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ABSTRACT
In this paper, we study anomalous trajectory detection, which aims

to extract abnormal movements of vehicles on the roads. This im-

portant problem, which facilitates understanding of traffic behavior

and detection of taxi fraud, is challenging due to the varying traffic

conditions at different times and locations. To tackle this problem,

we propose the deep-probabilistic-based time-dependent anomaly

detection algorithm (DeepTEA). Thismethod, which employs deep-

learning methods to obtain time-dependent outliners from a huge

volume of trajectories, can handle complex traffic conditions and

detect outliners accurately. We further develop a fast and approxi-

mation version of DeepTEA, in order to capture abnormal behaviors

in real-time. Compared with state-of-the-art solutions, our method

is 17.52% more accurate than seven competitors on average, and

can handle millions of trajectories.
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1 INTRODUCTION
Due to the popularity of location sensing devices (e.g., GPS) used

in mobile phones and vehicles, it is now possible to collect a huge

amount of trajectories, or the movement information of the vehicles

in their trips. In this paper, we study how to use trajectory data
to detect trajectory outliers (or outliers in short). Given two points

S and D, an outlier is a trajectory that deviates significantly from

commonly-used routes. For example, in Figure 1(a), trajectory r1
is frequently employed by drivers. Trajectory r2, which deviates

significantly from r1, is an outlier.

The extraction of outliers from trajectories is an important prob-

lem in urban computing [1, 23, 25, 37, 42]. This problem is often

used to discover abnormal driving behaviors. For example, taxi and
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Figure 1: Time-dependent outlier : during (a) 10:00 ∼ 11:00
am on 1 October, 2016; (b) 10:00 ∼ 11:00 am on 2 October,
2016, when an incident (marked red) happens at route r1.

ride-sharing companies may wish to find out drivers who are taking

anomalous routes while they are carrying passengers, and examine

whether they have committed taxi driving fraud, i.e., overcharging

passengers through unnecessary detours [1, 5, 37, 42].

In the literature, most trajectory outlier solutions are shape-
based [1, 18, 23, 25, 30, 37, 42]. Essentially, the shape of the trajec-
tories in the road network is used to judge whether a trajectory

is an outlier. In Figure 1(a), because the shape of trajectory r2 de-
viates from the majority of trajectories between points S and D,
which has the “shape” of r1, those solutions consider r2 as an out-

lier. The problem of this approach is that it does not consider the

fact that outliers can change over time [44, 45]. This happens, for

instance, when normal routes (i.e., non-outliers) become congested,

forcing vehicles to switch to another usually-less-popular route.

In Figure 1(b), r1 is congested between 6:00 and 7:00 pm, due to

an incident at a road traversed by r1. Hence, vehicles took another

path, r2, which is less congested. Note that during 6:00 and 7:00 pm,

r1 is an outlier, while r2 is not. In this sense, trajectory outliers are

time-dependent [44, 45].
Compared with shape-based outlier detection, the problem of

finding time-dependent trajectories is relatively new, and is only

addressed by few works [44, 45]. These solutions consider different

factors that affect the time-dependent normal routes, e.g., inci-

dents, roadblocks, and rush hours. Then, distance-based measures
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were employed to differentiate anomalous trajectories from normal

routes – intuitively, an outlier is not similar to normal trajectories

if its “distance” from normal trajectories is larger than a certain

threshold. This method has two shortcomings. First, it is crucial

to set a good value for the threshold, in order to yield accurate

results. However, finding such a value of threshold can be difficult,

because it can depend on the traveling source and destinations.

Second, these solutions, which compute normal routes and identify

outliers based on distance measures, have a high time complexity.

This hinders their use in online outlier detection [1, 8, 17, 23, 37],

which requests anomalous behaviors to be detected in a real-time

manner. These call for a more effective and efficient time-dependent

trajectory outlier detection solution.

Our contributions.Our first goal is to develop an effective time-

dependent outlier detection. This is not easy, because the traffic

conditions are dynamic and diverse among different locations at

different times. Even for the same source and destination points of a

trajectory, the “normal” trajectories may vary across different times

due to the evolving traffic conditions. We tackle this challenge by

developing a deep probabilistic neural network, called DeepTEA.

The novelty of our paper is that we can capture the dynamic traffic

conditions by deriving the latent traffic pattern from the real-time

traffic condition during the traveling time, which is non-trivial.

We maximize the likelihood of observing the trajectories under

the dynamic traffic conditions by optimizing the evidence lower

bound (ELBO). The latent traffic pattern is derived to capture

the dynamic traffic conditions, e.g., {smooth→ congested}. Then,

the time-dependent normal trajectories are obtained based on the

derived latent traffic pattern.

Second, we study how to improve the efficiency of the time-

dependent outlier detection model in order to allow companies

or passengers to be alerted online by abnormal driving behaviors

during a journey [1, 8, 17, 23, 37]. Because time-dependent outliers

can be affected by traffic conditions, which are changing with time,

we need to recompute time-dependent outliers quickly in response

to the changes of traffic. However, this is challenging, because tra-

jectories are typically updated frequently, e.g., 2 - 4 seconds
1
, and

so the outliers need to be computed within a short interval. Here

we make use of a generative network based on the latent traffic

pattern learnt, and maximize the generation of the observed tra-

jectories under the latent traffic pattern. The trajectories which

cannot be generated under the latent traffic pattern are marked as

time-dependent outliers. We further propose an approximate online

detection algorithm (DeepTEA-A), where the latent representation

of the time-dependent route is approximated by a co-training neural

network given the source, destination locations, and traffic condi-

tion at the departure time. This method avoids frequent updates

of latent representation, and only requires constant time cost for

detecting time-dependent outliers in an online mode.

We have performed substantial experiments on two real tra-

jectory datasets against seven existing methods. Compared with

the best time-dependent state-of-the-art method, our model is 19%

more effective and 32 times faster. Our solution is also scalable on

large trajectory datasets.

1
https://outreach.didichuxing.com/appEn-vue/XiAnOct2016?id=8

The rest of this paper is organized as follows. In Section 2, we

present the formal problem definition. In Section 3, we propose

DeepTEA. Section 4 discusses how to detect anomalies in an online

manner. We further propose an approximate algorithm to speed

up the online detection process in Section 5. Section 6 shows the

evaluation results. Section 7 discusses related work. We conclude

in Section 8.

2 PROBLEM DEFINITION
In this section, we first present definitions of the basic concepts.

Then, we give a formal problem definition.

Definition 1 (Trajectory). A point pti is a three-tuple (ti ,x ,y)
that contains a timestamp ti , the latitude x and longitude y of its
current position. A trajectory T is an ordered sequence of points
⟨pt1 , · · · ,pti , · · · ,ptn ⟩ where t1 < . . . < ti < . . . < tn . □

Based on whether the time-dependent sense is considered, the

trajectory outliers can be categorized into two groups: 1) the non-

time-dependent trajectory outlier [1, 18, 23, 25, 37, 42] is the anoma-

lous trajectory that only considers divergence from normal routes;

and 2) the time-dependent trajectory outlier [44, 45] is the anoma-

lous trajectory that diverges from time-dependent normal routes.

Definition 2 (Time-dependent Trajectory Outlier [44, 45]).

Given a trajectory T , the source ST , and destination DT of the tra-
jectory, and its travel time, a time-dependent trajectory outlier is the
one that rarely occurs and is different from other trajectories during
its travel time, i.e., starting at ST at the same departure time and
arriving at destination DT at the same time. □

For example, if one trajectory starts at 10:00 am and arrives at

11:00 am on 1 October 2016 in Figure 1 (a), then it is defined as an

outlier if it rarely occurs and is different from other trajectories

during its travel time, i.e., 10:00 ∼ 11:00 am on 1 October 2016, with

the same source ST and destination DT .
In this work, we focus on detecting time-dependent trajectory

outliers in an online manner.

