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ABSTRACT
This paper is an experimental and analytical study of two classes

of summary-based cardinality estimators that use statistics about

input relations and small-size joins in the context of graph database

management systems: (i) optimistic estimators that make unifor-

mity and conditional independence assumptions; and (ii) the recent

pessimistic estimators that use information theoretic linear pro-

grams (LPs). We begin by analyzing how optimistic estimators

use pre-computed statistics to generate cardinality estimates. We

show these estimators can be modeled as picking bottom-to-top

paths in a cardinality estimation graph (CEG), which contains sub-

queries as nodes and edges whose weights are average degree

statistics. We show that existing optimistic estimators have either

undefined or fixed choices for picking CEG paths as their estimates

and ignore alternative choices. Instead, we outline a space of opti-

mistic estimators to make an estimate on CEGs, which subsumes

existing estimators. We show, using an extensive empirical anal-

ysis, that effective paths depend on the structure of the queries.

While on acyclic queries and queries with small-size cycles, using

the maximum-weight path is effective to address the well known

underestimation problem, on queries with larger cycles these es-

timates tend to overestimate, which can be addressed by using

minimum weight paths. We next show that optimistic estimators

and seemingly disparate LP-based pessimistic estimators are in fact

connected. Specifically, we show that CEGs can also model some

recent pessimistic estimators. This connection allows us to adopt

an optimization from pessimistic estimators to optimistic ones, and

provide insights into the pessimistic estimators, such as showing

that they have combinatorial solutions.
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1 INTRODUCTION
The problem of estimating the output size of a natural multi-join

query (henceforth join query), is a fundamental problem that is

solved in the query optimizers of database management systems to

generate efficient query plans. This problem arises both in relational

systems as well as those that manage graph-structured data where

systems need to estimate the cardinalities of subgraphs in their

input graphs. It is well known that both problems are equivalent,

since subgraph queries can equivalently be written as join queries

over binary relations that store the edges of a graph.

We focus on the prevalent technique used by existing systems

of using statistics about the base relations or outputs of small-size

joins to estimate cardinalities of joins. These techniques use these

statistics in algebraic formulas that make independence and unifor-

mity assumptions to generate estimates for queries [2, 23, 25, 28].

Cardinality estimation techniques that make such independence

and uniformity assumptions are appealing because they are sim-

ple and fast, and they are widely used in practice in systems that

adopt a graph-based model, where the set of small-size joins can be

known in advance. We refer to these as summary-based optimistic
estimators (optimistic estimators for short), as these estimators can

make both under and overestimations. These techniques contrasts

with the recent pessimistic estimators that are based on worst-case

optimal join size bounds [1, 5, 6, 13, 17], which are based on infor-

mation theoretic linear programs (LPs), and avoid underestimation,

albeit using very loose estimates [31].

This paper makes three main contributions. First, we show exist-

ing optimistic estimators can be described in a common framework,

which we call cardinality estimation graphs, or CEGs. A CEG de-

scribes a space of alternative ways in which such estimators can

combine the available statistics to generate cardinality estimates.

This space subsumes the choices made by existing summary-based

estimators. Second, we connect the seemingly disparate pessimistic

estimators with optimistic estimators and show that they can also

be modeled as picking paths in a CEG (one with different edge

weights than the CEG used by optimistic estimators). Third, we

conduct an extensive empirical evaluation of estimators in the CEG-

space we define for optimistic estimators to characterize the best

way to make estimates for different types of queries and compare

these estimators with pessimistic ones.

The main observation that motivates our first contribution is

that in prior optimistic estimators, there is often more than one

algebraic formula that can be used to make an estimate for a query,

and no clear answer for which one to use. For example, consider the
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Figure 1: Example subgraph query Q
5f .

Figure 2: Example dataset in graph and relational formats.

query in Figure 1. Given the accurate cardinalities of all subqueries

of size ≤ 2, there are 252 formulas to make an estimate. Examples

of these formulas are:

• |
A
−→

B
−→ |×

|
B
−→

C
−→ |

|
B
−→ |

×
|
C
←−

D
−→ |

|
C
−→ |

×
|
D
←−

E
−→ |

|
D
−→ |

• |
A
−→

B
−→ |×

|
B
−→

D
−→ |

|
B
−→ |

×
|
C
←−

D
−→ |

|
D
−→ |

×
|
B
−→

E
−→ |

|
B
−→ |

In previous work [2, 23, 25], the choice of which of these estimates

to use has either been unspecified or fixed without acknowledging

possible other choices. Our paper aims to answer this question by

systematically studying these alternative estimates and empirically

justifying which estimates are more accurate.

We begin by showing that the algebraic formulas of prior opti-

mistic estimators can be modeled as picking a bottom-to-top path

in a weighted CEG, which we call CEGO , for Optimistic. In this

CEG nodes are intermediate sub-queries and edges weights are

average degree statistics that extend sub-queries to larger queries.

For example, the CEGO for the query in Figure 1 and the input

dataset in Figure 2 is shown in Figure 3. Each path of this CEG

corresponds to a possible algebraic formula and the corresponding

estimate is the multiplication of the weights of the edges in the path.

We first systematically describe a space of estimators, defined by

different choices to pick a CEG path, i.e., an algebraic formula, for

making an optimistic estimate. This space subsumes and extends

the choices made by existing optimistic estimators.

As our second main contribution, we show that CEGs are expres-

sive enough to model also the recent LP-based pessimistic estima-

tors. Specifically, we show that we can replace the edge weights of

CEGO (which are average degrees) with maximum degrees of base

relations and small-size joins, and construct a new CEG, which we

call CEGM . Unlike the optimistic estimators, where the choice of

path is not clear, we now show that picking the minimum weight

path would (provably) be the most accurate estimate and this path

is indeed equivalent to solution of the LP that defines a pessimistic

estimator from reference [17] called MOLP. We therefore show that

Figure 3: CEGO for query Q
5f in Figure 1 when the Markov

table (§4) contains joins up to size 3.

both subgraph summary-based optimistic estimators and the recent
LP-based pessimistic ones, which were not known to be related, can
be seen as different instances of a broader class of estimators that
pick paths through CEGs. Our ability to model these two classes

of estimators from literature in a common framework allows us

to apply an optimization called the bound sketch optimization de-

signed for the recent pessimistic estimators from reference [6] also

to optimistic estimators.

As our third contributionwe show empirically that the better per-

forming optimistic estimators in the CEG space we define depend

on the structure of the query. We show that on acyclic queries and

queries with small-size cycles, using the maximum-weight paths,
which correspond to choosing the highest estimating formulas, is an

effective way to make accurate estimations. This is because as in the

relational setting, estimators that use independence assumptions

tend to underestimate the true cardinalities of queries, and picking

the highest estimating formula can offset these underestimations.

In contrast, we observe that on queries that contain larger cycles,

optimistic estimators estimate the number of paths, rather than

cycles. Therefore, unlike the case for acyclic queries and queries

with small cycles, optimistic estimators make overestimates, as

real-world graphs contain many more paths than cycles. Therefore,

the minimum-weight paths now lead to more accurate estimates.

As a demonstration of the benefits of modeling optimistic and

pessimistic estimators in a common framework, our detailed evalua-

tions show how the bound sketch optimization used for pessimistic

estimators can also improve optimistic estimators. This experiment

also shows that pessimistic estimators can be highly inaccurate

compared to optimistic ones. Finally, we analyze several scalabil-

ity aspects of estimators that make estimates on CEGs, which can

inform other CEG-based estimators future research can propose.

