Giovanni Simonini

Entity Resolution On-Demand

Luca Zecchini Sonia Bergamaschi

Felix Naumann

University of Modena
and Reggio Emilia, Italy
luca.zecchini@unimore.it

University of Modena
and Reggio Emilia, Italy
simonini@unimore.it

ABSTRACT

Entity Resolution (ER) aims to identify and merge records that
refer to the same real-world entity. ER is typically employed as
an expensive cleaning step on the entire data before consuming it.
Yet, determining which entities are useful once cleaned depends
solely on the user’s application, which may need only a fraction
of them. For instance, when dealing with Web data, we would like
to be able to filter the entities of interest gathered from multiple
sources without cleaning the entire, continuously-growing data.
Similarly, when querying data lakes, we want to transform data on-
demand and return the results in a timely manner—a fundamental
requirement of ELT (Extract-Load-Transform) pipelines.

We propose BrewER, a framework to evaluate SQL SP queries
on dirty data while progressively returning results as if they were
issued on cleaned data. BrewER tries to focus the cleaning effort
on one entity at a time, following an ORDERBY predicate. Thus, it
inherently supports top-k and stop-and-resume execution. For a
wide range of applications, a significant amount of resources can be
saved. We exhaustively evaluate and show the efficacy of BrewER
on four real-world datasets.

PVLDB Reference Format:

Giovanni Simonini, Luca Zecchini, Sonia Bergamaschi, Felix Naumann.
Entity Resolution On-Demand. PVLDB, 15(7): 1506 - 1518, 2022.
doi:10.14778/3523210.3523226

PVLDB Artifact Availability:
The source code, data, technical report [39], and other artifacts have been
made available at https://github.com/dbmodena/BrewER.

1 INTRODUCTION

Entity Resolution (ER) is the task of identifying and merging records
in a dataset that refer to the same real-world entity. It is a funda-
mental operation for data cleaning and integration. A traditional
use-case of ER is master-data-management, for instance to detect
multiple representations of the same customer or product. More
recently, ER has been employed to remove redundancy and errors
from the data to significantly improve the final accuracy of machine
learning models trained on it [21].

State-of-the-art ER methods compare a pair of records by using a
binary matching function (a.k.a. matcher), exploiting machine/deep/
transfer learning [4, 15] or human-defined rules [7] to identify
matches, i.e., record pairs that pertain to the same entity. To detect
all matching records, in principle, all pairs must be compared. Hence,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 7 ISSN 2150-8097.
doi:10.14778/3523210.3523226

HPI, University
of Potsdam, Germany
felix.naumann@hpi.de

University of Modena
and Reggio Emilia, Italy
sonia@unimore.it

! hoose a matching function: u() ?i Iz==s L
|- H_customers_DL_Transfer 1 ! == Y sELECT TOP 50 Q,
| = H_customers_DL_Transfer 2 ! '

! I

|

i

i

i

model,mp,type,price

;

. i J | FROM products

- M_electronics_DL_custom_n | i IWHERE mp > 10
,,,,,,,,,,,,,, ; o 'AND type LIKE ~slr”

1| ORDER BY price DESC

| Choose resolution functions: | '----- BY price DESC J
\ 'al() = MAJ.VOTING(<model>) ! /
\ |@2() = MAX(<mp>) /

1a3()

MAJ.VOTING(<type>)
MIN(<price>)

comparisons
uer: o=
—] Query {gé‘\} 2
— exec. o=
clean results

dirty data

(a) The traditional pipeline: the data scientist specifies how to clean
the data with ER; once cleaned, she issues the query.

g'] ELECT TOP 50 Q7 |
| VOTE(model), MAX(mp), 1| Conflict resolution
| VOTE(type), MIN(price) i}funcﬁcns
|FROM products !
IGROUP BY ENTITY WITH MATCHER | } Matching function
|

'HAVING MAX(mp) > 10

IAND VOTE(type) LIKE ~$slrs>
'comparisons

~--| |ORDER BY MIN(price) DESC

e /

dirty data

N A A=
progressive emission |ean results

of cleaned data
(b) The ER-on-demand pipeline: the data scientist specifies how to
clean the data within the query.

Figure 1: Querying dirty datasets.

ER is very expensive, also due to the compute-intensive operations
required by the matching functions, e.g., computation of string
similarities or inference with complex neural networks.

Matching is only the first step: once the matches forming an
entity cluster have been identified, they have to be combined to
remove inconsistencies in attribute values—this task is called data
fusion [6], merging [5], or consolidation [14]. The function employed
for removing the ambiguities in the values of each attribute is called
conflict resolution function (or simply resolution function). Thus, to
yield a unique representative record from a cluster of matching
records, a resolution function is needed for each attribute of the
schema. A resolution function specifies how to transform a multiset
of attribute values in a unique representative value. For instance, a
commonly employed resolution function is the majority voting [14],
where the most frequent attribute value is selected as representative.
We say that an entity is completely resolved when all of its records
have been matched and their values have been consolidated to yield
a unique representative record.

Limitations of Existing Approaches. Traditionally, ER is em-
ployed as a data cleaning/preparation step before using the data.
Yet, in many practical scenarios this might not be convenient:

1506

https://doi.org/10.14778/3523210.3523226
https://github.com/dbmodena/BrewER
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3523210.3523226
https://www.acm.org/publications/policies/artifact-review-and-badging-current

ExaMmPpLE (THE PrRoOBLEM). Ellen is a data scientist building a ma-
chine learning model to predict the price of SLR cameras. (i) She has
limited time to add more data to her dataset and clean it; also, new
data might be arriving periodically. (ii) The data might contain du-
plicates. For performing ER, she already has a matching function to
choose (or more than one to try) for the data at hand—e.g., a machine
learning model trained on the data she already has and/or exploit-
ing transfer learning and/or ad-hoc rules—and she expresses rules
for resolving the conflicts in the attribute values of the clusters of
matching records (e.g., AVG(price), MAX (resolution), etc.). (iii) She
has business priorities: it is better to have clean data for expensive
cameras than for inexpensive ones, and only modern cameras with
a minimum resolution of 10 megapixels have to be considered—she
can express this with a query.

Figure 1a shows how Ellen specifies data extraction and cleaning,
i.e., the SQL query that selects the entities she is interested in (priority
on expensive products given by the ordering predicate), the matching
function, and the resolution functions.

As in the example above, oftentimes practitioners (e.g., data
scientists) have a specific task at hand characterized by:

e An information need: only a portion of the entities is relevant to
their task; to clean the entire data just to run a selective query
on it is a waste of resources;

e Time constraints: time can be limited and decisions based on the
data have to be made quickly; time can be limiting when new
data arrives or changes with high frequency and users want to
quickly explore it with queries (e.g., top-k queries).

ExAMPLE (SOLUTION WITH TRADITIONAL ER). With a traditional
ER framework, Ellen performs ER on the entire data at her disposal by
applying matching and resolution functions. Once the entire data is
cleaned, she can issue the query and explore or query the result (Fig-
ure 1a). In such a scenario, ER is the bottleneck due to: (i) its inherently
quadratic complexity, which blocking and filtering techniques can
only alleviate [29]; (ii) the cost of matching functions, as state-of-the-
art matchers involve expensive operations based on string-similarity
measures computation [15] or deep neural network models [22].

This approach is time-consuming. In fact, to check whether a new
source contains useful data for her analysis with a query, she has to
first clean it completely: all the entities are resolved and then filtered
to produce results emitted in batch. Further, for debugging the ER
pipeline with the data at hand (e.g., to check if the matcher she is
employing is performing well for expensive SLR cameras), she cannot
stop the ER process after receiving a handful of the entities to inspect
and then resume the processing: those entities might not be relevant
for the query or might be partially resolved, hence yielding incorrect
results. Alternatively, she would have to manually select records from
the dataset to test the ER pipeline, which is time-consuming as well.

Thus, it would be beneficial to prioritize the cleaning efforts on
the entities according to their relevance for the practitioner’s task.

Our Contribution. We propose the BrewER framework, which
evaluates SQL SP (Selection and Projection) queries on dirty data,
and returns results as if they were issued on cleaned data (as shown
in Figure 1b). The main feature of BrewER is to perform ER pro-
gressively, guided by an ORDERBY clause, to incrementally return
the most relevant results to the data scientist. BrewER avoids as
much as possible matching and resolving entities that are not

1507

part of the final result, and it inherently supports top-k queries,
as well as stop-and-resume execution. BrewER introduces a spe-
cial “GROUP BY ENTITY WITHMATCHER [matcher of choice]” opera-
tor, which is interpreted as a “group by entity” statement, i.e., know-
ing that matching records should be grouped according to the se-
lected matcher.

ExaMpLE (ER-ON-DEMAND SOLUTION). As shown in Figure 1b,
Ellen just needs to rewrite her query (Q1 in Figure 1a) by employing a
special GROUP BY statement and moving the selection statements into
the HAVING clause—predicating on each group, i.e., each entity. She
also specifies the conflict resolution functions for ER within the SQL
query, as aggregate functions. Notice that Qf in Figure 1b and Q1
in Figure 1a are equivalent if issued on cleaned data. Then, BrewER
executes the query directly on the dirty data, applying ER progressively
on the right portion of the data to yield correct results incrementally.

Ellen receives the first entities in a fraction of the time required by
existing ER frameworks. This allows her to explore new data without
completely cleaning it, and to maximize the ER efforts on the entities
she actually needs for her task. Furthermore, she can stop the execution
at any time with the guarantee that the results produced so far are
correct; then, she can resume the query evaluation at her need. Thus,
she can inspect the result of ER process for entities of interest and debug
it, if needed. Finally, BrewER keeps track of both executed comparisons
and resolved entities, to avoid recomputing the same operations when
multiple queries are issued on the same data.

Another example is the stock market trading scenario, where
an entity matching algorithm on a high frequency financial news
feed may have very limited time to match companies’ records and
yield useful information [43]. Further, typically only a subset of the
entities is relevant for each operation and a priority may be defined,
such as the trading volume or other financial metrics.

Moreover, our proposed approach is suitable for tackling a major
challenge for data lake management systems [26]: to support on-
demand extraction and cleaning as part of the integration pipeline
and on-demand query answering. Similarly, on-demand data trans-
formation that returns results in a timely manner is a fundamental
requirement of ELT (Extract-Load-Transform) pipelines—especially
when combined with top-k queries to debug transformations [10].