Problem 1 (Online Time-dependent Trajectory Outlier De-

tection). Given an ongoing trajectory T being generated, the online
detection computes and updates the probability of T being a time-
dependent trajectory outlier in real-time. □

3 THE DEEPTEA MODEL
In this section, we first introduce the framework of DeepTEA. After

that, we explain each component of the model in detail. The key

idea is to learn the latent patterns from both real-time traffic condi-

tions and the trajectory transition. Then, we show the optimization

function which is utilized to maximize the likelihood of trajectory

observations. Finally, we discuss the time complexity of DeepTEA.

3.1 Framework
Figure 2 shows the framework of DeepTEA. It contains an inference

network and a generation network. Given the trajectory T , we
infer the latent traffic pattern q(z |T ) during the travel time (Section

3.2). The trajectory observation τ , which reflects time-dependent

trajectory transition, is utilized to model the latent time-dependent
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route r in the inference network (Section 3.3). After that, the time-

dependent route r is used to generate the trajectory observation τ
(Section 3.4).

!!
!"

!#
$

Inference Generation

Latent Traffic Pattern%&' %&( %&)

… 	+~

	,
Sec. 3.2

Sec. 3.3 Sec. 3.4

… …

{.&'} {.&(} {.&)}

!!
!"

!#

Convolutional LSTM

RNN RNN

Figure 2: Overview of DeepTEA. The notationN denotes the
Gaussian distribution. And the dashed line represents the
process of trajectory generation.

3.2 Latent Traffic Pattern Inference
Before we derive the latent traffic pattern, we first explain the mean-

ing of the latent traffic pattern z. It indicates the dynamic traffic

conditions, e.g., {smooth→ congested→ smooth}, or {congested→

smooth}, during the trip. Then we introduce the challenges and the

algorithm design.

3.2.1 Challenges. Given the trajectory T , we intend to infer the

latent traffic pattern q(z |T ) based on the spatial transition of T ,
e.g., a large step forward transition means the traffic condition

is smooth at the travel time. However, a single trajectory T may

express some random behaviors, e.g., stop for a relaxation, which

could not represent the real traffic pattern. This is the first challenge

about how to represent the real traffic pattern. The second challenge

is that the traffic condition varies across different locations, and

updates dynamically as time changes. Especially, traffic conditions

for different source and destination pairs are very different at a

certain time. Moreover, the traffic condition changes dynamically

during the whole trip. It can be smooth at the beginning and then

turns congested at the end of the trip. It is essential to capture

the traffic condition since it affects time-dependent normal routes

significantly.

3.2.2 Design. To address the first challenge, instead of learning

the latent traffic pattern z from a single trajectory T , we propose
to learn it from the set of trajectories {Tti } at the time ti . Here we
use the time point series to represent the travel time. To organize

the traffic information from {Tti } well, we propose to use a map

grid matrix Zti with the average speed in each grid cell to model

the traffic condition at ti . As we can see from Figure 2, the red

color in the grid matrix means low average speed, and the traffic is

congested at these locations. The green color denotes high average

speed, and the traffic is smooth. While the yellow color means

that the traffic condition is going to be congested, and the average

speed is lower than the green cells but still higher than the red

cells. To address the problem of traffic diversity across different

locations at a certain time, we propose to capture it by a CNNmodel.

For the locations without vehicles, CNN model can learn missing

values from cells with vehicles for them, instead of representing

them as missing cells. As traffic condition changes frequently in

real-time, we use the RNN model to capture the ever-changing

traffic dynamics in order to fix the second challenge. In this way,

the transition behind the traffic condition can be well captured by

the RNN model. Then we use the hidden state of the RNN model to

infer the latent traffic pattern z with a Gaussian distribution. The

combination of CNN and LSTM we used is Convolutional LSTM

[39].

Specifically, we use the dynamic traffic conditions that change

over time to infer the latent traffic pattern z. The intuition is that

traffic condition changes rapidly due to complex real-time factors,

e.g., traffic light, incidents, and peak hours. Therefore, we update

Z as time changes in DeepTEA, and denote it as Zti , which rep-

resents the traffic condition that the trajectory point pti is facing
at time ti . Particularly, we infer the latent traffic pattern z from

the real traffic conditions Z = {Zti ,Zti+1 , · · · ,Zti+n } at the time

that the trajectory points {pti ,pti+1 , · · · ,pti+n } face. For real traffic

condition Z , we obtain the average speed at the time that the tra-

jectory T traversed. In other words, real traffic condition Zti is an
average speed matrix covering the moving condition of the whole

city at ti . Note that Zti and Zti+1 may be very similar if the time

gap of two trajectory points is very short. In this way, we gather

the average speed over time intervals, e.g., 10 minutes, instead of

time points. To alleviate the traffic sparsity issue, we propose to

apply a CNN to propagate traffic conditions from locations with

vehicles to locations with missing data. To capture the dynamic

traffic conditions with different traveling times, we utilize the Re-

current Neural Network (RNN) to model the traffic transition in the

temporal dimension. In this way, both spatial traffic correlation and

temporal transition of traffic dynamics can be captured by f1(Z ) as
follows:

f1(Z ) = RNN(CNN(Z )), (1)

where function f1(·) is modeled by a CNN and an RNN. The CNN

model is applied for each Zti , and then the RNN model is utilized

to learn the traffic transition as time changes.

To maintain the capability of generation and model the uncer-

tainty of traffic condition, we model the latent traffic pattern z given
the real traffic condition Z by following the Gaussian distribution,

which can be utilized to approximate the distribution of latent traf-

fic pattern z given the trajectory T as Equation 2. We denote the

parameters for learning the latent traffic pattern as the set ϕ.

qϕ (z |T ) := qϕ (z |Z ) = N(µZ , diag(σ
2

Z )) , (2)

where the mean µZ and the standard deviation σZ are learned by a

Multilayer Perceptron (MLP) function д1(f1(Z )) during the training
phase. Here the parameter set ϕ = { f1(·),д1(·)}.

In this way, the latent traffic pattern z can be well inferred from

the trajectory T . In the training phase, the parameters in ϕ can be

learned to capture the latent traffic pattern z, which represents the

traffic diversity and dynamics given the trajectory T .
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3.3 Latent Time-dependent Route Inference
3.3.1 Challenges. The trajectory T can represent not only the

location information, but also the latent traffic pattern z between
the transition of two trajectory points. Instead of only maximizing

the likelihood of location information, the combination of location

and latent traffic pattern z is more informative as it can reflect the

trajectory transition under time-dependent traffic conditions.

3.3.2 Design. A trajectory T can not only reflect its location pti ,
but also convey the latent traffic pattern z based on the transition

between two consecutive trajectory points pti−1 and pti . Here we
use o (pti , z) to denote the observation τi behind the trajectory T .
It is challenging to model the combination of the observation pti
and z from the trajectory T . We seek the help of a neural network

to handle the combination of the observation as:

τi = o (pti , z) = f2(pti , z) = NN(pti , z) , (3)

We apply a neural network to learn the observation of pti at the
latent traffic pattern z as:

NN(pti , z) =Wpti +Qz , (4)

where NN(·) is a function withW andQ as parameters to be learned

during the training phase.

Next, we learn the latent time-dependent route r that a trajectory
T traverses. As we explained, the trajectoryT can not only represent

the location information pti , but also indicate the latent traffic

pattern z from the transition between two trajectory points pti−1
and pti . For the meaning of the latent time-dependent route r , it
could be that drivers usually turn to the highway, which is smooth
in rush hours, when the traffic condition is congested in the urban

roads.

