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ABSTRACT
The problems of Data Integration/Exchange (DE) and Ontology
Based Data Access (OBDA) have been extensively studied across
di�erent communities. The underlying problem is common: using a
number of di�erently structured data-sources mapped to a mediat-
ing schema/ontology/knowledge-graph, answer a query posed on
the latter. In DE, forward-chaining algorithms, collectively known
as the chase, transform source data to a new materialised instance
that satis�es the ontology and can be directly queried. In OBDA,
backward-chaining algorithms rewrite the query over the source
schema, taking the ontology into account, in order to execute the
rewriting directly on the sources. These two reasoning approaches
have seen an individual rise in algorithms, practical implementa-
tions, and benchmarks. However, there has not been a principled
methodology to compare solutions across both areas. In this paper
we provide an original methodology and a benchmark infrastruc-
ture — a set of test scenarios, generator and translator tools, and
an experimental infrastructure — to allow the translation and exe-
cution of a DE/OBDA scenario across areas and among di�erent
chase and query-rewriting systems. In the process, we also present
a syntactic restriction of linear Tuple Generating Dependencies that
precisely captures DL-Lite' , a correspondence previously uninvesti-
gated. We perform cross-approach experiments under a wide range
of assumptions, such as the use of di�erent source-to-target map-
ping languages, shedding light to the interplay between forward-
and backward-chaining. Our preliminary results show that, indeed,
chase can compete and might overcome query rewriting even in
the face of large data especially for complex mapping languages.
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1 INTRODUCTION
Data Integration is the problem of providing uni�ed access to mul-
tiple, heterogeneous and distributed sources of data. One of the
most important aspects of this problem, and the focus of this paper,
is e�cient query answering in such settings.
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In a data integration/exchange scenario, we have a number of
distributed data sources, associated schema mappings, target/ontol-
ogy dependencies, and a query to answer. There are two prevalent
approaches to answering the query. Data Exchange (DE) [25] uses
“forward-chaining” algorithms to compute the entailment closure
of the schema mappings and the ontology axioms. A prevalent
formalisation of these algorithms is the chase family of algorithms
which consolidates the data to a centralised warehouse ready for
query answering. Ontology Based Data Access (OBDA) [4, 17], also
known as Ontology Mediated Query Answering, query rewriting,
or “backward-chaining”, processes the ontology axioms and map-
pings “backwards” (from consequent to premise) in order to rewrite
the query such that it can be answered directly over the sources.

Over the last decade there has been considerable interest in im-
proving query-rewriting solutions (e.g., [20, 37, 50, 51, 56, 57, 64]).
The motivation for this has been twofold. On one hand, ontology
materialisation (that is, forward-chaining solutions) does not nec-
essarily terminate for common OBDA languages (such as OWL 2
QL/DL-Lite[4, 17]), and thus query rewriting has been treated as
the only feasible solution. On the other hand, even when materiali-
sation terminates, this can be a very slow process especially over
large datasets; that is, one expects that the chase algorithms will be
extremely slow with large data as they are “query-agnostic”. In fact,
the prevalent assumption is that when a query-driven approach is
possible, this solution is always preferable [11, 25].

However, it is very often that examples and datasets from the
query-rewriting literature are chase-terminating. In addition, mod-
ern query-rewriting systems often make use of substantial query-
agnostic preprocessing in order to build up more heavyweight
‘smart’ indices [19, 55], while the cost of this preprocessing is amor-
tised over multiple runs. This process is reminiscent of the forward-
chaining approach, and so there might be scenarios (and we show,
there are) where this wouldn’t deviate much away from the chase in
terms of performance. Moreover, forward- and backward-chaining
can be used for a multitude of problems in addition to query answer-
ing, where the data is relatively small, e.g., query containment [34],
query equivalence, query minimisation, etc. In these latter cases
the data to reason with consists of formulas rather than triplestores
or databases, and the cost of chasing can be vastly reduced.

We therefore identify the need for a cross-approach benchmark-
ing framework that will enable the comparison, integration and
deeper analysis of these two reasoning techniques for the scenarios
that can be commonly supported by both, under di�erent assump-
tions. We present our framework, ForBackBench, that follows in
the steps of chaseBench [12]; a principled approach to integrate and
benchmark chase algorithms. In fact, we �nd that such a principled
approach has been missing from the OBDA space alone - although
there have been implementations and comparisons of algorithms
that produce rewritings, or complete end-to-end systems that an-
swer queries via rewritings, there has not been a framework that
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integrates the query-rewriting implementations into end-to-end
query-answering solutions to support comparisons of all OBDA.
ForBackBench allows the plug-and-play benchmarking of di�erent
implementations of isolated parts of the query answering stages.

In addition, a major part of data integration solutions is the
support of schema mapping languages. Schema mappings in data
integration commonly come in the form of Global-as-view (GAV),
Local-as-view (LAV), and Global-and-local-as-view (GLAV) map-
pings [26, 41, 62]. For chase algorithms all mappings can be rea-
soned over in the same manner. However, in the context of OBDA
mostly GAV mappings have been explicitly considered [54, 58, 61].
Reasoning with GAV is relatively easy (relies on unfolding) [46, 62],
while LAVmappings require amore sophisticated algorithm [35, 53].
In order to support the latter in ODBA, a two-phase approach would
be needed; �rst, produce the OBDA rewritings of the query, and
second, use a LAV rewriting algorithm to reformulate the OBDA
rewtitings into source queries using the mappings. Yet again, For-
BackBench allows the independent reuse of di�erent algorithms
for these phases and enables the comparison of end-to-end LAV
scenarios in OBDA against forward-chaining approaches.

Our contributions are the following:
• We de�ne a new restriction of linear Tuple Generating Dependen-
cies, called PJ-acyclic TGDs, that precisely captures the essential
part of DL-Lite' (in e�ect, excluding negative axioms which are
usually treated di�erently).

• We present a novel benchmarking framework, ForBackBench,
that includes a variety of benchmarking scenarios, data genera-
tors, as well as the tools necessary to convert between forward-
and backward-chaining approaches, and the experimental infras-
tructure to run, and automatically plot comparison evaluations.
It supports a number of di�erent languages including TGDs and
queries in chaseBench or Rulewerk formats, OWL, RDF, OBDA-
mappings, SPARQL, and SQL and is built to be fully extensible.

• We use ForBackBench to benchmark several commonly used
query-answering systems against a number of common scenarios
from literature and build an understanding of the behavior of
both approaches in query answering problems, informing the
design of new and more e�cient methods.

• Our experiments show surprising results among which are that
the chase does in fact terminate in almost all of commonly used
benchmark examples and scenarios across the OBDA literature
and in many cases running the chase is faster than index build-
ing on OBDA systems, or even end-to-end query answering in
OBDA, with the additional advantage that no further rewriting is
required once the chase terminates. Thus, contrary to a common
misconception, the chase should not be dismissed out-of-hand; it
is still viable and has the most e�cient results in many cases.

