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ABSTRACT
This paper tackles two challenges to discovery of graph rules. Exist-
ing discovery methods often (a) return an excessive number of rules,
and (b) do not scale with large graphs given the intractability of
the discovery problem. We propose an application-driven strategy
to cut back rules and data that are irrelevant to users’ interests, by
training a machine learning (ML) model to identify data pertaining
to a given application. Moreover, we introduce a sampling method
to reduce a big graphG to a set H of small sample graphs. Given ex-
pected support and recall bounds, the method is able to deduce sam-
ples inH andmine rules fromH to satisfy the bounds in the entireG .
As proof of concept, we develop an algorithm to discover Graph As-
sociation Rules (GARs), which are a combination of graph patterns
and attribute dependencies, and may embed ML classifiers as predi-
cates. We show that the algorithm is parallelly scalable, i.e., it guar-
antees to reduce runtime when more machines are used. We experi-
mentally verify that the method is able to discover rules with recall
above 91% when using sample ratio 10%, with speedup of 61 times.
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1 INTRODUCTION
A variety of rules have been studied for graphs, to detect inconsis-
tencies [20, 23], resolve entities [17, 21], reason about knowledge
graphs [24, 45], catch network evolution [8, 38], and recommend
items to users [22]. There have also been recent graph rules that em-
bed machine learning (ML) classifiers as predicates [19], to deduce
associations by unifying rule-based and ML-based methods.

To make practical use of the rules, effective methods have to
be in place to discover useful rules from real-life data. Rules on
graphs are more complicated than relational rules. For instance,
graph functional dependencies (GFDs) [23] are defined as Q(X →
Y ), with a graph pattern Q to identify entities and an attribute
dependency X → Y to apply to those entities. Given a graph G,
rule discovery is to find a set ΣG of non-redundant rules that can be
frequently applied to G (measured by support). Discovery of such
rules requires to mine both graph patterns and dependencies, and
is more challenging than discovery of relational data quality rules.

Challenges. There are two major challenges to graph rule discov-
ery. (1) Scalability. Rule discovery algorithms can hardly scale with
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large graphs. As shown in [18], for instance, the discovery problem
for GFDs subsumes subgraph isomorphism, which is intractable
(cf. [25]). As a consequence, it is prohibitively costly to discover
GFDs with graph patterns of 7 nodes or more, which cannot finish
in 1.66 hours on graphs with 32 million nodes and edges, even when
using 8 machines [18]. It is also reported in [18] that mining GFDs
with patterns of at most 5 nodes in the same setting already takes
76 minutes. (2) Excessive rules. A large number of rules typically
hold on a given graph. It is hard for users to inspect the excessive
number of discovered rules and identify useful ones to them.

In fact, most existing discovery algorithms for graph rules follow
the levelwise search paradigm, e.g., [8, 18, 22, 34, 51]. These methods
enumerate candidate rules in an exponential search space, and
evaluate each candidate by subgraph matching to check whether
it meets the discovery requirement, e.g., support threshold. The
latter also incurs exponential cost as mentioned above. Therefore,
such methods suffer from poor scalability in mining graph rules
with large patterns, and often output excessive rules created from
the large search space, while users’ interests are not considered
in pruning useless candidates. The challenges are already present
when discovering relational functional dependencies (FDs) [55],
but the problems become more staggering for graph rules.

Is it possible to develop an effective method that is able to dis-
cover only rules relevant to users’ interests and scale with large
graphs, without degradation in the quality of the discovered rules?

Strategies. We explore new approaches to tackling the challenges.
(1) Application-driven rule discovery. Users are often interested only
in rules that help their applications. For instance, when a company
is promoting sale of an album, it wants rules to identify music fans,
and could not care less about rules for suggesting buyers of pickup
trucks. In light of this, we propose an application-driven strategy.
Given an applicationA and a graphG , we train an ML modelMA
to identify nodes, edges and properties in G that pertain to A. We
reduceG to a smaller graphGA with only the data pertaining toA,
and discoverA-relevant rules fromGA instead of from the entireG .

(2) Sampling big graphs. To further reduce discovery cost, we sam-
ple a setH of graphsH (A, ρ%) fromGA , such that their sizes are at
most ρ% of GA . The samples consist of representative data cells in
GA along with their surrounding subgraphs. Denote by ΣG and ΣH
the set of A-relevant rules discovered from G and H , respectively.
We show that given bounds σ and γ%, we can deduce H such that
(a) at least γ% of rules in ΣG are covered by ΣH , and (b) each of
these rules can be applied at least σ times on the entireG, i.e., the
rules in ΣG can be mined from H above recall γ% and support σ .

(3) Parallel scalability. We parallelize the discovery process. We
show that the algorithm is parallelly scalable, i.e., it guarantees
to reduce runtime when more machines are used. In principle, it
can scale with large graphsG by using more machines when needed.
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(4) PoC with GARs. As a proof of concept, we test the strategies
with discovering Graph Association Rules (GARs) [19]. GARs sub-
sume GFDs [23], graph entity rules (GEDs) [21] and graph pattern
association rules (GPARs) [22] as special cases, and hence are able
to identify entities, catch conflicts, detect missing links and deduce
associations. Moreover,GARsmay plug in existing ML classifiers as
predicates, to leverage well-trained MLmodels for entity resolution,
link prediction and similarity checking, among other things.

Putting these together, we propose a 3-step scheme to discover
useful rules from a big graphG for a given applicationA: (a) reduc-
ing G to A-relevant GA , (b) sampling a set H of H (A, ρ%) from
GA , and (c) parallelizing discovery with the parallel scalability.

We reduce irrelevant rules by proposing ML-based reduction
(step (a)), and improve the scalability by combining steps (a)-(c).
Steps (a)-(b) reduce the problem of rule discovery from large G
to much smaller H (A, ρ%). We show that the scheme guarantees
accuracy bounds. As opposed to prior methods [13, 26, 45] that
only sample paths, step (b) can sample general subgraphs.

Contributions and organization. After reviewing GARs in Sec-
tion 2, we present our new approaches to discovering GARs.

(1) Discovery problem revisited (Section 3). We formulate the discov-
ery problem forGARs driven by applications and based on sampling,
and present our three-step discovery scheme.

(2) Application-driven discovery (Section 4). We develop a graph re-
duction method to deduce A-relevant graph GA from graph G for
a given applicationA. It trains an ML modelMA (long short-term
memory (LSTM) networks [29]) to label data pertaining to A.

(3) Sampling graphs (Section 5). We propose a sampling method
GSRD for reducing GA to a set H of sample graphs H (A, ρ%). We
prove probabilistic bounds on recall and support, to determine the
number and size ofH (A, ρ%) such that ΣH retains the bounds onG .

(4) Parallel discovery algorithm (Section 6). We develop a parallel
algorithm to discover GARs from the set H of samples H (A, ρ%).
We show that the algorithm guarantees the parallel scalability.

(5) Experimental study (Section 7). Using real-life and synthetic
graphs, we empirically verify the following. On average, (a) the
application-driven reduction method cuts down the graph sizes by
76%, up to 98%. Moreover, 85% of A-relevant GARs can be mined
from the reduced graphs. (b) GSRD is effective: the recall of discov-
ered GARs reaches 94% when having 4 sample graphs deduced by
GSRD with sample ratio 10%, and the support of each GAR is at
least 1000 in the original graphs. (c) Sampling-based discovery is on
average 60.6 times faster than mining GARs from the entire graphs,
while retaining the recall above 91%. (d) Our parallel algorithm for
GAR discovery scales well with the number of machines used.

