports a maximal biclique in O(𝑑2

𝑚𝑎𝑥 (𝑅) |𝑅 |2)-delay. We also devise

an e�cient algorithm to compute the batch-pivots by caching and

exploring local subgraphs.

E�ective space consumption. Storing local subgraphs in a straight-

forward way makes the space complexity as high as O(𝜍 (𝑅) |𝐸 (𝐺) |).
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𝐴:{5,6,7,8,9},𝐵:{},𝑃 :{3,1,2,4},𝑄 :{}

𝐴:{6,7,8},𝐵:{3},
𝑃 :{1,2,4},𝑄 :{}

𝐴:{7,8},𝐵:{3,2},
𝑃 :{1,4},𝑄 :{}

𝐴:{7},𝐵:{3,2,1,4},
𝑃 :{},𝑄 :{}

𝐴:{7},𝐵:{3,2,4},
𝑃 :{},𝑄 :{1}

𝐴:{5,7},𝐵:{1},
𝑃 :{2,4},𝑄 :{3}

𝐴:{7},𝐵:{1,2},
𝑃 :{4},𝑄 :{3}

𝐴:{7,9},𝐵:{4},
𝑃 :{2},𝑄 :{1,3}

𝐴:{7},𝐵:{4,2},
𝑃 :{},𝑄 :{1,3}

Figure 2: Recursion for iMBEA with pivoting

To get rid of the space consumption caused by storing local sub-

graphs, we use the input vertex sets 𝐿, 𝑅 and the adjacency list

among recursive subproblems while adjusting the positions of ver-

tices according to each recursive subproblem. When backtracking

to the current recursive subproblem, the positions vertices in 𝑅,

𝐿 and adjacency list are restored to ensure the correctness. We

study the necessary information needed for restoring. With our

e�ort, the space consumption of our proposed algorithm is the

same as the space complexity of without storing local subgraphs,

i.e., O(𝜍 (𝑅) |𝐿 |+ |𝐺 |).
Our principal contributions are summarised as follows.

(1) We explore how to use sparsity of a real large bipartite

graph for devising e�cientMBE algorithms. Section 4

(a) We propose novel concepts: the unilateral coreness,

order and convergence to reveal why theMBE problem
can be solved fast for large sparse bipartite graphs.

(b) We propose a novel MBE algorithm that runs in O∗

(2𝜍 (𝑅) ) , where 𝜍 (𝑅) is only a few thousand for bipartite

graphs with hundreds of million edges.

(2) We propose e�ective batch-pivots techniques. Section 5

(3) The novel data structure shaves space overheads. Section 6

(4) Extensive experiments are conducted to evaluate the pro-

posed techniques on real large datasets. Section 8

2 PROBLEM FORMULATION

Bipartite graph. Let 𝐺=(𝐿,𝑅,𝐸) denote a bipartite graph. 𝐿 and 𝑅

are the two sets of disjoint vertices in 𝐺 . 𝐸 is the set of edges in 𝐺

and 𝐸⊆𝐿×𝑅. For instance, Figure 1(a) shows a bipartite graph with

𝐿={5,6,7,8,9} and 𝑅={1,2,3,4}.
W.l.o.g., we use 𝐻 ⊆𝐺 to denote a subgraph of 𝐺 and 𝑁 (𝑣,𝐻 ) to

denote the neighbours of 𝑣 in 𝐻 . Given a set of vertex 𝑋 ⊆𝐿 or 𝑋 ⊆𝑅,
we use Γ (𝑋,𝐻 ) to denote the common neighbours of vertices in

𝑋 , i.e., Γ (𝑋,𝐻 )=∩𝑣∈𝑋𝑁 (𝑣,𝐻 ) and Υ (𝑋,𝐻 ) to denote the union of the

neighbours of vertices in 𝑋 , i.e., Υ (𝑋,𝐻 )=∪𝑣∈𝑋𝑁 (𝑣,𝐻 ) . We use 𝑁2 (𝑣,𝐻 )
to denote 2-hop neighbours of 𝑣 in 𝐻 , i.e., 𝑁2 (𝑣,𝐻 )=Υ(𝑁 (𝑣,𝐻 ),𝐻 )\{𝑣 }.
When the context 𝐻 is clear, we use Γ (𝑋 ) , Υ(𝑋 ) , and 𝑁2 (𝑣) for brevity.
Maximal biclique. A pair of vertex sets (𝐴,𝐵) is a biclique if

∀(𝑢∈𝐴,𝑣∈𝐵) ∈𝐴×𝐵, (𝑢,𝑣) ∈𝐸. If (𝐴,𝐵) cannot be further enlarged, (𝐴,𝐵)
is a 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑏𝑖𝑐𝑙𝑖𝑞𝑢𝑒. For instance, in Figure 1(a), ( {6,7,8},{3}) and
( {7,8},{2,3}) are two of the maximal bicliques.

Problem statement. Given a bipartite graph 𝐺 , report all the max-

imal bicliques in 𝐺 .

3 STATE-OF-THE-ART

In this section, we revisit recent popular MBE algorithms.

Data structures for MBE. To e�ciently enumerate maximal bi-

cliques, the existing works such as [2, 12, 47] design algorithms

𝐴:{1,2,3,4},𝐵:{},𝑃 :{5,9,7,8,6},𝑄 :{}

𝐴:{1},𝐵:{5,7},
𝑃 :{},𝑄 :{}

𝐴:{4},𝐵:{9,7},
𝑃 :{},𝑄 :{}

𝐴:{1,2,3,4},𝐵:{7},
𝑃 :{8,6},𝑄 :{5,9}

𝐴:{2,3},𝐵:{7,8},
𝑃 :{6},𝑄 :{}

𝐴:{3},𝐵:{7,8,6},
𝑃 :{},𝑄 :{}

Figure 3: Recursion for our proposed algorithm

that mainly work on four sets, 𝐴⊆𝐿, and 𝐵,𝑃,𝑄⊆𝑅. The sets 𝐴, 𝐵 are

for storing candidate bicliques. 𝑃 is the set of vertices for expanding

𝐵, 𝑄 is the set of vertices that have been expanded previously, and

𝐵,𝑃,𝑄 are disjoint. We use Algorithm 1 to demonstrate the algorithm

incorporating the optimisations in the existing works.

Generating powerset leading to bicliques [47]. Let us �rst skip

all the prunings and maximality checking in Algorithm 1. Initially,

sets𝐴,𝐵,𝑄 are empty sets and 𝑃=𝑅. Algorithm 1 recursively generates

𝐵∈2𝑅 by moving a vertex 𝑣∈𝑃 to 𝐵 and maintains 𝐴 as Γ (𝐵), which
leads to a biclique (𝐴,𝐵) (line 4). Then, for 𝑃 , every vertex that

cannot form a biclique with 𝐵 are excluded by line 15. During the

backtracking, the operation moving 𝑣 from 𝑃 to 𝑄 ensures that a

set of 2
𝑅
is generated only once during the enumeration (line 18).

Maximality checking [47]. Although 𝐵∈2𝑅 is generated with no

repeating, the biclique which 𝐵 leads to could be non-maximal, i.e.,

(𝐴,𝐵) could be non-maximal. In [47], the vertex set 𝑄 is introduced

for checking the maximality. Initially 𝑄 is an empty set. For a re-

cursive subproblem generating 𝐵 and the corresponding 𝐴, 𝑄 is

maintained as the set of vertices that 1) previously were in 𝑃 (line

18) and 2) ∀𝑣∈𝑄, 𝑁 (𝑣)∩𝐴≠∅ (lines 6 to 9). As such, the maximality

checking becomes that if ∃𝑣∈𝑄, 𝑁 (𝑣)∩𝐴=𝐴, (𝐴,𝐵) is not a maximal

biclique (line 7).

Embedded prunings. In the existing works, the neighbour con-

tainment based pruning is proposed and implemented di�erently.

We �rst review the neighbour containment based pruning.

Neighbour containment based pruning (NCP) [2, 47]. Given a sub-

graph 𝐻 ⊆𝐺 , and two vertices 𝑣 and 𝑣′, if 𝑁 (𝑣′,𝐻 ) ⊆𝑁 (𝑣,𝐻 ) , then all the

bicliques in 𝐻 containing 𝑣′ without 𝑣 can be enlarged by adding

𝑣. This idea can be used to reduce recursive subproblems that do

not lead to maximal bicliques. In Algorithm 1, for every recursive

subproblem, 𝐻 is 𝑃∪𝐴 induced subgraph of 𝐺 .

Sort based NCP. In [47], for a recursive subproblem with 𝐴,𝐵,𝑃,𝑄

(or 𝐻 ), ∀𝑣∈𝑃 , they are sorted by |𝑁 (𝑣)∩𝐴 | (or |𝑁 (𝑣,𝐻 ) |) in a non-

increasing order. Then, the algorithm branches at the vertex with

the maximum |𝑁 (𝑣)∩𝐴 |. The rationale is that the larger |𝑁 (𝑣)∩𝐴 | is,
the higher chance of any other vertex 𝑣′ with 𝑁 (𝑣′)∩𝐴⊆𝑁 (𝑣)∩𝐴 and

therefore can be pruned.