The representation of the latent time-dependent route r that

trajectory T traversed can be represented as :

rT ∼ qγ (r |T ) , (5)

where γ represents the parameters for inferring the latent time-

dependent route r .
Based on previous trajectory points and the latent traffic pattern

z, we obtain the transition of the trajectory observation by an RNN

neural network denoted as f3. Here the transition of the trajectory

observation is modeled by the RNN model, i.e., Gated Recurrent

Unit GRU [2].

hi = f3(hi−1, τi ) , (6)

where hi−1 is the hidden state of previous observation τi−1, i.e.,
trajectory point pti−1 with the latent traffic pattern z.

For the uncertainty of trajectory observations, we model qγ (r |T )
by following Gaussian distribution with {µT ,σT } as mean and

standard deviation.

qγ (r |T ) = N(µT , diag(σ
2

T )) , (7)

where we use a neural network д3(hn ) to learn the mean and stan-

dard deviation {µT ,σT }.
To distinguish the normal transition of trajectories under latent

traffic pattern from abnormal ones, we should design a component

to model the latent time-dependent normal route from trajectories,

in which the latent traffic pattern z provides time-dependent traffic

information. Inspired by [23], we utilize Gaussian distribution to

model it as:

pγ (r |k, z) = N(µr , diag(σ
2

r )) , (8)

wherek denotes the latent time-dependent route type, and it follows

a multinomial distribution as:

pγ (k) = Mult(π ) , (9)

where π is the parameter of the multinomial distribution. Then, the

latent time-dependent routes that are close to the means of qγ (r |T )
are time-dependent normal routes.

Then the inference network can infer the latent time-dependent

route r , the latent time-dependent route type k , and the latent

traffic pattern z from the trajectoryT as qγ ,ϕ (r ,k, z |T ). By applying
mean-field approximation, it can be factorized as:

qγ ,ϕ (r ,k, z |T ) = qγ (r |T ) qϕ (z |T ) qγ (k |T ) , (10)

where qγ (k |T ) can be transformed as the distribution of route type

k under the condition of the latent time-dependent route r that

trajectory T traversed:

qγ (k |T ) := pγ (k |rT ) =
pγ (k) pγ (rT |k)∑K

i=1 pγ (ki ) pγ (rT |ki )
, (11)

where K is a hyperparameter that indicates the number of route

types.

Hence, the inference network can infer the latent time-dependent

route r from the observation o (pti , z) of the trajectory T . The
parameters γ = { f2(·), f3(·),д3(·), π , µr ,σr } for inferring the latent

time-dependent route can be learned in the training phase.

3.4 Trajectory Observation Generation
The goal of trajectory observation generation is to maximize the

probability of generating trajectory observation τi , i.e., o (pti , z),
based on its inferred latent time-dependent route r , the time-dependent

route type k , and the latent traffic pattern z. We formalize the proba-

bility as pθ (T |r , z,k), where θ represents the parameters for genera-

tion. Symmetrically, we design an RNN neural network to generate

the trajectory observation τi , i.e., o (pti , z), of T as :

ηi = f4(τi , ηi−1) = f4(o (pti , z), ηi−1)

= RNN(o (pti , z), ηi−1) , i = 1, 2, · · · ,n, and η0 = r ,
(12)

where the initial input of the RNN is η0, which follows qγ (r |T ).
Starting from η1, the inputs become the last hidden state ηi−1 and
the trajectory observation o (pti , z). Therefore, the observation τi ,
i.e., pti at the latent traffic pattern z, can be generated as:

τi = o (pti , z) ∼ pθ (o (pti , z)| o (pt1:i−1 , z), r )

= pθ (τ |ηi−1) = Mult(softmax(д4(ηi−1))),
(13)

whereд4(·) is a function tomap the output to the size of themap grid.

The softmax function is used to make the sum of the probability

to one. After that, the trajectory observation τi can be generated

from the multinomial distribution.

Therefore, the trajectory observation τi , i.e., o (pti , z), can be

well generated based on the latent time-dependent route r , route
type k , and latent traffic pattern z. We mark the parameters for

generation as the set θ = { f4(·),д4(·)}. These parameters can be

learned in the training step.
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Algorithm 1: Training of the DeepTEA model

Input :The trajectory T
Output :model parameters ϕ = {{f1(·), д1(·)},

γ = {f2(·), f3(·), д3(·), π , µr , σr }, θ = {{f4(·), д4(·)}
1 Construct the real traffic condition Z from trajectory set {T }

2 Construct traffic condition transition f1(Z ) by Equation 1

3 Draw latent traffic pattern z by Equation 2 and д1(·)
4 for Every ti in the time that trajectory T traversed do
5 Obtain τi by f2(pti , z) as Equation 4

6 Calculate hi by f3(hi−1, τi )) in Equation 6

7 end
8 Draw latent time-dependent route r from qγ (r |T ) by д3(hn )
9 Construct pγ (r |k, z) with µr , σr by Equation 8

10 Obtain pγ (k ) with π by Equation 9

11 Construct qγ (k |T ) by Equation 11

12 Calculate trajectory transition based on latent traffic pattern by

ηi = f4(τi , ηi−1)
13 Draw τi from a Multinominal distribution with the probability

based on softmax(д4(ηi−1))
14 Construct ELBO = L(ϕ, γ , θ ;T ) of the marginal log-likelihood by

Equation 16

15 Optimize L(ϕ, γ , θ ;T ) to update ϕ, γ , θ
16 return ϕ, γ , θ

3.5 Optimization
As we discussed, the trajectory observation can not only reflect

the location information, but also convey the latent traffic pattern

based on the transition between two consecutive trajectory points.

Therefore, the objective is to maximize the marginal log-likelihood

of the observed trajectory as:

logpθ (T
(1),T (2), · · · ,T (N )) := logpθ (τ

(1),τ (2), · · · ,τ (N )) . (14)

We optimize the marginal log-likelihood by maximizing the

evidence lower bound (ELBO) [15] of the marginal log-likelihood.

logpθ (T ) ≥ ELBO = L(ϕ,γ ,θ ;T ) . (15)

The ELBO of the marginal log-likelihood of trajectory T is cal-

culated as:

L(ϕ,γ ,θ ;T ) = Eqγ ,ϕ (r,k,z |T ) [log
p(ϕ,γ ,θ (r ,k, z,T )

qγ ,ϕ (r ,k, z |T )
]

= − Eqγ (r |T ) DKL (qγ (k |T ) | | pγ (k))

− Eqγ (k |T ) DKL (qγ (r |T ) | | pγ (r |k, z))

− DKL (qϕ (z |T ) | | pϕ (z)) + Eqγ ,ϕ (r,k,z |T ) logpθ (T |r , z,k) ,

(16)

where pϕ (z) is the prior probability of the latent traffic pattern z.
The generative network logpθ (T |r , z,k) can be calculated as:

logpθ (T |r , z,k) =
n∑
i=1

logpθ (τi |τ1:i−1, r , z,k) (17)

The overall process of training is shown in Algorithm 1. During

training, the model parameters are learned by optimizing the ELBO

from the trajectoryT . Then these learned parameters can be utilized

for online anomaly detection in the following sections.

3.6 Complexity Analysis
The overall complexity of training DeepTEA is dominated by O(N ·

(dZ1
dZ2

V + n)), where N is the number of trajectories, dZ1
and dZ2

are the sizes of Z , V is the average number of time intervals, and n
is the average length of trajectories.
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Figure 3: Overview of online detection by DeepTEA.