The main contributions of BrewER are summarized in the follow-
ing. We formalize ER-on-demand, where the goal is to progressively
clean and emit entities satisfying queries issued directly on dirty
datasets. We introduce an ER-on-demand algorithm for SQL SP
queries and its variation for optimizing a special—yet common—
case. We implement our algorithms in an open-source system called
BrewER, that we exhaustively evaluate on four real-world datasets,
showing its effectiveness.

The remainder of the paper is structured as follows. Section 2
examines related work. Section 3 provides preliminaries and formal-
izes the notion of ER-on-demand. Our algorithms and the workflow
for executing ER-on-demand in BrewER are described in Section 4
and evaluated in Section 5. Finally, Section 6 concludes the paper.

2 RELATED WORK

Entity Resolution (ER) has been a longstanding problem for data
integration and cleaning [16]. See [9] for a recent survey on ER and
its open challenges.

Progressive ER. Madhavan et al. [24] firstly proposed a progressive
(a.k.a. pay-as-you-go) data integration system, implemented for
Google Base, to progressively integrate as much Web data as possi-
ble as it runs, given a limited amount of time and resources. The pro-
gressive approach has been employed for schema mapping [35] and
ER [43]. In particular, to perform ER, oftentimes the resources are
limited (e.g., computational power or human time to debug the ER
pipeline), or the data has to be elaborated within a certain time to be
valuable for the downstream application consuming it. To address
this challenge, existing progressive ER methods [17, 19, 32, 37, 43]
try to evaluate candidate matches by their likelihood of being actual
matches (typically estimated through a proxy measure derived from
a blocking strategy), so to discover as many matches as possible, as
quickly as possible. Thus, a progressive ER method incrementally
adds records to an entity cluster, which might remain incomplete un-
til that the entire data has been processed. Hence, an SQL SP query
cannot be simply issued at any time on the output of a progressive
method. In fact, its result might be incorrect: the representative
records may have values derived applying resolution functions on
a partially identified entity cluster—thus yielding possibly incor-
rect values. BrewER aims at finding and resolving complete entity
clusters, whose representative records satisfy an SQL SP query;
moreover, it does that progressively, while following an ORDER BY
predicate. Both BrewER and existing progressive methods deal with
a single-type entity dataset at a time, i.e., a dataset with a unique
schema. In Section 5.2.2, we further discuss and experimentally
compare the progressive ER methods and BrewER.
Batch Query-driven ER. To the best of our knowledge, the closest
works to our own are QDA [2] and QuERy [3]. QDA takes as input
a single block B (see Section 3.1.3 for blocking) and a selection
predicate P, and then analyzes which record pairs do not need
to be compared to identify all entities in B that satisfy P. QDA is
not designed for a progressive execution and to support ORDER BY
clauses. Moreover, QDA requires to apply the resolution functions
to the output of each match, hence it cannot support functions
considering more than two values, such as AVG and VOTE. BrewER is
blocking-agnostic (i.e., it is not limited to one block) and supports
a wider class of resolution functions, including AVG and VOTE.
QuERy [3] supports SQL SPJ queries by introducing two special
selection and join operators, which are called polymorphic as they
accept as input not only records (as regular operators), but also
objects representing blocks (called sketches). A sketch is a concise
representation of all the potential representative records that a
block may yield (i.e., all the possible outcomes of the cleaning of a
block). For instance, a sketch employs a range data type to represent
numerical attributes, and a set of hashed values to represent cate-
gorical attributes. To evaluate a query, QuERy builds a query tree
(i.e., an execution plan) with the polymorphic operators for a dataset
composed of clean records and sketches. When the query tree is
executed, if a sketch reaches the topmost operator (i.e., passes all
predicates), the corresponding block has to be cleaned since it can
contain useful entities, otherwise it is discarded. The representative
records (i.e., the cleaned entities) yielded from the cleaned block
are then pushed back into the query tree to be re-evaluated—to
check if they actually pass the predicates. QuERY’s main limitation
is that its polymorphic operators work at the block level and cannot
define the progressiveness of the ER execution within each block.

1508

BrewER could be employed within each block to reduce the number
of comparisons that are evaluated and progressively pass resolved
entities up to the query tree. Then, for a complete integration of
BrewER and ORDER BY clauses, a polymorphic sort operator should
be designed to compare and sort records and sketches. We do not
investigate the integration of QuERy and BrewER in this paper.
Finally, the idea of query-driven ER has been explored also for
answering keyword queries [36, 46]. In our previous preliminary
work [33] we explored how to yield an approximate progressive
result to a keyword query over a dirty dataset. BrewER guarantees
an exact (i.e., not approximate) result and supports SQL SP queries.

3 PRELIMINARIES

3.1 Entity Resolution Model

We consider a dirty dataset D with schema D[Ay, ..., Ap]. Each
attribute A; has a domain (or type) T4, of values that the records
can assume. A record r € D is represented as a tuple r = (id, r[A1],
...7[Am]), where id is a unique identified for each r, and r[A;] €
{TAj U 0} is a projection to the value that the record assumes for
the j-th attribute (null values are admitted).

Different records in a dataset that belong (i.e., refer) to the same
real-world entity are called matching records (or simply matches). En-
tity Resolution (ER) aims to identify the disjoint clusters of records
representing the entities of O and to synthesize a single representa-
tive record ¢ = (id, €[A1], ..., e[Am]) for each cluster—so to produce
DC, the cleaned version of D. In this paper, we adopt a standard
ER framework [5, 14, 15] employing a matching function for deter-
mining the matching records that form entity clusters and conflict
resolution functions for consolidating ambiguous attribute values
within each cluster. We also support optional blocking, which is
often employed to scale ER by avoiding comparing obvious non-
matching pairs of records [29].

3.1.1 Matching Function. A matching function (a.k.a. matcher [15])
is a binary function g : D X D — {True, False} that takes as
input two records, compares them, and decides whether they are
matches or not. We do not assume the matching function to be
transitive, i.e., if p(ry, ry) = True and y(ry, rz) = True, it might be
that p(ry, rz) = False. To design a transitive matching function is
difficult in practice [5]. Yet, we consider the matches to be transitive,
otherwise results would be inconsistent—e.g., declaring (ry, r2) and
(ro, r3) as matching pairs while declaring (r, r3) as non-matching.

Our framework is matcher-agnostic: it can support any kind of
matching function, such as a DNF of similarity join predicates on
multiple attributes [18, 20], a human judging the pairs of records on
a crowdsourcing platform [17], an unsupervised matcher based on
generative models [44], or a complex deep learning model exploiting
pre-trained language models [22] or transfer learning [23]. Our
framework allows indicating the matching function for a particular
ER task within an SQL query denoted by p<.

3.1.2 Conflict Resolution Functions. The conflict resolution func-
tions (or simply resolution functions) transform a cluster of records
into a single record. Records belonging to the same entity cluster of-
ten have inconsistent values for their attributes (e.g., camera records
referring to the same entity may have different prices, names, etc.).
Thus, for each attribute, a resolution function is applied to remove

conflicts: it takes as input a multiset of attribute values and returns
a single value.

We declare a resolution function for an attribute A; through an
SQL aggregate function ;. Given a cluster of records & = {ry, ..., ri}
representing a single entity, each «; takes as input the list of val-
ues that A; assumes in those records and returns a single value
¢[A;j] € Ta;. The aggregate functions supported in our framework
are: MIN, MAX, AVG, and user-defined bounded aggregations (defined
in Section 3.1.5), such as MEDIAN and VOTE (a.k.a. majority voting).
The choice of this set of functions was driven by two considerations:
(i) they cover most real-world use cases; (ii) they can be naturally
declared as part of SQL queries.

3.1.3 Blocking. Comparing all pairs of records in O has a quadratic
complexity and, typically, the matching function is expensive to
compute: state-of-the-art functions involve either string-similarity
computation [15] or deep neural network models [22]. To overcome
this problem, blocking is employed to partition D in blocks, i.e.,
partitions of records, and limits the all-pairs comparison to records
within each block [8, 29]. Given a record r, we call candidate set the
set of records that appear together with it in blocks—each record
in it is called candidate match or simply candidate. Our framework
is blocking-agnostic, meaning that any blocking strategy (or even
no blocking strategy) can be employed, including unsupervised
techniques [27, 28, 41], as we experimentally show in Section 5.5.

3.1.4 Query-agnostic (Traditional) ER Algorithms. We call tradi-
tional ER algorithms those algorithms that employ matching and
conflict resolution functions in a query-agnostic way, i.e., without
filtering for a specific part of the data and without order preferences.
Traditional algorithms may follow any match-resolve strategy, such
as batch ER [8], which performs blocking, applies the matching func-
tion in random order and finally performs the conflict resolution,
or progressive ER [17, 19, 32, 37, 43], presented in Section 2.

3.1.5 Record Bounds and Bounded Aggregation. Given a record r,
its candidate set, and an aggregate function «; for a numeric at-
tribute A, we call lower bound and upper bound of r the minimum
and maximum value that the entity to which r belongs can assume
for the attribute Aj, respectively.

When an aggregate function «; yields a consolidated value e[A;]
for a set of matches & that is always ¢[A;] € [min(Vfi), max(V[i)],
we call it bounded aggregation; otherwise, we call it unbounded
aggregation (e.g., SUM, which can produce a final value ¢[A;] that
is greater than the maximum value of V;i) We consider only MIN,

MAX, AVG, MEDIAN and VOTE for our examples or experiments, but
BrewER inherently supports any user-defined bounded aggregation
(UDF). We do not study unbounded aggregation.

Further, we distinguish between fixed and free bounded aggre-
gate functions for numeric attributes. Given a numeric attribute
Aj, a fixed aggregate function can yield only values £[A;] € ij,
i.e., the value that the resolved entity ¢ assumes in A; is among the
values that its records assume for A;. Examples of fixed aggregate
functions are MIN, MAX, and VOTE. A free aggregate function, on the
other hand, can generate ¢[A;] € [min(V[f;), max(Vf‘\Sj)], ie., the
value assumed by A; in the resolved entity ¢ can be a new value
not among the values that its records assume in Aj, yet bounded
from them. An example of free aggregate function is AVG.