2 DATA EXCHANGE AND OBDA
In this section, we introduce the problems of conjunctive query an-
swering in data integration/exchange, and the twomain approaches
to address it: forward- and backward-chaining.

2.1 Certain Conjunctive Query Answering
A database schema is de�ned as a set of relation schemas ' =
{'1,'2, . . . ,': }, where each relation schema has a relation name

'8 and is associated with an arity = > 0, denoting the number of the
relation’s attributes. An expression '8 (ÆG), where '8 is a predicate or
relation name of some arity = and ÆG a tuple of variables or constants,
is called an atom of arity =. A ground atom or a fact is an atom
that only contains constants. A relation instance, or relation, over a
relation schema '8 is set of facts with the same arity. A database (or
triplestore) instance is a set of facts over a database schema '; that
is, the union of relation instances over the relation schemas in '.

We use rule notation for safe Conjunctive Queries (CQs) [1], e.g.:
@(G)  '1 (G,~,“8”),'2 (G, I). The body of the query, 1>3~ (@), is
the set of atoms in the antecedent while the head is the atom in
the consequent. Commas between atoms in the body stand for
conjunctions. The variables in the head are free or distinguished
(e.g., G) and the rest are existential variables (e.g., ~, I). A union of
conjunctive queries (UCQs) is a set of Conjunctive Queries whose
head atoms are of the same predicate and the same arity. CQs
correspond to SELECT-PROJECT-JOIN queries of SQL and to the
Basic Graph Patterns (BGP) of SPARQL. Given a database instance
� and a CQ @, by @(� ) we denote the set of answer tuples of @ on �
evaluated in the usual way [1].

In our data integration setting, we examine two families of
schemas: a source schema under which data is structured and a
target/mediating schema, initially with an empty instance, which is
intended as a virtual layer for querying. Mappings between the two
kinds of schemas as well as ontology axioms/constraints on top
of the target schema can be expressed as database dependencies.
There are two prevalent types of dependencies: tuple-generating de-
pendencies (TGDs) and equality-generating-dependencies (EGDs),
which are of the form (1) and (2) respectively [25].

8ÆG, Æ~ (i (ÆG, Æ~) ! 9ÆIk (ÆG, ÆI)) (1)

8ÆG (i (ÆG) ! (G1 = G2)) (2)

We sometimes omit quanti�ers for brevity and readability. For-
mulas q , andk are conjunctions of atoms, i.e., conjunctive queries.
When expressing source-to-target schema mappings we use TGDs
where q is over the source schema andk over the target schema.
When denoting ontology axioms or target constraints we have q
andk both on the target schema only.

In the rest of the paper we focus only on TGDs; these capture
the major parts of both mapping and ontology languages. Linear
source-to-target TGDs (st-LTGDs) correspond to LAV mappings in
data integration, while full source-to-target TGDs (that is, st-TGDs
with no existential variables) capture GAV. General s-t TGDs are
known as GLAV. Target TGDs (t-TGDs) that are linear (LTGDs),
i.e., where the antecedent is a single atom, already capture the
essential part of the DL-Lite family of Description Logics [4, 17],
and more speci�cally DL-Lite' which underpins the QL pro�le of
OWL 2 [15, 45] and is preferred for querying large datasets.

A DL-Lite' knowledge base [4, 17] (KB) is a pair O = (T ,A),
composed of: (1) the ) -Box, T , which is a set of class inclusion
axioms of the form (i) and role inclusions of the form (ii) below,
and (2) the �-Box, A, which describes data in the form (iii) of class
and property membership assertions.

⇠! v ⇠' (i) '0 v '1 u...u '= (ii)
⇠ (0) % (0,1) (iii)
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⇠!, ⇠' and each '8 are de�ned as below, where ⇠ denotes a class
name, % a property name, %� inverse of a property, 9'.> an un-
quali�ed existential restriction and 9'.⇠' a quali�ed existential
restriction (see [7]):

⇠! ::= ⇠ | 9'.> '8 ::= % | %�

⇠' ::= ⇠ | 9'.⇠' | ⇠' u⇠'
The semantics of a KB is the usual interpretation-based semantics

in description logics [7]. Note that here we focus on the essential
parts of DL-Lite' ; those axioms that actually participate in the
query rewriting algorithms and are captured by TGDs. In particular,
we do not consider negative inclusions; these are commonly treated
using a pre-processing phase [17] where an algorithm checks that
they are satis�able and they are subsequently ignored for further
processing. As well, note that sometimes DL-Lite' is presented
without intersection or quali�ed existential restriction in the right-
hand side but these can be freely added [16].

Query answering in data integration and exchange is de�ned
using the notion of certain answers [25]. Given a source instance � , a
set of source-to-target dependencies (or mappings) ⌃BC , and a set of
target dependencies (or axioms) ⌃C , a solution for <� , ⌃BC , ⌃C> is an
instance � such that <� , �> |= ⌃BC and � |= ⌃C . Given <� , ⌃BC , ⌃C>
as above, a tuple of constants Æ2 and a CQ @, Æ2 is a certain answer of @
if (i) Æ2 2 @(� ) for all solutions � for <� , ⌃BC , ⌃C>, and (ii) Æ2 contains
only constants that appear in � , ⌃BC , and ⌃C (that is, no labelled nulls
as we will see below). Forward and backward-chaining are the two
prevalent approaches to obtain certain answers.

2.2 Forward-chaining
Forward-chaining algorithms compute the closure of a given data-
base or triplestore by an exhaustive, bottom-up (i.e., starting from
data), application of the rules in a forward manner (i.e., matching
the premise and inferring the consequent for every rule). The chase
family of algorithms [1, 12] is employed to “transfer” data from the
sources to a target centralised warehouse and at the same materi-
alise in this warehouse all entailed inferences from the target depen-
dencies/ontology. Certain answers can be computed by running the
query only on this centralized data warehouse, de�ned as the univer-
sal solution [25]. Several dedicated systems have been developed for
forward chaining during the last few years [3, 14, 18, 28, 36, 47, 63].

In this paper, we focus on the standard chase algorithm, referred
to simply as the chase. The choice of the particular chase �avour is
orthogonal to our benchmark, scenarios, systems and experiments
and not a restriction of any kind. In other words, to run another
chase system (e.g, implementing the skolem chase variant) we just
plug it into the benchmark by a call to the relevant system; datasets
and tools (e.g., parsers, translators) or the experimental work�ow
are una�ected. The chase algorithm is a sequence of repeated chase
steps. Every step starts from an st-TGD, detects a homomorphism
from the body of the st-TGD to the source instance and creates
tuples according to the head of the st-TGD to be inserted in the
target instance. The target instance is further chased under the
target dependencies and the whole process of running chase steps
is repeated exhaustively to create the universal solution [12].