Related work. We categorize the related work as follows.

Rule discovery. Besides the extensive study on mining relational
rules, e.g., [14, 30, 63–65, 75], there have also been several discovery
methods for different kinds of graph rules. Following the levelwise
search that is widely used in data mining, GFDs [18], GPARs [22],
graph temporal association rules [51] and graph differential de-
pendencies [34] can be mined from graphs with different pruning
strategies. GERM [8] and LFR-Miner [38] revise pattern mining

method gSpan [76] to mine graph evolution rules and link forma-
tion rules, respectively. Some rule learners are in place to discover
Horn rules of restricted forms from knowledge graphs modeled
in RDF [44], e.g., AnyBURL [45] learns rules from paths of vari-
ous lengths in a bottom-up manner. GPFL [26] is a probabilistic
rule learner that optimizes AnyBURL by generalizing paths into
templates, to reduce search space. Based on inductive logic pro-
gramming, top-down rule learners have also been developed, such
as AMIE [24] and ScaLeKB [13], which repeatedly produce new
rules at each level by specializing the ones derived in the upper
level. RuDik [53] discovers acyclic Horn rules by generating the uni-
verse of all possible rules, from which it selects rules according to a
minimum weighted set cover of the given examples. RNNLogic [58]
develops an EM-based method to train a rule generator, and [77]
proposes to learn rules through the differentiable model of [16].

Our method differs from the prior work as follows. (1) We pro-
pose application-driven reduction and graph sampling strategies
with accuracy guarantee to reduce excessive rules and improve ef-
ficiency, as opposed to mining rules from the entire graphs. In light
of these, the problem and even the notion of support are different.
(2) We study the discovery of GARs from general property graphs,
without requiring to encode graph data in RDF as knowledge graph
rule learners [13, 16, 24, 45, 53]. These rule learners may exhibit
poor scalability on RDFs that are transformed from property
graphs, since their node attributes often yield a large number
of RDF triples. (3) We discover GARs with ML predicates and
graph patterns of generic subgraphs. In contrast, no prior methods
consider ML predicates, and most of them study path patterns only.

Sampling methods. Sampling has long been studied to facilitate the
discovery of association rules and frequent itemsets from relational
data. For example, inspired by the VC-dimension theory [71] and
Rademacher average [10], [60, 61] establish bounds on the required
sample size for finding approximate frequent itemsets. They en-
sure that for each itemset mined from the sample, the difference
between its frequency in the entire dataset and the expected fre-
quency threshold is within a user specified bound. Similarly, [11]
gives a theoretical framework to analyze the impact of sample size
on the quality of association rules mined from the samples, i.e.,
their support and confidence in the original relations.

Sampling has also been adopted in the discovery of data cleaning
rules from relational tables such as FDs [56] and (approximate)
denial constraints (DCs) [9, 42]. In particular, [42] shows how to
estimate the number of violations of approximate DCs in sample
data that is uniformly drawn from relations, by which it decides the
right approximation threshold to use when discovering approxi-
mate DCs from the samples. It guarantees that these rules also hold
in the entire dataset with a high probability.

When it comes to graphs, the majority of knowledge graph rule
learners perform sampling to randomly extract paths from RDF
and use the paths to generate restricted forms of Horn clauses,
e.g., [26, 35, 36, 45, 46], with variants of random walks.

Different from mining relational rules, (1) GAR discovery has to
inspect not only dependencies on attributes, but also graph patterns.
Thus neither the relational sampling techniques nor their quality
analyses can be applied to mining GARs. (2) To the best of our
knowledge, we provide the first accuracy guarantee on recall and
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support for sampling-based discovery of graph rules, i.e., the per-
centage of useful and frequent rules w.r.t. some support threshold
that can be mined from samples of bounded sizes.

Parallel discovery. Parallel algorithms have been developed to mine
rules from both relations, e.g., [59, 62], and graphs, e.g., [12, 13, 18,
22, 74]. However, none of these guarantees the parallel scalability
except [18, 22]. The parallelly scalable algorithms in [18, 22] per-
form levelwise search on entire graphs. We extend the discovery
algorithm of [18] to cope with sample graphs and ML predicates in
mining GARs, without hampering its parallel scalability.

2 GRAPH ASSOCIATION RULES
In this section we review GARs (graph association rules) of [19].

Preliminaries. We assume three countably infinite alphabets Γ, ϒ
andU of symbols, for labels, attributes and constants, respectively.

Graphs. We consider directed labeled graphsG = (V , E, L, F ), where
(a)V is a finite set of nodes; (b) E ⊆ V ×Γ×V is the set of edges, and
e = (v, l,v ′) denotes an edge from node v to v ′ that is labeled with
l ∈ Γ; (c) each node v ∈ V has label L(v) from Γ; and (d) each node
v ∈ V carries a tuple F (v) = (A1 = a1, . . . ,An = an ) of attributes of
a finite arity withAi ∈ ϒ and ai ∈ U , written asv .Ai = ai , andAi ,
Aj if i , j for distinct properties. Note that even nodes of the same
“type” may have different sets of attributes in a schemaless graph.

Patterns. A graph pattern is Q[x̄] = (VQ , EQ , LQ , µ), where (1) VQ
(resp. EQ ) is a set of pattern nodes (resp. edges); (2) LQ assigns a
label LQ (u) ∈ Γ (resp. LQ (e) ∈ Γ) to node u ∈ VQ (resp. e ∈ EQ , i.e.,
e = (u, LQ (e),u

′)); (3) x̄ is a list of distinct variables; and (4) µ is a
bijective mapping from x̄ to VQ , i.e., it assigns a distinct variable to
each node v in VQ . We allow wildcard ‘_’ as a special node label in
Q[x̄]. For each variable x ∈ x̄ , we use µ(x) and x interchangeably.

Pattern matching. A match of pattern Q[x̄] in a graph G is a homo-
morphic mapping h from Q to G such that (a) for each node u∈VQ ,
LQ (u)=L(h(u)); and (b) for each pattern edge e=(u, LQ (e),u ′) ∈ EQ ,
e ′=(h(u), LQ (e),h(u

′)) is in G. Here LQ (u)=L(h(u)) if LQ (u) is ‘_’,
i.e.,wildcard can match an arbitrary label. We denote the match as a
vectorh(x̄), consisting ofh(µ(x)) for all x ∈ x̄ in the same order as x̄ .

Predicates. A predicate p of Q[x̄] has one of the following forms:
p ::= x .A | l(x,y) | x .A = y.B | x .A = c | M(x,y, l),

where x,y are variables in x̄ ; x .A denotes an attribute A of pattern
node x (for A ∈ ϒ); l(x,y) is an edge from x to y labeled with l ∈ Γ;
c is a constant inU ; andM(x,y, l) is an ML classifier (see below).

We refer to x .A, l(x,y), x .A = y.B, x .A = c and M(x,y, l) as
attribute, edge, variable, constant and ML predicate, respectively.

Graph association rules (GARs). A GAR φ is defined as
Q[x̄](X → p0),

where Q[x̄] is a graph pattern, X is a conjunction of predicates of
Q[x̄], and p0 is a single predicate of Q[x̄]. We refer to Q[x̄] and
X → p0 as the pattern and dependency of φ, and to X and p0 as the
precondition and consequence of φ, respectively.