Pivot based NCP. In [2], for a recursive subproblem, a vertex

𝑣∗∈𝑃 such that 𝑣∗ can maximise the pruning is selected as the pivot
1
,

i.e., 𝑣∗ is argmax𝑣∈𝑃 { |𝑆 | |𝑆⊆𝑃∧∀𝑣′∈𝑆,𝑁 (𝑣′)∩𝐴⊆𝑁 (𝑣)∩𝐴}. Due to the high
computational cost of the pivot selection, an index is built, which

is a partial order of the vertices in 𝑅 according to the global neigh-

bour containment relationships in 𝐺 . For 𝑣 and 𝑣′, if 𝑁 (𝑣′) ⊆𝑁 (𝑣), a
directed edge from 𝑣 to 𝑣′ is created. As such, given a vertex 𝑣, its

pruning power can be estimated by traversing the partial order

1𝑣∗ serves as a pivot for 𝑃 since it partitions 𝑃 into two set of vertices, i.e., the vertices

can be pruned and other vertices
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Table 1: Recent MBE algorithms on bipartite graphs

Algorithm Signature optimisations Time complexity

iMBEA [47] Maximality checking, sort based NCP O(|𝐿 | |𝑅 |2|𝑅 | )
FMBEA [12] Divide-and-conquer O(𝑑4𝑚𝑎𝑥 2

|𝑅 | )
PMBEA [2] Pivot based NCP, index for FMBEA pivot selection O(|𝐿 | |𝑅 |2|𝑅 | )
ooMBEA Unilateral order, batch-pivots, optimised data structure O(𝜍 (𝑅) |𝑅 | |𝐸 |2𝜍 (𝑅) )

from the vertex via forwarding edges. The optimal pivot is selected

heuristically based on the index. In Algorithm 1, lines 2 and 3 show

how a selected pivot prunes branches.

In fact, using global containment relationships could make the

pruning suboptimal. For instance, in Figure 2, for the recursive

subproblem with 𝐴:{7,8}, 𝐵:{3,2}, 𝑃 :{1,4}, 𝑄:{}, the neighbours of 1
cannot contain those of 4 based on Figure 1(a), which makes the

recursion 𝐴:{7}, 𝐵:{3,2,4}, 𝑃 :{}, 𝑄:{1} be explored but fruitless.

Aggressive expansion [47]. A special case of NCP based pruning is

studied. Given 𝐻 ⊆𝐺 , and a vertex 𝑣 used to expand a biclique, any

vertex 𝑣′ such that 𝑁 (𝑣′,𝐻 )=𝑁 (𝑣,𝐻 ) can be directly move to 𝐵 together

with 𝑣, which can reduce the enumeration depth. In Algorithm 1,

𝐵+ and line 13 implement this idea. For instance, in Figure 2, the

recursive subproblem with 𝐴:{7,8}, 𝐵:{3,2}, 𝑃 :{1,4}, 𝑄:{} aggressively
includes {1,4} to 𝐵, leading to the recursive subproblem with 𝐴:{7},
𝐵:{3,2,1,4}, 𝑃 :{}, 𝑄:{}.
Time complexity. The time complexity of Algorithm 1 has been

interpreted quite di�erently by the exiting works [2, 12, 47] shown

in Table 1. The most used interpretation is O( |𝐿 | |𝑅 |B), where B is

claimed to be the total number of maximal bicliques in 𝐺 . In fact,

it should be O( |𝐿 | |𝑅 |2|𝑅 |) [47]. Alternatively, Algorithm 1 runs in

O(𝑑4

𝑚𝑎𝑥 B), since it reports each biclique in O(𝑑4

𝑚𝑎𝑥 )-delay [47].

Opportunities. After revisiting the state-of-the-art techniques, we

�nd the opportunities below. First, the time complexities of the

existing algorithms are dominated by 2
|𝑅 |

and |𝑅 | is quite large for
a real dataset. Although the existing works have made great e�orts

to reduce generating fruitless sets, those e�orts cannot reduce the

time complexity. Can we improve the time complexity for MBE?
Second, NCP is implemented with heuristics that may compro-

mise the pruning e�ectiveness. It would be great to explore the full

potential of NCP. At last, the data structure for e�ciently enumer-

ating maximal biclique has not been studied carefully, which can

practically speed up the algorithm further.

In this paper, for large sparse bipartite graphs, we explore the

above opportunities and propose novel techniques summarised in

Table 1, leading to anMBE algorithm (ooMBEA) with better time

complexity, faster practical performance and better scalability.

4 ORDER OPTIMISED MAXIMAL BICLIQUE

ENUMERATION

In most of the MBE algorithms, having a �xed total search order

is important since it ensures that the powerset for 𝑅 or 𝐿 can be

enumerated without repetition. However, the power of total search

order has not been fully explored for the MBE problem. We reveal

that applying a carefully studied order leads to an MBE algorithm

with much more promising time complexity.

Algorithm 1: iMBEA(𝐴,𝐵,𝑃,𝑄)

1 Procedure iMBEA(A,B,P,Q)
/* Pivot-based pruning */

2 𝑝← select a pivot from 𝑃 ;

3 foreach 𝑣∈{𝑝}∪ {𝑣 |𝑣∈𝑃,𝑁 (𝑣)*𝑁 (𝑝 ) } do
4 𝐴′,𝑃 ′,𝑄′←∅, 𝐵←𝐵∪{𝑣}, 𝐴′←𝐴∩𝑁 (𝑣) ;

/* Maximality checking */

5 isMaximal ← true;

6 foreach 𝑞∈𝑄 do

7 if 𝐴′⊆𝑁 (𝑞) then isMaximal ← false, break ;

8 else

9 if 𝐴′∩𝑁 (𝑞)≠∅ then 𝑄′←𝑄′∪{𝑞} ;

10 if isMaximal then
11 𝐵+←∅;

12 foreach 𝑣′∈𝑃\{𝑣} do
13 if 𝑁 (𝑣′)∩𝐴′==𝐴′ then 𝐵+ ← 𝐵+∪{𝑣′} ;

14 else

15 if 𝑁 (𝑣′)∩𝐴′≠∅ then 𝑃 ′←𝑃 ′∪{𝑣′} ;

16 report (𝐴′,𝐵∪𝐵+ ) ;

17 if 𝑃 ′≠∅ then iMBEA(𝐴′, 𝐵∪𝐵+,𝑃 ′,𝑄′) ;

18 𝑃←𝑃\{𝑣}, 𝑄←𝑄∪{𝑣};

4.1 Ordering vertices for bipartite graphs

Although considering ordering optimisations for improving the

performance of maximal clique enumeration has been well studied,

the study on that for improving the maximal biclique enumeration

problem is still at a preliminary stage.

State-of-the-art. An order tailored for the maximum balanced

biclique (MBB) problem, known as the bidegeneracy order, has been

proposed in [9]. This order is derived by the peeling sequence of 𝐿

and 𝑅 based on their 1-hop and 2-hop neighbours, i.e., progressively

removing the vertex in 𝐿∪𝑅 with the minimum number of 1-hop

and 2-hop neighbours up to the time. The bidegeneracy order is

more suitable for �nding an MBB but not for MBE because of the

reasons below. For theMBB problem, due to the balanced constraint,

when generating a biclique, popular algorithms such as [9, 49]

prefer to expand the two sets (𝐴,𝐵) in turn to avoid wasting time

on computing imbalanced bicliques, which essentially checks up to∑|𝑅 |
𝑖=1 ( |𝑅 |𝑖 ) ·( |𝐿 |𝑖 ) sets, supposing |𝑅 | ≤ |𝐿 | in the worst case. In contrast,

for the MBE problem, it is highly desired that the vertices belonging

to a maximal biclique (𝐴,𝐵) can be included at the same time to

reduce the number of recursions as much as possible. Therefore, for

the MBE problem, it is more e�cient to just enumerate either up

to 2
|𝐿 |

or 2
|𝑅 |

sets as discussed. From the discussion, we can see that

the bidegeneracy order is for 𝐿∪𝑅. In contrast, the order needed for

MBE is for either 𝐿 or 𝑅 only.

Why ordering matters for MBE. Inspired by [9, 12], given an

ordered vertex set, MBE on 𝐺 is equivalent to MBE on a set of

subgraphs. For MBE, the subgraphs are de�ned as follows.

Search scope of ordered vertices. Given a permutation of 𝑅=(𝑣1,...,𝑣|𝑅 |) ,
and 𝑣𝑖 ∈𝑅, the search scope for 𝑣𝑖 is the subgraph induced by 𝑅+𝑣𝑖∩
𝑁2 (𝑣𝑖 ) and 𝑁 (𝑣𝑖 ,𝐺), where 𝑅+𝑣𝑖 are vertices 𝑣𝑖′ in 𝑅 with 𝑖′≥𝑖.

Following the permutation of 𝑅, after enumerating maximal

bicliques in the subgraph derived from every vertex in 𝑅, all maximal
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bicliques can be derived. For instance, following the order indicated

in Figure 1(b), ( {5,7},{1}), ( {9,7}, {4}), ( {7,8,6}, {1,2,3,4}), ( {8,6}, {2,3,4})
and ( {6},{3}) induced subgraphs contain all maximal bicliques.

From the above discussion we can see that, for theMBE problem,

a desired order should be 1) it can nicely bound |𝑅+𝑣𝑖∩𝑁2 (𝑣𝑖 ) | for all
1≤𝑖≤ |𝑅 | tightly, 2) it can be computedwith low cost , and 3) the upper

bound of |𝑅+𝑣𝑖∩𝑁2 (𝑣𝑖 ) | is guaranteed small when a bipartite graph is

sparse. Such an order can greatly reduce the time complexity since

MBE is dominated by enumerating 2
𝑅+𝑣𝑖 ∩𝑁2

(𝑣𝑖 )
for each 𝑣𝑖 . However,

for the MBE problem, such an order has not been studied yet.

4.2 The proposed order and search framework

We observe that when a bipartite graph is sparse, a vertex 𝑣∈𝑅 may

converge to a small number of vertices in 𝑅 via the neighbours of 𝑣.

This motivates us to give the de�nitions below.

Definition 1. 𝑘 unilateral core. Given a vertex 𝑣∈𝑅, 𝑣 is in a 𝑘

unilateral core if there is a subgraph 𝐻 ⊆𝐺 containing 𝑣 such that
∀𝑣′∈𝑅 (𝐻 ), |𝑁2 (𝑣′,𝐻 ) |≥𝑘. The maximum 𝑘 for 𝑣 is called the unilateral
coreness of 𝑣, denoted by 𝜏 (𝑣,𝐺). The maximum 𝜏 for all the vertices
in 𝑅 is de�ned as the unilateral convergence for 𝑅, denoted by 𝜍 (𝑅).
The same can be de�ned on every vertex in 𝐿 and the vertex set 𝐿.