4 ONLINE TRAJECTORY OUTLIER
DETECTION BY DEEPTEA

Based on the learned parameters from Algorithm 1, the online

detection updates the anomaly score when the next trajectory ob-

servation τi+1 comes in real-time. The process should be able to

calculate rapidly once the trajectory updates on the fly. In this case,

the anomaly score can be updated even the trip has not been fin-

ished. This is beneficial for both drivers and passengers. On the one

hand, passengers can take early action once they are detoured by

dishonest drivers. On the other hand, drivers can show evidence

from our model to passengers who have complaints about the route

choices during the trip. The earlier the anomaly can be detected,

the less the loss is.

4.1 Online Detection by Generation
Figure 3 shows the process of online anomalous trajectory detection.

We detect the outlier by generating the observed trajectories based

on learned parameters ϕ,γ ,θ . Specifically, the distribution qγ (r |T )
of the latent time-dependent route can be calculated based on pa-

rameters in γ . And the latent traffic pattern z can be obtained based

on parameters in ϕ with Z , which is aggregated from the trajectory

set {T }. Given the k-th meanuk of components inqγ (r |T ), we apply
an RNN neural network to generate the trajectory observation as:

ηi = f4(τi , ηi−1) = RNN(τi , ηi−1) , i = 1, 2, · · · ,n, and η0 = uk ,
(18)

where the initial input of the RNN is η0, which is set as uk . Starting
from η1, the inputs become the last hidden state ηi−1 and the trajec-
tory observation τi , i.e., o (pti , z). Therefore, τi+1 can be generated

as:

pθ (τi+1 | τ1:i , uk ) = softmax(д4(ηi−1)), (19)

where д4(·) is the function to map the output to the size of the

map grid. The softmax function is used to make the sum of the

probability to one.
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Algorithm 2: Online detection by the DeepTEA

Input :The trajectory T ,
learned model parameters ϕ = {{f1(·), д1(·)},
γ = {f2(·), f3(·), д3(·), π , µr , σr },
θ = {{f4(·), д4(·)}

Output :The anomaly score of trajectory T
1 Construct the real traffic condition Z from trajectory set {T }

2 for Every trajectory observation τi+1 that comes in real-time do
3 if the time interval of τi+1 is different from the time interval of τi

then
4 Update the latent traffic pattern z from Z based on learned

parameters ϕ
5 Obtain qγ (r |T ) based on learned parameters γ
6 end
7 largest_likelihood = 0.0

8 for the k -th mean uk of the components in qγ (r |T ) do
9 Calculate ηi based on Equation 18

10 Obtain pθ (τi+1 | τ1:i , uk ) based on д4(·)
11 Obtain likelihood of previous trajectory observations

pθ (τ1:i |uk )
12 Update likelihood l of trajectory containing the new

observation τi+1 by exp [
logpθ (τ1:i |uk )pθ (τi+1 |τ1:i , uk )

i + 1
]

13 if l > largest_likelihood then
14 largest_likelihood = l
15 end
16 end
17 sa (τ1:i+1) = 1 – largest_likelihood

18 return sa (τ1:i+1) of the trajectory observation τ1:i+1
19 end

Given the learned qγ (r |T ) and latent traffic pattern z, the anom-

aly score sa (τ1:i ) of the trajectory T given in the real-time can be

calculated as one minus the generation likelihood of the trajectory

observation τ1:i , i.e., {τ1 → τ2 → · · · → τi }, as:

sa (τ1:i ) = 1 − argmax

k
exp [

∑n
i=1 logpθ (τi |τ1:i−1,uk )

n
] (20)

where uk is the mean of the k-th component in the distribution

qγ (r |T ) of the latent time-dependent route r .
In the online setting, given the previous trajectory observation

τ1:i , the anomaly score of the next incoming trajectory observation

τ1:i+1 can be updated based on the previous trajectory τ1:i as:

sa (τ1:i+1) = 1−argmax

k
exp [

logpθ (τ1:i |uk )pθ (τi+1 |τ1:i ,uk )

i + 1
] (21)

The overall process of online detection is shown in Algorithm 2.

The inputs are the trajectory T , and the learned model parameters

ϕ,γ and θ from the training in Algorithm 1. For the newly coming

trajectory observation τi+1, we update the latent traffic pattern z
if it changed. Then we calculate the likelihood of observing the

trajectory observation τ1:i+1 based on τ1:i . Finally, the anomaly

score is returned.

4.2 Complexity Analysis
The overall complexity of detection is dominated by O(dZ1

dZ2
),

where dZ1
and dZ2

are the sizes of Z .

5 THE DEEPTEA-A MODEL: APPROXIMATE
ONLINE DETECTION

5.1 Approximation Algorithm
5.1.1 Challenge. The online updating of anomaly score for τi+1
based on τ1:i replies on the calculation of convolution for traffic

condition matrixZ at the time ti+1, which could be time-consuming

for the large road networks. It could make the online detection

process slow. As a large volume of trajectories is generated (e.g.,

2-4 seconds
1
) dramatically in real-time, the faster the detection

process, the less the delay is.

5.1.2 Design. Inspired by [23], we further propose an approxi-

mate algorithm to speed up the online anomalous trajectory detec-

tion. We propose an algorithm to utilize the traffic condition matrix

Z at the time interval of τ1 as an approximation of traffic condition

during the trip. In this way, the convolution of traffic condition

matrix Z only needs to be calculated once for the first trajectory

observation τ1. For the online update of anomaly score for τi+1, it
does not need convolution calculation anymore.

Given a source ST and a destination DT , we draw the best latent

route type k from q(k |ST ,DT , zST ) to approximate the best latent

route pattern uk , which needs to be found from k means of qγ (r |T ),
where ZST is the traffic condition when the trip starts. In this way,

the best latent route type k can be obtained once the ST ,DT and

ZST are given when the trip starts. Starting from the second trajec-

tory observation, the best latent route pattern does not need to be

recalculated anymore for updating the anomaly score.

For the source location ST , the hidden state of the traffic condi-

tion ZST can be calculated as:

f1(ZST ) = CNN(ZST ), (22)

Then zST can be drawn from the probability qϕ (zST |ZST ) as:

qϕ (zST |ZST ) = N(µZST ,diaд(σ
2

ZST
)) , (23)

After that, τST can be obtained by f2(·) as:

τST = f2(ST , zST ) = NN(ST , zST ) =WST +QzST , (24)

where f2 is the function withW and Q as parameters. Similarly,

τDT can be calculated with the same process.

After that, q(k |ST ,DT , zST ) can be modeled by an MLP neural

network as:

q(k |ST ,DT , zST ) = softmax(f5(τST ,τDT )) , (25)

The softmax function is used to normalize the probability, and f5 is
the MLP neural network. We mark the parameters for approxima-

tion as δ = { f5(·)}.
Instead of finding the largest likelihood of observing τ by k

times computation to obtain the best route type k as Equation 20,

one straightforward way is to find the best route type k directly

from the trajectory T by qγ (k |T ). Therefore, the distribution of

q(k |ST ,DT , zST ) and qγ (k |T ) in Equation 11 should be as close as

possible. Here we apply the cross entropy tominimize the difference

between these two distributions as:

lk = −

K∑
k=1

qγ (k |T ) logq(k |ST ,DT , zST ) , (26)
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Algorithm 3: DeepTEA-A: approximate online detection

Input :The trajectory T ,
the source location ST ,
the destination location DT ,
learned model parameters ϕ = {{f1(·), д1(·)},
γ = {f2(·), f3(·), д3(·), π , µr , σr },
θ = {{f4(·), д4(·)},
δ = {f5(·)}

Output :The anomaly score of trajectory T
1 Construct the real traffic condition ZST from trajectory set {T }

when the trip starts at ST
2 Calculate the hidden state of ZST by a CNN based on Equation 22