Without considering the full details of the chase algorithm, we
will illustrate it with an example, modi�ed from [25] and shown in
Table 1. The table shows a data exchange setting with one source

relation ⇡4?C⇢<? that stores department ids, employee names
and ids, and three target relations: ⇡4?C with the id of each de-
partment and its manager, ⇢<? with ids of employees and the
departments they work in, and ⇢<?8�=5 > with employee ids and
names. In Table 1, one can also see the DL-Lite counterpart of
this setting which we discuss later. The chase starts by applying
the source-to-target dependencies ⌃BC to the source instance � ,
which produces an instance � = � [ {⇡4?C (�) ,<1), ⇢<? (⇢003, �) ),
⇢<?�=5 > (⇢003,"0A~)} where<1 is a “witness value” or labelled
null, i.e., a value inserted in the place of an existential variable [25].
Note that the two GAV dependencies in ⌃BC are subsumed by the
single LAV one and they don’t produce additional facts. This in-
stance does not satisfy the target constraints and more steps of the
chase with ⌃C are needed, which produce an updated instance �2 =
� [ {⇢<? (<1, �) ), ⇢<?�=5 > (<1, =1)}, where =1 is another labelled
null. Since �2 satis�es all constrains ⌃BC and ⌃C , it is a universal solu-
tion and can be used to obtain certain query answers; for the query
shown in the table the only certain answer tuple is (�) ,"0A~).

2.3 Backward-chaining
In contrast to computing an inference closure, backward-chaining
approach is a top-down approach which starts from the query and
processes the ontology axioms or rules in a ‘backward’ fashion.
By processing from consequent to premise, backward-chaining
generates a query-rewriting that incorporates ontology entailments.
In recent years, a number of relevant algorithms/systems have been
developed [8, 20, 31, 50, 56, 64], and much e�ort has been given
into producing small rewritings that can be e�ciently executed.

Most query rewriting algorithms have been designed to con-
sider ontologies in DL-Lite' . Conjunctive query answering over
DL-Lite' KBs is also using the certain answer semantics; however,
this is commonly achieved by query rewriting [17]. Note that, while
chase systems can support arbitrary complex queries (simply run
an SQL query on top of a universal solution) query rewriting using
more expressive queries than CQs is a domain of active research and
not supported by most OBDA systems. OBDA algorithms rewrite
the query & to a rewriting & 0, usually a union of CQs (UCQ) or
a datalog query, to be executed over A. In some cases, A can be
queried directly to obtain certain answers. However, often there
is no explicit �-Box, as in our example in Table 1 but instead sys-
tems might use a mapping language like R2RML [22] or OBDA
Mappings [9, 48], which maps the concepts and properties of T
to data in an RDBMS or a triplestore. In these cases, there is a sec-
ond “rewriting” phase that translates & 0 into an SQL or SPARQL
query using the mappings. Table 1 shows the OBDA mappings cor-
responding to the GAV st-TGDs of the example. Note that mapping
languages in OBDA only capture GAV dependencies and so the
LAV rule is not used in this example. In fact, LAV in OBDA has not
been speci�cally addressed [54, 58, 61].

The most representative query rewriting algorithm is Perfect
Reformulation [17] and without giving the full details we are in-
tuitively explaining it here using our example of Table 1. The
algorithm starts from the query atoms of & . It uni�es a query atom
in each step with an atom on the right-hand side of an axiom of
T (or the head of the corresponding TGD in the data exchange
version), and replaces this appropriately with the atom on left of the
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Table 1: DL-Lite/TGD mapping example

DL-Lite/OBDA-mapping TGDs
Target Schema () ) ⇡4?C (3�⇡,<�⇡), ⇢<? (4�⇡,3�⇡), ⇢<?�=5 > (4�⇡, 4#0<4)
Source Schema (() ⇡4?C⇢<? (3�⇡, 4#0<4, 4�⇡)

) -Box (T)
⌃C

⇡4?C v ⇢<?�

⇢<? v 9⇢<?�=5 > .>
⇡4?C (3,<) ! ⇢<? (<,3)
⇢<? (4,3) ! 9 =⇢<?�=5 > (4,=)

Mappings
⌃BC

LAV N/A ⇡4?C⇢<? (3,=, 4) ! 9< ⇡4?C (3,<) ^ ⇢<? (4,3) ^ ⇢<?�=5 > (4,=)

GAV

target ns:ns/{4�⇡ } ns:Emp ns:ns/{3�⇡ }

source SELECT 4�⇡ , 3�⇡ FROM ⇡4?C⇢<?

target ns:ns/{4�⇡ } ns:EmpInfo ns:ns/{4#0<4 }
source SELECT 4�⇡ , 4#0<4 FROM ⇡4?C⇢<?

⇡4?C⇢<? (3,=, 4) ! ⇢<? (4,3)

⇡4?C⇢<? (3,=, 4) ! ⇢<?�=5 > (4,=)

Query & (3,=)  ⇢<? (4,3),⇢<?�=5 > (4,=)
Source Instance � = {⇡4?C⇢<? (�) ,"0A~,⇢003) }

�-Box (A) ;

axiom (the body atom). This creates a new query with the replaced
atom. It then continues exhaustively by choosing the original query
or one of its rewritings and replacing a subsequent atom. We will
refer to the (usually UCQ) output of the algorithm as the rewriting
and to the individual conjunctive queries that are its elements as
the conjunctive rewritings. In Table 1, the �rst conjunctive rewriting
&1 will be the query itself. Next, the algorithm matches ⇢<? in the
query with the �rst axiom in T , appropriately substituting ⇢<?
with the body of this rule which is ⇡4?C , resulting in &2.

&1 (- ,. )  ⇢<? (/ ,- ), ⇢<?�=5 > (/ ,. )
&2 (- ,. )  ⇡4?C (- ,/ ), ⇢<?�=5 > (/ ,. )

There is no other conjunctive rewriting that the algorithm can pro-
duce. Intuitively, if we try to rewrite ⇢<?�=5 > (/ ,. ) in any query
with the second axiom from T , it will end-up in a query that does
not contain . , which is a free variable needed by the query (more
details in [17]). The �nal rewriting containing union of &1 and &2
could be executed over the A-Box or if the latter is virtual, as in
our example, use OBDA-mappings to answer it. In Table 1, ⇡4?C
and ⇢<?�=5 > are mapped to the database table ⇡4?C⇢<? ; in a last
step we unfold the conjunctive rewritings, creating SQL queries.
E.g., for &2 we get: (⇢!⇢⇠) �.3�⇡ , ⌫.4#0<4 �'$" ⇡4?C⇢<? �(
� ,⇡4?C⇢<? �( ⌫,�⇢'⇢ �.4�⇡ = ⌫.4�⇡ . The SQL for &1 is sim-
ilar and the algorithm executes their SQL UNION on the database
(represented by � ) to obtain the same answer as in Section 2.2.