For readers interested in the theory of pessimistic estimators,

we further note that CEGs turn out to be very useful mathematical

tools to prove properties of pessimistic estimators. For example,

using CEGs in our proofs, we can derive combinatorial proofs to

some properties of MOLP, e.g., that MOLP is at least as tight as the

pessimistic estimator proposed by Cai et al [6] and are identical

on acyclic queries over binary relations or that it is tighter than

another bound called DBPLP [17].

2 QUERY AND DATABASE NOTATION
We consider conjunctive queries of the form

Q(A) = R1(A1), . . . ,Rm (Am )
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Figure 4: CEGO for query Q
5f from Figure 1 when the

Markov table (§4) contains joins up to size 2.

where Ri (Ai ) is a relation with attributesAi andA = ∪iAi . Most

of the examples used in this paper involve edge-labeled subgraph

queries, in which case each Ri is a binary relation containing a

subset of the edges in a graph as source/destination pairs. Figure 2

presents an example showing a graph with edge labels A, B, C , D,
and E. This graph can be represented using five binary relations,

one for each edge label, as shown in Figure 2.

We will often represent queries over such relations using a graph

notation. For example, consider the relationsA and B from Figure 2.

We will represent the query Q(a1,a2,a3) = A(a1,a2) ▷◁ B(a2,a3) as

a1
A
−→ a2

B
−→ a3. Similarly, the query Q(a1,a2,a3) = A(a1,a2) ▷◁

B(a3,a2) will be represented as a1
A
−→ a2

B
←− a3.

3 CEG OVERVIEW
Next, we offer some intution for cardinality estimation graphs (CEGs).
A CEG for a query Q consists of:

• Vertices labeled with subqueries of Q , where subqueries are

defined by subsets of Q’s relations or attributes.

• Edges from smaller subqueries to larger subqueries, labeled

with extension rateswhich represent the cardinality of the larger
subquery relative to that of the smaller subquery.

Each bottom-to-top path (from ∅ toQ) in a CEG represents a differ-

ent way of generating a cardinality estimate for Q . An estimator

using a CEG picks one of these paths as an estimate. The estimate

of a path is the product of the extension rates along the edges of

the path. Equivalently one can put the logarithms of the extension

rates as edge weights and sum the logarithms.

Figure 4 illustrates a CEG1
for the query Q

5f shown in Fig-

ure 1 over the relations shown in Figure 2, assuming that sta-

tistics are available for any size-2 subqueries of Q
5f . Depending

on the semantics of the edges in a CEG, there can be multiple

edges between two sub-queries in a CEG. For example the last

components of the two formulas, we present in Section 1 for Q
5f ,

|
D
←−

E
−→ |/|

D
−→ | and |

B
−→

E
−→ |/|

B
−→ |, correspond to parallel edges

that extend the sub-query over ABCD edges with an E edge to

Q
5f . Consider the leftmost path. The first extension rate from ∅ to

a1
A
−→ a2

B
−→ a3 is the known cardinality of a1

A
−→ a2

B
−→ a3, which

is 4, and the second extension rate has a weight 3/2, intuitively

estimating that each a1
A
−→ a2

B
−→ a3 path will extend to 3/2 many

1
Specifically, it is a CEGO , defined in Section 4.

Table 1: Example Markov table for h=2.

Path |Path|
B
−→ 2

A
−→

B
−→ 4

B
−→

C
−→ 3

... ...

a1
A
−→ a2

B
−→ a3

C
−→ a4 paths. Continuing the extensions, the final

estimate is 4 × 3

2
× 5

2
× 7

2
= 52.5.

In the rest of this paper, we will show how some of the opti-

mistic and pessimistic estimators from literature can be modeled as

instances of this generic estimator using different CEGs.

4 OPTIMISTIC ESTIMATORS
The estimators that we refer to as optimistic use statistics about
the input database in formulas that make uniformity and indepen-

dence or conditional independence assumptions. The cardinality

estimators of several systems fall under this category. We focus

on three estimators: Markov tables [2] from XML databases, graph

summaries [23] from RDF databases, and the graph catalogue esti-

mator of the Graphflow system [25] for managing property graphs.

As we explain momentarily, despite being designed for systems

that adopt different graph-based data models, these estimators are

all extensions of each other.

We begin by giving an overview of the Markov tables estima-

tor [2]. A Markov table of length h ≥ 2 stores the cardinality of

each path in an XML document’s element tree up to length h and

uses these to make predictions for the cardinalities of longer paths.

Table 1 shows a subset of the entries in an example Markov table for

h = 2 for our running example dataset from Figure 2. The formula

to estimate a 3-path using a Markov table with h = 2 is to multiply

the cardinality of one of the 2-paths with the consecutive 2-path

divided by the cardinality of the common edge. For example, con-

sider the query Q3p =

A
−→

B
−→

C
−→ against the dataset in Figure 2. The

formula for Q3p would be: |
A
−→

B
−→ |×(|

B
−→

C
−→ |/|

B
−→ |). The formula

assumes that the number of C edges that each B edge extends to

is uniformly r = |
B
−→

C
−→ |/|

B
−→ |. Equivalently, this is the “average

C-degree” of nodes in the

B
−→

C
−→ paths. The result of this formula

is 4 × 3

2
= 6, which underestimates the true cardinality of 7. The

graph summaries [23] for RDF databases and the graph catalogue

estimator [25] for property graphs have extended the contents of

what is stored in Markov tables, respectively, to other acyclic joins,

such as stars, and small cycles, such as triangles.

4.1 Space of Possible Optimistic Estimators
We next represent optimistic estimators using a CEG that we call

CEGO . We assume that the given query Q is connected. CEGO
consists of the following:

• Vertices: For each connected subset of relations S ⊆ R of Q ,
we have a vertex in CEGO with label S . This represents the
sub-query ▷◁Ri ∈S Ri .

• Edges: Consider two vertices with labels S and S ′ s.t., S ⊂ S ′.
Let D, for difference be S ′ \ S , and let E ⊃ D, for extension

1535



be an entry in the Markov table, and let I, for intersection, be
E ∩ S . If E and I exist in the Markov table, then there is an

edge with weight
|E |

|I |
from S to S ′ in CEGO .

When making estimates, we will apply two basic rules from prior

work that limit the paths considered in CEGO . First is that if the

Markov table contains size-h joins, the formulas use size-h joins in

the numerators in the formula. Second, for cyclic queries, which

was covered in reference [25], an additional early cycle closing

rule is used in the reference when generating formulas. In CEG

formulation this translates to the rule that if S can extend tomultiple

S ′s and some S ′ contain additional cycles that are not in S , then
only such outgoing edges of S to such S ′ are considered. Even when

the previous rules are applied, there may be multiple (∅,Q) paths
that lead to different estimates:

Example 1: Consider the CEGO for Q
5f shown in Figure 4 which

uses a Markov table of size 2. There are 36 (∅,Q) paths leading to 7

different estimates. Two examples are:

• |
A
−→

B
−→ |×

|
B
−→

C
−→ |

|
B
−→ |

×
|
B
−→

D
−→ |

|
B
−→ |

×
|
B
−→

E
−→ |

|
B
−→ |

= 52.5

• |
A
−→

B
−→ |×

|
B
−→

C
−→ |

|
B
−→ |

×
|
C
←−

D
−→ |

|
C
−→ |

×
|
D
←−

E
−→ |

|
D
−→ |

= 57.6

Example 2: Similarly, consider estimating Q
5f now with a Markov

table with up to 3-size joins. The new CEGO is shown in Figure 3,

which contains multiple paths leading to 2 different estimates:

• |
A
−→

B
−→

C
−→ |×

|
C
←−

D
−−−−⇒
E
|

|
C
−→ |

• |
A
−→

B
−→

C
−→ |×

|
A
−→

B
−→

D
−→ |

|
A
−→

B
−→ |

×
|
A
−→

B
−→

E
−→ |

|
A
−→

B
−→ |

Both formulas start by |
A
−→

B
−→

C
−→ |. The first “short-hop” formula

makes one fewer independence assumption than the “long-hop”

formula, which is an advantage. In contrast, the first estimate also

makes a uniformity assumption that conditions on a smaller-size

join, which might make it less accurate than the two assumptions

made in the long-hop estimate, which condition on 2-size joins.