Intuitively, a GAR is a combination of topological constraint Q
and logical constraint X → p0. The pattern Q identifies entities
in a graph, and the dependency X → p0 is applied to the entities.
Constant and variable predicates x .A = c and x .A = y.B specify
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Figure 1: Patterns and graphs

value associations to attributes, which can catch inconsistencies
and moreover, identify entities (with x .id = y.id when A and B are
node ids). Attribute and edge predicates x .A and l(x,y) enforce the
existence of attributes and edges, i.e., attribute and edge associations,
respectively, which can deduce associations and missing links.

ML predicates. One can “plug in” a well-trained ML classifierM
for link prediction, entity matching or similarity checking. That
is,M(x,y, l) is true ifM predicts the existence of a link labeled l
from x to y, and false otherwise, by uniformly expressing entity
matching and similarity checking as link prediction. Here the label
l can indicate (1) a predicted link, (2) the match of x and y as
the same entity, linked by an edge with ‘=’ as l , or (3) semantic
similarity between x andy linked by an edge with ‘≈’ as l , indicating
that x and y are “semantically” close, e.g., “monitor” and “LCD
screen”. Thus ML predicates can also be regarded as edge predicates.
An ML classifier becomes “well-trained” once its training process
converges, e.g., the loss of a neural network is stable after epochs.

As shown in [19], GFDs [23], GEDs [21], and GPARs [22] are
special cases of GARs without ML, edge and attribute predicates.

Example 1: EmbeddingML predicates,GARs are able to predict re-
lationships in professional networks, e.g., colleagues in DingTalk [3],
and fraudulent behaviors in e-commerce platforms, as follows.
(a) To establish domestic “colleague” connections, we use a GAR
φa = Qa [x̄a ](Xa → colleague(x0, x ′0)), where (i) the pattern Qa
is depicted in Fig. 1; and (ii) Xa is

∧
i ∈[1,k0](x0.city = xi .city ∧

x ′0.city = xi .city) ∧
∧
i , j ∈[1,k0]Ma (xi , x j , similar_profile). It indi-

cates that two users x0 and x ′0 are likely to be colleagues when they
follow the same organization y0 and have k0 common friends (i.e.,
x1 to xk0 ) with the same city attribute, and each pair of common
friends have similar profiles, determined by the ML classifierMa .
(b) Consider GAR φb = Qb [x̄b ](

∧
i , j ∈[1,m]Mb (xi , x j , one_group)

→ click(x1, zk0 )), where pattern Qb is also shown in Fig. 1. It says
that if a set ofm users x1, . . . , xm are identified to be within the same
community by ML classifierMb , and if all users in this community
except x1 conduct fake clicks on a set of k0 items in the e-commerce
platform, then x1 might also perform fake click on item zk0 .

As k0 andm can vary, these GARs may have large patterns. 2
Semantics. To interpret GAR φ = Q[x̄](X → p0), denote by h(x̄) a
match of Q in a graph G , and by p a predicate of Q[x̄]. We say that
h(x̄) satisfies a predicate p, denoted by h(x̄) |= p, if the following
condition is satisfied: (a) when p is x .A, node h(x) carries attribute
A; (b) when p is l(x,y), there exists an edge with label l from h(x)
to h(y); (c) when p is x .A = y.B, attributes A and B exist at h(x)
and h(y), respectively, and h(x).A = h(y).B; (d) when p is x .A =
c , attribute A exists at h(x), and h(x).A = c; and (e) when p is
M(x,y, l), the ML classifierM predicts an edge (h(x), l,h(y)).

For a conjunction X of predicates, we write h(x̄) |= X if match
h(x̄) satisfies all the predicates in X . Note that if X is ∅ (i.e., true),
then h(x̄) |= X for any match h(x̄) of Q in G.
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Table 1: Notations
Notations Descriptions
G , Q [x̄ ], φ graph, graph pattern, and GAR φ=Q [x̄ ](X → p0), resp.
A an application that consists of a set of predicates
GA an A-graph of G

H (A, ρ%) a sample graph
ΣG , ΣH GARs mined from G and a set H of sample graphs, resp.
sup(φ ,G) the support of GAR φ in graph G

We write h(x̄) |= X → p0 if h(x̄) |= X implies h(x̄) |= p0.
We say that a graph G satisfies GAR φ, denoted by G |= φ, if for

all matches h(x̄) of Q in G, h(x̄) |= X → p0. Graph G satisfies a set
Σ of GARs, denoted by G |= Σ, if G |= φ for all φ ∈ Σ.

Example 2: Consider the graphG0 depicted in Fig. 1, in which the
users u0 to uk0+1 form a clique with all edges labeled friend, and
all the users have the same city attribute value and similar profiles
(not shown). ThenG0 ̸ |=φa for GAR φa of Example 1. This is due to
thematchh ofQa inG0: x0 7→u0, x ′0 7→u1, xi 7→ui+1(i∈[1,k0]),y0 7→v ,
which satisfies precondition Xa , but h ̸ |=colleague(x0, x ′0). 2

Notations of the paper are summarized in Table 1.

3 A DISCOVERY SCHEME
In this section, we formulate the notions associated with the GAR
discovery problem, and propose a new discovery scheme.

GARs to discover. In practice, we want a minimum set of GARs
that are non-redundant and nontrivial. Thus we consider onlyGARs
Q[x̄](X → p0) in which p0 does not appear in X , since otherwise
the GAR is trivial and not useful. Moreover, we want GARs that are
helpful for the downstream applications A, specified as follows.

A-relevant GARs. We model an applicationA as a set of predicates,
also denoted by A. We say that a GAR φ = Q[x̄](X → p0) is A-
relevant if the consequence p0 is inA. As an example, p0 can be an
edge predicate buy(x,y), where x denotes a person and y denotes
an item; it suggests person x is a potential buyer of item y.

This simple model originated from the observation that an ap-
plication benefits from a specific class of association rules, whose
consequences include entities of some particular “types”, i.e., the
labels in p0. For instance, when using association rules in market-
ing [73] (resp. intrusion detection [68], disease diagnosis [50]), the
consequences only need to indicate that a customer buy a product
(resp. a signature is generated by an attack attempt, a person is
healthy or sick). A similar model has been adopted and shown effec-
tive in similarity search in heterogeneous network [67]. It abstracts
nodes and edges to labels to define similarity measure.

Support. The support of a GAR φ = Q[x̄](X → p0) in a graph G

should indicate how often φ can be applied to G. We consider
connected pattern Q as commonly found in graph rules.

We quantify support of anA-relevant GAR in terms of the num-
ber of distinct matches ofQ inG that satisfy both the preconditionX
and consequence p0, at p0. More specifically, we assume w.l.o.g. that
p0 involves two variables xp0 and x ′p0 ; the case of one variable is de-
fined similarly. Let Q(G,Z ,p0) = {⟨h(xp0 ),h(x

′
p0 )⟩ | h∈Q(G),h |=Z }

be a set of node pairs, where Z is a conjunction of predicates. Then
its cardinality ||Q(G,Z ,p0)|| counts the number of matches satisfy-
ing Z at the designated variables in the consequence p0.

We define the support of GAR φ = Q[x̄](X → p0) in graph G as:
sup(φ,G) = ||Q(G,X ∧ p0,p0)||.