3 FROM DL-LITE' TO LTGDS
In this section we describe an exact, previously unknown, corre-
spondence between a restriction of LTGDs and DL-Lite' , as de-
�ned in Section 2. The usual translation between these languages
is “loose”; it is known that LTGDs capture most of DL-Lite' . How-
ever not all LTGDs are translatable to DL-Lite' ; next, we precisely
characterise the part of LTGDs that is. Note that, our criterion cap-
tures DL-Lite' without caring for the particular syntactic variation
- although our tool that translates a set of TGDs to DL-Lite' uses
the (OWL version of the) variant de�ned in Section 2.

We will make use of the notion of Predicate-Join patterns (PJs),
which are graph representations of TGDs de�ned in [36] as follows.
Let f be a single TGD over schema ', where every relation schema
has arity of at most two. The PJs-graph for f is a graph that consists
of a set of predicate nodes, variable nodes, and edges. For every atom
in f there is a predicate node labeled with the particular predicate
name. Edges connect predicate nodes to variables nodes; the latter

represent the variables of an atom with this predicate name. Edges
are labeled with the argument position that the corresponding
variable has inside the atom. Variable nodes are constructed as
follows: (1) every variable that appears in the body of f corresponds
to a universal variable node, represented by the symbol #; and
(2) every variable that appears only in the head corresponds to
an existential variable node, represented by ⌦. Figure 1 shows
PJs-graphs for two example LTGDs. A universal variable that is
common to the body and the head of f is called a frontier variable.

We are now ready to de�ne the language of linear constraints
that are translatable to DL-Lite' , called PJ-acyclic TGDs. We remind
the reader that a graph is connected when there is a path from every
node in the graph to every other node.

D��������� 1. For all LTGDs f , that use relations of at most arity
two, f is a PJ-acyclic TGD if the PJs-graph for f (1) is connected, (2)
does not contain cycles between exactly two nodes, and (3) does not
contain cycles that include existential variable nodes.

Figure 1(a) shows a non PJ-acyclic TGD, where there is a join
between atoms '2 and '3 on the existential variable, , creating
a cycle that contains, . If, was a universal variable then this
TGD would be a PJ-acyclic TGD. For example, Figure 1(b), although
containing cycles, is still PJ-acyclic and translatable to DL-Lite' .

Intuitively, the �rst condition forbids arbitrary (existential) cross
products in the head of the TGD or the case when the head and the
body are disconnected. The second condition forbids joins within
the same atom such as % (- ,- ), not modeled by DL-Lite. Condition
(3) of Def. 1 ensures that a TGD is translatable to an inclusion axiom.

When there is a unary atom in the body of a TGD this translates
to a subclass axiom. When the body atom is binary this might
translate to a domain or range axiom, or both (if both universal
variables are frontiers), or a subproperty axiom if both universal
variables are frontiers and are “passed” to the same head atom.
In fact, these are the only cases where we can have two frontier
variables. In particular, a TGD cannot contain two frontier variables
and the two “connected components” in the head that contain these
variables to be joined existentially; it is in this sense that the graph
of a translatable TGD should be acyclic.

Note that, one could use a de�nition based on hypergraphs [30]
or some variation [39] to de�ne our PJ-acyclic notion. However, this
also would not be immediate; the hypergraphs for �(- ) ! ⇠ (. )
or % (- ,- ) would be acyclic but not translatable to DL-Lite' . We

1522



Figure 1: PJs-graphs; (a) non PJ-acyclic TGDs: cycle on exis-
tential variable and (b) PJ-acyclic TGDs: no cycle on existen-
tial variable

elected to workwith the PJ notation that treats multiple occurrences
of the same variable separately (e.g., in % (- ,- )) .

To give our formal correspondence between DL-Lite and TGDs,
we need to de�ne the notion of semantic equivalence. For conve-
nience, we consider an �-box database: that is, an �-box $ that is
backed up by a relational database containing exactly one atomic
relation for every concept of$ , populated with a tuple for every in-
stance of the concept, and one binary relation for every role, which
again, is populated with tuples for every property assertion in $ .

D��������� 2. Given an �-box database $ , a TGD f , and a DL-
Lite axiom `, f is semantically equivalent to `, i� f is satis�ed on $
whenever ` is satis�ed on $ .

T������ 1. For every PJ-acyclic TGD there is a semantically
equivalent DL-Lite' axiom and vice versa.

Next, we outline the translation between PJ-acyclic TGDs and
back; through this translation the correctness of the theorem be-
comes apparent. One direction, from DL-Lite' to TGDs, is straight-
forward and corresponds to the logic-based semantics of DL-Lite' .
This correspondence can be seen for some example axioms in Table
2, and is also described (as part of another algorithm) in Algorithm 1.
A part of the other direction, in particular, to translate the body atom
of a TGD to the left-hand side of an inclusion axiom, is relatively
straightforward as well. In fact, Table 2 shows all di�erent cases
of how body atoms are translated to left-hand sides of inclusion
axioms depending on which variables of the body are frontier.

For translating the head of the TGD our algorithm considers,
and translates in isolation, di�erent components of the head that
are maximal w.r.t. set inclusion and existentially connected: either
the component is an atom with only frontier variables, or all atoms
in the component share an existential variable with some other
atom in the component. This is without loss of generality as we can
always decompose a TGD by “breaking” the head on components
that share only universal variables resulting to an equivalent set
of TGDs that have the desired property. Thus, for every PJ-acyclic
TGD we conceptualise a TGD with the same body and a di�erent
existentially connected head component. We then translate the
body atoms as mentioned. To translate head atoms which have
only frontier variables we can refer to Table 2. To translate head
components which contain existential variables, we start from the
binary atom that contains the frontier variable D (there has to be
one due to PJ-acyclicity); let % be this atom and I its existential

Table 2: Conversions between Description Logic and TGDs

Description Logic TGD Rule
� v ⌫ �(G) ! ⌫ (G)
' v % ' (G, ~) ! % (G, ~)
' v %� ' (G, ~) ! % (~,G)

� v 9% .> �(G) ! % (G, ~)
� v 9%� .> �(G) ! % (~,G)
9'.> v ⌫ ' (G, ~) ! ⌫ (G)

9'.> v 9% .> ' (G, ~) ! % (G, I)
9'.> v 9%� .> ' (G, ~) ! % (I,G)
9'� .> v 9% .> ' (G, ~) ! % (~, I)
9'� .> v 9%� .> ' (G, ~) ! % (I, ~)

� v 9% .%1 �(G) ! % (G, ~), %1 (~)