Any optimistic estimator implementation needs to make choices

about which formulas to use, which corresponds to picking paths

in CEGO . We systematically identify a space of choices that an

optimistic estimator can make along two parameters that capture

the choices made in prior work:

• Path length: The estimator can identify a set of paths to con-

sider based on the path lengths, i.e., number of edges or hops, in

CEGO , which can be: (i) maximum-hop (max-hop); (ii) minimum-

hop (min-hop); or (iii) any number of hops (all-hops). Let P
be the set of paths an estimator picks.

• Aggregator: To derive a final estimate, the estimator has to

aggregate the estimates in P. We identify three aggregators: (i)

the path with the largest estimate (max-aggr); (ii) the path with

the lowest estimate (min-aggr); or (iii) the average of all the
estimates in P (avg-aggr).

Any combination of these two choices can be used to design an opti-

mistic estimator. The original Markov tables [2] chose the max-hop
paths. In reference [2] queries were paths, so when the path length

(a) 4-cycle query. (b) CEGO .

Figure 5: A 4-cycle query and its CEGO .

is chosen, anyCEGO path gives the same estimate. Therefore an ag-

gregator is not needed. Graph summaries [23] chooses the min-hop
paths and leaves the aggregator unspecified. Graph catalogue [25]

picks the min-hop and min-aggr aggregator. None of these estima-

tors consider alternative choices an estimator can make. Instead,

we do a systematic experimental analysis of this space of estimators

in Section 6 and show that the best choices depend on the query

structure, as optimistic estimators behave differently on different

structures. In particular our experiments indicate that, as observed

in the relational setting for estimators that make independence

assumptions [19], optimistic estimators suffer from the well known

under-estimation problem on acyclic queries and queries with small

cycles. However, on queries with larger cycles, they tend to over-

estimate. We next make an observation to explain this difference.

4.2 Large Cyclic Patterns
Recall that a Markov table stores the cardinalities of patterns up to

some size h. Given a Markov table with h ≥ 2, optimistic estimators

can produce estimates for any acyclic query with size larger than h.
But what about large cyclic queries with size larger than h?

Faced with a large cyclic queryQ , we observe that the optimistic

estimators do not actually produce estimates for Q . Instead, they
produce an estimate for a similar acyclic Q ′ that includes all of
Q ’s edges but is not closed. Consider estimating a 4-cycle query in

Figure 5a using a Markov table with h=3. TheCEGO for this setting

is shown in Figure 5b. Consider the left most path corresponding

to the formula: |
A
−→

B
−→

C
−→ |×|

B
−→

C
−→

D
−→ |/|

B
−→

C
−→ |. Note that this

formula is in fact estimating a 4-path

A
−→

B
−→

C
−→

D
−→ rather than the

4-cycle shown in Figure 5a. This is true for each path in CEGO .

More generally, when queries contain cycles of length > h,CEGO
breaks cycles in queries into paths. Therefore, estimates overCEGO
can lead to overestimates for queries with large cycles, as there are

often significantly more paths than cycles in real-world graphs. We

note that this problem does not exist if a query contains a cycle C
of length > h that contains smaller cycles in them, such as a clique

of size h + 1, because the early cycle closing rule from Section 4.1

will avoid formulas that estimate C as a sub-query.

5 PESSIMISTIC ESTIMATORS
Starting from the seminal result by Atserias, Grohe, and Marx in

2008 [5], several upper bounds have been provided for the out-

put sizes of join queries under different known statistics. For ex-

ample the initial upper bound from reference [5], now called the

AGM bound, used only the cardinalities of each relation, while later

bounds, DBPLP [17], MOLP [17], and CLLP [1] used maximum

degrees of the values in the columns and improved the AGM bound.
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Since these bounds are upper bounds on the query size, they can

be used as pessimistic estimators. This was done recently by Cai et

al. [6] in an actual estimator implementation. We refer to this as

the CBS estimator, after the names of the authors. We next show

that some of the recent pessimistic estimators [6, 17] can also be

modeled as making an estimate using a CEG.

5.1 MOLP
MOLP was defined in reference [17] as a tighter bound than the

AGM bound that uses additional degree statistics about input re-

lations that AGM bound does not use. We first review the formal

notion of a degree. Let X be a subset of the attributes Ai of some

relation Ri , and let v be a possible value of X. The degree of v in

Ri is the number of times v occurs in Ri , i.e. deд(X(v),Ri ) = |{t ∈
Ri |πX (t ) = v}|. For example, in Figure 2, deд(s(3),E) = 3 because

the outgoing E-degree of vertex 3 is 3. Similarly deд(d(2),A) is 1
because the incoming A-degree of vertex 2 is 1. We also define

deд(X,Ri ) to be the maximum degree in Ri of any value v over

X , i.e., deд(X ,Ri ) = maxv deд(X(v),Ri ). So, deд(d,A) = 3 because

vertex 13 has 3 incoming A edges, which is the maximum A-in-

degree in the dataset. The notion of degree can be generalized to

deд(X (v),Y ,Ri ), which refers to the “degree of a value v over at-

tributes X in πYRi ”, which counts the number of times v occurs

in πY (Ri ). Similarly, we let deд(X ,Y ,Ri ) = maxv deд(X (v),Y ,Ri ).
Suppose a system has stored deд(X ,Y ,Ri ) statistics for each possi-

ble Ri and X ⊆ Y ⊆ Ai . MOLP is the output of this LP:

Maximize sA
s∅ = 0

sX ≤ sY , ∀X ⊆ Y

sY∪E ≤ sX∪E+ log(deд(X ,Y ,Ri )),∀X ,Y ,E⊆A,X⊆Y⊆Ai

The base of the logarithm can be any constant and we take it as

2. LetmA be the optimal value of MOLP. Reference [17] has shown

that 2
mA

is an upper bound on the size of Q .
MOLP CEG (CEGM ): It is not easy to directly see the solution of

the MOLP on our running example. However, we next show that

we can represent the MOLP bound as the cost of minimum-weight

(∅,Q) path in a CEG that we call CEGM .

• Vertices: For each X ⊆ A, the variable sX in MOLP represents

an upper bound on the size of QX = ΠXQ . Therefore, for each
X ⊆ A there is a vertex in CEGM .

• Extension Edges: For each sY∪E ≤ sX∪E + log(deд(X ,Y ,Ri ))
inequality, there is an edge with weight log(deд(X ,Y , Ri )) be-
tween anyW1 = X ∪ E andW2 = Y ∪ E. These inequalities

intuitively indicate the following: each tuple tX∪E ∈ QX∪E can

extend to at most deд(X ,Y ,Ri ) QY∪E tuples.

• Projection Edges: For each sX ≤ sY inequality (i.e., ∀X ⊆ Y ), add
an edge with weight 0 from Y to X . These indicate that the size

of QX is at most the size of QY , if Y is a larger subquery.

Figure 6 shows theCEGM of our running example. For simplicity,

we use actual degrees instead of their logarithms as edge weights

and omit the projection edges in the figure. Below we use (∅,A)

instead of (∅,Q), to represent the bottom-to-top paths in CEGM .

Theorem 5.1. LetQ be a query with degree statistics deд(X ,Y ,Ri )
for each Ri and X ⊆ Y ⊆ Ai . The optimal solutionmA to the MOLP
of Q is the weight of the minimum-weight (∅,A) path in CEGM .