Extending the support of [18, 22] that counts the number of
matches at a single designated variable from Q[x̄], we treat both
xp0 and x ′p0 in p0 as “pivots”, to better estimate the effectiveness of
A-relevant φ, e.g.,whether applicationA benefits more from those
φ having larger support. Here pivots refer to designated focus nodes
representing users’ interests. Below we show that this measure
has the anti-monotonicity under a well-defined ordering of GARs.

Anti-monotonicity. We say that patternQ[x̄] = (VQ , EQ , LQ , µ) sub-
sumes patternQ ′[x̄ ′] = (V ′Q , E

′
Q , L

′
Q , µ

′), denoted asQ ′[x̄ ′] ⊑ Q[x̄],
ifV ′Q ⊆ VQ , E ′Q ⊆ EQ , and for each node u ∈ V ′Q (resp. edge e∈E ′Q ),
either LQ (u)=L′Q (u) or L

′
Q (u)=_ (resp. LQ (e)=L′Q (e) or L

′
Q (e)=_)

and u is paired with the same variable by µ and µ ′, i.e., x̄ ′ ⊆ x̄ .
We define a partial order ⪯ on GARs. Consider two GARs φ1 =

Q1[x̄1](X1 → p0) and φ2 = Q2[x̄2](X2 → p0) with the same p0.
Then φ1 ⪯ φ2, referred to as φ2 subsumes φ1, if Q1[x̄1] ⊑ Q2[x̄2]
and for each predicate p in X1, p also appears in X2.

We can see that when GAR φ2 subsumes another GAR φ1, both
its pattern and precondition subsume their counterparts in φ1. This
results in the following anti-monotonicity.

Lemma 1: Given two GARs φ1 and φ2, if φ1 ⪯ φ2, then for any
graph G, sup(φ1,G) ≥ sup(φ2,G). 2

With the order ⪯, a GAR φ is called minimum in graph G if
G |= φ and there is no other GARs φ ′ such that φ ′ ⪯ φ and G |= φ ′.
That is, each minimum GAR warrants the minimality of its graph
pattern and precondition w.r.t. the consequence predicate p0.

Example 3: Recall GAR φa from Example 1. Consider GAR φ ′a
revised from φa by removing pattern edge (x0, friend, xk0 ) fromQa
and predicateMa (x1, x2, similar_profile) from Xa . Then φ ′a ⪯ φa
and φ ′a induces more matches projected at the consequence. 2

Cover. To further reduce redundant GARs, we use another notion.
A set Σ ofGARs entails aGAR φ, denoted by Σ |= φ, if for all graphs
G, G |= Σ implies G |= φ. As a special case, {φ1} |= φ2 if φ1 ⪯ φ2,
since φ1 is less restrictive. A set Σ of GARs is equivalent to another
set Σ′, denoted as Σ ≡ Σ′, if Σ′ |= φ for any φ ∈ Σ, and vice versa.

A cover of a set Σ of GARs for graph G is a subset Σc of Σ such
that (1) Σc ≡ Σ, (2) each GAR in Σc is minimum in G, and (3)
Σc . Σc \ {φ} for any GAR φ in Σc , i.e., the subset Σc is minimal.

Discovery problem. It is intractable to find a cover ofA-relevant
GARs from a graph [18], since the problem is already intractable
for GFDs and GFDs are a special case of GARs. To speed up this
process, we discoverGARs from a setH of sample graphsH (A, ρ%)
extracted from G such that (a) the size |H (A, ρ%)| accounts for ρ%
of |GA | and (b) H (A, ρ%) has representative data pertaining toA .

Recall. Observe that H may not cover all the information of G, and
hence GARs discovered from H may not include all those GARs
that are mined from entire G. To assess the quality of samples
H (A, ρ%) for GAR discovery, we adapt the notion of recall w.r.t.
support bounds σ . Denote by ΣH (resp. ΣG ) the set of A-relevant
GARs discovered from H (resp. G). We use recall w.r.t. σ , denoted
as recall(ΣH , ΣG ,σ ), to refer to the percentage of theGARs φ in ΣG
that are also in ΣH with sup(φ,G) ≥ σ , i.e., φ has support at least σ
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when applied toG . This recall indicates to what extent the required
frequent GARs can be mined from the small samples H (A, ρ%).

Problem statement. We are now ready to state the discovery problem
of GARs w.r.t. a given application A and graph sampling.
◦ Input: A graphG , an applicationA, a positive integer k , support
threshold σ > 0, and a positive percentage γ% for recall.
◦ Output: A cover ΣcH of ΣH mined from H such that recall(ΣH ,
ΣG ,σ ) ≥ γ% and each φ in ΣH has at most k pattern nodes.

Here H is the set of sample graphs, and ΣG (resp. ΣH ) is the set of
A-relevant GARs mined from G (resp. H ), as described above.

Intuitively, the set ΣH is accurate, since at least γ% of the A-
relevantGARswith support no smaller than σ in the entire graphG
are covered by ΣH . Following [18], we adopt parameterk to balance
the complexity of discovery and the interpretability of GARs. It is
an input parameter decided by user’s demand in practice.

Remark. (1) In practice, we discover GARs from a possibly dirty
graph G, hence we cannot expect that the correct GARs are satis-
fied by G . We only discover GARs that have support above a given
threshold and have high confidence, i.e., the percentage of pivots
satisfying X that also satisfy p0, following the common practice
of data mining. Domain experts will then examine the discovered
GARs before the rules can be applied to association deduction. (2)
Discovering GARs involves mining of both their patterns and de-
pendencies. The former is similar to frequent subgraph mining [5],
which conducts subgraph enumeration during the discovery. Be-
sides, data dependencies are discovered on the identified entities, by
incorporating predicates such as value bindings and ML classifiers.

Discovery scheme. We propose a 3-step scheme to discover
GARs, whose workflow is depicted in Figure 2.
Application-driven reduction (Section 4). The first step of the scheme
deduces a graph GA from G, referred to as the A-graph of G, by
retaining only the data pertaining to the given application A.

Graph sampling (Section 5). SinceGA may still be large, the scheme
deduces samples H (A, ρ%) fromGA to further reduce the cost. We
propose a sampling method to ensure support and recall bounds.

Mining (Section 6). The final step is to discover A-relevant GARs
ΣH from small samples H (A, ρ%) by using a parallelly scalable
algorithm. It computes and returns a cover ΣcH of ΣH .

4 APPLICATION DRIVEN DISCOVERY
In this section, we show how to reduce big graphs G to smaller
A-graphs GA for a given application A, via an ML-based method.
We start with some notations, and then present the method.

Label triplets. A label triplet is defined as ⟨lv , le , l ′v ⟩, where lv and
l ′v are two node labels and le is an edge label in between.

We say that an edge e=(v, l,v ′) conforms to a label triplet
t=⟨lv , le , l

′
v ⟩ if L(v)=lv , l=le and L(v ′)=l ′v . Here the special wild-

card ‘_’ also “equals” any arbitrary label. We refer to ⟨L(v), l, L(v ′)⟩
as the label triplet T(e) of edge e . For a setT of label triplets, a graph
G conforms to T if each edge e in G conforms to a triplet in T .

We also define label triplets for predicates, by abstracting la-
bels from patterns. The label triplets of a predicate p of pattern
Q[x̄], denoted as T(p), is (a) {⟨LQ (x), l, LQ (y)⟩} when p is l(x,y) or
M(x,y, l); (b) {⟨LQ (x), _, _⟩, ⟨_, _, LQ (x)⟩} when p is x .A or x .A=c ;
and (c) {⟨LQ (x), _, LQ (y)⟩, ⟨LQ (y), _, LQ (x)⟩} when p is x .A=y.B.