1509

SELECT [TOP k] (a;(Aj))
FROM D
[WHERE
GROUP BY
[HAVING
[ORDER BY

@]

ENTITY WITH MATCHER pu

(aj(Aj) {LIKE|IN|<|<|>|2>|=} const)]
a;(A;) [ASC|DESC]]

Figure 2: Query syntax in BrewER.
3.2 ER-on-demand Model

We first introduce the type of queries supported by our framework,
then describe the characteristics of our ER-on-demand algorithm.

3.2.1 Supported Queries. BrewER supports SQL SP queries with an
ordering predicate. Like existing progressive methods (Section 2)
and most state-of-the-art ER frameworks, such as Magellan [15],
JedAlI [28, 31], DeepMatcher [25], Ditto [22], or Tamr [40], we focus
only on single-type entity datasets (e.g., electronic goods). That is,
BrewER applies ER on dirty datasets that can be represented with
a unique schema. In such a scenario, SP predicates and ordering
predicates are sufficient for users to express their information needs
and priorities, respectively. The JOIN operator would be useful
when dealing with multi-type entity datasets, i.e., when ER is applied
jointly on multiple dirty datasets with different schemata [42]—we
will investigate this dimension in future work.

Figure 2 presents the syntax supported in BrewER. The GROUP
BY ENTITY clause declares that the query should return results ag-
gregated by entities: in BrewER “ENTITY” is a reserved word and
must be combined with a matching function p. The resolution func-
tions are specified in the SELECT clause as a list {(«j(A;)), where
each element is an aggregate function a; combined to an attribute
Aj. The WHERE clause serves just as a filter applied directly to the
initial dirty data o, (D), i.e., it filters records before the cleaning.
From now on, for simplicity, we omit ¢ in our discussion, being a
filter applied to the dirty data independently of the ER process. The
filtering on the entities after the ER process is defined in the HAVING
clause, which predicates over aggregate values of the groups (i.e.,
values of the entities). In the HAVING clause, we currently support
numeric comparisons (<, <, >, >, =) for numeric attributes and
dates, and string comparisons (=, LIKE, IN) for textual attributes.
Finally, we currently support ordering for a single attribute.

In BrewkER, a valid query Q€ has the structure presented above
in Figure 2. With Q we denote the corresponding query for cleaned
data, where: (i) the GROUP BY statement is removed, (ii) the HAVING
predicates are expressed as WHERE conditions, (iii) no aggregation
is specified in the selection statement, and (iv) there is an ORDER BY
condition on the same attribute of Q°. In practice, Q¢ issued on
a dirty data D yields the same results of Q issued on the cleaned
data D€ (cleaned with the same matcher and resolution functions
of Q°). Examples of Q and Q¢ are shown in Figure 1.

The ORDERBY clause allows to benefit from the progressive emis-
sion of the entities. Yet, a user can define a query without using it.
In such a case, BrewER chooses a random (even textual) attribute
for the ordering. Similarly, a user may express a query without a se-
lection predicate. In this case, all entities are emitted progressively,
following the ORDERBY clause, in a pay-as-you-go fashion.

3.2.2 ER-on-demand Algorithm. Given a (dirty) dataset D and a
BrewER SQL query Q°, we want an algorithm to guarantee a correct
partial result when the execution is terminated early. That algo-
rithm should perform ER progressively, following the query Q¢

and its ORDERBY clause, and not up-front on the entire data—i.e.,
on-demand. In fact, traditional ER algorithms do not guarantee the
correct result in case of early termination: some of the emitted
entities may not be completely resolved, thus possibly sorted in
the wrong order and/or erroneously retained/discarded due to un-
resolved inconsistencies of their values. Thus, an ER-on-demand
algorithm allows to significantly save computational resources and
time if the user wants to stop the execution after inspecting the
first k emitted records. Further, top-k queries and stop-and-resume
execution are inherently supported.

We now formally define an ER-on-demand algorithm. We denote
with Q(D¢) the results of an SQL SP query Q with an ORDERBY
clause issued on D€, which is the cleaned version of the dirty
dataset D obtained by using a traditional ER algorithm. The corre-
sponding valid version of the query Q in BrewER is Q, i.e., a query
written according to the syntax in Figure 2.

DEFINITION 1. Given a dirty dataset D and an SQL SP query Q
with an ORDER BY clause, an ER-on-demand algorithm to evaluate Q°
(the BrewER version of Q) on D satisfies the following conditions:

(1) Correctness: Let t be an arbitrary target time at which the results
are needed: Q7 (D) € Q(D°) and Q7 (D) is correctly sorted
according to the ORDER BY condition. Typically, ¢ is significantly
smaller than the time needed to produce D€ in its entirety.

(2) Monotonicity: Qf (D) € Q5 (D) for any #; < fa.

(3) Equivalence: If the traditional ER algorithm and the ER-on-
demand algorithm both have enough time to terminate, they
produce the same results for the query, ie, Qf (D) = Q(D°).

Notice that a traditional ER algorithm does not satisfy Condi-
tions 1 and 2. Let us consider a progressive ER algorithm, a query
Q¢, and a dirty dataset D, and assume that the representative record
¢ of a cluster of matching records {ry,r2,r3} does not satisfy Q°.
Let us further assume that if we resolve only {r1, r2} the resulting
(incomplete) representative record ¢’ satisfies Q€ (a common sce-
nario with real-world data). Now, say that after running for a time
t1, the progressive algorithm identifies only two matches: {ry,r2}.
So, if we interrupt the execution at t; and issue Q€, &, = ¢’ satisfies
Q¢ and is erroneously emitted as a result. Hence, QZ (D) ¢ (D)
and thus correctness is not satisfied. Then, if we run the progressive
algorithm until the discovery of the remaining match r3 (i.e., at
time f; > t1) and issue again Q°, &, = ¢ does not satisfy Q°. Hence,
Qfl (D) ¢ Q?Z (D) and thus monotonicity is not satisfied.

4 ER-ON-DEMAND WITH BREWER

The high-level design of BrewER is depicted in Figure 3. BrewER is
an extensible framework, enabling users to plug-in their favorite
libraries for binary matching functions (e.g., DeepMatcher [25],
Ditto [22], etc.) and blocking (e.g., Magellan [15]). Then, BrewER
takes care of the ER-on-demand execution of the user’s query, as
explained in the remainder of this section. To avoid re-comparing
candidate pairs with expensive matching functions, the lists of
matching and non-matching records are maintained in a database,
for each matching function employed by the users—if the matching
function changes, the matches change as well. Thus, BrewER can
retrieve, exploit and update those lists when executing a new query.
Users can also choose to store only final resolved entities to save

1510

space—in this case, the resolution functions cannot change across
queries.

Dirty Data Query
u:<[match]l, [non-match]>
- 5| @ Brewer N S 4
MatchLists, NonMatchLists < 14 o
matchDB Entit . progressive emission
Matchng Blocking of cleaned results

Figure 3: BrewER overview.

At the core of BrewER lies our ER-on-demand algorithm, which
we introduce in Section 4.1 and formally present in Section 4.2.

4.1 Algorithm Overview

The ideal ER-on-demand algorithm would start by cleaning the
first entity in O that should be emitted for the query Q issued on
cleaned data D€, and emit that entity as its first result. Then, it
would start over with the next entity that should be cleaned and
emitted for Q, and so forth.

To design a practical ER-on-demand algorithm, we first define
seed records, which are the records that guide our algorithm in
seeking the next entity that should be cleaned and emitted. We also
define a seed query, i.e., the query to extract the seed records. The
general idea is to insert the seed records and their candidate matches
in a priority queue, which is exploited for ordering the entities (to
which the seed records belong) that satisfy Q¢, while cleaning them.

4.1.1 Seed Query. We first consider the case where fixed aggregate
functions are employed, then we complete the discussion with free
aggregate functions.

Considering a valid BrewER query Q¢ employing only fixed ag-
gregate functions and its corresponding query Q for cleaned data,
we observe that if all the records in a cluster of matches do not
satisfy any of the selection conditions of Q, then that cluster cannot
yield an entity that is part of the result of Q. Thus, given a set
of candidate matches, if none of the involved records satisfies at
least one of the selection conditions of Q, those comparisons can
be avoided. On the other hand, if there exists at least one record r;
satisfying one of the selection conditions of Q, those comparisons
should be considered. We call rs a seed record (or simply seed).

Consider now a valid BrewER query Q° with only a free aggregate
function, e.g., a query with the condition HAVINGAVG(mp) = 10
issued on the dataset of Figure 5a. It may occur that no record satis-
fies the corresponding selection condition in Q, i.e., WHERE mp = 10,
but a cluster of matching records actually has an average of values
for the attribute mp equal to 10. The process for fixed aggregate
functions would not identify a seed and we would miss a correct
result. Yet, a free aggregation is also a bounded aggregation, so we
can discard any record r; if Omp ¢ [min(Vngé,), max(Vrfl"))], where
anﬁ is the set of values assumed by the candidates C; of r; (with
r; € C;) for the attribute mp, and 0 is the parameter of the selec-
tion clause (i.e., Omp = 10). This is possible because the entity to
which r; belongs cannot assume a value for mp outside the range
[min(Vrg;,), max(Vrgé,)]. Thus, for a free aggregate function on an
attribute A;, r; is a seed record if: (i) for the equality operator,
04, € [min(Vg"), max(Vf;")]; (ii) for > (or <) inequality operator,
ri[Aj] > 9Aj (or ri[Aj] < 9Aj).

The seed query Q%€ from a BrewER query Q° yields the seed set,
i.e., the set of all seed records. It is obtained with a projection of all
attributes of O and a selection composed of the logical disjunction
of the set of basic predicates P derived from the HAVING clause of
Q¢ as follows. If the HAVING clause of Q€ involves a fixed aggregate
function, its corresponding selection predicate ¢ of Q is added to P.
If the HAVING clause of Q€ involves a free aggregate function for the
attribute A;: (i) for the equality operator, we add to # a predicate
¢ of the form 04 BETWEEN(min(VACj"), max(VAC]f)); (ii) for > (or <)
inequality operator, we add to # a predicate ¢ of the form A > 04,
(or Aj < 04;). No ordering is needed for the seed query. We use
the logical disjunction, even for conjunctive queries (e.g., Figure 4),
since the seed records can match and yield any entity that satisfies
Q¢, although each of them individually may not satisfy all predicates
of Q. Hence, the seed query is defined as Qs¢¢d = oy pep (D).