Figure 6: CEGM for query Q
5f in Figure 1.

The proof of Theorem 5.1 can be found in the longer version

of our paper [7]. With this connection, readers can verify that the

MOLP bound in our running example is 96 by inspecting the paths

in Figure 6. In this CEG, the minimum-weight (∅,A) path has a

weight of 96, corresponding to the leftmost path in Figure 6. We

make two observations.

Observation 1: Reference [17] proves through a numeric LP-duality

argument that 2
mA

is an upper bound on the the output size of the

query (OUT ), i.e., OUT ≤ 2
mA

(see Prop. 2 [17]). Our CEG formu-

lation of MOLP provides arguably a simpler proof of this property.

Note that each (∅,A) path in CEGM corresponds to a sequence of

extensions from ∅ to Q and is an estimate of the cardinality of Q .
Since we are using maximum degrees on the edge weights, each

(∅,A) path is by construction an upper bound on Q . So any path

in CEGM is a pessimistic estimator. Since for any (∅, A) path P

in CEGM , OUT ≤ 2
w (P )

and by Theorem 5.1,mA is equal to the

weight of the minimum-weight (∅,A) path inCEGM ,OUT ≤ 2
mA

.

Observation 2: Theorem 5.1 implies that MOLP can be solved using

a combinatorial shortest-path algorithm instead of a numeric LP

solver.

5.2 CBS and Bound Sketch Optimization
We review the CBS estimator very briefly and refer the reader to

reference [6] for details. CBS estimator has two subroutines Bound
Formula Generator (BFG) and Feasible Coverage Generator (FCG)
(Algorithms 1 and 2 in reference [6]) that, given a query Q and the

degree statistics about Q , generate a set of bounding formulas. A
coverage is a mapping (Rj , Aj ) of a subset of the relations in the

query to attributes such that eachAj ∈ A appears in themapping. A

bounding formula is a multiplication of the known degree statistics

and is an upper bound on the size of a query. In the long version

of our paper [7], we prove that each path in CEGM corresponds

to a bounding formula and vice versa. With this observation, we

show that MOLP is at least as tight as the CBS estimator on general

acyclic queries and is exactly equal to the CBS estimator over acyclic

queries over binary relations. Henceforth, we do not differentiate

between MOLP and the CBS estimator.
2

2
A similar connection between MOLP and CBS cannot be established for cyclic queries.

This is because, although not explicitly acknowledged in reference [6], on cyclic queries,

the CBS estimates are not guaranteed to be pessimistic. We provide a counter example

in the long version of our paper [7]. In contrast, MOLP generates a pessimistic estimate

for arbitrary, so both acyclic or cyclic, queries.
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5.2.1 Bound Sketch. We next review the bound sketch optimiza-

tion from reference [6] to improve the CBS/MOLP estimates. We

describe bound sketch using the CEG framework (see reference [6]

for the original description). Given a partitioning budget K , for
each bottom-to-top path in CEGM , the optimization partitions the

input relations into multiple pieces and derives K many subqueries

of Q . Then the estimate for Q is the sum of estimates of all K sub-

queries. Intuitively, partitioning decreases the maximum degrees

in subqueries to yield better estimates whose sum is guaranteed to

be more accurate than making a direct estimate for Q .
We divide the edges in CEGM into two. Recall that each edge

W1

ej
−−→W2 in CEGM is constructed from an inequality of sY∪E ≤

sX∪E +log(deд(X ,Y ,Ri )) in MOLP. We call ej (i) an unbound edge if

X = ∅, i.e., the weight of ej is |Ri |; (ii) a bound edge ifX ̸= ∅, i.e., the
weight of ej is actually the degree of some value in a column of Ri .
Note that unbound edge extendsW1 exactly with attributesAi , i.e.,

W2 \W1 = Ai and a bound edge with attributes Y , i.e.,W2 \W1 = Y .
Below, we refer to these attributes as “extension” attributes.

Step1: For each p = (∅,A) path in CEGM (so a bounding formula

in the terminology used in reference [6]), let S be the join attributes

that are not extension attributes through a bounded edge
3
. For each

attribute in S , allocate K1/ |S |
partitions. For example, consider the

path P1=∅
|B |
−−→ a2a3

deд(a3,C )

−−−−−−−−→a2−4
deд(a2,A)
−−−−−−−−→a1−4

deд(a3,E)
−−−−−−−−→a1−4a6

deд(a3,D)

−−−−−−−−→a1−6 in the CEGM of Q
5f from Figure 6, where ai−j

refers to aiai+1...aj . Then both a2 and a3 would be in S . For path

P2 = ∅
|A |
−−→ a1a2

deд(a2,B)
−−−−−−−−→ a1−3

deд(a3,C )

−−−−−−−−→ a1−4
deд(a3,D)

−−−−−−−−→

a1−5
deд(a3,E)
−−−−−−−−→ a1−6, only a2 would be in in S .

Step2: Partition each relation Ri as follows. Let PAi , for partition
attributes, be PAi = S ∩ Ai and z be |PAi |. Then partition Ri into

Kz/ |S |
pieces using z hash functions, each hashing a tuple t ∈ Ri

based on one of the attributes in PAi into {0, ...,K
1/ |S | − 1}. For

example, the relation B in our example path P1 would be partitioned
into 4, B00, B01, B10, and B11.
Step3: Then divide Q into K components Q0...0, to

QK 1/ |S |−1, ...,K 1/ |S |−1, such that Q j1, ..., jz contains only the parti-

tions of each relation Ri that matches the {j1, ..., jz } indices. For
example, in our example,Q0...0 is A0 ▷◁ B0,0 ▷◁ C0 ▷◁ D0 ▷◁ E0. This
final partitioning is called the bound sketch of Q for path p.

5.2.2 Implementing Bound Sketch in Optimistic Estimators. Note
that a bound sketch can be directly used to refine any estimator

using a CEG, as it is a general technique to partition Q into sub-

queries based on each path p in a CEG. Specifically, we can use

a bound sketch to refine optimistic estimators, which is a direct

benefit of using a common framework to model both optimistic and

pessimistic estimators. We will evaluate benefits of bound sketch

on optimistic estimators in Section 6.3. We implemented the bound

sketch optimization for optimistic estimators as follows. Given a

partitioning budgetK and a set of queries in a workload, we worked

backwards from the queries to find the necessary subqueries, and

for each subquery the necessary statistics that would be needed

are stored in the Markov table. Bound sketches are query-specific,

so computing the right Markov table entries (or degree statistics)

3
These correspond exactly to the attributes that are “unconditionally” covered by a

relation in a bounding formula (see Section 3.4 of reference [6]).

Table 2: Dataset descriptions.

Dataset Domain |V| |E| |E. Labels|
IMDb Movies 27M 65M 127

YAGO Knowledge Graph 13M 16M 91

DBLP Citations 23M 56M 27

WatDiv Products 1M 11M 86

Hetionet Social Networks 45K 2M 24

Epinions Consumer Reviews 76K 509K 50

requires pre-knowledge of the workloads. We are unaware of a

workload-agnostic technique to generate all necessary statistics for

arbitrary queries.

5.3 Use of CEGs in Proofs & A Note on CLLP
Another application of CEGs is that they can be useful mathematical

tools to provide proofs for properties of some existing bounds. Aswe

mentioned earlier, our proof in the longer version of our paper [7]

that shows that CBS is equivalent to MOLP on acyclic queries over

binary relations uses an argument analyzing CEGs. Similarly, the

longer version of our paper [7] reviews another bound called DBPLP

bound and provides an alternative proof that MOLP is tighter than

DBPLP using CEGs.