9'.> v 9% .(9%2.(9%3.⇡ u⇠))
' (G, ~) ! % (G, I),%2 (I,F),
%3 (F,6),⇠ (F),⇡ (6)

variable. If D is in % 0B �rst position, this will form the beginning
of an existential restriction expression of the form “9% .�” using
a role name % . If D is in the second position, this will translate
into using an inverse role expression, e.g., “9%� .�”. In both cases,
sub-expression � will be recursively unfolded based on the rest of
the joins in the TGD. When, for example, another binary atom %2
contains I this will also be translated, within �, to “9%2 .” or “9%�2 .”
depending on where I lies in it.

input :A PJ-acyclic TGD f with an existential
component in the right-hand side

output :String U : the DL-Lite translation of f
function : translateExResTGD(f)

1 Initialize String U := “”
2 if body atom � of f is unary then
3 U := ”�”
4 else if body atom ' of f is binary then
5 if the frontier variable of f is in the �rst position of '

then
6 U := ”9'.>”
7 else if the frontier variable of f is in the second position

of ' then
8 U := ”9'� .>”
9 U += ” v ”

10 ⌘403*�C>< := the head atom of f that contains the
universal variable, D

11 return U + translateRightSide(⌘403*�C><,D, f)
Algorithm 1: TGD with existential component to DL-Lite

Algorithm 1 translates a TGDwith a single existential component
in the head by translating the left hand-side (i.e., body) of the TGD
and then calling the recursive function of Algorithm 2 to translate
all joined atoms in the right hand-side. ForBackBench implements
these algorithms and o�ers tools for PJ-acyclic TGD recognition
and conversion back and forth to DL-Lite' .

4 EXISTING BENCHMARKING APPROACHES
In this paper, we present the �rst benchmarking framework for
cross-approach comparisons between forward- and backward chain-
ing implementations. Nevertheless, just in the OBDA space alone,
while there are many comparisons of rewriting systems, there is
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input :An atom, g , to be translated together with its
existentially connected component in f , to an
existential restriction; a variable D the position of
which in g determines the role/inverse role use;
the entire TGD f

output :String U : the DL-Lite translation of g and its
existentially connected component in f

function : translateRightSide(g , D, f)

1 Initialize String U := “”
2 if g is a unary atom �(G) then
3 U = “�”
4 else if g is a binary atom % (G,~) then
5 if D is in the �rst position of g then
6 U += ”9% .”
7 else if D is in the second position of g then
8 U += ”9%� .”
9 U += ”(”

10 Initialize I := the other variable of g
11 foreach atom d , other than g , in f that contains I do
12 U += TranslateRightSide(d , I, f)
13 remove last occurrence of ”.” and ”(” from U
14 U += ” u ”
15 remove last occurrence of ” u ” form U
16 U += ”)”
17 return U

Algorithm 2: TGD head to an existential restriction

only a handful of benchmarking e�orts; to the best of our knowl-
edge, ours can be seen as a holistic and comprehensive OBDA
benchmark that aggregates all pre-existing scenarios over systems
and implementations of di�erent granularities, supports di�erent
kinds of mappings by pairing rewriting algorithms with view-based
systems and/or a database back-ends, and streamlines the process
for future experiments and unforeseen systems, providing an au-
tomated testing environment that is easily reusable or extensible.

Indeed, for comparing query-rewriting systems, the Norwegian
Petroleum Directorate (NPD) Benchmark [38] provides the most
recent benchmark platform, which supports automated testing
and data generating. The NPD Benchmark tested only two query-
rewriting systems, Ontop [56] and Stardog [21]. Additionally, NPD
has to be used with complete end-to-end OBDA systems that have a
supported data back-end, use R2RML or OBDA-mappings and have
implemented a compatible API to NPD. This is in contrast to our
framework in which one can simply plug in an algorithm implemen-
tation solving a part of query answering (e.g., just the rewriting).
Another comprehensive OBDA benchmark, which unfortunately is
not publicly available, is provided by Mora and Corcho [43] which
tests popular and well-researched backward-chaining systems such
as Requiem [50], Rapid [20], and Nyaya [31]. Mora and Corcho also
identify the main example scenarios used in previous evaluations:
the Adolena, StockExchange, University, and Vicodi benchmark
scenarios. These scenarios were all �rst introduced by Perez-Urbina
et al. [49] and have since been used extensively in subsequent work

on comparing backward-chaining algorithms [20, 33, 57]. E�orts
that focus simply on providing datasets and not entire experimen-
tal frameworks, include the Texas Benchmark [59] with a range
of scenarios, or approaches to extend existing scenarios such as
Extended-LUBM [42], which modi�ed the LUBM scenario [32] to
support OBDAmappings. In the broader Semantic Web area, bench-
marking has focused on comparing RDF triplestores for query per-
formance, such as in FishMark [10], BSBM [13], and DBpedia [44].

In the space of forward-chaining approaches, STBenchmark [5]
demonstrates an early approach towards the benchmarking of map-
ping systems. Although the tools are no longer available, one of the
future challenges that [5] mentions is the need for a uniform testbed
for data exchange tasks. The chaseBench suite [12] provides a com-
prehensive evaluation of seven chase-based systems over a wide
range of scenarios. Likewise, it also raises the future challenge of
accounting for and benchmarking alternative approaches to query
answering. ForBackBench builds upon the existing chaseBench
framework [12], extending it to incorporate backward- as well as
forward-chaining. iBench [6], while not a benchmark system itself,
is a metadata generator that can be used in order to supplement
other approaches through the generation of common integration
tasks and scenarios (such as mapping creation or schema evolution)
at con�gurable sizes and using controllable constraints.

5 FORBACKBENCH
ForBackBench consolidates seven data integration/exchange sce-
narios with eight query answering systems to provide a stream-
lined automated means for cross-method benchmarking, which
also allows for easy future extension. The ForBackBench frame-
work is made available as an open-source project on GitHub (https:
//github.com/georgeKon/ForBackBench). Our converters and tools
are available to be used also as standalone programs.