For the MBE problem, since we only enumerate 2
𝑅
or 2

𝐿
to visit

all the maximal bicliques, an order for 𝑅 or 𝐿 is de�ned as follows.

Definition 2.Unilateral order. A permutation of 𝑅=(𝑣1, ..., 𝑣|𝑅 |) is a
unilateral order if ∀1≤𝑖≤ |𝑅 |, 𝑣𝑖 has the minimum two-hop neighbours
in 𝐻+, where 𝐻+ is the subgraph of 𝐺 induced by 𝑅+𝑣𝑖 ={𝑣𝑗 |𝑖≤ 𝑗≤ |𝑅 | } and
𝑁 (𝑣𝑖 ,𝐺). The same order can be de�ned on 𝐿 similarly.

For example, in Figure 1(b), a unilateral order of for the vertex

set {5,6,7,8,9} is shown, which is (5,9,7,8,6).
Another view of the unilateral convergence. The unilateral

convergence and the unilateral order for 𝐺 are the same as the

degeneracy and degeneracy order for an auxiliary graph 𝐺′ based

on 𝐺 . 𝐺′ is constructed as follows. 𝑉 (𝐺′) consists of every vertex

in 𝑅 (𝐺). There is a single edge between two vertices in 𝐺′ if the

two vertices in 𝐺 are 2-hop reachable. By the construction and

Definition 1, the degeneracy of 𝐺′ equals to 𝜍 (𝑅) of 𝐺 clearly, and

it is the same for the two orders.

Order optimised MBE search framework (ooMBEA). We are

ready to introduce ooMBEA, shown in Algorithm 2. It �rst deter-

mines a total search order that can speed up the enumeration (lines

1 to 3). Then following the total search order, Algorithm 2 solves

at most |𝑃 | number of MBE problems on subgraphs induced by

vertices in 𝐴, 𝑃 ′ and 𝑄′ (lines 4 to 10).

The search framework is general. Any order could be applied.

In this paper, we propose to use the unilateral order for either 𝐿

or 𝑅, which leads to following questions. First, why the unilateral

order is used? Second, what is the overhead of using unilateral

order? Third, for 𝐿 and 𝑅, which vertex set should be chosen for

enumerating maximal bicliques?

We answer the above questions in the following sub-sections.

4.3 The advantages of using unilateral order

Using the unilateral order, the largest size of the subproblems solved

by Algorithm 2 can be nicely bounded. Therefore, it would improve

the time complexity for enumerating maximal bicliques.

Algorithm 2: ooMBEA((𝐿,𝑅,𝐸))

1 𝑃← either 𝐿 or 𝑅 estimated to be faster, 𝑄←∅;

2 Order vertices in 𝑃 by some criteria;

3 prune 𝑃 by ordered based containment based pruning;

4 foreach 𝑣∈𝑃 in order do
5 𝐴←𝑁 (𝑣,𝐺 ) , 𝐵←{𝑣}, 𝑃 ′← 𝑁2 (𝑣)∩𝑃 , 𝑄′←∅;

6 compute 𝐵+ as Algorithm 1,report (𝐴,𝐵∪𝐵+ ) ;

7 foreach 𝑣∈𝑄 do

8 if 𝑁 (𝑣)∩𝐴≠∅ then 𝑄′←𝑄′∪{𝑣};

9 iMBEA(𝐴,𝐵∪𝐵+,𝑃 ′,𝑄′) ;

10 𝑃←𝑃\{𝑣}, 𝑄←𝑄∪{𝑣};

To simplify the discussion, we assume using 𝑅 to enumerate all

the maximal bicliques and 𝜍 (𝑅) ≤𝜍 (𝐿).

Lemma 1. Using the unilateral order, Algorithm 2 runs in O( |𝑅 |2𝜍 (𝑅) ).

Proof sketch. iMBEA in Algorithm 2 runs in O∗ (2|𝑃′ |) by line 9.

We only need to show that the maximum |𝑃 ′ | in Algorithm 2 is

𝜍 (𝑅) . Since 𝑅 is in the unilateral order, for a vertex 𝑣, |𝑁2 (𝑣,𝐻+) | is at
most 𝜏 (𝑣,𝐺) by the de�nition of the unilateral order, which ensures

that |𝑃 ′ | is bounded by𝑚𝑎𝑥 {𝜏 (𝑣,𝐺) |𝑣∈𝑅 }, i.e., 𝜍 (𝑅) . Since Algorithm 2

runs at most |𝑅 | instances of MBE problem using Algorithm 1,

Algorithm 2 runs in O( |𝑅 |2𝜍 (𝑅) ). �
Discussion. We show that if 𝜍 (𝑅) of 𝐺 is small, the density of 𝐺

is small. By the de�nition of 𝜍 (𝑅), 𝐺 with 𝜍 (𝑅) contains (𝜍 (𝑅)+1) |𝐿 |
edges in the extreme case when every 𝑢∈𝐿 induces 𝜍 (𝑅)+1 distinct
edges. As such, the density of 𝐺 is no greater than

(𝜍 (𝑅)+1) |𝐿 |
|𝑅 | |𝐿 | (

(𝜍 (𝑅)+1)
|𝑅 |

after simpli�cation). This implies that when 𝜍 (𝑅) is small, the density

of 𝐺 is small. The lower and upper bounds for 𝜍 (𝑅) are 𝑑𝑚𝑎𝑥 (𝐿)−1
and |𝑅 |−1 respectively. The lower bound is derived as follows. If

there is 𝑢∈𝐿 with degree of 𝑑𝑚𝑎𝑥 (𝐿) , all the neighbours of 𝑢 in 𝑅 have

the unilateral corness 𝑑𝑚𝑎𝑥 (𝐿)−1, which serves as a lower bound for

𝜍 (𝑅). The upper bound is immediate. In the experimental studies,

we show that 𝜍 (𝑅) is small in real datasets and 𝜍 (𝑅) often matches

its lower bound.

Based the proposed Lemma 1, we propose a guideline to deter-

mine which vertex set should be enumerated for Algorithm 2.

Guideline 1. If |𝑅 |2𝜍 (𝑅) ≤ |𝐿 |2𝜍 (𝐿) , enumerate maximal bicliques on 𝑅;
otherwise, enumerate on 𝐿.

4.4 Algorithm for the order

We have shown that using the unilateral order can reduce the time

complexity for MBE. Two questions arise. First, how to compute

the unilateral order? Second, what is the cost of computing the

unilateral order?

Order computation. We discuss Algorithm 3 based on two prop-

erties for 𝐺=(𝐿,𝑅,𝐸) below.

Property 1. By progressively deleting any 𝑣∈𝑅 with |𝑁2 (𝑣,𝐺) |<𝑘 and
edges incident to 𝑣, remaining vertices in 𝑅 are in 𝑘 unilateral cores.

Property 2. After deleting 𝑣∈𝑅, for any 𝑣′∈𝑁2 (𝑣,𝐺) , |𝑁2 (𝑣′,𝐺) | reduces
by 1, which does not a�ect all the other vertices in 𝑅.

The correctness of the above two prosperities is clear based the

auxiliary graph discussed previously.
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Algorithm 3: ucOrder((𝐿,𝑅,𝐸))

1 ∀ 𝑣∈𝑅, compute |𝑁2 (𝑣) |;

2 sort vertices in 𝑅 in increasing order by their 2-hop neighbours;

3 𝑂←∅, 𝜏𝑚𝑎𝑥 ← 0;

4 foreach 𝑣∈𝑅 in order do
5 𝑂← append 𝑣 to 𝑂 ;

6 if |𝑁2 (𝑣) |>𝜏𝑚𝑎𝑥 then 𝜏𝑚𝑎𝑥←|𝑁2 (𝑣) | ;

7 𝜏 (𝑣)← 𝜏𝑚𝑎𝑥 ;

8 foreach 𝑣′∈𝑁2 (𝑣) such that 𝑣′∉𝑂 do

9 |𝑁2 (𝑣′) | ← |𝑁2 (𝑣′) |−1 ;

10 reorder 𝑅 by the updated |𝑁2 (𝑣′) |;

11 return {𝑂,𝜏 };

Based on Properties 1 and 2, Algorithm 3 is easy to understand

due to its similarity with the classic core decomposition algorithm.

Algorithm 3 progressively deletes 𝑣 with the minimum number of

two-hop neighbours in the remaining subgraphs, which is ensured

by the reordering (line 10). Meanwhile, the unilateral coreness of

each vertex is recorded by the iteratively updated 𝜏𝑚𝑎𝑥 . We discuss

Algorithm 3 for self-completeness purpose. Our key contribution

here is discovering Properties 1 and 2 so that Algorithm 3 is

applicable to our problem. Algorithm 3 can be applied to 𝐿 as well.

Order computational cost. Algorithm 3 runs in O( |𝐸 |𝑑𝑚𝑎𝑥 (𝐿)).
Line 1 takes O( |𝐸 |𝑑𝑚𝑎𝑥 (𝐿)) to compute |𝑁2 (𝑣) | for every vertex in

𝑣∈𝑅. Line 2 takes O( |𝑅 |) time using the bucket sort technique. The

nested loop takes O( |𝐸 |𝑑𝑚𝑎𝑥 (𝐿)) since it visits two-hop neighbours

for each vertex in 𝑅. Due to Property 2, reordering (line 10) can be

done in O(1) using the linear heap data structure [5]. Algorithm 3

runs much faster for a large sparse bipartite graph, since the degree

distribution is skewed, i.e., high degree vertices are not many.

In summary, let 𝑅 be the vertex set chosen to be enumerated by

Guideline 1, Algorithm 2 runs in O∗ (2𝜍 (𝑅) ) . We will show that 𝜍 (𝑅)
for a large sparse bipartite graph is signi�cantly smaller than |𝑅 | in
practice in the experimental studies.