Seeds and Blocking. When blocking is employed!, BrewER com-
putes the transitive closure of all the candidate pairs by merging
blocks that overlap and stores the resulting connected components
of records in an auxiliary data structure, called component list. A
block index is maintained as well: an index where each connected
component is a key that points to the lists of blocks that has been
merged to yield that component. Then, BrewER removes from the
component list all the components that do not contain any seed
record: they cannot yield any result for Q°. Moreover, the set of
basic predicates P (defined above) can be exploited to filter out
further components that do not lead to any useful entity for an-
swering Q°. Consider for instance Qf of Figure 1: if a component
does not contain any record that has “slr” in its type attribute, then
it cannot yield any entity satisfying Qf—even if the predicate on
the megapixels is satisfied, since the two conditions are conjunctive.
Hence, for conjunctive queries, BrewER builds a query Qf’ for each

i-th predicate in #. So, if a QII.J applied to a component returns an
empty set, that component is discarded. Finally, the block index
is employed to retrieve the blocks that have been retained in the
component list, which are the only blocks considered by BrewER for
the processing.

4.1.2 Ordering Entities while Resolving Them. The desired ER-on-
demand algorithm is an iterative algorithm capable of identifying
the next entity that should be cleaned and emitted as soon as possible,
i.e., with the fewest calls to the matching function p2. This can be
approximated by determining the lower/upper bound of the value
of the ORDERBY clause for the entity, so to define whether it should
be emitted before or after all the other entities.

In fact, each entity has as ordering value the highest or lowest
value of its records (see Section 3.1.5). For instance, consider the
first entity that has to be emitted: its final value might be deter-
mined by one or more records that are not in the seed set and that
are higher/lower than all the values of the seeds. Hence, the com-
parisons cannot involve only records in the seed set, but a broader
set, composed of both the seeds and their candidate matches, must
be considered. Each element of that set can be inserted in a priority
queue (according to the value of each record); then, the algorithm
can iteratively evaluate the head (i.e., the record with the current
highest/lowest value) and determine its bound. Thus, as soon as a

!1f blocking is not employed, the entire dataset is still considered as a single block.

1511

| SELECT TOP 50 Qf '

i ~, | VOTE(model), MAX(mp), |
| SELECT TOP 50 Q,

! model,mp, type,price
| FROM products

| WHERE mp > 10

1
| VOTE(type), MIN(price)

| FROM products

GROUP BY ENTITY WITH MATCHER H
HAVING MAX(mp) > 10

|AND type LIKE ~%slr%” | |AND VOTE(type) LIKE ~%slr%” :

|ORDER BY price DESC | ORDER BY MIN(price) DESC |

SELECT *
FROM products
WHERE mp > 10
OR type LIKE ~%slrs’ |

(@) O (b) OF () Q5ee?
Figure 4: The query to be issued on clean data (a), a valid
BrewER query to be issued on dirty data (b) and its seed query
(c), following the example of Figure 1.

/
|
'
'
I
'
'
I

id brand model type mp price
r canon eos 400d dslr [10.1 | 185.00
& r eos canon rebel xti|reflex| 1.01 | 115.00
r3 canon eos 400d dslr [10.1 | 165.00
€, ry nikon d-200 - - 150.00
re nikon d200 dslr | 10.2 | 130.00
& r nikon coolpix | compct | 8.0 90.00
€, canon nikon olympus | olypus-1 dslr - 90.00
(a) A dirty dataset.
(VOTE) (VOTE) (MAX) (AVG)
ORDER BY id model type uls) price
AVGéEgéCE) €, | eos 400d dslr 10.1 155.00
[&] d-200 | dsir | 10.2 | 140.00 |

(b) The result for Qf of Figure 4b, with a(price) = AVG(price)
instead of MIN(price), issued on the dirty dataset.

(VOTE) (VOTE) (MAX) (MIN)
ORDER BY id model type mp price
MIN(PRICE) 3 =
DESC P d-200 dslr 10.2 130.00
[€] eos 400d | dsir | 10.1 [115.00 |

(c) The result for Qf of Figure 4b issued on the dirty dataset.

Figure 5: A dirty dataset (a) and clean query results (b and c)
for different aggregate functions on the attribute price.

head '7__.SEeds
*A""" 54 .--’A
| s [7 [[rs [ra] re]

[[285] 165 [90 [115 | 130 | 150 | 90 |

Priority Queue

D [Step 2} check @ emit
ry rs r; r, o *&]
185 165 /| 90 115 [fos|[ra [/m s [|
Y) 1 T [[155 |[(150 | 90 [130 | 90 |

5 comparisons

new head Priority Queue

(Steo: B
150

130 90

5 comparisons

Priority Queue

Figure 6: Example of BrewER in the AVG/DESC case.

record has a lower/upper bound that is greater/lower than or equal
to the head of the queue, it can be emitted.

ExAMPLE 1. Figure 5a shows a dirty dataset that Ellen (the data
scientist) wants to query with Qf of Figure 4. Figures 5b and 5c report
the results of the query employing AVG and MIN aggregate functions
on price, respectively. Ellen is employing AVG(price) and a blocking
strategy that inserts in the same block all the records that share at
least one token in brand (the blocks are at the top of Figure 6).

With a traditional ER approach, 12 pairs of records are compared
(6 pairs from the block “canon”and 6 from the block “nikon”) to clean
the dataset and obtain the first results for the query Q. Hence, Ellen

has to wait the time for the complete ER for even just the first correct
result, namely e1. Instead, if she employs BrewER, &1 is returned after
Just 5 comparisons, as explained next.

First, the seed query of QS is generated (Figure 4c). The seed records
{r1, r3, s, r7} are then extracted with Qiee‘j and processed by BrewER
with their candidates ra, r4 and re (from the blocks). The process is
shown in Figure 6. A priority queue is populated with the seeds and
their candidates, according to their ordering value (Step 0). We employ
a Max Priority Queue because the required ordering is descending,
otherwise it should be a Min Priority Queue. The head of the queue
potentially belongs to the entity with the highest price, i.e., the first
entity to be emitted. All records that match with the head have to
be identified to compute the average of the ordering values. Thus, as
shown in Step 1, the head record is compared to all its candidates. For
each matching record of the head, BrewER recursively compares also
its candidates (if not already compared), so to obtain a final entity
cluster, as the matching function might not be transitive. At Step 2,
the entity €1 to which the head ri belongs can be bounded, i.e., its
ordering value is now known. At this stage, if the value of €1 is greater
or equal than the new head record value of the queue (i.e., ry), €
can be emitted—no other entity can have a greater ordering value.
Yet, we need to check whether ¢1 actually satisfies Qf. Hence, the
filtering predicates of Q1 are applied. A total of 5 comparisons have
been executed to provide Ellen the first correct result for her query, in
its correct order. Then, in Steps 3 and 4 the same process is repeated.

4.2 The BrewER Algorithm

The BrewER algorithm can handle any combination of bounded
aggregations (see Section 3.1.5) and ordering (ASC/DESC). Here, for
ease of presentation, we consider the case of entities emitted in
non-increasing order of a given attribute, i.e., ORDERBY «(+) DESC,
and a(-) = MAX(+) as resolution function of the ordering value. With
other aggregate functions (AVG, VOTE, etc.) the presented algorithm
does not change. Also, when we refer to the value (or ordering
value) of a record or of an entity, we mean the value assumed by the
ORDER BY attribute—these are the only values of the records that are
relevant to the algorithm, i.e., the values that can affect the order
of emission of the entities.

4.2.1 Algorithm Description. As input, the BrewER algorithm (Al-
gorithm 1) takes the dirty dataset D, a query QF, and the lists
CandLists, MatchLists and NonMatchLists. CandLists is a list whose
i-th element is a list itself containing all candidate matches of the
i-th record in O generated with blocking. If blocking is not em-
ployed, BrewER considers the all-pairs comparison scenario. With
large datasets, it is always preferable to employ blocking in order to
avoid the quadratic complexity. Thus, we assume that CandLists fits
in memory (as it does for all the experiments in Section 5). Along-
side CandLists, the two complementary lists of lists MatchLists and
NonMatchLists keep track of the matches and non-matches that
have already been compared with p€, respectively—they have the
same size of CandLists, but they can be implemented with lists of
bit arrays, thus accounting for a low memory overhead. We use
the following notation: MatchLists[i][j] (or NonMatchLists[i][j])
is the flag indicating the match (non-match) between r; and its
candidate matching record r;. Each element in the lists is initial-
ized to zero, i.e., false. MatchLists and NonMatchLists keep track of

Algorithm 1: BrewER algorithm with a(-) = MAX(-) and
DESC ordering.

1512

-

© ® N G R W N

-
5

Input: D; Q€; CandLists; MatchLists; NonMatchLists.
Output: The incremental emission of the resolved entities.
Q%¢ed « get the seed query for Q°
Seeds « I1;q Q%¢¢¢ (D)
I « Seeds\J{j € CandLists[i] | i € Seeds}
MatchSet — 0
EntityMap < Map(0)
PQueue < maxHeap(0)
foralli € 7 do
ri < 0ig=i (D)
val « r;[QF.orderByAttribute]
| PQueue.insert(i, val)
while PQueue # 0 do
i « PQueue.extractHeadElement()
if EntityMap.hasKey(i) then

L emit EntityMap.get(i)
if i € MatchSet then

L continue
E<—0
R« 0
onlySeeds «— True
recordID «— i
matchingProcedure()
if E= 0 and i ¢ Seeds then

L continue // no matching seeds: go to Line 11
E — EU{i}

onlySeeds < False
while R # 0 do

recordID « extract an id from R

L matchingProcedure()
& < Q°(0iaer (D))
if ¢; # 0 then

EntityMap.add(i, &;)
L PQueue.insert(i, €;.val)

// seed record ids
// empty set

// empty hash table
// priority queue

// then go to Line 11
// go to Line 11
// initialize the entity cluster set

// initialize the records to check
// consider seeds only

// consider also non-seeds

// a resolved entity

Procedure 1: matchingProcedure

1
2

o ® NN w R @

23

Input: Procedure 1 has visibility of all variables in Algorithm 1

Candidates < CandLists| recordID]

for (p = 0; p++; p < len(Candidates)) do

/* p is the position of the current candidate in the
candidate list of recordID

candidateID « Candidates[p]

if onlySeeds==True A candidateID ¢ Seeds then

*/

‘ break // continue only for non-seeds
else if candidatelD € E then
| continue // go to Line 2

else if MatchLists[recordID][p] then

R «— R J{candidateID}

E « E|J{candidateID}
else if NonMatchLists|recordID][p] then

| continue

else if u@ (D|i], D|candidateID]) then
R «— R J{candidateID}
E « EJ{candidateID}
MatchLists[recordID] [p] < True
p’ « get position of recordID in CandLists| candidateID]
MatchLists[candidateID] [p’] < True

// go to Line 2

else

NonMatchLists[recordID] [p] « True

p’ « get position of recordID in CandLists| candidateID]
| NonMatchLists| candidateID] [p’] < True

MatchSet < MatchSet|\ J{recordID}

matching/non-matching pairs among multiple query executions,
avoiding the redundant comparisons.