3 Draw the latent traffic pattern zST from a Gaussian distribution

based on Equation 23

4 Construct τST and τDT based on Equation 24

5 Obtain the best k with the highest probability in Equation 25

6 Obtain the best latent time-dependent route uk by k
7 for Every trajectory observation τi+1 that comes in real-time do
8 Calculate ηi based on Equation 18

9 Obtain pθ (τi+1 | τ1:i , uk ) based on д4(·)
10 Obtain likelihood of previous trajectory observations pθ (τ1:i |uk )
11 Update likelihood lτ1:i+1 of trajectory containing the new

observation τi+1 by exp [
logpθ (τ1:i |uk )pθ (τi+1 |τ1:i , uk )

i + 1
]

12 sa (τ1:i+1) = 1 –lτ1:i+1
13 return sa (τ1:i+1) of the trajectory observation τ1:i+1
14 end

The cross entropy lk is co-trained with ELBO in Equation 16

in the training phase. For the online detection phase, the best k is

obtained from q(k |ST ,DT , zST ) with the highest probability. Then

the best latent time-dependent routeuk can be obtained accordingly.

And it only needs to be calculated once for the first trajectory

observation τ1. Then uk is utilized for the anomaly detection for

the next trajectory observations starting from the second trajectory

observation. In this way, the convolution operation does not need

to be calculated for τ2:i , which saves computation costs for online

detection.

Note that the training phase of the approximate algorithm is

different from Algorithm 1. Firstly, the traffic conditions used are

quite different, in which only the real traffic condition ZST is con-

sidered for the approximation. Second, we add a co-training term,

i.e., Equation 26, to approximate qγ (k |T ) with q(k |ST ,DT , zST ). Af-
ter training, we obtain the learned model parameters ϕ,γ ,θ and δ .
The overall process of approximate online detection is shown in

Algorithm 3. It first calculates the latent traffic pattern zST from

ZST . Then it obtains the best latent time-dependent route uk given

the real traffic condition ZST , the source location ST , and the desti-

nation location DT . The best latent time-dependent route uk only

needs to be calculated once when the trip starts. Then the online

anomaly score is updated based on pθ (τ1:i |uk ).

5.2 Complexity Analysis
The overall complexity of approximate online detection when new

trajectory observation comes is O(dht (dht + dτi )) . The term is the

cost of RNN transition for new trajectory observation τi+1. Since
dht and dτi are constant, the time complexity of approximation

is O(1), while the time complexity of DeepTEA is dominated by

O(dZ1
dZ2

) in Section 4.

6 EXPERIMENTS
In this section, we evaluate our model with extensive experiments.

We first show the experimental setup, which contains datasets, pre-

processing, competitors, hyperparameter tuning, and performance

metric. Then we evaluate the effectiveness and efficiency of our

model and competitors.

6.1 Experimental Setup
6.1.1 Datasets. We evaluate our method on two real datasets.

• The first dataset (XN) is an open GPS data set
2
, which contains

GPS data in Xi’an around second ring road region from October 1

to October 7 in 2016 in China.

• The second dataset (CD) is an open GPS data set
2
, which

contains GPS data in Chengdu around second ring road region

from October 1 to October 7 in 2016 in China.

Note that XN andCD contain roadswith different road structures,

not only the ring roads.

6.1.2 Preprocessing. Following previous work [1, 21, 23, 42, 44, 45],
the geographical space is partitioned into grids. We use 100m ×

100m grids on two datasets.We filter out (S,D) pairs that have fewer
than 10 trajectories. The lengths of trajectories should be larger

than 30. The time interval of traffic conditions is 20 minutes. The

statistics of the filtered trajectories on two datasets are summarized

in Table 1.

Table 1: Statistics of the filtered trajectories on two datasets.

Dataset # Trajectory Points # Trajectories

XN 1,446,470 13,515

CD 12,694,201 108,510

There is no available labeled open trajectory dataset for out-

lier detection. Some of the previous work manually labels outliers

in their work [1, 25, 42, 44, 45]. Since manual efforts are limited

and expensive, the total number of trajectories is limited to a few

numbers, e.g., only 1,300 trajectories in the evaluation of [44, 45].

Therefore, we follow the anomaly generation strategy as [3, 23, 43]

to generate ground truth with a large number of trajectories.

As [23], we apply two perturbation ways to generate two kinds

of outliers, which are detour (D) and route-switching outliers (RS).
Detour outliers are generated by two parameters, which are detour

offset d and the proportion of detour segments α . For example,

d = 5 and α = 0.1 means that 10% of a trajectory is offset 5 grid

cells. The route-switching outliers are generated by switching from

one route to another with a parameter β to control the switching

location . For example, β = 0.2 means the beginning 20% of the

first route is concatenated with the latter 80% of the second route.

We inject outliers in 5% of trajectories as [23]. Note that in order to

generate time-dependent outliers, we randomly sample trajectories

from the same (S,D) pairs with the same travel time, then inject

two kinds of outliers into sampled trajectories. Since trajectories

2
http://outreach.didichuxing.com/research/opendata/
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with the exact same travel time are very few, we allow a relaxation

ϵ in the travel time. In this evaluation, we set ϵ to 20 minutes.

6.1.3 Competitors. We compare our model with seven other meth-

ods, which can be categorized into two groups. More details can be

found in Section 7.

Non-time-dependent trajectory outlier detectionmethods:
In this category, there are two kinds of methods. The first kind of

methods, which are IBAT [42] and DBOTD [25], utilizes anomaly

score function to distinguish outliers from popular routes based

on distance or density metrics. Another kind of methods applies

learning-based approaches, which can capture features behind

trajectories automatically by optimization. They are LODA [34],

DB-TOD [37], GM-VSAE [23], and its extension SD-VSAE [23].

Among them, LODA [34], DB-TOD [37], GM-VSAE [23] and SD-

VSAE [23] support online detection.

To make the comparison fair, we adapt the non-time-dependent

normal routes based methods to time-dependent normal routes

based ones. Particularly, instead of directly finding normal routes

from (S,D) pairs ignoring the travel time, we extract time-dependent

normal routes from trajectories with the same source and desti-

nation under the same travel time. Then outliers are detected by

comparing testing trajectories with time-dependent normal routes.

Time-dependent trajectory outlier detectionmethods: The
state-of-the-art model for time-dependent trajectory outlier detec-

tion is TPRRO [45], which is an extension for improving the ef-

ficiency of TPRO [44]. It utilizes time-dependent edit distance to

distinguish outliers from time-dependent popular routes.

6.1.4 PerformanceMetric. Weuse a standardmetric, named Precision-

Recall AUC (PR-AUC), to evaluate the performance of models as

in previous work [23, 43]. As outliers in trajectories are skewed,

PR-AUC is a standard metric to evaluate the performance of these

skewed datasets [23, 43]. We report the average PR-AUC among all

source and destination pairs.

6.1.5 Hyperparameter Tuning. We construct training, validation,

and testing sets by randomly partitioning two datasets with the

ratio of 8:1:1.We run 5 times, and report the average PR-AUC results.

We conduct hyper-parameter tuning by using a Bayesian optimizer

for all the methods on all datasets. The scopes of hyper-parameters

are learning rate from a range [0.0001, 0.1], regularization [0.0001,

0.1], decay rate [0.9, 1.0], embedding size of trajectory points from

a set {32, 64, 128, 256, 512}, RNN hidden size {32, 64, 128, 256, 512},

negative sample size {32, 64, 128, 256, 512}, MLP hidden size {32,

64, 128, 256, 512}, the number of Gaussian components k {5, 10,

20}. For the methods with threshold, we use the range of threshold

candidates in their original paper [25, 37, 42, 45] to find the best

threshold.