We end this section with a note on the CLLP bound [1], which

is the tightest known join query size bound. CLLP extends MOLP

with a set of sub-modularity constraints. With the addition of these

constraints, we can no longer map the solution of CLLP to a path in

a CEG because sub-modularity constraints represent a relationship

between 4 sub-queries and do not seem to have an interpretation

as weighted edges as the other constraints of MOLP, which are

between 2 sub-queries. We also note that CLLP generalizes another

LP from reference [13] called GLVV, which was introduced to study

join output sizes under functional dependencies. As part of deriving

CLLP, reference [1] also uses lattices, which might look similar

to our CEGs. Reference [1] uses lattices as a mathematic tool to

determine queries and functional dependencies under which GLVV

is tight. Instead, we use CEGs to solve an LP combinatorially.

6 EVALUATION
We next present extensive experiments that: (i) evaluate the ac-

curacies of the space of optimistic estimators we described on a

large suite of datasets and workloads; (ii) demonstrate the benefits

of applying the bound sketch optimization to optimistic estima-

tors, where we also compare the accuracies of optimistic and pes-

simistic estimators; and (iii) analyze several scalability aspects of

estimators that make estimates by picking paths on CEGs. Our

code, datasets, and queries are available at https://github.com/

cetechreport/CEExperiments.

6.1 Setup, Datasets and Workloads
For all of our experiments, we use a single machine with two Intel

E5-2670 at 2.6GHz CPUs, each with 8 physical and 16 logical cores,

and 512 GB of RAM.We used a total of 6 real-world datasets, shown

in Table 2, and 6 workloads on these datasets. Our dataset and

workload combinations are as follows.
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Figure 7: Query templates for the Acyclic workload. Edge
directions are omitted in the figure.

IMDb and JOB [21]: The IMDb relational database, together with

a workload called JOB, has been used for cardinality estimation stud-

ies in prior work [6, 21]. We created property graph versions of the

this database and workload as follows. IMDb contains three groups

of tables: (i) entity tables representing entities, such as actors (e.g.,

name table), movies, and companies; (ii) relationship tables repre-
senting many-to-many relationships between the entities (e.g., the

movie_companies table represents relationships between movies

and companies); and (iii) type tables, which denormalize the entity

or relationship tables to indicate the types of entities or relation-

ships. We converted each row of an entity table to a vertex. Let u
and v be vertices representing, respectively, rows ru and rv from

tables Tu an Tv . We added two sets of edges between u and v : (i) a
foreign key edge fromu tov if the primary key of row ru is a foreign

key in row rv with a fixed edge label ETu ,Tv ; (ii) a relationship edge
between u to v if a row rℓ in a relationship table Tℓ connects row
ru and rv . The label of the edge between u and v in this case would

come from the type value of the rℓ tuple that “connected” u and

v . For example if a movie entity u is joined with company entity

v through the movie_companies table, then there can be 4 differ-

ent labels this edge can have: distributor, producer, special effects,

miscallenous. These are the four values in the company_type table

that denormalizes the type information in movie_companies.
We then transformed the JOB workload [21] into equivalent

subgraph queries on our transformed graph. We removed non-join

predicates in the queries since we are focusing on join cardinality

estimations. This resulted in 7 join query templates, including four

4-edge queries, two 5-edge queries, and one 6-edge query. Because

we are focusing on edge labeled queries, for any query edge that

corresponds to a join over a relationship table Tℓ , we generated a

random edge label by picking uniformly at random one of the type

values of Tℓ . We generated 100 query instances this way from each

query template and removed the ones whose outputs were empty.

The final workload contained 369 queries.

WatDiv [40] and WatDiv-Acyclic Workload: WatDiv [4] is a

synthetic knowledge graph that has its own workload in SPARQL

format with 12400 original queries. We converted these queries into

equivalent subgraph queries by removing their vertex predicates

and we then removed queries with at most 3 edges. After removing

duplicates among the remaining queries there were 75 different

queries left, 9 of which is cyclic and the other 64 acyclic. Because

9 queries is very small for a workload, we use only the 64 acyclic

queries call this the WatDiv-Acyclic workload.

YAGO 1 [45] and G-CARE-Acyclic and G-CARE-Cyclic Work-
loads: G-CARE [31] is a recent cardinality estimation benchmark

for subgraph queries. From this benchmark we took the YAGO

knowledge graph dataset and the acyclic and cyclic query work-

loads for that dataset. The acyclic workload contains 382 queries

generated from query templates with 3-, 6-, 9-, and 12-edge star

and path queries, as well as randomly generated trees. We will refer

to this workload as G-CARE-Acyclic. The cyclic query workload

contains 240 queries generated from templates with 6-, and 9-edge

cycle, 6-edge clique, 6-edge flower, and 6- and 9-edge petal queries.

We will refer to this workload as G-CARE-Cyclic.
DBLP [10], WatDiv [40], Epinions [11], and Hetionet [16]
and Acyclic and CyclicWorkloads:Weused three other datasets:

(i) Hetionet: a biological network; (ii) DBLP: a real knowledge graph;

and (iii) Epinions: a real-world social network graph. Epinions is a

dataset that by default does not have any edge labels. We added a

random set of 50 edge labels to Epinions. Our goal in using Epinions

was to test whether our experimental observations also hold on

a graph that is guranteed to not have any correlations between

edge labels. For these datasets we created one acyclic and one cyclic

query workload, which we refer to as Acyclic and Cyclic. The
Acyclicworkload contains queries generated from 6-, 7-, or 8-edge

templates, shown in Figure 7. These templates are systematically

picked to ensure that for each query size k , there is a pattern of

every possible depth. Then, we generated 20 non-empty instances

of each template by putting one edge label uniformly at random on

each edge, which yielded 360 queries in total. The Cyclicworkload
contains queries generated from templates used in reference [25].

We then randomly generated instances of these queries by ran-

domly matching each edge of the query template one at a time

in the datasets. Because the WatDiv’s original queries contained

only acyclic queries, we used the Cyclic workload also on WatDiv.

We generated 70 queries for DBLP, 212 queries for Hetionet, 129

queries for WatDiv, and 394 queries for Epinions.

6.2 Space of Optimistic Estimators
We begin by comparing our 9 optimistic estimators on CEGO , we

defined. In order to set up an experiment in which we could test all

of the 9 possible optimistic estimators, we used a Markov table with

h=3. A Markov table with only 2-size joins can not test different

estimators based on different path-length choices or any cyclic

query.

To compare the accuracies of different estimators, for each query

Q in our workloads we make an estimate using each estimator and

compute its q-error. If the true cardinality ofQ is c and the estimate

is e , then the q-error is max{ ce ,
e
c } ≥ 1. For each workload, this

gives us a distribution of q-errors, which we compare as follows.

First, we take the logs of the q-errors so they are now ≥ 0. If a q-

error was an underestimate, we put a negative sign to it. This allows

us to order the estimates from the least accurate underestimation

to the least accurate overestimation. We then generate a box plot

where the box represents the 25th, median, and 75th percentile cut-

off marks. We also compute the mean of this distribution, excluding

the top 10% of the distribution (ignoring under/over estimations)

and draw it with a red dashed line in box plots.

1539



Figure 8: Evaluation of the optimistic estimators on CEGO
on acyclic queries. Estimators are labeled“P-A”: P is the

path length (one of max-hop, min-hop, or all-hops) and A
the aggregator (one of max-aggr, min-aggr, or avg-aggr).

6.2.1 Acyclic Queries and Cyclic Queries With Only Triangles. Our
first question is: Which of the 9 possible optimistic estimators leads

to most accurate estimates on acyclic queries and cyclic queries

that contain ≤3 edges on CEGO ? We compare our 9 estimators on

CEGO for each acyclic query workload in our setup (for IMDb, Wat-

Div, and YAGO, using JOB, WatDiv-Acyclic, and G-CARE-Acyclic
workloads). Because estimators that use avg aggregator cannot fin-

ish 12-size queries in YAGO in a reasonable time, we randomly

sampled 100K paths for these estimators and take their average. As

we demonstrate in our scalability experiments in Section 6.4 even

the number of paths in a 9-star query is prohibitively large.