Intuitively, for an application A modeled as a set of predicates,
the label triplets of predicates form a simple abstraction of A. We
opt to use language (ML) models to learn and analyze the distribu-
tion of label triplets created from application A, which indicates
the characteristics of the data pertaining to A.

Example 4: Continuing with Example 1, the label triplets of pred-
icates x0.city = xi .city and Ma (xi , x j , similar_profile) in φa are
{⟨user, _, user⟩} and {⟨user, similar_profile, user⟩}, respectively. 2

ML models and graph reduction. Given an application A, i.e.,
a set of predicates, a well-trained ML classifierM(x,y, l) for e.g.,
link prediction, and a graph G, we employ a language modelMA ,
implemented as long short-term memory (LSTM) networks [29],
to deduce the A-graph GA in the following four stages.
(1) Firstly, we expand graphG toGM by adding edges predicted by
M(x,y, l). In fact, due to the use of label triplets, two isolated nodes
cannot be classified as the data pertaining toA and retained inGA .
However, they may contribute to the support of anA-relevantGAR
when it has ML predicateM(x,y, l) andM predicts the existence
of an edge between the two nodes. In light of this, expandingG with
predicted links allows us to discover GARs with ML predicates.
(2) Taking triplets T(p) of each predicate p in A as seed input and
treating each triplet as a word, we enforce the trained language
model MA (see below for the training of MA ) to generate a
number of sequences of label triplets, denoted as ΘA . Since the
LSTM-basedMA models the probability of sentence generation,
the generated sequences are semantically related to T(p).
(3) We select the top-m frequent triplets from ΘA to construct a set
TA of label triplets, referred to asA-triplets. Herem is a predefined
positive integer. That is, we focus on triplets that are most closely
related to application A. Such A-triplets and the triplets of the
predicates inA co-occur with high probability. Thus it is very likely
that the A-relevant GARs include predicates related to these label
triplets, and the (pattern) edges in such GARs also conform to them.
(4) We finally deduce A-graph GA from GM by preserving only
the edges conforming to TA . In particular, all attributes of a node
are kept if one of its adjacent edges is preserved. Filtered by triplets,
GA conforms to TA and contains only the data pertaining to A.

The reduction takes a time linear to the number of generated
triplets to run LSTM model and O(|GM |) time to filter out irrele-
vant edges. Here we choose LSTM network since it can effectively
model the semantics of labels on paths in knowledge graphs [39–
41]. That is, given an edge label l , LSTM generates a path following l
with reasonable semantic meaning [47]. Note thatMA can also be
implemented by other language models for sequence modeling [54].

Example 5: Using label triplet {⟨user, colleague, user⟩} of the
consequence colleague(x0, x ′0) in GAR φa of Example 1 as seed
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input, MA outputs sequences of triplets, in which the top-4
frequent ones are {⟨user, _, user⟩}, {⟨user, similar_profile, user⟩},
{⟨user, friend, user⟩}, {⟨user, follow, organization⟩}. These make
the setTA . Then we preserve edges conforming toTA forA-graph
GA , where irrelevant data, e.g., commute methods is dropped. 2

Model training. To train the language modelMA , i.e., LSTM, we
prepare a training corpus DT , which consists of sequences of label
triplets that are collected by random walks in graph GM .

More specifically, for each path (e1, e2, . . . , en ) generated by a
randomwalk inGM , we derive the label triplet of each edge and add
sequence (T(e1),T(e2), . . . ,T(en )) toDT (a path is a list of consecu-
tive edges ei=(vi , li ,vi+1)). The label triplets in each such sequence
are semantically related, whose distribution can be learned byMA .
We apply non-backtracking random walks (NBTRW) [37] to sample
paths since it restrains the bias towards visiting high-degree nodes
and can closely knit communities around seed nodes. This property
helps us capture more representative localized structures in GM .

Once DT collects adequate sequences, the modelMA views
each label triplet as a word and each sequence of triplets as a
sentence. It learns the likelihood of the occurrence of a triplet based
on the previous sequences of triplets in DT . Thus, given label
triplets T(p) as seed input, a well-trainedMA is able to generate
sequences of triplets that are related to T(p) as mentioned above.

Remark. For each graph GM , this unsupervised model training
process needs to be performed only once such that the trained
modelMA can be applicable to different applications.

The training of model MA benefits from the usage of label
triplets. Without them,MA has to inspect the triplets of attribute
values, which are more diversified compared to labels. This larger
vocabulary in the training corpus results in harder and slower
training ofMA . In fact, abstracting edges and predicates as label
triplets suffices to characterize the objective of applications, e.g., a
recommendation would only concern about recommending “Sports
Shoes” to “Players” without considering their specific names.

After this graph reduction, the reliability of the discoveredGARs
w.r.t. application A is relative to the accuracy of modelMA . That
is, the more correct A-triplets are returned byMA , the more A-
relevant GARs can be discovered from GA . Here an A-triplet is
said to be correct if there exists an A-relevant GAR in G having a
pattern edge or predicate that conforms to it.

5 SAMPLING BIG GRAPHS
In this section, we develop a sampling method to deduce a set
H of sample graphs H (A, ρ%) from A-graph GA , such that the
GARs mined from H satisfy the expected bounds on support and
recall in graphG . We start with an overview of the sampling frame-
work (Section 5.1) and introduce underlying techniques (Section 5.2).
We then show the accuracy guarantees offered by it (Section 5.3).

5.1 Overview
For an application A, an A-relevant GAR φ = Q[x̄](X → p0) aims
to “promote” the action specified by its consequence p0. Thus when
sampling big graphs G, we take distinct matches of variables of p0
in G as the “pivots”. This is justified by the support of φ, which
is measured by the number of pivots (see Section 3). Intuitively,
sampling the pivots helps us discover GARs with a high support.

Algorithm 1: GSRD
Input: An A-graph GA , a positive integer N , two sampling

strategies Mv and Ms , and sample ratios ρv% and ρ%.
Output: A set H of N sample graphs H (A, ρ%).
1 i ← 0; H ← nil ;
2 repeat
3 C ← nil ;
4 foreach predicate p0 involved in A do
5 C ← C ∪ PS(p0,GA ); /* computing pivot sets */

6 SA ← PSample(C,Mv ,GA , ρv%);
7 H (A, ρ%) ← LSample(SA ,Ms ,GA , ρ%);
8 H ← H ∪ {H (A, ρ%)};
9 i ← i + 1;

until i = N ;
10 return H ;

Pivot sets. Consider a predicate p of pattern Q[x̄]. The pattern
Qp [x̄p ] induced by p is the subgraph of Q[x̄] that only contains
the corresponding pattern nodes of variables in p without any
edge. The pivot set of p in graph G, denoted as PS(p,G), is the set
of matches of Qp in G. Therefore, each pivot is either a single node
or a node pair taken from G that matches the labels in Qp .

A sampling framework. Based on pivot sets, we propose a
Graph Sampling framework for Rule Discovery of GARs, denoted
as GSRD. Algorithm 1 shows its main steps. The input of GSRD
includes an A-graph GA (Section 4), the number N of sample
graphs, two strategies Mv and Ms for sampling pivots and their
surrounding subgraphs, respectively, as well as two sample ratios
ρv% and ρ%. It computes a set H of N sample graphs H (A, ρ%)
such that |H (A, ρ%)| ≤ ρ% × |GA |, in N rounds.