6.2 Effectiveness Evaluation
We evaluate the effectiveness of all methods on two anomalous

types, i.e., detour (D) and route-switching (RS) anomalies, w.r.t.

the observed ratio ρ. Moreover, we discuss the effectiveness of

our proposed approximate online detection method DeepTEA-A in

Section 6.2.4.

We follow the setting of ρ in [23] as 0.1, 0.5, and 1.0 for detour

anomalies on all methods. For route-switching anomalies, we set ρ

= {0.5, 1.0} for β = 0.3, ρ = {0.7, 1.0} for β = 0.5, and ρ = {0.9, 1.0} for

β = 0.7 as [23]. Note that we report average results over five runs

for all methods.

6.2.1 Varying Observed Ratios. We evaluate the effectiveness of

online detection w.r.t. the observed ratio ρ, where ρ = 0.1 denotes

only 10 % of a trajectory is observed, and ρ = 1.0 means the com-

pleted trajectory is observed for anomaly detection. We evaluate

the average PR-AUC of varying observation ratios for all methods

on all datasets in Tables 2 and 3. We observe that:

(1) For GM-VSAE, SD-VSAE, and our model, the values of PR-

AUC increase when the observation ratio ρ increases on the XN

and CD datasets. It means that more observations are beneficial

to encoder-decoder based approaches. And the values of PR-AUC

become the largest ones when the full observations are complete,

i.e., ρ=1.0.
(2) For other methods, most values of PR-AUC increase when

the observation ratio ρ increases on the two datasets. We find that

more observations could improve the effectiveness to some degree

for these methods.

(3) Our model DeepTEA consistently outperforms other com-

petitors w.r.t. all observation ratios ρ. For example, DeepTEA is

17.52% more accurate than other competitors on average on the XN

and CD datasets. It validates the effectiveness of considering latent

traffic patterns for time-dependent outlier detection.

6.2.2 Detection of Detour Anomalies. We evaluate the effectiveness

of detecting detour outliers for all methods on two datasets. We

follow the settings of the perturbation parameters d and α , and
the observed ratio ρ as [23] in the evaluation. From Tables 2, 3, we

make the following observations:

(1) For full observed trajectories, i.e., ρ = 1.0, the values of PR-

AUC when d=3, α = 0.3 are the largest ones in detour anomalies

detection on the XN and CD datasets. It means that compared with

the detour offset d , the proportion of detour segment α plays a

more important role in the detection performance. Second, given

the same proportion of detour segment α , a larger detour offset d
usually leads to higher PR-AUC values. It is consistent with the

intuition that a larger degree of detour usually has a larger detour

deviation from the normal routes. Third, learning-based methods

usually perform better than metric-based methods. The reason

is that instead of finding normal routes by density or distance

metrics, the learning-based methods could learn the features behind

trajectories, which are beneficial for outlier detection. Fourth, our

model outperforms all other competitors when full trajectories are

observed. It justifies the effectiveness of latent traffic patterns when

detecting time-dependent outliers. For example, our model is 23.3%

more effective than other methods on average on the CD dataset.

(2) For partially observed trajectories, i.e., ρ < 1.0, learning-based

methods usually perform better thanmetric-basedmethods. Second,

our model performs the best compared with other learning-based

competitors when ρ = 0.1 and 0.5. It shows that with partially

observed trajectories, borrowing traffic conditions during the travel

time plays an important role for time-dependent outliers detection.

6.2.3 Detection of Route-switching Anomalies. We evaluate the

effectiveness of detecting route switching outliers for all methods on

two datasets. We follow the settings of the perturbation parameter

1500



Table 2: Effectiveness on XN dataset. For each method, we report average results over five runs.

Detour anomalies Route-switching anomalies

Perturb params d=3; α=0.1 d=3; α=0.3 d=5; α=0.1 β=0.3 β=0.5 β=0.7

Observed ratio ρ 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.5 1.0 0.7 1.0 0.9 1.0

IBAT 0.290 0.210 0.213 0.238 0.221 0.261 0.255 0.217 0.245 0.308 0.302 0.293 0.303 0.282 0.294

DBOTD 0.571 0.580 0.576 0.609 0.619 0.647 0.589 0.500 0.550 0.471 0.547 0.590 0.590 0.599 0.610

LODA 0.608 0.610 0.619 0.623 0.625 0.627 0.605 0.607 0.613 0.423 0.533 0.624 0.627 0.622 0.629

DB-TOD 0.526 0.568 0.618 0.568 0.585 0.640 0.544 0.578 0.626 0.470 0.530 0.629 0.638 0.623 0.631

GM-VSAE 0.627 0.854 0.878 0.816 0.929 0.929 0.667 0.863 0.874 0.472 0.549 0.626 0.641 0.726 0.739

SD-VSAE 0.644 0.853 0.889 0.810 0.916 0.915 0.666 0.878 0.863 0.451 0.518 0.622 0.641 0.725 0.738

TPRRO 0.559 0.573 0.573 0.630 0.630 0.632 0.586 0.593 0.594 0.472 0.542 0.610 0.617 0.589 0.591

DeepTEA 0.676 0.855 0.901 0.874 0.946 0.954 0.672 0.889 0.895 0.473 0.552 0.639 0.665 0.727 0.742

Table 3: Effectiveness on CD dataset. For each method, we report average results over five runs.

Detour anomalies Route-switching anomalies

Perturb params d=3; α=0.1 d=3; α=0.3 d=5; α=0.1 β=0.3 β=0.5 β=0.7

Observed ratio ρ 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.5 1.0 0.7 1.0 0.9 1.0

IBAT 0.229 0.248 0.345 0.185 0.222 0.343 0.220 0.234 0.349 0.275 0.361 0.283 0.356 0.325 0.342

DBOTD 0.554 0.529 0.536 0.537 0.535 0.542 0.503 0.510 0.514 0.533 0.543 0.556 0.570 0.579 0.581

LODA 0.599 0.596 0.598 0.587 0.595 0.594 0.600 0.599 0.591 0.592 0.594 0.587 0.589 0.591 0.592

DB-TOD 0.526 0.568 0.618 0.568 0.585 0.640 0.544 0.578 0.626 0.580 0.630 0.629 0.638 0.623 0.631

GM-VSAE 0.652 0.834 0.853 0.851 0.882 0.873 0.660 0.837 0.842 0.601 0.703 0.753 0.745 0.767 0.752

SD-VSAE 0.651 0.830 0.845 0.852 0.883 0.880 0.660 0.834 0.850 0.590 0.700 0.743 0.731 0.773 0.760

TPRRO 0.579 0.592 0.593 0.585 0.600 0.602 0.583 0.585 0.591 0.571 0.585 0.571 0.586 0.579 0.585

DeepTEA 0.664 0.842 0.879 0.853 0.911 0.922 0.675 0.858 0.881 0.606 0.754 0.791 0.801 0.826 0.827

β and observed ratio ρ as [23] in the evaluation. From Tables 2, 3,

we make the following observations:

(1) Detection effectiveness of route-switching anomalies is lower

than detour anomalies on the XN and CD datasets. The reason is

that the anomalies of route-switching are not that significant in

the sense of shape, since they are formed by two existing routes

in the trajectory data. On the other hand, detour anomalies do not

exist in the trajectory data. Therefore, it is more difficult to detect

route-switching anomalies.