We then compare our 9 estimators on each cyclic query workload,

but only using the queries that only contain triangles as cycles. All

except one clique-6 query in GCARE-Cyclic contained cycles with

more than 3 edges, so we omit GCARE-Cyclic combination.

Our results are shown in Figure 8 (ignore the P* column for

now). We make several observations. First, regardless of the path-

length choice, the max aggregator (the last 3 box plots in the fig-

ures) makes significantly more accurate estimates (note that the

y-axis on the plots are in log scale) than avg, which in turn is

more accurate than min. This is true across all acyclic experiments

and all datasets. For example, on IMDb and JOB workload, the

all-hops-min, all-hops-avg, and all-hops-max estimators have

log of mean q-errors of 6.5 (underestimation), 1.7 (underestimation),

and 1.02 (understimation), respectively. Therefore on acyclic queries,

when there are multiple formulas that can be used to make an esti-
mate, using the pessimistic ones is an effective technique to combat the
well known underestimation problem. This can give up to three or-

ders of magnitude lower mean q-errors than, e.g., the min-hop-min
estimator used in prior work.

We next analyze the effects of path-length choices. Observe that

across all experiments, if we ignore the outliers and focus on the

25-75 percentile boxes, max-hop and all-hops do at least as well
as min-hop. Further observe that on IMDb, Hetionet, and on the

Acyclic workload on Epinions, max-hop and all-hops lead to

significantly more accurate estimates. Finally, the performance of

max-hop and all-hops are comparable across our experiments.

We verified that this is because all-hops picks one of the max-hop
paths in majority of the queries in our workloads. Therefore we ob-

serve that the advantage of long-hop paths that condition on 2-size

joins when making uniformity assumptions is generally stronger

than its disadvantage of making more independence assumptions.

Since max-hop enumerates strictly fewer paths than all-hops to
make an estimate, we conclude that on acyclic queries, systems im-

plementing the optimistic estimators can prefer the max-hop-max
estimator.

Figure 9 shows the accuracies of the 9 estimators on cyclic query

workloads with only triangles. Our observations are similar to

those for acyclic queries, and we find that the max aggregator yields
more accurate estimates than other aggregators, irrespective of the

path length. When using the max aggregator, we also observe that

max-hop performs at least as well as min-hop. Therefore, as we
observed for acyclic queries, we find max-hop-max estimator to be
an effective way to make accurate estimations for cyclic queries with
only triangles.

6.2.2 Effects of Query Templates, Sizes, and h. For the above ex-
periments, we also performed a more detailed analysis studying

the effects of different query templates (i.e., shapes). That is, we

grouped the queries in each of our workloads into different iso-

morphic templates, e.g., a 5-star, a 5-star with a two-path tail, etc.,

and re-generated the accuracies of our 9 estimators as in Figures 8

and 9 by only plotting the accuracies of one group. These constitute

over 100 figures and can be found in our github repo. Broadly these

figures verified that our conclusions generally hold for different

acyclic and cyclic query template we used in our workloads.

We further divided the queries in our Acyclic workloads based

on their sizes, and analyzed the accuracy distribution of our overall

recommended estimator max-hop-max. Figure 10 shows our box-
plots for size analysis. Overall, we see that as the size of the queries

increases accuracy decreases. This can be seen by the boxplots get-

ting taller as the size increases. This is expected because optimistic

estimators make more independence and uniformity assumptions

in their formulas for larger queries. One exception is that the accu-

racy on YAGO 8-size queries is better than all other sizes, but this

is mainly because this boxplot contains very few, only 8, queries

(shown on top of boxplots), while other boxplots contains many

more, e.g., over 150 queries.
4

4
We did a similar analysis studying the effect of query depths on accuracy, i.e., for

example whether star queries, which have a depth of 2 irrespective of size were harder

to estimate than paths, but we did not observe a very clear pattern as we can see for

size and omit these experiments.
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Figure 9: Evaluation of the space of optimistic estimators on CEGO on Cyclic workload on queries with only triangles.

Figure 10: Accuracy of max-max for different query sizes
(x-axis). The number on top of boxplots is the number of

queries in the boxplot.

Finally, on two of our datasets, DBLP and Hetionet, we verified

that increasing h from 2 to 3 improves accuracy in optimistic estima-

tors. These figure appear in the longer version of our paper [7]. For

example, the max-hop-max estimators’ median accuracy improves

from 1.37 to 1.02 in Hetionet.

6.2.3 CyclicQueries With Cycles of Size >3. Recall our observation
that when faced with queries that contain large cycles, existing

optimistic estimators estimate paths instead of cycles, which we ex-

pect to yield highly inaccurate overestimates as real-world graphs

contain many more paths than cycles. Therefore, unlike the case for

acyclic queries and queries with small cycles, we now expect that

estimates based onCEGO will be pessimistic. To verify this hypoth-

esis, our next experiments compare the performance of optimistic

estimators for each dataset-cyclic query workload combination, but

only using queries that contain cycles of size > 3.

Figure 11 shows our results. As we expected, we now see that

the optimistic estimators yield overestimates for the majority of

the queries. This can be seen by observing that except for a few

exceptions the 25-75 percentile boxes of the boxplots are above 0. In

addition, estimators using the min aggregator perform generally bet-

ter, sometimes with several orders of magnitude difference, which

can be seen by observing the mean accuracy lines of the boxplots.

For example, on YAGO, the mean accuracy lines of max-hop-min
and max-hop-max are, respectively, 0.20 and 3.61 on logarithmic

scale, which correspond to absolute q-errors of 1.58 (overestima-

tion) and 4043.86 (overestimation). We also observe that there is less

sensitivity to the path-length choice when using the min aggregator,
and any of the path-length choices perform reasonably well.

6.2.4 P∗ Estimator and Room for Improvement. Our next question
is: How much room for improvement is there for the space of

optimistic estimators? To answer this, we consider a thought exper-

iment in which, for each query in our workloads, an oracle picks the

most accurate path inCEGO . The accuracies of this oracle-based es-

timator are shown as P∗ bars in our bar charts in Figures 8, 9, and 11.
We compare the P∗ bars in these figures with the max-hop-max
estimator on on acyclic queries and cyclic queries with only tri-

angles, and max-hop-min estimator on queries with larger cycles.

We find that on acyclic queries, shown in Figure 8, we generally

see little room for improvement, though there is some room in

Hetionet and YAGO. For example, on Hetionet, the [25-75] per-

centile cutoffs for max-hop-max and P∗ are [1.1 (underestimation),

1.4 (overestimation)] and [1.1 (underestimation), 1.0] in absolute

q-error, respectively. We see more room for improvement on cyclic

query workloads with large cycles, shown in Figures 11, e.g., the

[25, 75] percentile cutoffs in absolute q-error for max-hop-min and

P∗ on DBLP are [346.4 (underestimation), 1.9 (overestimation)] and

[2.0 (underestimation), 1.04 (overestimation)], respectively. This

indicates that future work on CEG-based estimators can focus on

workloads with large cycles to find opportunities for improvement.

As we discuss in Section 8, we hope CEGs can be the foundation

for proposing other estimators for future work. As a demonstration

of the flexibility of our CEG-framework to design new CEG-based

estimators, in the longer version of our paper, we present one

possible approach (though others can be proposed) to remedy the

overestimates of the estimators on CEGO for queries with large

cycle queries. Specifically, we describe a new CEG, that modifies

CEGO with new edge weights that incorporate a cycle closing effect

and show that estimates on this new CEG can be more accurate

than those on CEGO .