Each round ofGSRD deduces a sample graphH (A, ρ%) and adds
it toH (lines 3-9). It first finds the pivot set of each consequence pred-
icate p0 of applicationA inA-graphGA , and collects all pivots in a
set C (lines 3-5). It then deduces H (A, ρ%) in two phases (lines 6-7).
(1) The first phase targets the pivot sets. More specifically, GSRD
calls procedure PSample to sample pivots from C, stored in a set
SA (line 6). PSample applies an input sampling strategy Mv (to
be given in Section 5.2) to compute SA , and ensures that at most
ρv% of the nodes from set C appear in the sampled pivots.
(2) In the second phase, GSRD samples substructures of the se-
lected pivots from GA . It picks nodes and edges within k hops
from the nodes in SA to build sample graph H (A, ρ%), via pro-
cedure LSample (line 7). Such sampled data cells constitute the
“substructures” surrounding the pivots; and H (A, ρ%) includes all
pivots and their substructures. Procedure LSample adopts another
input strategyMs to extract substructures (see Section 5.2), which
is a linear time operation in the worst case. In addition, LSample
guarantees that the size of H (A, ρ%) is at most ρ% × |GA |.

The sampling strategies can be randomized methods; hence the
samples H (A, ρ%) created in multiple rounds are different. More
GARs can be mined from such samples as they cover more pivots.

Cost analysis. The cost for computing pivot sets is bounded
by O(|GA |) because it only needs label checking at constant
times. Observe that extracting substructures is confined within
the small localized areas around the pivots only in GSRD; thus

1484



the two phases for sampling pivots and substructures take at most
O(|H (A, ρ%)|2 log(|H (A, ρ%)|)) time, including the sorting cost for
applying locality-aware sampling (Section 5.2).

5.2 Representative Strategies
We next present sampling methodsMv andMs adopted by GSRD
for selecting pivots and extracting substructures, respectively.

Sampling pivots. We propose a clustering-based strategy asMv .
Clustering-assisted sampling. We propose to first cluster all pivots
in the set C into multiple groups, such that each group consists of
semantically similar pivots. We then construct a set of representa-
tive pivots by picking elements from every group guided by the ratio
ρv%, by employing one of two sampling strategies. Below we first
show how to cluster pivots and then present the sampling strategies.

Since a pivot can also be a node pair, we cannot apply node
clustering directly toA-graphGA . In light of this, we convertGA
to an undirected G ′

A
such that each node pair of a pivot in GA is

contracted into a single node inG ′
A
. In graphG ′

A
, each contracted

node has links to (a) the two nodes in the node pair and (b) other
contracted nodes if the corresponding pairs have nodes in common.

Example 6: Figure 3(a) depicts a graph conversion process, in
which the three directed edges are encoded as nodes r0, r1 and r2 in
the undirected graph. Here r2 is connected to both r0 and r1 because
of the nodes u0 and p1 that are shared by multiple edges. 2

Intuitively, clustering allows us to pick pivots with diversified
semantics from different groups, and discover useful GARs from
samples of bounded size. In other words, it prevents us from dis-
covering semantically homogeneous GARs only.

For efficient clustering, we adopt Lloyd’s k-means algorithm [43]
with k-means++ seeding [7]. We also use two approaches for ex-
tracting node features for clustering. One takes mean word embed-
dings [57] of the node attributes as the feature, since an application
usually involves nodes with similar semantic meanings. The other
learns node features with Deep Graph Informax (DGI) [72], where
both topological structure and node attributes are considered.

Uniform sampling. We may select pivots from each group in a uni-
form manner, by randomly selecting each pivot independent of the
others. Note that when sampling the pivots of edge predicates, it
only considers those node pairs that are connected by edges in the
A-graphGA . By the semantics of GARs, only such pivots help us
discover GARs that have edge predicates as the consequences.

After uniform sampling, it is assured that the selected pivots
cover all the semantics pertaining to the given application A and
more pivots are picked out from larger groups.

Locality-aware sampling. Alternatively, wemay greedily choose piv-
ots such that their substructures maximally overlap. More specifi-
cally, for each pivot, we estimate the “scope” of its substructure in
GA using a fixed substructure extraction scheme (see below). Then
each time we pick a pivot such that the inclusion of its substructure
leads to minimum size increase of the sample graph.

Compared to uniform sampling, this strategy creates more com-
pact sample graphs when combined with substructure extraction.
As another consequence, more pivots can be included in sample
graphs of a fixed size, from which we can mine more GARs.
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Figure 3: Demonstration of different strategies in GSRD

Example 7: The locality-aware sampling prefers the pivot s0 to s1
shown in Fig. 3(b). This is because the changes ∆s0 induced by s0
to the sample graph is smaller than that induced by s1, i.e., ∆s1. 2

Substructure extraction. We can use breadth-first search (BFS)
as strategyMs for extracting substructures of the pivots selected
by Mv above. Starting from a sampled pivot v , the BFS proceeds
up to the fixed depth k , and fetches the k-hop neighborhood of v
as its substructure, guided by ratio ρ%. We also remark that there
exist other optimized extraction strategies forMs (see Section 7).

5.3 Accuracy Guarantee
Wenow study the quality of the graphsH that are sampled byGSRD
for GAR discovery. Given desired bounds on recall and support of
GARs in the entire graphG , we show how to decide the numberN of
samples and their sample ratios ρ% for running GSRD accordingly,
and deduce the support threshold for mining GARs from H .

Characterization. We start with an observation. As observed in
[52], real-life graphs often have a power-law degree distribution.
The application of GARs is analogous, i.e., a small number of nodes
are involved in the matches of patterns in most GARs. In practice,
nodes with larger degrees are more likely to be matched by the pat-
terns. Thus to have a high recall when mining GARs from sample
graphs, we need to sample such critical nodes as many as possible.

We next formalize this observation to estimate the recall.

Formalization. Given a GAR φ = Q[x̄](X → p0) and a node v in
graphG , we say that v is a pivot of φ and contributes to the support
of φ in G if v appears in the pivot set PS(φ,G). Here PS(φ,G) is
defined as Q(G,X ∧ p0,p0) (see Section 3). It helps analyze the
accuracy bound below and is different from the previous notion
of pivot set defined w.r.t. a single predicate p.

Let ΣGA be the set ofA-relevantGARswith support at least σ in
theA-graphGA , andγ% be an expected recall value, i.e.,wewant to
mine γ%× ||ΣGA || manyA-relevant GARs in ΣGA from the sample
graphs. We use two variables ρmax% and ρmin% to model the power-
law distribution w.r.t. nodes and GARs. Here ρmax% (resp. ρmin%)
denotes the maximum (resp. minimum) percentage of the nodes
in GA that can contribute to the support of γ% × ||ΣGA || many A-
relevantGARs from ΣGA . Then the recall γ% satisfies the following:

γ% =
(
ρmax%
ρmin%

)−∆
.

The exponent ∆ can be estimated by using parameter estimation
methods for power-law distribution [15]. Intuitively, the larger ∆ is,
the fewer critical nodes can contribute to the support of mostGARs.
Moreover, for each node v sampled in the first phase and any GAR
φ with sup(φ,GA ) ≥ σ ,v ∈ PS(φ,GA ) if and only ifv ∈ PS(φ,Hv ).
Here Hv denotes the substructure of v extracted via BFS.