5 PRUNINGS BY A BATCH OF PIVOTS

In the previous section, we propose novel techniques that reduce

the upper bound of the number of subsets of 𝑅 to be checked for

enumerating all the maximal bicliques, which leads to an MBE
algorithm with a promising time complexity. There is still a room

for improvement. For the subsets leading to non-maximal bicliques,

if we can avoid generating and checking them, the MBE algorithm

can run much faster in practice. We propose a novel batch-pivots

technique. The immediate bene�t of the batch-pivots technique

is to eliminate all recursive subproblems generating subsets that

result in non-maximal bicliques.

Before discussing the batch-pivots technique, we conduct a sys-

tematic study on the single pivot technique proposed in [2]. Realis-

ing that the single pivot technique could be adapted for MBE from

the maximal clique enumeration (MCE) [36] for a uni�ed graph,

we �rst revisit the bene�ts that the single optimal pivot strategy

can bring for MCE. Then we analyse that the single optimal pivot

strategy cannot reduce the time complexity of MBE, making it less

promising for MBE. In contrast, the batch-pivots technique can

further enhance Algorithm 2 with a better polynomial-delay.

5.1 Single optimal pivot strategy

Single optimal pivot strategy forMCE. We �rst revisit theMCE
problem and algorithm, and then discuss why the single optimal

pivot strategy reduces the time complexity of MCE.
The MCE problem [25, 26, 36]. Given a graph 𝐺 = (𝑉 ,𝐸) , a clique in 𝐺

is a subgraph in 𝐺 that every two di�erent vertices in the subgraph

are adjacent. A clique is called a maximal clique if the clique cannot

be enlarged. TheMCE problem reports all maximal cliques in 𝐺 .

The MCE algorithm [36]. We revisit the algorithm �rst. Algorithm 4

uses three disjoint sets 𝑅, 𝑃 and 𝑋 to non-repetitively generate all

sets in 2
𝑉 (𝐺 )

that are cliques in 𝐺 , and reports maximal cliques. The

properties that 𝑅,𝑃,𝑋 hold are as follows. 𝑅 stores a clique during

the enumeration. 𝑃 stores the vertices to expand 𝑅. 𝑋 stores the

vertices that are previously in 𝑅 while connecting every vertex in 𝑅.

Initially, 𝑅 and 𝑋 are ∅ and 𝑃 contains all the vertices in 𝐺 . In each

recursive subproblem, Algorithm 4 moves a vertex in 𝑃 to 𝑅 and

then maintains the property of 𝑃 and 𝑋 by set operations (line 4).

By maintaining the properties for 𝑅,𝑃,𝑋 , if both 𝑃 and 𝑋 become ∅,
𝑅 is reported as a maximal clique.

The above explanation ignores the pivoting technique applied in

line 2. Without the pivoting technique Algorithm 4 runs in O∗ (2𝑛),
where 𝑛= |𝑉 (𝐺) |. This is because it has a recurrence of 𝑇 (𝑛)=𝑇 (𝑛−
1)+𝑇 (𝑛−2)+...+𝑇 (1) in the worst case, which is equivalent to 𝑇 (𝑛)=
𝑇 (𝑛−1)+𝑇 (𝑛−1) bounded by 2

𝑛
.

The pivoting technique. The pivoting technique is based on a prop-

erty of the clique problem as follows. Given a vertex 𝑢, and its

neighbours 𝑁 (𝑢), for every clique in 𝑁 (𝑢) induced subgraph of 𝐺 ,

the clique can be enlarged by including 𝑢.

The pivoting technique leads to two reduction e�ects. First, it

can reduce the number of branches, i.e., breadth reduction. Second,

it can reduce the maximum size of subproblems that cannot be

pruned, i.e., subproblem size reduction.

In [36], the trick that selects a pivot 𝑢∈𝑃∪𝑋 such that 𝑢 maximises

|𝑁 (𝑢)∩𝑃 | is proposed. By doing so, its breadth reduction is |𝑁 (𝑢)∩𝑃 |,
i.e., only 𝑐= |𝑃 |− |𝑁 (𝑢)∩𝑃 | branches left. It also ensures that for each

branch that cannot be reduced, the subproblem size reduction is at

least 𝑐 as well, i.e., for line 4, |𝑁 (𝑣)∩𝑃 | ≤ |𝑁 (𝑢)∩𝑃 | always holds. As
such, the recurrence of Algorithm 4 is 𝑇 (𝑛)=𝑐𝑇 (𝑛−𝑐) in the worst

case, which is bounded by 𝑐
𝑛
𝑐 . When 𝑐=3, 𝑐

𝑛
𝑐 is the maximum for

any 𝑐∈Z+. Therefore, 3
𝑛
3 is an upper bound for 𝑇 (𝑛)=𝑐𝑇 (𝑛−𝑐) and

Algorithm 4 runs in O∗ (3
𝑛
3 ).

Single optimal pivot strategy for MBE. If we ignore the compu-

tational cost and mimic the same pivot selection trick as the MCE

problem, can we make Algorithm 1 run in O∗ (3
|𝑅 |
3 )? The answer is

no, unfortunately. We provide a detailed analysis as follows.

We �rst introduce several de�nitions and symbols. The intro-

duced de�nitions are based on the vertex sets 𝐴,𝐵,𝑃,𝑄 for a recursive

subproblem in Algorithm 1.

Definition 3. Local neighbour containment (⊂𝐴). Given 𝑣,𝑣′∈𝑃∪𝑄 ,
𝑣′⊂𝐴𝑣, if 𝑁 (𝑣′)∩𝐴⊂𝑁 (𝑣)∩𝐴. When 𝑁 (𝑣′)∩𝐴=𝑁 (𝑣)∩𝐴, if 𝑣≥𝑣′(id of 𝑣 is
no less that of 𝑣′), then 𝑣′⊂𝐴𝑣, and vice versa.

Definition 4. Local containment of a vertex. Let the set of vertices
contained by 𝑣∈𝑃∪𝑄 be {𝑣′ |𝑣′∈𝑃,𝑣′≠𝑣,𝑣′⊂𝐴𝑣 }, denoted by C𝐴 (𝑣). The
local containment of 𝑣 is |C𝐴 (𝑣) |.

Notice that the single optimal pivot is 𝑝 with argmax𝑣∈𝑃 { |C𝐴 (𝑣) | }.
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Algorithm 4:MCE(𝑅,𝑃 ,𝑋 )

1 if 𝑃∪𝑋==∅ then report 𝑅 as a maximal clique ;

2 𝑢 ← argmax𝑣∈𝑃∪𝑋 {|𝑁 (𝑣)∩𝑃 |};

3 foreach 𝑣 ∈ 𝑃\𝑁 (𝑢) do
4 MCE(𝑅∪{𝑣}, 𝑃∩𝑁 (𝑣) , 𝑋∩𝑁 (𝑣) );
5 𝑃← 𝑃 \ {𝑣}, 𝑋←𝑋∪{𝑣};

Definition 5. Local two-hop neighbours. The local two hop neigh-
bours of 𝑣∈𝑃 is 𝑁2 (𝑣)∩𝑃 .

|𝑁2 (𝑣)∩𝑃 | indicates the subproblem size after selecting 𝑣 in the

maximal biclique problem.

For a recursive subproblem of Algorithm 1 with 𝑝 as the optimal

pivot, the number of branches (line 3) is reduced to |𝑃 |− |C𝐴 (𝑝) |,
which is the breadth-reduction e�ect of 𝑝. For each vertex 𝑣 (line

3) that Algorithm 1 branches, the subproblem size |𝑃 ′ | is |𝑁2 (𝑣)∩𝑃 |
derived via lines 12 to 15, i.e., the subproblem reduction for each

𝑣 is determined by the corresponding local two-hop neighbours

of 𝑣, which may not always be the same as |C𝐴 (𝑝) |. Furthermore,

the subproblem size reduction e�ect of the optimal pivot 𝑝 (i.e.,

|𝑁2 (𝑝)∩𝑃 |) is not always no less than |𝑁2 (𝑣)∩𝑃 |, therefore cannot

serve as an upper bound for any 𝑣 looped by lines 12 to 15. In other

words, the optimal pivot 𝑝 cannot provide a uni�ed bounding e�ect
for both breadth and subproblem size reductions simultaneously.

Consequently, Algorithm 1 cannot have a recurrence of 𝑇 (𝑛)=𝑐𝑇 (𝑛−
𝑐) in the worst case, where 𝑛= |𝑅 |, and cannot run in O∗ (3

𝑛
3 ) by

mimicking the pivoting technique for the maximal clique problem.

The above analysis shows that the complexity of MBE is di�cult

to reduce, which motivates us to seek new techniques for improving

the polynomial-delay forMBE.

5.2 Selecting a batch of pivots

Along with the analysis for the single optimal pivot strategy, we

�rst observe that, apart from �nding a single optimal pivot, the

local neighbour containment relationship has a nice property that

enables us to select a batch of pivots. We then study the criteria

for the optimal batch of pivots forMBE. Furthermore, we explore

the important features of the 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 batch of pivots and prove

that: 1) every branch that cannot be pruned by the optimal batch of

pivots leads to a maximal biclique and 2) every vertex that leads to a

maximal biclique is preserved in the optimal batch of pivots. As such,

after adapting the batch-pivots technique to both Algorithms 1 and

2, Algorithm 2 runs much faster and also has a better polynomial-

delay for reporting each maximal biclique.

We �rst introduce the optimal batch of pivots for MBE. The
context of the discussions is a recursive subproblem that works on

𝐴, 𝐵, 𝑃 and 𝑄 .

Definition 6.Optimal batch of pivots. An optimal batch of pivots
denoted by 𝑆∗ for a recursive subproblem shall be: 1) ∪𝑣∈𝑆∗ C𝐴 (𝑣)=𝑃
and 2) there is no 𝑆′ satisfying condition 1) while |𝑆′ |< |𝑆∗ |.

We now show the nice property of Definition 3 that makes an

optimal batch of pivots selection easy.

Property 3. Transitivity. Given 𝑢, 𝑢′, 𝑢′′∈𝑃∪𝑄 , if 𝑢⊂𝐴𝑢′ and 𝑢′⊂𝐴𝑢′′,
then 𝑢⊂𝐴𝑢′′.