6.3 Effects of Bound Sketch
The bound sketch optimization was designed and shown to signifi-

cantly improve the accuracy of the CBS/MOLP pessimistic estimator

in reference [6]. Recall from Section 5.2, that as a direct benefit of

modeling optimistic and pessimistic estimators in our CEG frame-

work, we had observed that this optimization can also be applied to
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Figure 11: Evaluation of optimistic estimators on CEGO on cyclic queries with cycles of 4 or more edges.

optimistic estimators (and in fact any CEG-based estimator). Our

next experiments aim to demonstrate that indeed the bound sketch

optimization can improve optimistic estimators. As in reference [6],

we focus on acyclic workloads and apply the bound sketch opti-

mization to our suggested max-max optimistic estimator. We also

reproduce the result from reference [6] that bound sketch improves

CBS/MOLP.

Specifically, we tested the effects of bound sketch on the JOB
workload on IMDb and Acyclic workload on Hetionet and Epin-

ions. We use h=2 in our Markov tables. Note that when h=2 only

the aggregator heuristic is relevant because max-hop vs min-hop

choice does not exist, so we refer to max-max simply as max-aggr.
Then we applied the bound sketch optimization to both max-aggr
(on CEGO ) and MOLP estimators and measured the q-errors of

the estimators under partitioning budgets of 1 (no partitioning),

4, 16, 64, and 128. For the largest partitioning size of 128, our of-

fline partitioning code that also generates Markov table entries for

each partition, took 18 minutes for IMDb, 41 minutes for Hetionet,

and 58 seconds for Epinions. We did not optimize this code, so

these numbers can be improved with more performance-oriented

implementations.

Our results are shown in Figure 12. We make two observations.

First, as demonstrated in reference [6], our results confirm that

bound sketch improves the accuracy of MOLP. The mean accuracy

of MOLP increases between 15% and 89% across all of our datasets

when moving between 1 and 128 partitions. Similarly, we also ob-

serve significant gains on the max-aggr estimator. On Hetionet

and Epinions, partitioning improves the mean accuracy at simi-

lar rates: by 25% and 89%, respectively. We observe more modest

gains on IMDb though 93% of their q-errors strictly improve under

max-aggr.
Second, we observe that MOLP overall produces highly inac-

curate, i.e., very pessimistic, estimates, which was also observed

in reference [31]. This can be seen by observing that for each of

our datasets, the scale of the (logarithmic q-error) y-axis in MOLP

bars indicate q-errors that are several orders of magnitude larger

than the q-errors for max-aggr. For example on Hetionet, across all

partitioning budgets, the absolute values of the mean accuracy lines

in the box plots for max-aggr are below 0.15 (so an absolute q-error

less than 1.4), while the accuracy lines are consistently above 3.0

for MOLP (so an absolute q-error greater than 1042).

6.4 Scalability of Markov Tables and CEGs
We next analyze several scalability aspects of Markov tables and

CEGs. These scalability aspects were not discussed in detail in prior

work and can inform future research that can use CEGs to design

Figure 12: Effects of bound sketch on max-aggr estimator
(left column) and MOLP (right column) estimators.

and implement new estimators. The sizes of Markov tables for a

given dataset depends on: (1) how many subgraph topologies exist

in the graph for a given size, which depends on the structure of

the input graph; and (2) for each subgraph topology S , which edge

combinations exist. For example, if h = 3 and a graph has K many 3-

size subgraph topologies and L many edge labels, in the worst-case,

O(KL3) many entries can exist in the Markov table. The number of

edge labels in our datasets are between 24 to 127, so the number

of entries are not prohibitively large even in the worst-case. In

addition, on many datasets many edge combinations do not exist

because of the constraints in the datasets. For example, Hetionet

models a biological network about diseases and by construction

there is no 2-path with both treats labels, because drugs treat

diseases and diseases do not further treat any other entity.

Table 3 reports the size of full Markov tables for h = 2 and h = 3

for each of our datasets, which is at most 39MBs. At least for h=2

and h=3, these Markov tables are very space-efficient for these

datasets. Amongst our datasets, Epinions has the largest Markov

tables. This is expected because the edge labels in this graph are

synthetic and randomly assigned so more edge combinations exist

for each subgraph topology. However on graphs with thousands of

edge labels, the sizes of Markov tables can still become very large.
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Table 3: Markov table sizes for our datasets.

h = 2 h = 3

Dataset entries file size entries file size
IMDb 8K 0.4 MB 597K 30 MB

YAGO 4K 0.2 MB 95K 5 MB

DBLP 0.8K 0.04 MB 27K 1 MB

WatDiv 2K 0.09 MB 45K 2 MB

Hetionet 0.3K 0.02 MB 6K 0.3 MB

Epinions 5K 0.3 MB 774K 39 MB

Reference [2] has described methods to increase the scalability of

Markov tables, by omitting subgraph topologies with small counts

or merging multiple entries into one entry. These technique or their

modifications can be used to mitigate these scalability issues.

We next discuss the complexity of searching an entry E in a

Markov table. For h=2 and h=3, ignoring edge directions, there

are only three possible entry topologies, which are stars, paths,

or triangles. We have implemented a specialized search algorithm

for h=2 and h=3, which first searches for the topology and then

matches the sequence of edge directions, and then the edge labels, so

entry searching is constant time. The only general solution we are

aware of for indexing and searching entries in larger Markov tables

appears the source code [14] for the (graph catalogue) optimistic

estimator of reference [25]
5
. This solution creates a key from each

entry E, by combining the degree information of the query vertices

in E, the edge directions and then edge labels and uses this key to

index entries. However, multiple entries, E1 and E2, in general can

have the same key, in which case the code does an isomorphism

test, which is not constant time. We think using Markov Tables

with size h=4 or larger will have practicality issues both because

the size of the Markov tables can get much larger and searching

entries will be slower.

Finally, we discuss the complexity of making estimates in the

CEG for a query Q with different estimators. The number of edges

and paths in a CEG depends on Q and the h value of the Markov

table. In terms of queries, the CEGs of stars are largest, as every

possible choice of k query-edges of Q forms a valid sub-query and

can be distinct (e.g., if every edge label is distinct so there are no

isomorphic sub-queries), and every k-edge sub-query can in the

worst-case extend to every (k+1)- and (k+2)-size sub-query. Under

this worst-case assumption, Table 4 shows the number of edges

and ∅ to Q paths when using a Markov table of size h=2 and h=3

for stars between 6 and 10 edges .

A critical point about the practicality of optimistic estimators

is that the complexity of making an estimate depends highly on

the aggregator that is used. For max and min aggregators, the com-

plexity is commensurate with the number of edges in the graph.

That is because CEGs are DAGs, and there is a standard linear time

dynamic-programming-based shortest (or longest) path finding al-

gorithm in DAGs [9], which is what we use in our max-hop-max
implementation. However for the avg aggregator, the complexity

is commensurate with of number of paths, as it needs to investigate

each path. As shown in Table 4, for large queries. the number of

CEG paths is prohibitively large, and this aggregator is not practical.