As output, Algorithm 1 emits the resolved entities incrementally,
according to the ORDER BY clause of Q€. In the following, we describe
the details of the algorithm.

First, the seed query 0%¢ed i5 derived from QF (Line 1), as defined
in Section 4.1.1, and issued on D to obtain the seed records and to
initialize the seed id set Seeds (Line 2). This set is then merged with
all the candidate matches of the seeds in Line 3. MatchSet (Line 4)
is an empty set used to keep track of the records that have already
been positively matched. EntityMap (Line 5) is a map data structure
(e.g., a hash table) that stores key-value pairs: the key is the id of
a representative record of an entity, and the value is the resolved
entity satisfying Q. In practice, EntityMap stores the entities that
have been resolved and ready to be emitted when their turn comes.

A max heap—or min heap in the case of ASC ordering—is initial-
ized in Line 6 and populated with the seeds and their candidates,
serving as priority queue (Lines 7-10). The basic idea is to iteratively
extract the head element from the priority queue, resolve its cor-
responding entity ¢, and insert ¢ into the priority queue with its
consolidated ordering value. Thus, every time that the head of the
priority queue is a resolved entity, it can be emitted: all the other
records and entities in the queue have an equal or lower value.

The iteration on the priority queue starts in Line 11. Notice that
the priority queue stores only record ids associated to their ordering
values. The head element i of the priority queue is extracted in
Line 12 and then:

— (Line 13) If i is the representative id of an entity that was com-
pletely resolved in a previous iteration, that entity has the highest
value of all possible remaining entities/records in the priority
queue. Thus, it is emitted in Line 14.

(Line 15) If i is not a representative record, but has already been
matched in a previous iteration with at least one other record, the
iteration continues and the next element in the priority queue is
considered (Line 16).

(Lines 17-32) Otherwise, the record r; corresponding to i is com-
pared to its candidates to completely resolve its entity or dis-
carded, as explained in the following.

An entity should be emitted only if it is derived from at least one
seed record (otherwise it does not satisfy Q°); so, the first compar-
isons to be performed are those to ensure that r; matches a seed
record—if it is not a seed record itself. This is checked in Lines 19-23.
If r; matches a seed (or it is a seed itself), then all remaining candi-
dates of r; are considered, and the entity ¢; is completely resolved
(Lines 25-29). BrewER tries to find also the matches of each match
recursively, starting from r;. To do so, it recursively inserts the ids
of matches in R.

The actual comparisons are verified by calling the matchingPro-
cedure (Procedure 1), which also updates R with newly discovered
matches. In the first call to matchingProcedure (Line 21), the flag
onlySeeds is set to true, so to check only seed records. The set E
collects the ids of the matches of r;. After the first call to Proce-
dure 1, if E is empty, then no seed matches r; and the execution is
interrupted (Line 23). The other calls to matchingProcedure have
the onlySeeds flag equal to false instead.

1513

So, at the end of the while loop on R of Line 26 of Algorithm 1,
all the matching records of r; are in E. The resolution functions can
now be applied to that cluster of records. To do so, Algorithm 1
issues the query Q° on the set of identified matching records, i.e.,
0iqcr (D) (Line 29). O° denotes the query Q¢ without the matching
function (p°) invocations: at this stage of the algorithm the query
is performed against a cluster of known matching records E, i.e., it
can assume that the GROUP BY ENTITY yields only one group. Thus,
by issuing Q° on the set of matching records, all aggregations are
applied and all clauses of the query are verified in order to yield a
single representative record ¢;. Depending on the clauses of Q°, ¢;
can also be an empty set.

Finally, if not an empty set, ¢; is added to the map data structure
as a value for the key i, and i is added back to the priority queue
associated with the value of ¢;. The loop ends when the priority
queue is empty, i.e., when all the entities satisfying the query have
been emitted.

We now describe the matchingProcedure (Procedure 1) in de-
tail. Given a record (recordID), it seeks for its matches iterating
among its candidates. Lines 4-5 are needed to manage the first calls
of Algorithm 1 mentioned above, which compare only the seed
records—the following calls do not need this check. Firstly, for each
candidate, matchingProcedure checks if it is already been assigned
to the current entity cluster E (Line 6). This may happen when
“following” the match: we do not want to execute a comparison
with a record already assigned to the entity cluster of recordID. For
example, in Figure 6 we want to avoid comparing ry and r3 and
vice-versa, since they already are in the entity cluster of r1. Then,
matchingProcedure checks whether the candidate pairs involving
ri have been already compared, in Lines 8 and 11, by exploiting
MatchLists and NonMatchLists. If both MatchLists[recordID][p] and
NonMatchLists[recordID][p] are equal to zero (i.e., false), this means
that the comparison has not been executed yet. Hence, matching-
Procedure invokes the matching function in Line 13 (denoted with
the notation u?). If the candidate record is a match, then it is in-
serted in R (Line 14). Finally, the candidate is added to E to avoid
checking it again in further calls (Line 15), and the current recordID
to the MatchSet (Line 23).

4.2.2 Special Case: Discordant Ordering Queries. We present a vari-
ation of the BrewER algorithm called Discordant BrewER, which
introduces an optimization for special yet frequent case of queries,
namely queries that order the entities with the following predi-
cates: (i) ORDERBY MIN(-) DESC and (ii) ORDER BY MAX(-) ASC (here
we discuss only the former case; it is trivial to adapt for the latter).
We call this case discordant ordering because the first entity to be
emitted is the one with the maximum value, which is in turn the
minimum value among the records that compose that entity.
Discordant BrewER is based on the observation that if a seed
record matches with a non-seed record with a higher value, the
value of the latter is not for certain the value of the final entity.
Thus, the values of seed records belonging to an entity ¢ determine
the maximum value that ¢ can assume: non-seed records can only
lower that value, if they match. Hence, the heap in Algorithm 1
can be initialized by considering only seed records, i.e., by omitting
the union with the candidates in Line 3. This significantly reduces
the searching space and allows to achieve correct results with a

Table 1: Characteristics of the selected datasets.

Dataset #D #Matches | #Ent (AVG Size) | #Attr OA
SIGMOD20 13.58k 12.01k 3.06k (4.4) 4 megapixels
SIGMOD21 1.12k 1.08k 190 (5.9) 4 price
Altosight | 12.47k 12.44k 453 (27.534) 4 price
Funding 17.46k 16.70k 3.11k (5.6) 17 amount

fraction of the comparisons needed by the general algorithm, as we
show with the experiments of Section 5.3.

5 EVALUATION

This section aims to answer the following questions:

Q1. What is the performance of BrewER when executing ER-on-
demand? (Section 5.1)

Q2. How do ER-on-demand baselines derived from traditional batch
and progressive ER methods perform? (Section 5.2)

Q3. What is the improvement in the case of discordant ordering
queries introduced in Section 4.2.2? (Section 5.3)

Q4. How well does BrewER perform with different aggregate func-
tions? (Section 5.4)

Q5. How does BrewER perform with blocking? (Section 5.5)

Q6. How fast is BrewER and how much time does it save without
cleaning the entire dataset? (Section 5.6)

Datasets. We employ four real-world datasets from multiple do-
mains with different sizes and characteristics, summarized in Ta-
ble 1. For all of them the ground truth is known. The first dataset,
SIGMOD20 [11, 45], is composed of camera specifications extracted
from 24 e-commerce websites and has been employed for SIGMOD
2020 Programming Contest [12]. The second dataset is SIGMOD21,
provided by Altosight [1] for SIGMOD 2021 Programming Con-
test [13], which contains well-curated specifications of electronic
products (mainly USB pen drives) scraped from more than 20 web-
sites. The third dataset, Altosight, is a superset of SIGMOD21, but
differently from it, this larger set of entities is not well-curated and
presents many noisy records with redundant values, missing values,
and/or HTML tags. The last dataset is Funding [34], which reports
financing requests addressed to the NYC Council Discretionary
Funding. ER can be performed on it to identify the organizations
presenting these requests as in [14].

We preprocess all the datasets by casting the ordering values

to floats, lowercasing all the attributes, and filtering out records
with a null value in the ordering attribute. The null values do not
affect the final ordering of the entities (i.e., they are not considered
by the aggregate functions), but slow down the computation for
those entities that have a lot of them. An auxiliary experiment in
our technical report [39] shows that the performance of BrewER is
slightly affected when it involves a high number of entities with
null values.
Experimental Setup. BrewER has been implemented in Python 3.7.
Our experiments were performed on a server machine equipped
with an Intel Xeon Silver 4116 CPU @ 2.10 GHz, a Nvidia Tesla T4
GPU, and 100 GB of RAM.

5.1 Performance of the BrewER Algorithm

Here, we want to assess how BrewER performs in terms of com-
parisons required to progressively return the result sets of queries.

1514

Table 2: Minimum, maximum and average cardinality of the
result sets of the considered batches of queries.