Property 3 clearly holds since the local neighbour containment

relationship is de�ned based on set containment relationship. We

are ready to propose the lemma below.

Lemma 2. The optimal batch of pivots 𝑆∗ for a recursive subproblem
consists of every vertex 𝑣∈𝑃∪𝑄 such that there is no other vertex
𝑣′∈𝑃∪𝑄 , 𝑣⊂𝐴𝑣′.

Proof sketch. We prove the lemma by contradiction. Assume that

there are 𝑣 and 𝑣′ in 𝑆∗ such that 𝑣⊂𝐴𝑣′ exists. By Property 3, if

we remove 𝑣, |𝑆∗ | can be reduced by 1 while still satisfying the

�rst condition in Definition 6, which contradicts the fact that 𝑆∗

satis�es all the conditions in Definition 6. �
The optimal batch of pivots 𝑆∗ can be easily embedded into

Algorithm 1, i.e., we replace line 2 by deriving 𝑆∗ and for line 3 we

change the loop to 𝑣∈𝑆∗∩𝑃 . By using the optimal batch of pivots,

the branch reduction e�ect can be maximised.

Bonus for the batch-pivots technique. We show the bonus for

the batch-pivots technique in the following lemma.

Lemma 3. Given a recursive subproblem with 𝑆∗, moving each 𝑣∈𝑆∗∩𝑃
to 𝐵 leads to a maximal biclique.

Proof sketch. This lemma can be proved by contradiction. Suppose

there is a vertex 𝑣∈𝑆∗∩𝑃 leading to 𝐴′,𝐵′,𝑃 ′,𝑄′ that cannot generate a

maximal biclique. This means that there is 𝑣′∈𝑃∪𝑄 that 𝑣⊂𝐴𝑣′, which
is against to the optimality of 𝑆∗. �

Lemma 3 reveals two facts. First, before each recursive call, if we

always select 𝑆∗ for reducing the branches, we do not need to check

the maximality. Second, a better polynomial delay MBE algorithm

could be devised if the cost of each recursive subproblem is nicely

controlled.

Order-preserved batch-pivots technique. Applying the batch-

pivots technique to Algorithm 2 directly cannot preserve that Al-

gorithm 2 runs in O∗ (2𝜍 (𝑅) ). As such, we show a slightly modi�ed

batch of pivots to guarantee the time complexity.

Order-preserved batch of pivots. First, we modify Definition 3 as

𝑣⊂𝑣′, if 1) 𝑣 appears after 𝑣′ in the unilateral order and 2) 𝑁 (𝑣) ⊂𝑁 (𝑣′) .
Then, the order-preserved pivot batch consists of any vertex 𝑣 in

the ordered 𝑅 such that there exists no 𝑣′ satisfying 𝑣⊂𝑣′. Last but
not least, the relative precedence of any two vertices in the order-

preserved batch of pivots is the same as that of the two vertices in

the unilateral order.

Where to apply. The order-preserved batch-pivots technique is used
by line 3 in Algorithm 2 only, which is to ensure that line 6 in

Algorithm 2 must report a maximal biclique and Algorithm 2 runs

in O∗ (2𝜍 (𝑅) ). For every recursive subproblem solved by Algorithm

1 (iMBEA initialised by line 9 in Algorithm 2), the optimal batch-

pivots technique is used.

Correctness. Algorithm 2 reports a maximal biclique for each 𝑣 in

the order-preserved batch of pivots. Since any two vertices in the

pruned 𝑃 still preserve their relative precedence in 𝑃 before pruning

and Algorithm 2 processes each vertex in the order-preserved batch

of pivots (the pruned 𝑃) following the order, by the de�nition of

the order-preserved batch of pivots, any 𝑣 such that its neighbour

vertex set is a subset of the neighbour vertex set of any other vertex

processed before 𝑣 shall not be in the order-preserved batch of

pivots, which ensures that line 6 in Algorithm 2 reports a maximal

biclique for each 𝑣 in the pruned 𝑃 .
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Figure 4: Logical partitions and adjustment

For instance, for the bipartite graph shown in Figure 1(a), by

Guideline 1, Algorithm 2 searches maximal bicliques following the

order shown in Figure 1(b). After applying the order based batch-

pivots optimisation, vertices 8 and 6 will be pruned. As such, in the

search space equipping with our proposed batch-pivots technique,

every recursive subproblem reports a maximal biclique.

Optimal batch-pivots computation. Given the fact that the over-

head of the batch-pivots technique could be high if the algorithm

for computing the batch of pivots is devised straightforwardly, i.e.,

performing O( |𝑅 |2) neighbour-intersections, where each neighbour-
intersection runs in O(𝑑𝑚𝑎𝑥 (𝑅)) , we devise two techniques for speed-
ing up the batch-pivots computation. We �rst propose to store the

local subgraph 𝐻 for each recursive subproblem to avoid computing

the batch of pivots using the global graph information. Then, for

each 𝑣∈𝑅 (𝐻 ), we only need to perform a depth-�rst search with

depth of 2 to visit the two-hop neighbours of 𝑣 and count the num-

ber of visits for each 𝑣′ in the two-hop neighbours of 𝑣 to determine

the batch of pivots, i.e., any 𝑣′ is not selected as a pivot if its degree

equals to the number of its common neighbours with 𝑣. Doing that

for every vertex in 𝑅 (𝐻 ) if necessary, the batch of pivots can be

derived in O(𝜍 (𝑅) |𝐸 (𝐻 ) |). In practice, the batch-pivots computation

is much faster since 1) the depth of depth-�rst search is only 2, 2)

for most of the subgraphs, |𝑅 (𝐻 ) | is much less than 𝜍 , and 3) for any

𝑣′ that has been excluded as a pivot, we do not need to perform the

depth-�rst search for 𝑣′. The extra steps for the order-preserved

batch of pivots are omitted for brevity.

6 REDUCING THE SPACE COMPLEXITY

In the previous section, we propose the novel batch-pivots tech-

nique. As discussed, to speed up the batch-pivots computation, a

local subgraph for each recursive subproblem is stored. If we store

the adjacency list for each subgraph, the extra space consump-

tion would be as high as O(𝜍 (𝑅) |𝐸 (𝐺) |). In this section, we devise

techniques to shave such extra space consumption.

6.1 Optimised data structure

The tricks. The main idea to reduce the space cost is to avoid

creating adjacency list and intermediate vertex sets as much as

possible. To achieve that, we propose to use global vertex sets 𝐿

and 𝑅, but adjust the locations of the vertices in both 𝐿 and 𝑅 to

achieve the vertex sets 𝐴,𝐵,𝑃,𝑄 that are created in each recursive

subproblem in Algorithms 1 and 2. The same idea is applied to the

global adjacency list for storing a local subgraph 𝐻 . However, to

ensure the correctness of the algorithm, we have to create inter-

mediate sets so that, when backtracking to a recursive subproblem

working on 𝐴,𝐵,𝑃,𝑄 and 𝐻 , the modi�ed 𝐿, 𝑅 and adjacency list can

be recovered to the current 𝐴,𝐵,𝑃,𝑄 and 𝐻 . The question is what is

the information needed to guarantee the correctness, which will be

answered shortly after explicitly de�ning the data structures.

Vertex sets augmented with location index. For the two vertex

sets 𝐿 and 𝑅, location indices 𝑙𝑜𝑐𝐿 and 𝑙𝑜𝑐𝑅 are built. Given a vertex

𝑢∈𝐿, 𝑙𝑜𝑐𝐿 (𝑢) returns the location of 𝑢 in 𝐿, similar for each 𝑣∈𝑅.
In Figure 4(a), 𝑙𝑜𝑐𝑅 shows the location index for 𝑅 in Figure 1(a).

The actual vertices of 𝑅 are stored in the table 𝑅. The arrows between

the two tables show the location mapping. For instance, 𝑙𝑜𝑐𝑅 (7)=4
means that vertex 7 is located at the �fth location in 𝑅.

Logical partitions for 𝑅. For the vertex set 𝑅, we partition 𝑅 into

four vertex sets: 𝐵,𝑃,𝑄, and other vertices. Three location indicators

𝑖𝐵 , 𝑖𝑃 , 𝑖𝑄 store the starting position for 𝐵,𝑃,𝑄 respectively. Through-

out the algorithm, the following properties are ensured. Vertices

from the location 𝑖𝐵 to |𝑅 | form 𝐵. Vertices from the location 𝑖𝑃 to 𝑖𝐵-

1 form 𝑃 . Vertices from the location 𝑖𝑄 to 𝑖𝑃 -1 form𝑄 . Other vertices

are stored from the location 0 to 𝑖𝑄−1. For instance, in Figure 4(a),

using 𝑖𝑄 , 𝑖𝑃 and 𝑖𝐵 , we can �nd vertices in 𝑄 , 𝑃 and 𝐵. Vertices 5, 9

form 𝑄 , vertices 6, 8 form 𝑃 , and vertex 7 forms 𝐵.

Logical partitions for 𝐿. We partition 𝐿 into the vertex set contain-

ing common neighbours for all 𝑣∈𝐵 (i.e. 𝐴), and the other vertices.

The location indicator 𝑖𝐴 stores the starting position storing vertices

of 𝐴. Throughout the algorithm, 𝐴 consists of the vertices from the

location 𝑖𝐴 to |𝐿 |. For instance, in Figure 4(b), the table 𝐿′ shows

how to use 𝑖𝐴, and 𝐴 consists of vertices 3, 2.

Logical partitions for adjacency list of 𝑅. For the adjacency list of

𝑣, denoted by 𝑎𝑑 𝑗𝑣 , we partition it into the vertices contained in𝐴 and

other vertices. A location indicator 𝑖𝑣 stores starting position storing

the vertices contained in𝐴. Throughout the algorithm, vertices from

the location 𝑖𝑣 to |𝑎𝑑 𝑗𝑣 | are neighbours of 𝑢 contained in 𝐴.

Similarly, for 𝑢∈𝐿, i.e., 𝑎𝑑 𝑗𝑢 is logically partitioned into neigh-

bours of 𝑢 contained in 𝑃∪𝑄 and other vertices.