When the ML modelMA used for deducingGA is accurate, the
A-graph GA in the analyses below can be replaced by graph G.
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Accuracy bound. Denote byVA the node set of theA-graphGA ,
and by VH the set of nodes sampled by GSRD as pivots in each
sample H (A, ρ%), respectively. We have the following.

Theorem 2: For an A-graph GA , an expected recall value γ%,
support threshold σ for required A-relevant GARs ΣGA in GA , and
a constant ε ∈ (0, 1), if the support threshold for A-relevant GARs
is σ ′ =

⌈ ||VH ||
||VA ||

σ (γ%)1/∆ + 1
⌉
in sample graphs, then after creating

a set H of N=
⌈

ln ε /
(
1 − exp(− (γ%)1−

1
∆
(
||VH ||σ (γ%)

1
∆ −||VA ||σ ′

)2

3 ||VH || ||VA ||σ )

)⌉
sample graphs by GSRD with BFS as substructure extraction strategy,
recall(ΣH , ΣGA ,σ ) ≥ γ% with probability 1 − ε . 2

Proof sketch:We prove this in two steps: (1) when discoveringA-
relevant GARs with the computed support threshold σ ′ in a sample
graph deduced via GSRD, recall(ΣH , ΣGA ,σ ) is no smaller than γ%
with a specific probability px based on Chernoff bound [49]; and
(2) after mining GARs from N =

⌈ ln(1−ε )
ln(1−px )

⌉
sample graphs deduced

via GSRD in the same setting, the probability reaches 1 − ε . 2

Remark. (1) Note that the percentage of ||VH || in ||VA || provides a
guideline to determine the sample ratio ρv%, guided by Theorem 2.
(2) One can verify that for each GAR φ in ΣH that has support σ ′
in sample graph H (A, ρ%) of H , φ has support of at least σ ′ in the
entire graph G, since each H (A, ρ%) is essentially a subgraph of G.

Example 8: Consider an A-graph GA deduced from the citation
network DBLP [1], which includes ||VA || = 16M nodes. Suppose
that the expected support threshold σ is 50 onGA , we need a recall
of 90% w.r.t. support 50, and ρmin%

ρmax% = 0.09. By Theorem 2, we can
see that to achieve this expected recall value, it suffices to create
N = 9 sample graphs by GSRD such that ||VH || = 4.8M , and set the
support threshold σ ′ = 3 for sample graphs. 2

6 PARALLEL DISCOVERY
In this section, we develop a parallel algorithm for discovering
GARs from the sample graphs in H , with the parallel scalability.

Sequential mining. To see the challenges inherent toGAR discovery,
we start with a sequential algorithm for mining GARs, denoted
as GARMine, by extending the GFD discovery algorithm of [18].
GARMine processes the N sample graphs in H one by one to
mine GARs and returns their union. On each sample graph, it
interleaves levelwise pattern expansion and dependency expansion
to generate patterns Q and dependencies X → p0 for candidate
GARs, respectively, following [18]. Apart from the constant and
variable predicates of GFDs, here dependency expansion also
includes new ML, attribute and edge predicates in GARs (see
details shortly). GARMine returns those candidate GARs having
support above the threshold σ ′, which is determined by Theorem 2.

GARMine takes exponential time in the worst case due to graph
homomorphism needed in GAR validation (cf. [25]). To speed it up,
we parallelize the discovery process. To measure the effectiveness
of the parallelization, we review the notion of parallel scalability.

Parallel scalability. We adapt the parallel scalability of [32] to char-
acterize the effectiveness of parallel algorithms for GAR discovery.
Denote by Tseq(|H |,k,σ ′) the worst-case cost of a sequential GAR

Algorithm 2: ParGARMine
Input: A set H of N sample graphs H (A, ρ%), processors

P1, . . . , Pn , positive integer k and support threshold σ ′.
Output: A set ΣH of all minimum GARs in H such that each has at

most k pattern nodes and a support at least σ ′ in H .
1 distribute the sample graphs to n processors;
2 ΣH ← nil ; ℓq ← 1; Q0 ← nil ;
3 while ℓq ≤ k2 do
4 Qℓq ← QExpand(ℓq , Qℓq−1);
5 parallel matching of patterns in Qℓq ; adjust Qℓq w.r.t. σ ′;
6 compute the maximum size ℓmp for preconditions w.r.t. Qℓq ;
7 ℓp ← 0; Σ−1 ← nil ;
8 while ℓp ≤ ℓmp do
9 Σℓp ← PExpand(ℓp , Σℓp−1, Qℓq );

10 parallel validation of the GARs in Σℓp ;
11 extend ΣH with the verified GARs w.r.t. σ ′ ;
12 ℓp ← ℓp + 1;

13 ℓq ← ℓq + 1;

14 return ΣH ;

discovery algorithm A, which finds GARs from H with support
threshold σ ′ and bound k on pattern node numbers. We say that
a parallel algorithm Ap for GAR discovery is parallelly scalable
relative to A if with n processors,

Tpar(|H |,k,σ
′,n) = O

(Tseq(|H |,k,σ ′)
n

)
,

where Tpar(|H |,k,σ ′,n) is the parallel cost of Ap . Intuitively, a par-
allelly scalableAp “linearly” reduces the cost ofAwhen n increases.

The main result of this section is the following.

Theorem 3: There exists an algorithm ParGARMine for GAR dis-
covery that is parallelly scalable relative to GARMine. 2

Below we give a constructive proof by presenting ParGARMine.

Parallel mining. Algorithm ParGARMine conducts levelwise ex-
pansion of patterns and dependencies simultaneously at a des-
ignated coordinator. It validates candidate patterns and GARs in
parallel with n workers, since the expensive subgraph matching in
validation dominates the cost of the discovery process. It extends
parallel GFD discovery [18] by (a) partitioning multiple sample
graphs, (b) supporting attribute, edge and ML predicates, and (c)
applying new pruning strategies during the expansions.

The details of ParGARMine are shown in Algorithm 2. It starts
by evenly allocating computing resources to sample graphs (line 1),
such that each sample is assigned a distinct set of ⌊ nN ⌋ processors
except one that takes all the rest. We fragment and distribute each
sample graph across ⌊ nN ⌋ workers via vertex-cut partitioning [78].

Following the BSP model [70], ParGARMine next works in k2

rounds to generate and validate GARs (lines 3-13). As k pattern
nodes result in at most k2 edges, each one of the k2 rounds intends
to find GARs with a specific number of pattern edges in [1,k2].

Pattern expansion. In each round ℓq , ParGARMine expands
patterns at level ℓq by creating a set Qℓq of patterns with ℓq
edges via procedure QExpand at coordinator Pc (line 4). QExpand
generates Qℓq by expanding each pattern in Qℓq−1 with a single
new edge; initially the edges in Q1 should conform to the triplets
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of predicates in application A (Section 4). ParGARMine then
computes the matches of such patterns in sample graphs using the
parallel pattern matching strategy of [18]; it prunes from Qℓq all
patterns that have less than σ ′ matches in each sample (line 5).