(2) For complete trajectories, i.e., ρ = 1.0, there is a trend that

larger split location β leads to higher values of PR-AUC for full

observed trajectories in most methods, i.e., GM-VSAE, SD-VSAE,

and our model on the XN and CD datasets. Second, learning-based

methods usually have better PR-AUC values on the detection of

route-switching anomalies for complete trajectories. It shows the

benefits of learned complex features from trajectories for outlier

detection. Third, our model performs the best for detecting route-

switching anomalies given complete trajectories. It verifies the

effectiveness of learning latten traffic patterns behind the route-

switching anomalies during travel time. For example, our model is

17.4% more effective than other competitors on average on the CD

dataset.

(3) For partially observed trajectories, i.e., ρ = 0.5, 0.7, 0.9, the

performance increases when ρ increases from 0.5 to 0.9 in most

methods on the XN and CD datasets. It shows that observing more

trajectories is beneficial for route-switching anomalies detection.

Second, learning-based methods work better than metric-based

methods for partial trajectories observed in route-switching anom-

alies. Third, our model also performs better than other learning-

based methods for route-switching anomaly detection with partial

trajectories.

6.2.4 Effectiveness of Approximation. We evaluate the effective-

ness of DeepTEA-A on two anomalous types, i.e., detour (D) and

route-switching (RS) anomalies in Figure 6. We set the perturbation

parameters as d = 3, α = 0.3 for detour (D), and β = 0.3 for route-

switching (RS) outlier as in the evaluation of [23]. We observed

that:

(1) There is a slight drop in the values of PR-AUC on the XN and

CD datasets for DeepTEA-A compared with DeepTEA, i.e., 1.16%

on average. It means that with the latent time-dependent route

conditioned on only source, destination locations, and the traffic

condition at the departure time, the performance slightly drops for

time-dependent outlier detection in both two anomalous types D

and RS.

(2) The performance gap on CD is less than the gap on XN for

DeepTEA-A. For example, the average drop is 0.94% on CD, while

1.37% on XN. It may be the case that traffic condition on the CD

dataset is more dense than it on XN dataset, e.g., around 50% of

traffic condition is available on the CD dataset, while only 33% of it

is available on the XN dataset. Since denser traffic conditions can

reflect more accurate traffic flows, more accurate latent traffic pat-

terns could be learned based on that. Therefore, the performance of

time-dependent outlier detection based on denser traffic conditions

could be better.
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(3) The performance of DeepTEA-A increases when the observed

ratio ρ increases. It confirms that more observed trajectories can

give more accurate detection results for approximate method on

both XN and CD datasets.

6.2.5 Effectiveness w.r.t. Time Interval Length. We evaluate the ef-

fectiveness w.r.t. time interval length. In Figure 8, we show the

PR-AUC w.r.t. different time intervals on Detour anomalies with

d=3 and α = 0.1 on CD dataset. Note that the trends on other param-

eter settings are similar as the trend in Figure 8. We can find that

when the time interval is small, e.g., 5 minutes, the PR-AUC values

are also small. When the time intervals equal 15 or 20 minutes, the

PR-AUC values achieve the larger ones. Then PR-AUC values drop

down when the time intervals are further enlarged. The reason is

that smaller time intervals may lead to a very sparse speed matrix,

which can not well capture the traffic condition. On the other hand,

when the time intervals are very large, the corresponding speed

matrix can not well reflect the changing of traffic conditions even

though they are denser.

6.3 Efficiency Evaluation
We use GeForce GTX 1080 Ti 11 GB GPU for evaluation.

6.3.1 Overall Detection Efficiency. We evaluate the average detec-

tion time of one trajectory with the full observation, i.e., ρ=1.0, of
all methods on all datasets in Figure 4 (d). Note that the y-axis is

in a logarithmic scale. From Figure 4 (d), we make the following

observations:

(1) DB-TOD detects outliers in the fastest speed on both XN and

CD datasets. The reason is that DB-TOD learns the parameters with

a linear function by maximizing the likelihood in the training phase.

And the learned parameters only require a fast linear operation in

the online detection phase, which only depends on a small number

of parameters in their model.

(2) The methods LODA, SD-VSAE, and our approximation ver-

sion DeepTEA-A perform faster than other methods except for only

DB-TOD. The reason is that LODA ensembles some weak classifiers,

which are fast linear functions. As DB-TOD, the linear functions

are very efficient for online detection. And the number of linear

functions is not large. For SD-VSAE, it reduces the computation cost

by replacing k times most likely latent route computation with only

one time calculation by source and destination locations. The com-

putation cost of online detection for SD-VSAE is O(1). Although

our approximation method considers more information in traffic

conditions during the travel time, we reduce its time cost by ap-

proximating the latent traffic pattern based on the traffic condition

at the departure time. The time cost of online detection for our

approximation method is also O(1).

(3) Most metric-based methods work slower for online detection,

e.g., DBOTD, IBAT, and TPRRO. They usually require finding the

normal time-dependent normal routes from the dataset for given

source, destination locations, and travel time based on density or

distance metrics. However, these steps are usually time-consuming

for online detection. They need to first extract time-dependent

normal routes and then compare the testing trajectory with the

time-dependent normal routes by the pre-defined threshold.

(4) The detection time of the approximation method DeepTEA-

A is faster than DeepTEA. The reason is that we reduce the time

cost of our standard method by learning the parameters for latent

traffic patterns based on only the traffic condition at the departure

time with a co-training network in the training phase. The learned

parameters can be directly used to detect the outliers online without

updating the latent traffic pattern when the trajectories move on

the fly.

6.3.2 Detection Scalability. We evaluate the average detection time

of one trajectory with different observed ratios ρ accumulated

during detection for all methods on all datasets in Figure 4 (a-b).

We set ρ = {0.2, 0.4, 0.6, 0.8, 1.0} as [23]. From Figure 4 (a-b), we

make the following observations:

(1) DB-TOD runs the fastest among all methods for detection

with all observation ratios ρ. The reason is that it only requires

a fast linear computation, which only depends on the number of

parameters in the linear function.

(2) The approximation method DeepTEA-A detects faster than

our standard method DeepTEA in all observation ratios ρ. The
reason is that the time cost of DeepTEA-A is O(1), while DeepTEA

requires O(dZ1
dZ2

) computation cost.

(3) The detection time increases when the observation ratio ρ
increases on both XN and CD datasets. It is obvious that more

trajectories observed require more time to calculate the anomaly

score.

6.3.3 Training Scalability. As metric-based methods do not involve

a training phase, we evaluate the training scalability on deep-

learning-based methods: GM-VSAE [23], and its extension SD-
VSAE [23] and our models as the setting of the training scalability

evaluation in [23]. We evaluate their training scalability with re-

spect to the number of trajectories in Figure 4 (c). We vary the size

of training trajectories by sampling from the XN dataset with the

range from 1,000 to one million. For the sizes that exceed the total

training size in the XN dataset, we randomly sample multiple times

until the sizes satisfy our required numbers. We report the average

training time of one epoch for all methods. We make the following

observations from Figure 4 (c):

(1) GM-VSAE, SD-VSAE, and our models are scalable on vast

trajectories. It shows that these models are linear w.r.t. the size of

training trajectory data. Therefore, it is feasible to train the large

size trajectories with a reasonable time cost.

(2) The approximation method DeepTEA-A requires more time

than DeepTEA to a slight degree. The reason is that the approxi-

mation method requires an additional co-training phase with an

MLP neural network. The parameter learning requires extra time

to train in the training step.

(3) GM-VSAE needs less training time than other methods. For

GM-VSAE, it contains steps, e.g., the Gaussian mixture distribution

for the latent pattern. For our model, we incorporate even more

components, e.g., the latent pattern behind the traffic condition

during the travel time. These more steps need more time to train.