Atomic operations for 𝑅. We now discuss the atomic operations

frequently used in Algorithm 1 using the above data structure.

Moving 𝑣 from 𝑃 to 𝐵. Switch 𝑣 with the vertex 𝑣′ at the location of

𝑖𝐵−1 if necessary. Update the location information for 𝑣 and 𝑣′, and

decrease 𝑖𝐵 by 1.

Moving 𝑣 from 𝑃 to 𝑄 . Switch 𝑣 with the vertex 𝑣′ at the location of

𝑖𝑃 if necessary, adjust the location information for 𝑣 and 𝑣′, and

increase 𝑖𝑃 by 1.

Removing 𝑣 from 𝑄 . Similar to the above one, replace 𝑖𝑃 with 𝑖𝑄 .

As shown in Figures 4(a) and 4(b), after moving vertex 8 from 𝑃

to 𝐵, we need to remove vertices 5 and 9 from 𝑄 , which makes 𝑖𝑄 in

Figure 4(a) increased by 2 to 𝑖′
𝑄
shown in Figure 4(b).

Adjusting 𝐿 and adjacency list are a simpli�ed version of adjust-

ing 𝑅. All the atomic operations run in constant time thanks to the

location indices.

Besides space saving, the data structure has two advantages

below. First, it provides the constant time is-in-a-set operation.

Since the location information for 𝑅 is maintained, and vertices in 𝐵,

𝑃 and 𝑄 are in ranges of 𝑖𝐵 to |𝑅 |, 𝑖𝑃 to 𝑖𝐵−1 and 𝑖𝑄 to 𝑖𝑃−1, checking
if a vertex is in 𝑃 , 𝑄, or 𝐵 can be done in constant time via two

location comparisons. Second it provides the linear time two-set

intersection. Typical two-set intersection operations such as line

15 in Algorithm 1 can be performed in linear time because of the

constant time is-in-a-set operation.
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Table 2: Datasets and statistics

Dataset Type |𝐿 | |𝑅 | |𝐸 | Density 𝑑𝑚𝑎𝑥 (𝐿) 𝑑𝑚𝑎𝑥 (𝑅) 𝑑
2𝑚𝑎𝑥 (𝐿) 𝑑

2𝑚𝑎𝑥 (𝑅) 𝜍 (𝐿) 𝜍 (𝑅) #MB

MovieLens tag–item 16k 7,601 71k 5.7 ×10−4 641 308 5,817 3,217 640 1,639 140k

BookCrossing rating 105k 340k 1.14m 3.2 ×10−5 13k 2,502 5,935 151k 2,501 13.6k 54m

IMDB association 303k 896k 3.78m 1.4 ×10−5 1,334 1,590 15,233 15,415 1,589 1,333 5.16m

DBLP authorship 1.95m 5.62m 12m 1.2 ×10−6 1,386 287 2,119 7,519 286 1,385 4.89m

LiveJournal membership 3.20m 7.49m 112m 4.7 ×10−6 300 1.05m 2.6m 1.05m 1.05m 7,616 6.82b

6.2 Recovery during backtracking

The discussed operations are su�cient to adjust 𝑅, 𝐿 and the adja-

cency list according to Algorithms 1 and 2. However, for a recursive

subproblem, when the algorithm backtracks to this recursive sub-

problem, it has to recover the logical partitions for 𝐿, 𝑅 and some

of the adjacency lists to ensure the correctness. This is because

other recursive subproblems rooted from this recursive subproblem

have changed the logical partitions. In this section, we study how

to recover the logical partitions e�ciently.

We �rst de�ne the logical equivalence for two permutations and

then de�ne the adjacency lists which we need to adjust.

Logical equivalence for 𝑅. Given two permutations 𝑅 and 𝑅′ and

location indicators 𝑖𝐵 ,𝑖𝑃 ,𝑖𝑄 , 𝑅 and 𝑅′ have the same logical partitions,

if the vertices in 𝑅 locating from 𝑖𝐵 to |𝑅 | are the same as the vertices

in 𝑅′ locating from 𝑖𝐵 to |𝑅 | (the order does not matter) and the same

applies for ranges of 𝑖𝑃 to 𝑖𝐵−1 and 𝑖𝑄 to 𝑖𝑃−1.
The equivalences for permutations of 𝐿 and permutations of an

adjacency list can be de�ned similarly.

Adjacency lists to be recovered. Since a recursive subproblem

essentially works on an 𝐴,𝑃,𝑄 induced subgraph of 𝐺 , we only need

to recover logical partitions for vertices in those sets.

It is trivial to see that, by recovering the logical equivalences for

𝐿, 𝑅, and the adjacency lists for the vertices discussed above, Algo-

rithm 1 works correctly using the data structure that we devised.

We use Figure 4 to show how the recursive subproblem indicated

by Figure 4(a) is recovered when backtracking from the recursive

subproblem indicated by Figure 4(b). Using 𝑖𝑄 ,𝑖𝑃 ,𝑖𝐵 and vertices

𝑃={6,8}, we align {6,8} to the locations of 𝑖𝐵−1 to 𝑖𝑃 to recover 𝐵 for

𝑅. Since both of them are still within the locations of 𝑖𝐵−1 to 𝑖𝑃 , no

adjustments are needed. Then, vertices located from 𝑖𝑄 to 𝑖𝑃−1 for
𝑅′ in Figure 4 (b) are the same as the vertices from 𝑖𝑄 to 𝑖𝑃−1 for 𝑅
in Figure 4 (a). For 𝐿, the permeation of 𝐿′ in Figure 4(b) is logically

the same as 𝐿 in Figure 4(a).

As a summary, given a recursive subproblem, storing the integers

𝑖𝑃 ,𝑖𝑄 ,𝑖𝐵 , 𝑖𝐴, a set of integers consisting of 𝑖𝑣 for 𝑣∈𝑃∪𝑄∪𝐴, and the

vertices in 𝑃 is su�cient to recover the logical partitions when

backtracking to the recursive subproblem.

Recovery time cost. Given a recursive subproblem with 𝐴,𝐵,𝑃,𝑄,

the recovery runs in O( |𝑃 |+ |𝑄 |+ |𝐴 |) . For the recovery of logical par-

tition of 𝑅, we may perform O( |𝑃 |+ |𝑄 |) atomic operations. Thanks

for the location index, each atomic operation takes constant time.

The recoveries of logical partition of 𝐿 and each adjacency list also

take constant time since they are the same as recovering 𝐵.

7 WRAP-UP AND DISCUSSION

In this section, we show the time and space complexities for Algo-

rithm 2 equipped with our proposed techniques.

Lemma 4.Algorithm 2 �nds runs in O( |𝑅 |𝜍 (𝑅) |𝐸 (𝐺) |2𝜍 (𝑅) ).

Proof sketch. Algorithm 2 is dominated by solving |𝑅 | number of

MBE problems. For each of the MBE problem, there are up to 2
𝜍 (𝑅)

recursive subproblems. For each recursive subproblem working on

𝐻 , the time complexity is O(𝜍 (𝑅) |𝐸 (𝐻 ) |), dominated by computing

the optimal batch of pivots and |𝐸 (𝐻 ) | is up to |𝐸 (𝐺) |. �
Correctness. Algorithm 2 systemically checks every set in 2

𝑅
to

derive all maximal bicliques. It only prunes sets that can form

neither bicliques nor maximal bicliques, where the correctness of

each pruning has been proven by [47] and our proof for Lemma 3.

Lemma 5. In terms of polynomial delay, Algorithm 2 runs in O (𝜍 (𝑅)
|𝐸 (𝐺) |B).

Proof sketch. To report the �rst maximal biclique, the dominating

computation is the unilateral order running in O( |𝐸 (𝐺) | 𝑑𝑚𝑎𝑥 (𝑅)).
After that, by Lemma 3, each maximal clique can be reported in

O(𝜍 (𝑅) |𝐸 (𝐺) |) which is the complexity for a recursive subproblem.

Let B denote the number of maximal bicliques in 𝐺 , Algorithm 2

runs in O (𝜍 (𝑅) |𝐸 (𝐺) |B). �

Lemma 6. The space complexity of Algorithm 2 is O(𝜍 (𝑅) |𝐿 |+ |𝐺 |).

Proof sketch. Using the discussed data structure, each recursive

subproblem needs O( |𝑃 |+ |𝑄 |+ |𝐴 |) space that cannot be freed until

backtracking to the recursive subproblem, which can be bounded

by 𝜍 (𝑅)+ |𝐿 | using our proposed order. Due to the depth-�rst nature

of the algorithm and our proposed order, the depth is bounded by 𝜍

as well. Therefore, storing the information takes O(𝜍 (𝑅) |𝐿 |) space.
Besides, we maintain order adjustable adjacency list and vertex sets

for 𝐿 and 𝑅, which takes O( |𝐺 |) space. �

8 EXPERIMENTAL STUDIES

In this section, extensive experiments are conducted to evaluate

the e�ectiveness and e�ciency of the proposed techniques.

Implemented algorithms. We �rst introduce the implemented

and evaluated algorithms, apart from our proposed Algorithm 2

denoted by ooMBEA.
iMBEA. We implement iMBEA [47]. We do not use the code [1]

(denoted by iMBEA′) since it runs in O( |𝑅 |𝑑2

𝑚𝑎𝑥 (𝑅)2𝑛). We optimise

the sorting technique in [47] using bucket sort technique, which

makes each sort run in 𝑂 ( |𝑃 |). Assuming |𝑅 | ≤ |𝐿 |, iMBEA runs on 𝑅,

which is claimed to be better.

PMBEA. We implement PMBEA [2]. For each recursion, it uses a

pre-built index to select a 𝑣∈𝑃 , which serves as a pivot for NCP.
FMBEA. We implement FMBEA [12]. Using Algorithm 2 as a frame-

work, FMBEA has con�gurations as follows. Assuming |𝑅 | ≤ |𝐿 |, it
uses 𝑅 to enumerate maximal bicliques. The order which [12] uses

is that vertices in 𝑅 are in non-increasing order based on degree.