5.1 Scenarios and Data
We incorporate a number of existing high-quality benchmarking
scenarios (see Table 3), including the four scenarios of Pérez-Urbina
et al. discussed earlier [49]. Surprisingly, although most of these
scenarios were developed to benchmark query rewriting, they are
all chase-terminating with the exception of Adolena; to use this we
remove one axiom from Adolena’s dependencies that is causing an
in�nite chase. In addition, we include OWL2Bench [60]; this bench-
mark is designed to provide wide coverage of the OWL 2 language,
and has the ability to test scalability by providing arbitrarily large
ontologies. We also use the Deep scenario [12] from the chaseBench
framework originally developed in [36]. To transform arbitrary DE
scenarios to DL-Lite' we have implemented a tool that prunes the
arities of target schemas down to binary and does this as well for
the target dependencies and the heads of the source-to-target map-
pings. Most scenarios include at least �ve queries, and for those
that don’t, we have manually created queries in order to have �ve
for each scenario. Moreover, most of these scenarios come with no
data; as such, we have developed a data generator to serve each
scenario. We generate data with four di�erent data sizes, that we
call: small, with up to 1000 facts for each table; medium, with up to
10000 tuples; large, with up to 100, 000 tuples; and very large, with
up to 1, 000, 000 tuples. Furthermore, we also integrate scenarios
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Table 3: List of included data scenarios

Scenario Source Original Format Data

Adolena [49] DL-Lite Generated
Deep [12] chaseBench Generated
NPD [38] DL-Lite Included
OWL2Bench [60] DL-Lite Generated
StockExchange [49] DL-Lite Generated
University [49] chaseBench Generated
Vicodi [49] DL-Lite Generated

that include real-world data, such as the NPD [38]. This scenario
is composed of a database schema and a data generator. We use
NPD’s data generator to generate tuples in tables which range be-
tween three to eighty columns. Some of these tables are small (i.e
containing only 3 tuples) and other tables are large (i.e containing
over 27, 000 tuples). Our data generation creates databases from a
few hundred kilobytes for our small scenarios, designed to mimic
running the systems on small structures like formulas or queries,
to a few gigabytes for our “very large” scenarios where we might
wait for tens of minutes for some systems to run on commodity
hardware. This scale seems to be enough to show the tendencies
and di�erences of the system’s performance as the data grows.
For larger experiments one should be able to run our benchmark
out of the box on a larger server. As well, ForBackBench is easily
extensible; it is simple to include additional scenarios, either in
OWL/DL-Lite or in TGDs, as necessary with minor modi�cations.

5.2 Query-Answering Systems
As pointed out in Section 4 ForBackBench can serve as a compre-
hensive benchmark for OBDA alone (the same way chaseBench
is the reference benchmark for chase implementations). Thus we
have included all query rewriting systems freely obtainable online.
These, (by nature) are memory-based. For chase-based systems we
include a memory-based and a disk-based system from ChaseBench
(RDFox [12] and Llunatic [28] respectively) as well as a newer
memory-based system (Rulewerk [63]).

Three of the backward-chaining systems, Rapid [20], Iqaros [64],
and Ontop [56], were chosen as established systems in the �eld
that have performed very well in recent literature [33, 43, 64].
We also use OntopR, which is the internal ) -Box query rewrit-
ing system of Ontop and have also included Graal [8] which is a
research prototype. Alongside these tools, the framework also inte-
grates the ChaseGQR system [36], which combines features from
both forward- and backward-chaining approaches. In particular
ChaseGQR runs forward-chaining-like preprocessing on the source
mappings and then relies on GQR[35] to run a “query answering
using views” algorithm in order to produce a source rewriting.

5.3 Supporting Data Integration
One of our objectives is to validate query answering tools and
scenarios in a data integration/exchange setting, and in particular
in the face of source-to-target mappings. Note that, we use the term
Data Integration in the sense �rst used in database research [23, 24,
29, 40] related to the problem of answering queries over di�erent
schemas using schema mappings or views. Broader notions of data
integration include problems such as transforming data between

Table 4: Benchmarked systems & Query Answering process

DI System One-to-One GAV LAV

Rapid Native Unfolding GQR
Iqaros Native Unfolding GQR
Graal Native Unfolding GQR
Ontop Native Native
OntopR Native Unfolding GQR
RDFox Native Native Native
Rulewerk Native & RST Native Native & RST
ChaseGQR Native Native
GQR RST RST
Llunatic Native Native Native

di�erent formats such as CSV, XML, and JSON and there have been
established benchmarks in this space [52].

Most DL-Lite scenarios do not use source-to-target mappings
except for NPD, which uses OBDA-mappings. We implemented
translators between OBDA-mappings and TGDs, and mapping gen-
erators that extend the original scenarios to include generated LAV
and GAV mappings. We also generate simple one-to-one mappings
that associate each ontology concept or role to a unary or binary
database relation. These 1-to-1 mappings of ) -box predicates to
database relations can be seen as an �-box implementation; i.e., as
a “native” support of a database connection for DL-Lite systems,
which most of them do not have. Ontop is an exception which is a
complete end-to-end system with OBDA-mappings (that are GAV).

One-to-one and GAV mappings are in principle simple to use;
we can “unfold” [46] a query or a query rewriting using the map-
ping de�nitions. Indeed, we implemented an unfolding algorithm
for OBDA systems. This is trivial for 1-to-1 mappings and hence
we refer this support as “native” for all OBDA systems, while we
reserve the term “unfolding” for the additional GAV support. For
LAV scenarios for OBDA systems, rewriting the ) -box rewritings
over the mappings to obtain the �nal source queries is not trivial;
in e�ect there are dedicated algorithms for this problem, known as
query answering using views and we use the GQR algorithm [35]
which is the state-of-the-art.

Lastly, we also consider an approach from [2], where the authors
study a reduction of a DE setting <⌃BC , ⌃C , � , &>, with linear t-
TGDs, to a setting <⌃0BC , � ,&>, with no t-TGDs. This reduction
is performed by running the chase on the st-TGDs using the t-
TGDs and producing longer st-TGDs (which however are always
(G)LAV). The authors prove that the new DE setting produces the
same certain answers as the original setting. We implemented this
algorithm and named it “RST”; we used Rulewerk [18] to chase
the st-TGD mappings since it tends to perform the fastest on small
databases. The reduced setting < ⌃0BC , � ,& > can be treated with
any chase algorithm (we tested with a second use of Rulewerk) or
with GQR [35] to obtain the certain answers. We run the RST on
both LAV and the one-to-one mappings of our scenarios, creating
in both cases longer LAV mappings. We did not run RST directly on
GAV mappings as this would create GLAV mappings, which would
then need to be broken down to LAV and GAV [27].

Table 4 shows a summary of the benchmarked systems and the
support we have implemented for di�erent mappings. For 1-to-1,
most systems are “native”, i.e., they run almost directly to answer
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Figure 2: StockExchange scenario with Medium data size and one-to-one mappings

the query. However, in GAV and LAV, additional functionality (“un-
folding” and “GQR”, respectively) is used after running the systems
to fully answer the query. As mentioned, in the 1-to-1 and LAV
scenarios Rulewerk has two running settings: “native“ and “RST”.

Note that, while our one-to-one mappings simulate an A-Box in
the database (and hence are also on a binary schema), our GAV and
LAV mappings, mapping generators, and underlying databases are
not constrained to binary source schemas. The SQL rewritings pro-
duced in these settings use uniformly distributed arities of between
2-5 attributes, for synthetically generated scenarios, while NPD
contains some extremely wide relations with up to 78 attributes.