6.3.4 Efficiency v.s. Accuracy. We show the tradeoff between PR-

AUC and detection time on testing datasets on XN and CD datasets

in Figure 7. For the detection time at the y-axis, the lower the place

of the method is, the faster the detection time of the method is.
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 0.4

 0.6

 0.8

 1

D
0.1

D
0.5

D
1.0

RS
0.5

RS
1.0

P
R

-A
U

C

ρ

(a) XN

DeepTEA DeepTEA-A

 0.4

 0.6

 0.8

 1

D
0.1

D
0.5

D
1.0

RS
0.5

RS
1.0

P
R

-A
U

C

ρ

(b) CD

Figure 6: Effectiveness of DeepTEA-A on (a) XN; (b) CN.

 0

 0.3

 0.6

 0.2  0.4  0.6  0.8D
et

ec
ti

o
n

 T
im

e 
(s

)

PR-AUC

(a) XN

LODA
IBAT

DBOTD
DB-TOD

GM-VSAE
SD-VSAE

TPRRO
DeepTEA

DeepTEA-A

 0

 0.3

 0.6

 0.4  0.6  0.8

D
et

ec
ti

o
n

 T
im

e 
(s

)

PR-AUC

(b) CD

Figure 7: PR-AUC v.s. detection time on (a) XN; (b) CN.

For the PR-AUC at the x-axis, the closer to the right, the better

the effectiveness of the method is. We found that our approxima-

tion method DeepTEA-A has comparable PR-AUC compared with
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Figure 8: PR-AUC w.r.t. time intervals.

DeepTEA, which achieves the best PR-AUC values, while the de-

tection time of DeepTEA-A is still fast. Compared with SD-VSAE,

which has a similar detection time, DeepTEA-A has a better PR-AUC

value than SD-VSAE.

6.4 Case Study
We show one case study to illustrate outlier behaviors during dif-

ferent travel times. In Figure 5 (a – f), all trajectories are real world

trajectories, and we do not inject any outliers in the trajectories in

this case study. We use the trained model to detect time-dependent

outliers in these real world trajectories, and show the detected time-

dependent outliers in red color, while the normal trajectories in

blue color. In each subfigure a – f, the upper and bottom ones are

from the same source S and destination D during different travel
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times. For example, the upper place of Figure 5 (a) shows the trajec-

tories during 4th October 7:20 ∼ 7:40 am, while the bottom place of

Figure 5 (a) shows the trajectories during 6th October 18:00 ∼ 18:20

pm from the same source S and destination D. As Figure 5 (a – f)

shows, given the same S and D, the normal trajectories may change

during different travel times. And the time-dependent outliers may

be different during different travel times for the same (S,D) pair. It
verifies that outliers may change over time.

7 RELATEDWORK
Graphs are prevalent to many data mining tasks [10, 11, 19, 20,

26–29]. The large volume of trajectory data generated from GPS-

equipped vehicles enables extensive trajectory mining applications

in recent years, e.g., trajectory pattern mining [12–14], routing

[32, 33], traffic prediction [7, 46], trajectory similarity search [21,

38], and trajectory outlier detection [1, 42]. In particular, trajectory

outlier detection has been extensively studied recently, which can

be used to detect taxi driving fraud.

There are two categories of trajectory outlier detection methods:

non-time-dependent and time-dependent outlier detection.

Non-time-dependent Trajectory Outlier Detection: There
are two kinds of standard trajectory outlier detection methods,

which are metric-based and learning-based methods. Metric-based

methods summarize popular routes from normal trajectories, and

define anomaly scores based on distance metrics, e.g., Euclidean dis-

tance, Hausdorff distance, Longest Common Sub-Sequence (LCSS)

distance, and Dynamic Time Warping (DTW) distance, to find out-

liers [31]. Distance [35] and density basedmethods [5, 24] have been

proposed to detect taxi fraud. A partition-and-detect framework

named TRAOD [18] has been proposed to detect outliers from tra-

jectories. They first partition the trajectories into sub-trajectories,

then detect outliers based on distance and density metrics. An

isolation-based approach IBAT [42] utilizes an isolation tree to find

trajectories that are few and different as outliers. Another isolation-

based method IBOAT [1] has been proposed to fix the issue of

detecting incomplete trajectories. They utilize an adaptive window

to update anomaly scores as trajectories come. A clustering-based

approach [16] detects anomalies by dynamic time warping distance

between trajectories. A Shannon entropy-based method [9] has

been proposed to apply information theory for detection. Haus-

dorff distance-based methods [8, 17] detect outliers in an online

mode. Structural similarity [41] is utilized to detect outliers. Com-

mon slices sub-sequences [40] based method utilizes distance to

detect anomalies. DBOTD [25] extracts core routes from clusters

of trajectories by a density-based cluster method DBSCAN [4].

However, metric-based methods heavily rely on distance thresh-

olds based on popular routes in terms of distance or density metrics.

Learning-based methods utilize machine learning or deep learn-

ing to learn features behind normal behaviors, and use these fea-

tures to judge outliers. Ak classifier ensemble-based liner projection

model LODA [34] is proposed to detect anomalies in an online mode.

However, it cannot capture the spatial transition pattern behind

trajectories. A probabilistic model DB-TOD [37] utilizes maximum

entropy inverse reinforcement learning to optimize the likelihood

of historical trajectories. And it also supports the detection of par-

tial observation. However, it fails to consider sequential transition

behind trajectories, which is essential for learning the behavior of

trajectories. An RNN based model [36] has been proposed to learn

sequential transition behind trajectories. A GAN [22] based model

[6] has been proposed for anomaly detection in human mobility.

However, these two methods are not designed to support the detec-

tion of incomplete trajectories. GM-VSAE [23] extends VAE [15]

to learn hidden patterns behind trajectory transition, and use a

generative framework to detect outliers. SD-VSAE [23] is further

proposed to speed up the inference process of online detection.

Time-dependent Trajectory Outlier Detection: There are

some works exploring time-dependent trajectory outlier detection.

TPRO [44] was proposed to find popular routes from trajectories

grouped by the same time intervals. Then a time-dependent edit

distance is proposed to detect outliers. An extended model TPRRO

[45] based on TPRO is further proposed to speed up the process of

popular routes retrieval in real-time. They propose to cache the pop-

ular routes for the most frequently visited source and destination

pair in the offline phase.

There are two open questions for time-dependent outlier detec-

tion. First, the time complexities of [44, 45] are quadratic to the

number of trajectory points, which cannot satisfy the online detec-

tion requirement well. They propose to extract time-dependent nor-

mal routes and use time-dependent edit distance to detect outliers.

However, the additional time-dependent edit distance computation

increases the time cost dramatically, which requires O(n2) time

cost , making it unsuitable for online detection scenarios. Second,

traditional metric-based methods group trajectories by different

time intervals in one day, and apply anomaly score function for

trajectories at the same time intervals. In this way, they assume that

trajectories happen at the same time intervals on different days fol-

low exactly the same traffic condition. However, traffic conditions

change dramatically when some factors happen, e.g., incidents or

road construction.

8 CONCLUSIONS
In this paper, we study the problem of online time-dependent

anomalous trajectory detection. We propose to learn the latent pat-

terns from trajectories during the travel time, and use the learned

latent patterns to detect anomalies from trajectories. For online

detection, DeepTEA supports updating the anomaly score when

the new trajectory point comes, in which the trip has not been

finished. Further, we propose an approximate online detection al-

gorithm DeepTEA-A to reduce the time cost by a co-training net-

work. The experimental results show that our models are more

effective when detecting outliers. Besides, DeepTEA-A can detect

online time-dependent anomalous trajectory more efficiently. Fur-

ther, both DeepTEA and DeepTEA-A are scalable with respect to

the ratio of observed trajectories for online detection.
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