FMBEA is a sequential algorithm and uses one single thread as

other evaluated algorithms.

1567



Table 3: Overall running time (sec. by default)

Data iMBEA
′

iMBEA PMBEA FMBEA ooMBEA

MovieLens 129.67 17.98 17.21 16.45 4.89

BookCrossing - 16,773 15,095 11,657 2,872

IMDB - 38,797 35,693 1,531 67.72

DBLP - - - 1,946 16.23

LiveJournal 48h(<20𝑚) 48h(<20𝑚) 48h(<22𝑚) 48h(<37𝑚) 48h (6.82b)

Table 4: Space consumption

Data Edge list iMBEA PMBEA FMBEA ooMBEA

BookCrossing 14.3MB 91.2MB 87.4MB 98.1MB 31MB

IMDB 35.6MB 320MB 296MB 334MB 81MB

DBLP 183MB 1.23G 1.17G 1.28G 394MB

LiveJournal 1.47G 8.9G 9.1G 9.9G 3.1G

Other algorithms. We also implement variants of our proposed and

the above algorithms to evaluate di�erent techniques proposed

in this paper. We give the explanations for those variants in the

corresponding experiments.

Datasets. We use �ve real datasets from KONECT [21] for the

experimental studies. As shown in Table 2, those �ve datasets cover

�ve di�erent relationships. Except for 𝑀𝑜𝑣𝑖𝑒𝐿𝑒𝑛𝑠, all the datasets

contain not less than 1million edges. The largest dataset 𝐿𝑖𝑣𝑒 𝐽 𝑜𝑢𝑟𝑛𝑎𝑙

contains over 112 million edges. Table 2 also shows that even for

the small scale dataset 𝑀𝑜𝑣𝑖𝑒𝐿𝑒𝑛𝑠, the bipartite graph is sparse, i.e.,

the density of 𝑀𝑜𝑣𝑖𝑒𝐿𝑒𝑛𝑠 is 5.7×10−4. For larger datasets, the density
is orders of magnitude smaller. For instance, for 𝐿𝑖𝑣𝑒 𝐽 𝑜𝑢𝑟𝑛𝑎𝑙 , the

density is merely 4.7×10−6.
Measures. We measure the running time of each algorithm. The

reported running time is the total CPU time (in seconds abbreviated

as 𝑠), excluding the I/O cost of loading graph and indices from disk

to main memory, and a timeout of 48 hours is set, denoted as ‘-’. All

algorithms are implemented in C++. Experiments are conducted

on a PC with CPU of Intel i7-12700KF, memory of 32GB DDR5

5600HZ, and Windows 11 (build 22000.493), no less than 20 times

if the running time is less than 24 hours (5 times otherwise). The

average results are reported.

8.1 Against to Baselines

Before showing results, we would like to indicate that for all the

datasets that at least one of the state-of-the-art algorithms can

report the number of maximal bicliques, ooMBEA reports the same

number of maximal bicliques, which veri�es the correctness.

Running time. We report the running times for ooMBEA and

the state-of-the-art algorithms in Table 3. Every algorithm adopts

the corresponding best con�guration. ooMBEA outperforms all

the other algorithms. For 𝐷𝐵𝐿𝑃 , iMBEA and PMBEA cannot �nish

within 48 hours. For the large dataset 𝐿𝑖𝑣𝑒 𝐽 𝑜𝑢𝑟𝑛𝑎𝑙 , all the algorithms

cannot �nish within 48 hours and we report the number of maximal

bicliques at the cut-o� time. ooMBEA can report over 6 billion maxi-

mal bicliques, signi�cantly more than other algorithms. The reasons

that ooMBEA performs well on 𝐿𝑖𝑣𝑒 𝐽 𝑜𝑢𝑟𝑛𝑎𝑙 are: 1) ooMBEA works

on 𝑅 with 𝜍 (𝑅) of 7616, 2) it works on subgraphs tightly bounded by

the proposed unilateral order and 3) it has much less polynomial-

delay than all the other algorithms. Since iMBEA′ is much slower,

we omit it in the following experimental studies.
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Figure 5: Scalability

Space consumption. The space consumptions for iMBEA, PM-
BEA, FMBEA and ooMBEA are shown in Table 4. ooMBEA needs

much less space compared with the state-of-the-art algorithms. The

major reasons are as follows. To ensure the claimed time complex-

ity without changing the existing algorithms dramatically, a hash

technique is needed [11]. Graphs are stored as adjacency hash sets,

and during the recursion, the vertex sets are not stored as hash sets

(dynamically creating a hash set is practically expensive). As such,

for iMBEA, PMBEA and FMBEA, the space consumptions are high.

For ooMBEA, although extra spaces are used to index 𝑅 and 𝐿, those

spaces are bounded by much smaller constant factors, which makes

ooMBEA consume much less space. This experiment justi�es that

our proposed techniques make ooMBEA space-e�ective.

Scalability. For a dataset, we randomly select a �xed percentage

of vertices for 𝐿 and 𝑅, and compute their induced subgraph. For

each �xed percentage other than 100% in Figure 5, 20 di�erent sets

of 𝐿 and 𝑅 are randomly selected for generating 20 subgraphs which

algorithms work on. The average results for 𝐷𝐵𝐿𝑃 and 𝐿𝑖𝑣𝑒 𝐽 𝑜𝑢𝑟𝑛𝑎𝑙

are reported since they are large, and the other datasets have similar

results. Due to the hardness of MBE, as the number of vertices in

both sides of the bipartite graph increases, the running time of every

algorithm increases dramatically. However, the running times for

ooMBEA grow signi�cantly slower compared to that for state-of-

the-art algorithms, which justi�es that ooMBEA can scale to large

datasets compared to state-of-the-art algorithms.

Varying density. We show the running times of FMBEA and

ooMBEAwhen varying the density. We �x the number of vertices in

bipartite graphs as (5000,5000) while randomly generating 10 bipartite

graphs for each bipartite density indicated in Figure 6(a), and we

report the average running time of each algorithm for each bipartite

density. ooMBEA runs faster than FMBEA when the density is

below 0.2. This is because when a bipartite graph is sparse, 𝜍 (𝑅)
is small, and ooMBEA takes such an opportunity for speeding up

MBE. When the density is denser than 0.2, the overheads of the

optimisations in ooMBEA cannot bring su�cient speed-up, which

makes ooMBEA slower than FMBEA.

8.2 Breaking down evaluations

E�ect of vertex set selection. We conduct a set of experiments

by switching the set of vertices each algorithm works on, denoted

by iMBEAS, PMBEAS, FMBEAS and ooMBEAS. The results are

shown in Table 5. Datasets that all algorithms cannot �nish within

48 hours are not displayed. Results annotated by
∗
mean that they

are derived with algorithms applying Guideline 1.
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Table 5: Vary the vertex set for enumeration (sec.)

Data iMBEAS PMBEAS FMBEAS ooMBEAS

MovieLens 15.52 * 14.83 * 16.32 * 8.89

IMDB - 139,182 118,098 113

DBLP - - - 50.68

Table 6: Variants of algorithms

Variants Con�guration

oVariant1 ooMBEA with no order optimisation

oVariant2 ooMBEA with no local optimisation

oVariant3 ooMBEA with no space optimisation

For 𝑀𝑜𝑣𝑖𝑒𝐿𝑒𝑛𝑠, iMBEAS, PMBEAS, and FMBEAS work on the

vertex set following Guideline 1 in this experiment. They run faster

compared to iMBEA, PMBEA, and FMBEA. This is because 𝜍 reveals
a tighter bound for the search depth when enumerating the power

set for 𝐿 or 𝑅 and smaller 𝜍 indicates less recursion depth. ooMBEAS
runs slower than ooMBEA shown in Table 3 as expected. For 𝐼𝑀𝐷𝐵

and 𝐷𝐵𝐿𝑃 , iMBEAS, PMBEAS, FMBEAS work on the vertex set that

both their paper and this paper consider to be suboptimal (against

Guideline 1). For 𝐼𝑀𝐷𝐵, all the algorithms run a bit slower than

their default version shown in Table 3. This is because for 𝐼𝑀𝐷𝐵,

the di�erence of 𝜍 (𝑅) and 𝜍 (𝐿) is trivial, say, 1589 and 1333. For 𝐷𝐵𝐿𝑃 ,

the di�erence of 𝜍 (𝐿) and 𝜍 (𝑅) is more obvious than 𝐼𝑀𝐷𝐵 but much

less signi�cant than 𝐵𝑜𝑜𝑘𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔. Only ooMBEAS can �nish within

48 hours for 𝐷𝐵𝐿𝑃 but almost forty times slower than ooMBEA. The
above results justify that the vertex set selection makes great sense

for large real datasets.

E�ect of the order. We study how the order a�ects performance

in practice. We use a variant of ooMBEA that removes the order

optimisation, denoted by oVariant1. The running time ratios of

oVariant1 and ooMBEA for all the datasets are demonstrated in

Table 7 column
oVariant1
ooMBEA . Without the unilateral order, oVariant1 runs

slower than ooMBEA. As the size of the dataset increases, the ratio
increases. For 𝐿𝑖𝑣𝑒 𝐽 𝑜𝑢𝑟𝑛𝑎𝑙 dataset, oVariant1 runs over �ve times

slower than ooMBEA. The major reason that the unilateral order

improves the performance is that the order ensures the sizes of the

subproblems as small as possible, and the largest size is bounded.

From the experiment, we can see that the unilateral order plays a

critical role for speeding up.

E�ect of storing local subgraphs. We study how storing local

subgraphs a�ects the performance. We modify ooMBEA to oVari-
ant2 by removing local graphs stored in each recursion. In Table 7,

column
oVariant2
ooMBEA shows the running time ratios of oVariant2 and

ooMBEA for all the datasets. oVariant2 runs 2.11 times slower than

ooMBEA for 𝑀𝑜𝑣𝑖𝑒𝐿𝑒𝑛𝑠. As the datasets become large, the running

time ratio increases. For 𝐿𝑖𝑣𝑒 𝐽 𝑜𝑢𝑟𝑛𝑎𝑙 , oVariant2 is more than 3 times

slower than ooMBEA. The reasons that make oVariant2 slow are as

follows. For each recursion, due to the lack of local subgraph infor-

mation, the neighbours of a vertex in the input graph have to be

used. This greatly increases the computational cost per recursion.