6 EVALUATION
Our experimentswere run on anUbuntu serverwith Intel(R) Xeon(R),
2.30GHz, 8-core processor, 32GB of memory, and a total of 512GB
of disk space. Our GitHub includes an online appendix with exten-
sive experiments and results; due to space limitations here we only
present a few �gures but base our discussion on all results.

6.1 Methodology
Each one of our benchmarking work�ows was executed as a series
of discrete stages: data generation (which was not timed), data
loading into a database or main memory (which might be a di�erent

process for a di�erent system) reported in our experiment graphs in
blue, chasing (either data or mappings via RST) reported in green,
rewriting queries using the ) -box or target constraints reported
in red, converting the rewritings to executable queries either via
simple 1-1 conversion, unfolding for GAV or running GQR for LAV,
all reported in brown, and �nally execution of queries and/or query
rewritings over the data, reported in pink.

Each work�ow was run over the 7 scenarios discussed in Sec-
tion 5.1, using one-to-one, LAV, or GAV mappings, with small,
medium, large, and very large data stores; this was done for all
systems depending on their setting using our discussed converters.

For each scenario, �ve queries of di�erent sizes were executed.
The size of queries (also summarised in Table 8 in our online appen-
dix) varies from one to seven atoms. Each system and query were
run fresh from end-to-end six times, with the �rst time discarded as
a ‘cold-run’. Each stage of the work�ow had a maximum permitted
runtime of 30 minutes; any run exceeding this or stopping with
an error was deemed a failure and results (including any previous
successful stages, e.g. data loading) were not reported.

6.2 Results
6.2.1 One-to-One Mappings. Our �rst �nding is that throughout
the small datasets in experiments and independent of the mapping
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Figure 3: Vicodi scenario with Small data size and LAV mappings

language used, chase systems Rulewerk and RDFox indeed perform
well, and alongside ChaseGQR are the fastest, when measuring
the end-to-end time. Disk-based chase systems, in particular Llu-
natic, seems to be an overkill for small data. For 1-to-1 mappings,
and medium and larger-sized datasets such as the StockExchange
scenario shown in Figure 2, chase performance becomes compara-
tively slower, and is outclassed by query-rewritng systems such as
Rapid. This �gure also shows that Ontop, while requiring substan-
tial time to complete its preprocessing step to build o�ine indices,
has an execution time considerably faster than the majority of other
approaches — something also apparent in the other scenarios. In
addition, ChaseGQR’s performance on datasets of this size is highly
dependant on the number of the joins in the query as ChaseGQR
uses GQR as an internal view-based query rewriting algorithm
which has has been shown to have variable performance depending
on the query size, and seems an overkill for 1-to-1 mappings [35].

For very large datasets, the execution time dominated the other
stages. At this size, relative system performance appeared to be
highly variable and dependant on each query. For example, Rapid
performed amongst both fastest and slowest systems in the same
scenario, depending on the query executed, as did Rulewerk (cf
Figure 20 and Figure 21 in our git repo). Moreover, at this size, chase
systems might exceed the time limit, e.g., for Vicodi and Deep.

Overall, comparing chase systems we can see Rulewerk is faster
than RDFox on small and very large datasets while RDFox performs
faster than Rulewerk on medium and large datasets (note that we
have used the 2017 version of RDFox found in chaseBench). Llunatic
is still considerably slower than memory-based systems. For query-
rewriting systems, when measuring end-to-end time, Rapid is the
fastest on small/medium datasets and Iqaros performs on par with
Rapid in almost all large/very large scenarios.

6.2.2 LAV Mappings. Over small datasets, chase systems perform
extremely well, while (particularly for queries Q1, Q3, and Q4 of
the Vicodi scenario shown in Figure 3) the GQR rewriting phase
proved challenging for many query-rewriting systems due to the
more complex mappings. As we can see in the graph, LAV rewriting
(so query answering using views) seems to be much slower than
the ) -box rewriting which is to be expected since it operates on
exponentially large ) -box rewritings. Nevertheless, this indicates
the di�culty that current query rewriting systems have with LAV
mappings. Other scenarios show similar results. This tendency
shows even for the larger datasets; we can see that the assumption
that as data grows query rewriting becomes faster is true only in
some queries of the Deep scenario (Figure 32) where Rapid+GQR
is faster than Rulewerk and RDFox. Indeed using LAV mappings
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Figure 4: NPD scenario with Large data size, and GAV mappings

might be a primary factor for one to choose a forward chaining
solution; at least until more optimised systems appear.

6.2.3 GAV Mappings. Whith small data, Rulewerk and RDFox per-
formed well. And although again disk-based chase is slow, as shown
in Figure 40 in the appendix, in some cases chase systems were the
only ones to terminate. Even though the rewriting of the query itself
is not dependent on the data, the execution time for OBDA systems
dominates in the GAV case often exceeding the time limit (30 min-
utes) depending on the size of the rewritings as in Q5 in Figure 40.
The execution time is relatively much slower when compared to the
1-to-1 case where most time goes into the) -box rewriting or to LAV
view-based rewriting in the LAV case. As with 1-to-1 mappings,
Ontop took substantial time to load data in its initial index, which
could be dramatically reduced if it were allowed o�ine preprocess-
ing (see Section 6.3). However, the execution phase of Ontop was
very slow for some cases in (Figure 40 and Figure 42 in appendix).

This pattern was repeated for medium datasets (Figure 43 and
Figure 44 in our git repo) and was also the case for most large
datasets (Figure 45 and Figure 46 in our git repo). However, in the
NPD scenario shown in Figure 4, which contains a large real-world
dataset and simple GAVmappings, chase systems exceeded the time
limit and failed to return results. While all query-rewriting systems
performed consistently fast, Rapid performed substantially faster

in this scenario, followed by Iqaros. This �gure also highlights the
contrast between the substantial load-time of Ontop and its dramat-
ically shorter rewrite and execution times (orders of magnitude).

In very large datasets (around 1M tuples), the chase systems
are very slow compared to query rewriting when the rewritings
produced small unfolded queries. However, there are many cases,
such as Q3 in Deep scenario shown in Figure 5, where query rewrit-
ing systems exceed the time limit because complex GAV mappings
produce very large unfolded SQL queries.

The GAV mappings in NPD contain only one or two atoms in
the body so our �ndings also suggest that query-rewriting systems
perform well with simple GAV mappings and large data, whereas
the chase systems perform best with complex GAV mappings (i.e.,
up to �ve atoms in the body) and smaller data.

Comparing chase systems across di�erent kinds of mappings,
Rulewerk is relatively more robust while RDFox su�ers more from
the generation of labelled nulls for existential variables, becoming
relatively much slower for LAV mappings as compared to GAV.