5
See the Catalog.java and QueryGraph.java files.

Table 4: CEG edges and path counts for 6- to 10-stars.
Overflow indicates a number greater than 2

64 − 1.

h = 2 h = 3

Shape |edges| |paths| |edges| |paths|
6-Star 180 486000 225 51M

7-Star 434 153M 651 30B

8-Star 1008 90B 1746 30T

9-Star 2286 90T 4572 48998T

10-Star 5100 Overflow 11475 Overflow

6.5 Impact on Plan Quality
Reference [19] established that cardinality estimation is critical for

optimizers to generate good plans for RDBMSs as it leads to better

plan generation. Several other work has verified this in different

contexts, in RDBMSs [6] and in RDF systems [31]. In our final

set of experiments we set out to verify this in our context too by

comparing the impact of our estimators on plan quality. We used

the RDF-3X system [29] and its source code available here [35]. We

issued our Acyclic workload as join-only queries to RDF-3X on

the DBLP and WatDiv datasets. We then ran the query under 10

configurations: first using RDF-3X’s default estimator and then by

injecting the cardinality estimates of our 9 optimistic estimators

to the system. We used h=3 in our Markov tables to be able to

differentiate between max-hop and min-hop path choices in these

estimators. We then filtered out the queries in which all of the

10 estimators lead to exactly the same plan. We were left with 41

queries for DBLP and 25 queries for WatDiv. We ran each query 5

times and report the best execution time.

The open source version of RDF-3X uses a simple cardinality

estimator that based on basic statistics about the original triple

counts and some ‘magic’ constants. We analyzed the final estimates

of the RDF-3X estimator on the WatDiv queries and compared

with the other estimators. We omit the full results but while the

RDF-3X estimator had a median q-error of 4.001 underestimation,

the worst-performing of the 9 optimistic estimators had a median

q-error of only 1.760 underestimation. So we expect RDF-3X’s esti-

mator to lead to worse plans than the other estimators. We further

expect that the more accurate of the optimistic estimators, such

as max-hop-max, yield more efficient plans than the less accurate

ones, such as min-hop-min.
Figure 13 shows the runtimes of the system under each configu-

ration where the y-axis shows the log-scale speedup or slow down

of each plan under each estimator compared to the plans under the

default RDF-3X estimator. Although a visible improvement is not

identified in DBLP, on WatDiv, observe that the median lines of

the 9 estimators are above 0, indicating the each of these estima-

tors, which have more accurate estimates than RDF-3X’s default

estimator, leads to better plan generation. In addition, observe that

the box plot of estimators with the max aggregators are generally
better than estimators that use the min or avg aggregator. This

correlates with Figure 8, where we showed these estimators lead to

more accurate estimations. We then performed a detailed analysis

of the max-hop-max and min-hop-min estimator as representative

of, respectively, the most and least accurate of the 9 estimators. We

analyzed the queries in which plans under these estimators differed

significantly. Specifically, we found 10 queries across both datasets
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Figure 13: RDF-3X runtimes on Acyclic workload.

where the runtime differences were at least 1.15x. Of these, only in

1 of them min-hop-min lead to more efficient plans and by a factor

of 1.21x. In the other 9, max-hop-max lead to more efficient plans,

by a median of 2.05x and up to 276.3x, confirming our expectation

that better estimations generally lead to better plans.

7 RELATEDWORK
Within the scope of our work, we studied two classes of summary-

based estimators, optimistic and pessimistic ones, in the context of

graph database management systems. We showed these estimators

can all be modeled as instances of picking paths on CEGs and

experimentally studied how to make efficient estimates on the

CEGs for optimistic estimators.

There is decades of extensive research on cardinality estimation

techniques that can be used for estimating sizes of join queries. This

literature has proposed several different classes of estimators, in-

cluding other summary-based ones, as well as sampling-based ones

and novel machine learning-based ones. Sampling-based estima-

tors [8, 15, 18, 20, 22, 38, 43] sample input records from base tables

and evaluate queries on these samples to make estimates. Sampling-

based estimators are fundamentally different than summary-based

ones as by increasing the sizes of the samples they can be arbitrar-

ily accurate, while summary-based ones can be more accurate by

keeping more statistics. Another class of estimators on which there

is active work is machine-learning-based ones that learn to make

estimates from example queries or predicates, e.g., example range

predicates on columns [27, 41, 42]. Our goal in this paper is not to

demonstrate that optimistic or pessimistic estimators can be more

or less accurate than these other classes of estimators and a detailed

comparison against them is beyond the scope of our work. In the

following, we cover other summary-based estimators primarily

focusing on graph-based database management systems.

Many relational systems, including commercial ones such as

PostgreSQL, use summary-based estimators. Example summaries

include the cardinalities of relations, the number of distinct values

in columns, or histograms [3, 26, 34], wavelets [24], or probabilis-

tic and statistical models [12, 37] that capture the distribution of

values in columns. These statistics are used to estimate the selec-

tivities of each join predicate, which are put together using several

approaches, such as independence assumptions. In contrast, the

estimators we studied store degree statistics about base relations

and small-size joins (note that cardinalities are a form of degree

statistics, e.g., |Ri |= deд(∅,Ri )).
Characteristic Sets (CS) [28] is a summary-based estimator pri-

marily designed to estimate the cardinalities of stars in an RDF

graph. It uses the so-called characteristic set of each vertex v in an

RDF graph, which is the set of distinct outgoing labels v has. CS

keeps statistics about the vertices with the same characteristic set.

Then, using these statistics, CS makes estimates for the sizes of

star queries. For a non-star queryQ ,Q is decomposed into multiple

stars s1, ..., sk in a greedy manner, by removing the largest stars

first, and the estimates for each si is multiplied. However, unlike the

optimistic estimators we considered, this decomposition procedure

does not lead to multiple possible decompositions.

Several works have proposed summary-based estimators that

compute a sketch of an input graph. SumRDF [36] builds a summary

graph S of an RDF graph and adopts a holistic approach to make

an estimate. Given the summary S , SumRDF considers all possible

RDF graphsG that could have the same summary S . In the context

of estimating the selectivities of path expressions, XSeed [46] and

XSketch [32] build a sketch S of the input XML Document. The

sketch of the graph effectively collapses multiple nodes and edges

into supernodes and edges with metatadata on the nodes and edges.

The metadata contains statistics, such as the number of nodes that

was collapsed into a supernode. Then given a queryQ ,Q is matched

on S and using the metadata, an estimate is made. Because these

techniques do not decompose a query into smaller sub-queries, the

question of which decomposition to use does not arise for these

estimators either.

Several work use data structures that are adaptations of his-

tograms from relational systems to store selectivities of paths or

trees in XML documents. Examples include, positional histograms [44]
and Bloom histogram [39]. These techniques do not consecutively

make estimates for larger paths and have not been adopted to gen-

eral subgraph queries. For example, instead of storing small-size

paths in a data structure as in Markov tables, Bloom histograms

store all paths but hashed in a bloom filter. Other work used similar

summaries of XML documents (or its precursor the object exchange
model [30] databases) for purposes other than cardinality estima-

tion. For example, TreeSketch [33] produces a summary of large

XML documents to provide approximate answers to queries.

8 CONCLUSIONS AND FUTUREWORK
Aside from capturing existing optimistic and pessimistic estimators,

we believe the CEG framework can be the foundation to develop

novel summary-based estimators. In addition to the two CEGs we

considered here, CEGO and CEGM , other CEGs using different sta-

tistics can be defined and paired with different techniques to pick

paths. To demonstrate an example, in the longer version of our

paper [7] we describe another CEG we call CEGOCR as a possi-

ble approach to remedy the overestimation problem of optimistic

estimator on CEGO for queries with large cycles. CEGOCR uses

new edge weights that capture the closing of large cycles between

sub-queries. However, many other CEGs can naturally be defined

and studied. For example, one can use variances or entropies of the

distributions of small-size joins as edge weights, possibly along with

degree statistics, and pick the lowest entropy paths. An important

research direction is to systematically study a class of CEG instances

that use different combination of statistics as edge weights, as well

as techniques for picking paths, to design more accurate CEG-based

estimators. In addition, in this work, we focused only on join-only

queries and ignore other non-join predicates. An additional future

work direction is a principled mechanisms to integrate filters on

the queries that can be estimated using CEG.
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