E�ect of space optimisation. How the space optimisation a�ects

performance is studied. A variant of ooMBEA denoted by oVariant3
is implemented to compare with ooMBEA. oVariant3 does not have
the adjustable 𝐿 and 𝑅 partitioned into 𝐴,𝐵,𝑃,𝑄. It does not have

the adjustable adjacency list either for storing local subgraphs for

recursions. Instead, it creates local 𝐴, 𝐵, 𝑃 , 𝑄 and local adjacency

Table 7: Variants and running time ratio

Data
𝑜𝑉𝑎𝑟𝑖𝑎𝑛𝑡1
𝑜𝑜𝑀𝐵𝐸𝐴

𝑜𝑉𝑎𝑟𝑖𝑎𝑛𝑡2
𝑜𝑜𝑀𝐵𝐸𝐴

𝑜𝑉𝑎𝑟𝑖𝑎𝑛𝑡3
𝑜𝑜𝑀𝐵𝐸𝐴

MovieLens 2.51 2.11 1.33

BookCrossing 3.49 2.75 1.47

IMDB 3.55 3.13 1.89

DBLP 4.64 3.21 1.79

LiveJournal 5.366 3.29 1.91

list for each recursion. Note that oVariant3 does not have the over-
head for recovering the logical partition, which is necessary for

ooMBEA. The running time ratios of oVariant3 and ooMBEA for

all the datasets are demonstrated in Table 7 column
oVariant3
ooMBEA . Surpris-

ingly, oVariant3 is slower than ooMBEA even with no overheads of

logical partition recovery. This is because, without the proposed

space optimization techniques, oVariant3 has to apply memory dur-

ing every recursion. This overhead is non-trivial. Besides, without

the space optimisation techniques, the hash technique is necessary

to speed up two-set intersection operation. The hash technique

is slower than the location check based technique included in the

space optimisation techniques. The results of this experiment justify

the advantages of using space optimisation techniques.

8.3 Case Studies

We conduct three case studies to show that ooMBEA can speed up

two popular biclique problems in practice and provides insightful

searching hints on 𝐵𝑜𝑜𝑘𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔.

(a,b) MEB search. The (𝑎,𝑏) size constrained MEB problem �nds a

biclique (𝐴,𝐵) such that |𝐴 | ≥𝑎, |𝐵 | ≥𝑏, and |𝐴×𝐵 | is maximised. The

state-of-the-art algorithm [30] (MEB) calls iMBEA as a subroutine

on subgraphs consisting of vertices that cannot be pruned. Since

MEB is dominated by iMBEA, MEB runs in O∗ (2|𝑅 |). We replace

iMBEA in MEB to ooMBEA, and denote the new algorithm as

ooMEB. The running times for the two algorithms for di�erent

size constraints are shown in Figure 6(b). ooMEB runs consistently

around four times faster than MEB while still reporting an opti-

mal result. This is mainly because ooMEB has the same pruning

techniques as MEB but uses a better enumeration as the subroutine.

(a,b) MBB search. The (𝑎,𝑏) MBB problem �nds a biclique (𝐴,𝐵)
such that |𝐴 | ≥𝑎, |𝐵 | ≥𝑏, |𝐴 |= |𝐵 | and |𝐴×𝐵 | is maximised. The state-of-

the-art algorithm [9], denoted by hbvMBB, uses a very di�erent

enumeration compared to MEB due to the balancing constraint,

which allows that the enumeration always ends up to a p-time solv-

able subgraph and makes hbvMBB run in O∗ (1.3803 ¥𝛿 ) , where ¥𝛿 is the
bidegeneracy of a bipartite graph. We preserve all optimisations

in [9] but replace the enumeration and ordering parts with our

enumeration and ordering, and the new algorithm is called ooMBB.

Notice that since ooMBB does not expand (𝐴,𝐵) in-turn, ooMBB

cannot ensure that the enumeration always ends up to p-time solv-

able subgraphs and therefore runs in O∗ (2𝜍 (𝑅) ). We would like to

highlight that ¥𝛿 is derived by the peeling based on 1-hop and 2-hop

neighbours, whereas 𝜍 (𝑅) is derived by the peeling based on just

2-hop neighbours. Therefore, 𝜍 (𝑅) is constant times smaller than ¥𝛿 .
Since 1.3803

¥𝛿≈1.9 ¥𝛿/2, the time complexity of ooMBB is comparable

with that of hbvMBB. The running times for hbvMBB and ooMBB

when varying size constraints are shown in Figure 6(c). ooMBB is

faster than hbvMBB while still reporting an optimal result. This
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Figure 6: E�ectiveness evaluations

is because ooMBB inherently avoids generating non-maximal bi-

clique and explores up to |𝑅 | subgraphs. In contrast, hbvMBB needs

more enumerations to prune non-maximal bicliques, and it may

also explore up to ( |𝐿 |+ |𝑅 |) subgraphs.
Biclique searching hints. Using ooMBEA, the size distribution of

all maximal bicliques in 𝐵𝑜𝑜𝑘𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 can be retrieved and drawn in

2900 seconds. The size distribution is shown in Figure 6(d). A cycle

at (𝑥,𝑦) means that there are bicliques with the size (𝑥,𝑦) , i.e., 𝑦 users
rate 𝑥 books in common. The area of the cycle indicates the number

of (𝑥,𝑦) bicliques. The larger an area is, themore (𝑥,𝑦) bicliques there
are. If a user wants to �nd a large balanced biclique, Figure 6(d) can

provide information that the largest balanced biclique has a size

slightly larger than (10,10). As such, the user can set the parameter

as (10,10). If a user wants to detect a large set of users (𝑦) rating

a larger set of common books (𝑥 , 𝑥>𝑦) for the fraudulent rating

detection purpose [30], Figure 6(d) can also provide a useful hint.

Figure 6(d) indicates that 𝑦 cannot be set larger than 10. Otherwise 𝑥

is too small. The user may set (10,7) for �nding (10,7) maximum edge

bicliques, which leverages chances for �nding bicliques with large

vertices in the user set and larger vertices in the book set. Given

the fact that 𝐵𝑜𝑜𝑘𝐶𝑟𝑜𝑠𝑠𝑖𝑛𝑔 contains over 1 million edges, the user

could try numerous large parameters before �nding maximum edge

bicliques if there is no statistical information given by Figure 6(d).

9 RELATEDWORK

Maximal biclique enumeration. Early maximal biclique enu-

meration algorithms �rst build powerset for 𝑅, and then combine

the sets of the powerset if they lead to a larger biclique [37, 46],

which �nds all the maximal biclique in a breath-�rst search manner.

Most of the relative recent works solveMBE in depth-�rst search

manner [2, 12, 24, 47]. Apart from the above algorithms, [11] pro-

poses an output-sensitiveMBE algorithm, taking exponential space

and assuming the degree of the 𝑗th highest degree is 1/𝑗𝑠 of the
highest degree, where 1≤𝑠≤2, which makes the algorithm run in

O(𝑑𝑚𝑎𝑥 (𝑅) |𝑅 |B). [17] reduces MBE to maximal clique enumeration.

The vertex induced maximal biclique enumeration for unipartite

graphs is studied in [18]. This problem is reduced to independent

set problem and therefore can be solved as the same time complex-

ity of the maximal independent set enumeration problem, which

cannot be applied to bipartite graphs.

Maximum edge biclique. The problem of �nding maximum edge

biclique (MEB) is NP-hard. In [13], ILP formulations of MEB are

proposed, which can �nd anMEB. An algorithm �ndingMEB with

high probability is proposed [35]. Besides, theMEB problems for

special cases of bipartite graphs are studied in [33], [34] and [6].

Recently, a novel exactMEB algorithm [30] is proposed, which can

deal with large bipartite graphs. These techniques cannot be used

for speeding up MBE since they focus on pruning the search space

that does not lead to maximum edge bicliques.

Maximum balanced biclique. The maximum balanced biclique

(MBB) problem is NP-hard [16]. Recently, novel exactMBB algo-

rithms [9] are proposed. Subgraphs in which anMBB can be sought

in polynomial-time are studied for speeding up the search. How-

ever, this technique cannot be applied to MBE since the number

of maximal bicliques in those subgraphs could still be exponential

w.r.t. the number of vertices of the subgraphs. In [9], a search order

is proposed which aims to bound the number of vertices on both of

the vertex sets. However, for theMBE problem, the time complexity

is exponential w.r.t. just one of the two vertex sets. Our proposed

order is more suitable for the MBE problem and has much fewer

optimisation overheads.

Other cohesive subgraphs. Bipartite cohesive subgraph models,

such as (𝛼,𝛽)-core [28, 41], bi-truss [39, 40], and bi-triangle [42],

have drawn great attention recently for di�erent applications. Co-

hesive subgraph models such as 𝑘-core [43, 48], 𝑘-truss [8, 10, 19],

and densest subgraphs [7, 15], have been studied extensively.

10 CONCLUSION

In this paper, we study the problem of maximal biclique enumer-

ation on real large sparse bipartite graphs. We propose a novel

search order called the unilateral order tailored for the maximal bi-

clique enumeration problem, which nicely captures the sparsity of

a large sparse bipartite graph. Enumerating maximal biclique using

the unilateral order runs in O∗ (2𝜍 ), where 𝜍 is much smaller than

𝑚𝑖𝑛{ |𝐿 |, |𝑅 | } for a real large sparse bipartite graph. We propose the

novel batch-pivots technique, which further enhances the proposed

algorithm with better polynomial-delay. A novel data structure is

devised to reduce the space complexity. Extensive experiments are

conducted on large real datasets up to hundreds of million edges to

justify the practical performance of our proposed techniques.
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