Conjunctive Queries Disjunctive Queries
Dataset #MIN | #MAX | #AVG | #MIN | #MAX | #AVG
SIGMOD20 27 172 55.63 368 567 440.55
SIGMOD21 5 15 7.43 28 85 55.45
Altosight 9 32 18.40 87 193 139.08
Funding 8 212 42.13 336 2297 1259.05

—e— BrewER (AND) %= BrewER (OR) —— QDA (AND)

_r ¥ —— —_r —_r
g ik g g
L] Q () ()
o o < un < in
> > >o >o
@ 5] x @ @
=) =) 'y =3 =3
o G O o lg2) &6 i 6o :
0 8 16 0 0.06 0.12 0 3 6 0 9 18
Comp (x10°) Comp (x106) Comp (x106) Comp (x10°)
(a) SIGMOD20 (b) SIGMOD21 (c) Altosight (d) Funding

Figure 7: Progressive Recall with BrewER.

As a baseline we employ QDA [2], which applies conflict resolu-
tion function directly to each comparison; thus, it can work only
with MIN and MAX aggregate functions. For this reason, we consider
only these two aggregate functions in this section. In the following
Section 5.4, we will show the performance of BrewER with other
aggregate functions.

Since the goal of this experiment is to evaluate the BrewER algo-
rithm (i.e., Algorithm 1), we do not employ any blocking strategy,
which would influence the overall performance. We study how
BrewER performs with blocking in Section 5.5. Finally, we are not
interested in neither designing nor discovering the best matching
functions for the task; hence, as a matcher, we employ an oracle that
correctly labels all the comparisons—remember that the ground
truth is known and BrewER is matcher-agnostic.

5.1.1 Query Generation. We now describe how we generated the
synthetic queries for our experiments.

We consider two basic types of queries. Firstly, conjunctive queries:
queries with two selection predicates employing the LIKE operator
in AND to express queries on related attributes (e.g., to select the
prices of a series of specific models produced by a brand). Secondly,
disjunctive queries: queries with two selection predicates, in OR, re-
ferring to the same attribute (e.g., to select all the models produced
by two brands). The column OA of Table 1 indicates the ordering
attribute employed for each dataset. Further technical details are
provided in [39].

For each dataset, we consider two batches of 20 queries: one for
the conjunctive and one for the disjunctive case. Since the goal is
to study the progressive emission of the resulting entities, each
set is composed of the 20 queries emitting the highest number of
entities out of a set of at least 50 randomly generated queries. Their
characteristics are described in Table 2.

5.1.2 Measures. For each batch of conjunctive/disjunctive queries
executed on a certain dataset, we compute the progressive average

macro-recall (progressive recall for simplicity), as follows. The recall
#{emitted entities}
#Q7 (D)
#0{ (D) is the cardinality of the result set for the query Q;. For each
query Q; in a batch of 20, we track the recall by steps of 5% of the

total number of comparisons entailed by Q; (i.e., a total of 20 steps).

for a query Q; is defined as recallp, = , where

Thus, 20 values of recall, are collected for each Q; in the batch.
For instance, if Q1 entails one million of comparisons, we record
the recall of its execution in BrewER every 50,000 comparisons (5%
of one million). Then, to obtain aggregate values for each batch of
queries: (i) we compute the average number of comparisons for
each step among the queries

2.0:€[01...0n | #executed comparisons for Q;

N
and (ii) the average value of recall corresponding at that step,
i.e., the macro-recall for a batch of queries (or simply Query Recall):

20i€[0:...0n] recally,
N

In our experiments, N = 20; thus, for each batch of queries, the
progressive recall is represented by 20 points (one for each step) that
can be reported in a single plot to summarize the performance of
an ER algorithm on that batch.
5.1.3 Baseline. We adapted QDA [2] to process queries that con-
tain predicates on categorical attributes. QDA does not provide any
mechanism to handle ORDERBY clauses, thus the result of its execu-
tion is a batch version of each query, i.e., performing the sorting
of the entities at the end of the resolution process. Also, it sup-
ports only MIN and MAX as aggregate functions, since it merges (i.e.,
resolves) pairs of records as soon as they are found to be matching—
this is not compatible with aggregate functions like VOTE and AVG,
which take as input more than two values. In a nutshell, QDA tries
to discard the entities that are not part of the result as soon as
possible, by incrementally matching pairs of records that belong
to those entities. In practice, by using our terminology, QDA tries
to match all the seed records first—as in our Algorithm 1 we do by
checking the match with the seed records. Hence, BrewER and QDA
perform the same number of comparisons if enough time is given.

avg. num. comp. =

Query Recall =

5.1.4 Results. Figure 7 shows the average progressive recall ob-
tained through the execution of the described randomly generated
batches of queries, for each dataset and type of query.

ODA shows a typical step curve for this task due to the fact that
it has to compare all the candidate pairs before starting emitting
the results. On the other hand, BrewER exhibits a progressively in-
creasing recall for all the four datasets as a function of the executed
comparisons. We do not observe particular differences in perfor-
mance among the datasets. Also, the kind of query (AND/OR) does
not affect the performance. On SIGMOD20 (Figure 7a) and Funding
(Figure 7d), disjunctive queries entail a higher number of compar-
isons than the conjunctive queries, on average (at most 15% more);
vice versa, for SIGMOD21 (Figure 7b) and Altosight (Figure 7c),
conjunctive queries need more comparisons (at most 10% more).

This is due to the generation of the seed records: as explained
in Section 4.1.1, the seed records of a query are extracted with
a disjunctive query and employed in Algorithm 1. Thus, the final
number of comparisons depends on the selectivity of each predicate,
and not on the result size.

5.2 Batch and Progressive ER Shortcomings

We compare BrewER against two baselines that we derived from
(i) a traditional batch ER workflow and (ii) an existing progressive
ER method. We call the former Batch-query-baseline (BBaseline)
and the latter Progressive-query-baseline (PBaseline). Our goal is to

1515

Table 3: BrewER vs. Batch-query-baseline.

BrewER Batch-query-baseline
Dataset R,P,F; | Err@x R P F Err@1 | Err@5 | Err@20
SIGMOD20 1.00 0% 0.89 | 0.99 | 0.92 30% 13% 9%
SIGMOD21 1.00 0% 0.91 | 0.50 | 0.60 30% 40% 42%
Altosight 1.00 0% 0.89 | 0.20 | 0.31 60% 45% 57%
Funding 1.00 0% 0.71 | 0.86 | 0.77 100% 50% 70%

show that adapting existing ER methods to produce correct results
for a query without cleaning the entire data or without designing a
specific progressive algorithm is not trivial.

5.2.1 Batch-query-baseline. Algorithm 1 guarantees that the re-
sults of a query issued on top of a dirty dataset are emitted as if
the query were issued on the cleaned version of the dataset—i.e.,
Q°(D) = Q(DC). Yet, how good would the results be if we simply
issue the query directly on the dirty dataset (i.e., Q(D)) and then
perform ER on just that portion of the data? This question arises
from observing that Q(D) # Q(D€). In fact, by issuing the query
Q (e.g., Q1 in Figure 4a) directly on the dirty data, relevant records
might be filtered out (e.g., records ry and r4 in the example of Fig-
ure 5a). To investigate this effect, BBaseline first filters the dirty data
D with Q and then performs ER on the result Q(D). We compare
it against BrewER by executing a batch of ten randomly generated
AND queries (see Section 5.1.1) for each dataset. For each query g, we
consider the set of matching pairs My needed to identify the entity
set that satisfies g—we know My from the ground truth of each
dataset—and the set of matches M, that the considered method
identifies for producing the results. Then, we compute recall R,
precision Py and Fi-score Fi4 as follows:

o - Man M Mg N M|
1T TTIM] T TIM

The results of the comparison are shown in Table 3, where we
report the average of recall, precision and F;-score for each batch of
queries. BrewER always returns the correct answer, and thus recall,
precision and F;-score are always 1.00. We also report the Error Rate
(Err@k) of a method, which is the percentage of erroneously yielded
entities in the first k emitted entities. For instance, Err@20 = 42%
means that among the first 20 entities emitted according to the
ORDERBY clause, 42% are incorrect according to the ground truth.
These errors are introduced by filtering the dirty data with Q. For
example, applying Q; directly to the dirty dataset of Figure 5a and
considering AVG as resolution function for price, £1 ends up with a
price of $175 (since ry is filtered out), instead of $155, which is ¢;
price value in the ground truth (Figure 5b).

Table 3 shows how the error rate is significant for all the datasets
and for different values of k. On the other hand, BrewER (being an
exact method) always has an error rate of 0%.

2-Ry-Py
Y97 R+ P,

5.2.2 Progressive-query-baseline. A common approach employed
in state-of-the-art progressive ER methods [32, 38, 43] is based on
the Sorted Neighborhood (SN). The basic idea is to sort all the records
according to an attribute that can capture their similarity (e.g., price
of products), then to slide a window from the head to the tail of
the sorted list, and to progressively compare all the pairs of records
that fall within that window, i.e., the neighborhood. The original
method proposed in [43] starts with a window of size w = 2 and
then, after each iteration over the whole list, increases the size of

-
o
=3

=
— AVG&W=10 |8 100
—— AVG&wW=100 |6 1
-X- VOTE &w=10 g Al
- i
- VOTE&w=100 !] @ ol
i
|

L7t 100 10t 107 107
gl

-

00

~
o

~

o

Error Rate (%)
Noow
G o

Error Rate (%)
@
S

N
@

Error Rate (%)
@
S

o

100 10* 102 10°

100 10' 102 103

K K K
(a) SIGMOD20 (b) Altosight (c) Funding

Figure 8: Progressive-query-baseline Error Rate.

the window (to w = 3, w = 4, etc.). The main problem with this
method is that it does not satisfy the correctness and monotonicity
conditions of Definition 1: each time that w increases, new matches
can be found for an entity, hence the final aggregate value may
change. Yet, we can choose to set a value for w, performing a single
iteration over the sorted list of records and avoiding this problem—
the disadvantage is that we need to pre-specify w.

To measure the quality of the progressive entity emission in an
ER-on-demand setting of the SN method, we sort all records by the
attribute employed in the ordering clause (megapixels for SIGMOD20,
price for Altosight, and amount for Funding). Then, we employ
w = 10 and w = 100 to represent two opposite scenarios [30]: the
former setting favors efficiency over recall, while the latter does the
opposite. For the queries, we consider only the basic query with the
GROUP BY ENTITY and ORDERBY predicates: queries with selection
predicates could be simply applied to the progressively generated
entities, but they would not affect the entity emission order—which
is what we want to assess here. As resolution functions for the
ordering attribute, we consider both AVG and VOTE.