6.2.4 Rewriting-complexity. In this section we perform an analysis
of our results by classifying scenarios (in particular, query-ontology
pairs) as easy, medium, or hard depending on the average number of
conjunctive query rewritings that OBDA systems have on these sce-
narios. Table 5(a) shows the overall winner system on all scenarios
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Figure 5: Deep scenario with Very Large data size and GAV mappings

Table 5: The state-of-art systems depending on number of rewritings per query

of each category broken down in terms either of data size or map-
ping language. The results are very surprising; chase (in particular
Rulewerk) seems to perform best in most scenarios - even though
for scenarios of easy or medium rewriting-complexity, and only
as data grows larger, rewriting systems Rapid or ChaseGQR come
in front. When looking across the mapping-language dimension,
again Rulewerk seems to perform best in most of mapping cate-
gories due to its dominance on the small and medium-data sizes for
rewriting-complexities of all di�culties. In fact, it also wins on sce-
narios of very-large data when the rewriting-complexity becomes

di�cult. Dominance of the chase seems to be inherent in this space;
RDFox also wins for large data and di�cult rewriting-complexities.

We performed the same analysis for just query-rewriting sys-
tems in Table 5(b) where the prepossessing times of ONTOP (and
ChaseGQR - the only other rewriting system that supports prepro-
cessing) were neglected. ONTOP here performs the best on hard
rewriting-complexities, while Rapid is following close, especially
on easy rewriting-complexities across all dimensions. ONTOP is
outperformed in cases from other query rewriting systems and by
nature cannot compete in the category of LAV mappings, reinforc-
ing that query rewriting with LAV mappings is a future challenge.
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Another notice in Table 5 is that ChaseGQR appears in multiple
places, and although this is usually for easy complexity, 1-to-1 or
LAV (which is what it was designed for), these results show that
hybrid systems are promising for further investigation.

Comparing our results to literature, Rapid performs better end-
to-end while ONTOP is faster when prepossessing is excluded,
consistent to [56]. Moreover, di�erently to [64] in our scenarios
Rapid is almost always faster or equal to Iqaros, agreeing with [56].

6.3 Key takeaways
Our experiments do not intend to exhibit a winner or a best sys-
tem or approach. Some of the surprising results that we present
intend to show the usefulness of our benchmarking framework
and its ability to investigate assumptions in particular settings. Our
reported results can be very well overthrown in di�erent scenarios.

For the studied setting however, contrary to the commonly per-
ceived opinion, the chase is a viable approach to query answering,
and in many cases preferable to OBDA. When used over small to
medium-sized datasets, the best-performing systems are Rulew-
erk and RDFox. As the data size grows, backward-chaining sys-
tems seem to come back in the game but only when the rewriting-
complexity (i.e, query-ontology complexity) is on the easier side.
This is probably because in the face of queries with small number
of rewritings and larger data, a large number of tuples means the
chase is more time-consuming to execute, but this eventually pays
out against larger query rewritings, irrespective of the data size.

Rewriting algorithms performed better on the real-data scenario
(NPD), which is a complex GAV scenario where usually the chase
dominates. This probably due to the large arities of the sources
indicating that chase systems should improve for large arities.

In terms of mapping-complexity, when considering one-to-one
mappingswhere the complexity to the sources is negligible, forward-
chaining systems seem costly compared to backward-chaining sys-
tems but again this changes as the rewriting-complexity raises. On
the other hand, while forward-chaining systems perform best on
complex GAV and LAV mappings on small to medium datasets,
this is challenged when the dataset size increases. This might be
because of the complex GQR and unfolding phases that the OBDA
rewritings need to go through, and which might explode the �nal
query size; or it might just be that chase is better with complex
formulas. We hope these results are only the beginning of further
investigations in these areas, such as looking into optimised LAV
and GAV OBDA algorithms. Overall, ) -Box rewriting dominates
the 1-to-1 mapping scenarios, execution time is the bottleneck for
GAV and view-based rewriting is slowing LAV down.

For chase systems, we have found that RDFox su�ers more in the
face of large numbers of labelled nulls. Nevertheless, the predomi-
nant bene�t of chase systems is their ability to fully compute the
materialisation of all entailed inferences in the data. Table 6 shows
the e�ects of preprocessing, that is, if we ignore the loading and
chase time for each run under the assumption that this only needs
to be performed once. We can see that this provides a substantial
performance increase in chase-based systems (last column of Ta-
ble 6). In such situations where multiple queries must be answered
(and the data remains static), completing the chase is advantageous.

Table 6: Impact of preprocessing time

Average Time (ns)
System Total Preprocessed � (%)
ChaseGQR 9.56E+09 9.41E+09 1.45E+08 (1.51%)
RDFox 1.25E+10 5.99E+08 1.19E+10 (95.22%)
Rulewerk 1.52E+10 9.48E+08 1.43E+10 (93.78%)
RST+ GQR 1.76E+11 1.73E+11 2.54E+09 (1.44%)
Ontop 2.10E+10 1.32E+10 7.79E+09 (37.17%)
RST+ Rulewerk 2.41E+10 7.33E+08 2.34E+10 (96.96%)

We have found that almost all scenarios from the query rewriting
literature are actually �t for materialisation. ForBackBench also
makes use of real-world data scenarios (such as NPD), which allow
for the comparison of synthetic to real-world data, in order to guide
the improvement of data generation for future use.

7 FUTUREWORK AND CONCLUSIONS
We presented the ForBackBench benchmarking framework, a cross-
approach analysis environment that compares the forward- and
backward-chaining approaches to query resolution, and evaluates
the e�ciency of commonly used OBDA and DE systems and sce-
narios. Looking at the evolution of these areas since the mid-1990,
developing good open-source tools for di�erent components of data
integration pipelines is recognised as a �rst major challenge to move
forward [29]. The ForBackBench framework provides multiple tools
and converters to suit the required formats of various systems. For-
BackBench currently supports a number of di�erent languages and
technologies including TGDs and queries in the chasebench or
Rulewerk formats, OWL, RDF, OBDA-mappings SPARQL, and SQL
and is built to be fully extensible, allowing the future addition and
integration of newly developed systems and scenarios. Our work
also necessitated the description of PJ-acyclic TGDs, a previously
unknown, exact correspondence between LTGDs and DL-Lite' .

Our �ndings suggest that chase-based approaches usually ter-
minate successfully, and often perform faster than or on-par with
OBDA approaches for smaller data, more complex mappings or
worse rewriting-complexities. This leads us to recommend addi-
tional research into development of metrics that can di�erentiate
between datasets that are more suitable for one approach above the
other. We have clear directions for future work. Naturally, ForBack-
Bench can be iteratively expanded to incorporate new scenarios and
systems as they are developed, and our translation framework can
be used to automate the work of cross-compatibility. Our ongoing
plans include more elaborated analysis of di�erent problem dimen-
sions, e.g., query size or type of data used, supporting more general
queries, e.g., with aggregation, incorporating hybrid approaches
to query answering, e.g., [37], as well as more mapping languages
such as R2RML [22].
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