As in the previous experiment, we report the error rate (Err@k) of
PBaseline measured on the first k emitted entities. We mark an entity
as erroneous only if the value of the ordering attribute is different
from the ground truth; thus, if errors affect other attributes, we
do not consider them. We did not notice any significant difference
between ascending and descending ordering and report only the
former. The results are shown in Figure 8; note that BrewER is an
exact method, hence its error rate is always 0%. In SIGMOD20, the
intra-cluster variance for the ordering attribute (megapixels) is very
low, hence the error rate with AVG (VOTE) is under 4% (1%) for the
first 100 emitted entities, rising up to 8% (2.5%) for the first 1000
emitted entities. On Altosight, PBaseline always fails to emit the
first entity correctly (Err@1 = 100%); with VOTE on the first 100
(1000) entities, the error rate is at least 60% (75%); with AVG, near
to 100% for k € (80,1000). On Funding, PBaseline is correct only
for k < 10 with VOTE, with high error rates (at least 50%) for all
the other settings. All these errors occur because PBaseline (as all
the progressive ER methods) does not keep track of the value of a
resolved entity while resolving it (e.g., as BrewER does through the
priority queue). Hence, PBaseline is not reliable for ER-on-demand.

5.3 Discordant Ordering Queries

Algorithm 1 presents an optimized version to manage the special—
yet frequent—case of discordant ordering (Section 4.2.2). To evaluate
its performance, we employ the same settings of Section 5.1, with
one major difference: the randomly generated queries have MAX-ASC
or MIN-DESC as combinations of the aggregate function for the
ordering value (i.e., MAX/MIN) and ordering mode (i.e., ASC/DESC).

1516

—e— Optimized --x--- Standard

p—] X — ¥ — P —] X
3 3 HS i
9] 9] 9] |9)
Q o Q 195 195
n * [sgTe} o n i
>o >o >o >o
] R] o]] S
=] x > X > K > K
Ol x Os W Tl Oo VIRVOL) Oo %o a0
0 7.5 15 0 0.07 0.13 0 37 74 0 7.5 15
Comp (x106) Comp (x10°) Comp (x10°) Comp (x10°)
(a) SIGMOD20 (b) SIGMOD21 (c) Altosight (d) Funding

Figure 9: Progressive Recall with discordant ordering queries.

1
1
1

Query Recall
0.5

0

Query Recall

0 0.5

Query Recall
0.5

0

0 9 17 0 6 12 o § 16
Comp (x10°) Comp (x10°) Comp (x10°)
(a) SIGMOD20 (b) Altosight (c) Funding

Figure 10: Progressive Recall varying aggregate functions.

Figure 9 compares the progressive recall of both the standard
Algorithm 1 and the optimized version for discordant ordering.
On all the datasets, the optimized version terminates the queries
by saving a significant amount of comparisons, up to four times
compared to the standard Algorithm 1 on Altosight (Figure 9c).

We observe that for SIGMOD21 (Figure 9b), Altosight (Figure 9c)
and Funding (Figure 9d), the recall curve is much more flat at the
beginning of the plot and much steeper at the end, compared to the
non-discordant-ordering case of the previous experiment (Figure 7).
This is because with MAX-ASC and MIN-DESC queries (i.e., discordant
ordering queries), when considering the head element of the priority
queue, if a match is found it determines the re-insertion of the ele-
ment in a lower position in the queue. This entails a higher average
delay in the emission of the entities for SIGMOD21, Altosight and
Funding (Figures 9b-d). Differently, SIGMOD20 is only marginally
affected by that phenomenon. This can be explained by the fact that
in SIGMOD20 the variance of the values for the megapixels attribute
is very low within each cluster of entity records (i.e., most of the
entities have records with similar ordering values). On the other
hand, the price values within a single entity in Altosight may
have a high variance (e.g., due to special offers).

Finally, no significant differences can be found between conjunc-
tive (in Figure 9) and disjunctive queries, as when employing the
standard Algorithm 1.

5.4 Experiments with Aggregate Functions

In Section 5.1 and Section 5.3 only MIN and MAX have been consid-
ered. The goal of this experiment is to evaluate BrewER with a set of
different aggregate functions. We set ASC as ordering mode and we
run each query of the batch with the following aggregate functions:
MAX, MIN, AVG, VOTE. The batch of 20 AND queries is generated as
explained in Section 5.1.1. In this experiment, MAX represents the
discordant case and the optimized version is not employed.

The plots are in line with the previously observed results in
Figures 7 and 9. SIGMOD20@ does not present relevant variations: the
performance by changing aggregate functions is almost unaltered
(Figure 10a). Again, this can be explained by the little variance
that the ordering attribute assumes among records belonging to
the same entity. On the other hand, when the variance is high a

Table 4: Blocking characteristics.

Dataset Recall | Precision F,
SIGMOD20 0.933 0.407 0.567
Altosight 0.999 0.056 0.107
Funding 0.966 0.014 0.028
—— X —— X
© © S ®
o (93 . o
9] 9] R 9]
@ un < un Rl on
>c o x' falSd
() () x* Q
> =} . =] /
) Co S
0 0.005 0.009 0 0.04 0.08 0 5 10
Comp (x10°) Comp (x10°) Comp (x10°)
(a) SIGMOD20 (b) Altosight (c) Funding

Figure 11: Progressive Recall with blocking.

significant difference in the behavior of the aggregate function is
observed, as shown for the other datasets in Figures 10b-c.

5.5 Performance with Blocking

With this experiment, we want to evaluate if and how the perfor-
mance of BrewER changes by employing blocking. Due to its small
size, SIGMOD21 is not considered for this experiment. We employ
JedAI [28, 31], which is based on a completely unsupervised block-
ing approach. We use its standard configuration based on Token
Blocking and Meta-blocking [28]. Table 4 reports recall, precision
and Fi-score of the produced candidate pairs. The goal of blocking
is to reduce superfluous comparisons, while preserving as many
true positives as possible; hence, it is typical to have high recall
and low precision in this phase [8]. The final recall and precision
of the ER process is determined ultimately by the quality of the
matching function adopted, which is not evaluated here. We also
evaluated manually-devised blocking strategies that yield lower
recall (results available in [39]), for which we did not notice any
significant difference in behavior when using BrewER.

The queries have been synthesized as explained in Section 5.1.1
and the results are presented in Figure 11. By employing blocking
we see a huge reduction of required comparisons for all datasets
compared to the all-pairs solutions of Figure 7 (up to 200 times
for Altosight). As for the progressive recall, with SIGMOD20 and
Altosight the curve for the AND queries is much steeper than the
one for the OR queries. This happens because conjunctive queries
allow to filter out blocks appearing in connected components whose
records do not satisfy every predicate of the query, as explained
in Section 4.1.1. Differently, with Funding, the difference between
conjunctive and disjunctive queries is less evident. This is due to
to the high intra-block variance of the selection attribute values,
which limits the efficacy of the preliminary block filtering.

5.6 Runtime Evaluation

We now want to assess the runtime performance of BrewER in
a real-world scenario, by employing a state-of-the-art matching
function and measuring the progressive recall as a function of the
actual time needed for answering a query.

We design the experiment as follows. We consider a large dataset
with blocking and a small one without blocking: the former is
SIGMOD20, the latter is SIGMOD21. Then, from the batch of disjunc-
tive queries of Section 5.1, we select for each dataset two queries:
one yielding the largest result set, the other yielding the smallest

1517

== * =" —— Q72
© . ©
o H o s Q520
o £ o
>o| # >o Q32 setup
g S " A [RS 20 setup
o Ooy — batch
0 20 450 0 7 28
Elapsed Time (min) Elapsed Time (min)
(a) SIGMOD20 (BL) (b) SIGMOD21

Figure 12: Query execution runtime in BrewER.

result set (see Table 2 for the size of the query results). Thus, a total
of four queries are considered: Q,Snzuox and Qrsnzi(’)1 for SIGMOD20, and
0521 and anzlln for SIGMOD21. As a matching function we employ
a pre-trained deep learning classifier built with DeepMatcher [25]—
by exploiting their Hybrid model, which we found to achieve good
performances on our datasets.

The results are shown in Figure 12, which reports for each query
the average runtime of ten executions. The plots also report the
runtime required for cleaning the entire dataset with a traditional
batch ER method (blue line). For all datasets, the correct results start
to be emitted after the first few minutes of execution. For instance,
on SIGMOD20 (Figure 12a), with BrewER users receive 22 and 31
520 and anzz%’ respectively.
Instead, with the complete ER process with a batch method users
would wait 8 hours—even if the dataset has “only” thirteen thousand
records and blocking is employed. A similar behavior is observable
also with SIGMOD21 (Figure 12b).

Finally, the overhead time required by BrewER (i.e., for gener-
ating and executing the seed query and to initialize the priority
queue) is negligible compared to the overall execution time of the
query. In particular: (i) the startup time for BrewER is circa 4 and
circa 0.1 seconds for SIGMOD20 and SIGMOD21, respectively; (ii) the
average overhead introduced by BrewER for each comparison is
0.01 milliseconds, while the average runtime for comparison of the
matching function is 2.7 milliseconds.

entities after only two minutes for Q

6 CONCLUSION

We introduced an Entity Resolution (ER) on-demand algorithm that
tries to minimize the cleaning effort needed to evaluate an SQL SP
query issued on dirty data, while progressively trying to maximize
the results returned to the user, in a pay-as-you-go fashion. Our
algorithm guarantees the correctness of the results: they are the
same that would be obtained by issuing the query on the cleaned
data (i.e., when ER is performed on the entire data before running
the query). Also, our algorithm supports a wide class of resolution
functions, which users can express directly in the SQL query to
resolve the conflicts of attribute values of records belonging to the
same real-world entity. We implemented our algorithm in a frame-
work called BrewER, which is both matcher- and blocking-agnostic,
meaning that it can operate with any binary matching function
(e.g., state-of-the-art deep/transfer learning matchers) and can scale
to large datasets with an existing blocking strategy of choice. Our
experimental evaluation showed its efficacy on four real-world
datasets with benchmark queries that we designed. Finally, we also
showed that the overhead of BrewER is negligible when employed
in real-world use cases. Many challenging problems remain to be
explored, including how to support SQL SPJ queries for multi-table
dirty datasets and additional features for ER pipeline debugging.

REFERENCES

(1]

[2

—

(3]

[10]

[11]

[13]

[14]

[15]

=
&

[17]
(18]

[19

[20

[21

oo
0

[23]

[24

Altosight. Accessed on 2022-03-11. Altosight Official Website. https://altosight.
com

Hotham Altwaijry, Dmitri V. Kalashnikov, and Sharad Mehrotra. 2017. QDA: A
Query-driven Approach to Entity Resolution. IEEE Trans. Knowl. Data Eng. 29, 2
(2017), 402-417.

Hotham Altwaijry, Sharad Mehrotra, and Dmitri V. Kalashnikov. 2015. QuERy:
A Framework for Integrating Entity Resolution with Query Processing. Proc.
VLDB Endow. 9, 3 (2015), 120-131.

Nils Barlaug and Jon Atle Gulla. 2021. Neural Networks for Entity Matching: A
Survey. ACM Trans. Knowl. Discov. Data 15, 3 (2021), 52:1-52:37.

Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Eui-
jong Whang, and Jennifer Widom. 2009. Swoosh: A Generic Approach to Entity
Resolution. VLDB 7. 18, 1 (2009), 255-276.

Jens Bleiholder and Felix Naumann. 2008. Data Fusion. ACM Comput. Surv. 41, 1
(2008), 1:1-1:41.

Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer.

Peter Christen. 2012. A Survey of Indexing Techniques for Scalable Record Link-
age and Deduplication. IEEE Trans. Knowl. Data Eng. 24, 9 (2012), 1537-1555.
Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2021. An Overview of End-to-end Entity Resolution for
Big Data. ACM Comput. Surv. 53, 6 (2021), 127:1-127:42.

Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb
Welton. 2009. MAD Skills: New Analysis Practices for Big Data. Proc. VLDB
Endow. 2, 2 (2009), 1481-1492.

Valter Crescenzi, Andrea De Angelis, Donatella Firmani, Maurizio Mazzei, Paolo
Merialdo, Federico Piai, and Divesh Srivastava. 2021. Alaska: A Flexible Bench-
mark for Data Integration Tasks. CoRR abs/2101.11259 (2021).

Database Research Group of the Roma Tre University. Accessed on 2022-03-11.
SIGMOD 2020 Programming Contest Official Website. http://www.inf.uniroma3.
it/db/sigmod2020contest

DBGroup of the University of Modena and Reggio Emilia and Database Re-
search Group of the Roma Tre University. Accessed on 2022-03-11. SIGMOD
2021 Programming Contest Official Website. https://dbgroup.ing.unimo.it/
sigmod21contest

Dong Deng, Wenbo Tao, Ziawasch Abedjan, Ahmed K. Elmagarmid, Thab F. Ilyas,
Guoliang Li, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan
Tang. 2019. Unsupervised String Transformation Learning for Entity Consolida-
tion. In ICDE. IEEE, 196-207.

AnHai Doan, Pradap Konda, Paul Suganthan G. C., Yash Govind, Derek Paulsen,
Kaushik Chandrasekhar, Philip Martinkus, and Matthew Christie. 2020. Magel-
lan: Toward Building Ecosystems of Entity Matching Solutions. Commun. ACM
63, 8 (2020), 83-91.

Ivan P. Fellegi and Alan B. Sunter. 1969. A Theory for Record Linkage. J. Am.
Stat. Assoc. 64, 328 (1969), 1183-1210.

Donatella Firmani, Barna Saha, and Divesh Srivastava. 2016. Online Entity
Resolution using an Oracle. Proc. VLDB Endow. 9, 5 (2016), 384-395.

Luca Gagliardelli, Giovanni Simonini, and Sonia Bergamaschi. 2020. RulER: Scal-
ing Up Record-level Matching Rules. In EDBT. OpenProceedings.org, 611-614.
Sainyam Galhotra, Donatella Firmani, Barna Saha, and Divesh Srivastava. 2021.
Efficient and Effective ER with Progressive Blocking. VLDB . 30, 4 (2021),
537-557.

Guoliang Li. 2017. Human-in-the-loop Data Integration. Proc. VLDB Endow. 10,
12 (2017), 2006-2017.

Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. CleanML:
A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks.
In ICDE. IEEE, 13-24.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50-60.

Michael Loster, Ioannis K. Koumarelas, and Felix Naumann. 2021. Knowledge
Transfer for Entity Resolution with Siamese Neural Networks. ACM 7. Data Inf.
Qual. 13, 1 (2021), 2:1-2:25.

Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y. Halevy, Shawn R.
Jeffery, David Ko, and Cong Yu. 2007. Web-scale Data Integration: You Can
Afford to Pay as You Go. In CIDR. www.cidrdb.org, 342-350.

1518

[25

[26

[27]

S
&

[29

[30

(31

(35]

[36]

(37]

[39

[40

[41

[42

[43

[44]

[45]

[46]

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In SIGMOD
Conference. ACM, 19-34.

Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Aro-
cena. 2019. Data Lake Management: Challenges and Opportunities. Proc. VLDB
Endow. 12, 12 (2019), 1986-1989.

Kevin O’Hare, Anna Jurek-Loughrey, and Cassio de Campos. 2019. A Review
of Unsupervised and Semi-supervised Blocking Methods for Record Linkage.
Linking and Mining Heterogeneous and Multi-view Data (2019), 79-105.

George Papadakis, Georgios M. Mandilaras, Luca Gagliardelli, Giovanni Simonini,
Emmanouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Pal-
panas, and Manolis Koubarakis. 2020. Three-dimensional Entity Resolution with
JedAL Inf. Syst. 93 (2020), 101565.

George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and Filtering Techniques for Entity Resolution: A Survey. ACM
Comput. Surv. 53, 2 (2020), 31:1-31:42.

George Papadakis, Jonathan Svirsky, Avigdor Gal, and Themis Palpanas. 2016.
Comparative Analysis of Approximate Blocking Techniques for Entity Resolu-
tion. Proc. VLDB Endow. 9, 9 (2016), 684—695.

George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, George Gian-
nakopoulos, Themis Palpanas, and Manolis Koubarakis. 2019. Domain- and
Structure-agnostic End-to-end Entity Resolution with JedAL. SIGMOD Rec. 48, 4
(2019), 30-36.

Thorsten Papenbrock, Arvid Heise, and Felix Naumann. 2015. Progressive Du-
plicate Detection. IEEE Trans. Knowl. Data Eng. 27, 5 (2015), 1316-1329.
Alberto Pietrangelo, Giovanni Simonini, Sonia Bergamaschi, Felix Naumann,
and Ioannis K. Koumarelas. 2018. Towards Progressive Search-driven Entity
Resolution. In SEBD (CEUR Workshop Proceedings), Vol. 2161. CEUR-WS.org.
Qatar Computing Research Institute (QCRI). Accessed on 2022-03-11. Data Civi-
lizer Address Dataset. https://raw.githubusercontent.com/qcri/data_civilizer
system/master/grecord_service/gr/data/address/address.csv

Anish Das Sarma, Xin Dong, and Alon Y. Halevy. 2008. Bootstrapping Pay-as-
you-go Data Integration Systems. In SIGMOD Conference. ACM, 861-874.
Enrico Sartori, Yannis Velegrakis, and Francesco Guerra. 2016. Entity-based
Keyword Search in Web Documents. Trans. Comput. Collect. Intell. 21 (2016),
21-49.

Giovanni Simonini, George Papadakis, Themis Palpanas, and Sonia Bergamaschi.
2018. Schema-agnostic Progressive Entity Resolution. In ICDE. IEEE Computer
Society, 53-64.

Giovanni Simonini, George Papadakis, Themis Palpanas, and Sonia Bergamaschi.
2019. Schema-agnostic Progressive Entity Resolution. IEEE Trans. Knowl. Data
Eng. 31, 6 (2019), 1208-1221.

Giovanni Simonini, Luca Zecchini, Sonia Bergamaschi, and Felix Naumann.
Accessed on 2022-03-11. Entity Resolution On-Demand (Technical Report).
https://github.com/dbmodena/BrewER/blob/main/technical_report.pdf

Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George Beskales, Mitch Cher-
niack, Stanley B. Zdonik, Alexander Pagan, and Shan Xu. 2013. Data Curation at
Scale: The Data Tamer System. In CIDR. www.cidrdb.org.

Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash
Govind, Derek Paulsen, Glenn Fung, and AnHai Doan. 2021. Deep Learning for
Blocking in Entity Matching: A Design Space Exploration. Proc. VLDB Endow.
14, 11 (2021), 2459-2472.

Steven Euijong Whang and Hector Garcia-Molina. 2012. Joint Entity Resolution.
In ICDE. IEEE Computer Society, 294-305.

Steven Euijong Whang, David Marmaros, and Hector Garcia-Molina. 2013. Pay-
as-you-go Entity Resolution. IEEE Trans. Knowl. Data Eng. 25, 5 (2013), 1111-
1124.

Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. ZeroER: Entity Resolution using Zero Labeled Examples. In
SIGMOD Conference. ACM, 1149-1164.

Luca Zecchini, Giovanni Simonini, and Sonia Bergamaschi. 2020. Entity Reso-
lution on Camera Records without Machine Learning. In DIZKG@VLDB (CEUR
Workshop Proceedings), Vol. 2726. CEUR-WS.org.

Liang Zhu, Xu Du, Qin Ma, Weiyi Meng, and Haibo Liu. 2018. Keyword Search
with Real-time Entity Resolution in Relational Databases. In ICMLC. ACM, 134-
139.

https://altosight.com
https://altosight.com
http://www.inf.uniroma3.it/db/sigmod2020contest
http://www.inf.uniroma3.it/db/sigmod2020contest
https://dbgroup.ing.unimo.it/sigmod21contest
https://dbgroup.ing.unimo.it/sigmod21contest
https://raw.githubusercontent.com/qcri/data_civilizer_system/master/grecord_service/gr/data/address/address.csv
https://raw.githubusercontent.com/qcri/data_civilizer_system/master/grecord_service/gr/data/address/address.csv
https://github.com/dbmodena/BrewER/blob/main/technical_report.pdf