Dependency expansion. Given patterns Qℓq , ParGARMine expands
dependenciesX → p0 at level ℓp to produce candidate GARs, in ℓmp
iterations (lines 8-12). Here ℓmp denotes the maximum number of
predicates in X , estimated by combinations of possible predicates
w.r.t. Qℓq . In each iteration ℓp , procedure PExpand is called at
the coordinator to compute a set Σℓp of GARs, such that each one
has a pattern from Qℓq and ℓp predicates in precondition X (X=∅
when ℓp=0) (line 9), where X is expanded from a counterpart in
Σℓp−1 with one new predicate. To speed up the process, PExpand
associates each pair of nodes with a set of predicates that they
satisfy, similar to the evidence sets for discovering DCs [42].
ParGARMine validates GARs in Σℓp by extending the parallel
method of [18]. It reserves those GARs that meet support bound
σ ′ and have high confidence (lines 10-11).

Handling edge and ML predicates. In dependency expansion, proce-
dure PExpand also generates possible attribute, edge and ML predi-
cates that are unique to GARs. More specifically, for each candidate
pattern Q and attribute dependency X → p0, PExpand expands
X with x .A, l(x,y) orM(x,y, l) for all x and y in Q , l in the label
set Γ, A in the attribute set ϒ, and ML classifiersM if applicable.
Recall that A-graph GA already incorporates edges predicted by
ML model (Section 4); hence when discovering A-relevant GARs,
we can treat ML predicates as edge predicates in the samples of the
A-graph. All such expanded dependencies will be validated.

For GFDs, the parallel validation is only conducted on matches
computed for patterns Qℓq [18]. In contrast, due to the edge andML
predicates introduced by GARs, we have to inspect the existence
of additional edges, which may reside at different workers. Thus, if
a match h at processor Pi involves two nodes v and v ′ and if we
need to check the existence of an edge e from v to v ′ together with
h, ParGARMine transmits e to Pi from other workers if it exists
before the local checking, using an additional superstep of BSP.

Cover. We revise the parallel implication checking algorithm for
GFDs [18] to compute the cover ΣcH of GARs ΣH returned by
ParGARMine, based on a characterization of GAR implication [19].

Example 9: Consider GAR φa of Example 1 and suppose that its
consequence predicate is covered by applicationA. By the number
of pattern edges, ParGARMine can find φa in round 2k0 + 2. More
specifically, after generating the pattern Qa in this round, it vali-
dates combinations of the predicates of Qa to mine dependencies,
including the one of φa that consists of 2k0 variable predicates, k2

0
ML predicates and an edge predicate colleague(x0, x ′0). Note that the
ML predicates predict similar_profile links, which have been added
to the A-graph in graph reduction. ParGARMine performs simi-
larly in checking the ML and edge predicates of φa , i.e., inspecting
similar_profile and colleague links, with necessary communication
when the links and matches of Qa are not at the same worker. 2

Note that when the sample graphs are small enough to be de-
ployed at a single processor, e.g., some real-life graphs in Section 7,
ParGARMine can also be implemented with another setting, where

each sample is replicated at its assigned processors and the compu-
tation is evenly partitioned following the techniques in [23].

Pruning strategies. To reduce unnecessary expansion of patterns
and dependencies that cannot yield minimum GARs w.r.t. support
threshold σ ′, proceduresQExpand and PExpand employ new prun-
ing strategies in addition to those adopted in GFD discovery [18].
(a) Incremental dependency expansion. Given a pattern Q ′ expanded
from patterns Q , PExpand only generates those dependencies
X ′ → p′0 such that there exists X → p0 at a prior level whose
predicates are covered by X ′ and p′0, and the support of Q[x̄](X
→ p0) exceeds the bound σ ′. That is, ParGARMine maintains the
valid dependencies in the prior levels to prevent from producing
dependencies starting from scratch at the current level.
(b) Interleaved pruning. If the support of GAR Q[x̄](X → p0) is less
than σ ′ for all X → p0, then QExpand only expands Q with edges
having new nodes when Q is a path. This pattern pruning makes
use of the information obtained during dependency expansion.

Both strategies leverage the anti-monotonicity of the support of
GARs (Lemma 1). Without it, the algorithm easily expands a GAR
φ ′ from φ such that φ ⪯ φ ′ but the support of φ cannot reach σ ′,
which has already been verified in prior levels, i.e., φ ′ is useless.

Analyses. To see that algorithm ParGARMine is correct, observe
the following. (a) The parallel matching method of [18] ensures
that the matches of candidate patterns computed at n processors
are the same as that deduced sequentially. (b) All the data related
to validating edge and ML predicates in a GAR is sent to the same
processor in advance. One can also verify its parallel complexity
by analyzing the parallel cost incurred in each round.

7 EXPERIMENTAL STUDY
We experimentally evaluated (1) the effectiveness of application-
driven graph reduction, (2) the quality of sample graphs produced by
GSRD, (3) the speedup ofGAR discoverywith sample graphs, (4) the
(parallel) scalability of algorithm ParGARMine, (5) the quality of the
discoveredGARs; and conducted (6) an ablation study for discovery.

Experimental setting. We start with the experimental setting.
Datasets. We used five real-life graphs: (1) DBLP [1], a real-life cita-
tion network with 0.2M nodes and 0.3M edges, where the attributes
constitute bibliographic records of research papers in computer
science; (2) YAGO [66], a knowledge graph with 3.5M nodes and
7.4M edges; (3) DBpedia [2], a larger knowledge graph with 5.2M
nodes and 17.5M edges; its attribute values indicate various types of
facts related to the entities (nodes); (4) IMDB [4], a graph database
that includes attributes for the information of movies, directors and
actors, having 5.1M nodes and 5.2M edges; and (5)movieLens [27],
a movie recommendation network, with 10K nodes and 0.1M edges.

We also designed a graph generator to evaluate the scalability of
the methods. The synthetic graphs have up to 7M nodes and 21M
edges, with labels, attributes and values drawn from 70 symbols.

To find more practical GARs, following the observation in [6],
we mainly discovered GARs having patterns with diameter at most
3, and imposed a bound on the number of cycles within the patterns.
When constructing constant predicates, we used 5 most frequent
values from the active domain of the attributes in the graphs.
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Algorithms. We implemented the following, all in C++. (1) The
graph reduction method (Section 4). (2) Various graph sampling
approaches GSRDy+z in framework GSRD (Section 5), where y
denotes the strategy for sampling pivots, including CA (cluster-
assisted) and LC (locality-aware); and z denotes the strategy for ex-
tracting substructures, including OB (BFS),WB (BFS with bounded
width) and RW (random walk). Here WB is a variant of OB, which
takes an additional bound on the number of neighbors that each
BFS step explores. It helps us mine GARswith patterns of a large di-
ameter. RW also takes two parameters: the depth k of random walk,
and the size of substructure. It performs random walk from a sam-
pled pivot and is able to extract irregular substructures for pivots.
(3) The parallel GAR discovery algorithm ParGARMine (Section 6).
(4) A variant ParGARMinew of ParGARMine that discovers GARs
from the entire graphs in parallel. (5) The parallel GFD discovery
algorithm DisGFD [18], for efficiency comparison.

We also implemented three baseline graph sampling methods.
(6) UniNode uniformly samples nodes with a ratio. It returns the
subgraph induced by all the selected nodes as a sample graph. (7)
UniEdge extracts edges from graphs in a uniform manner to build
samples. (8) PRA, which samples paths with a linear path ranking
model to select nodes that aremostly related to the query nodes [36];
we picked query nodes by uniform node sampling, preserving all
edges connected to the sampled nodes. In addition, we compared
with (9) AnyBURL [45] for efficiency in mining Horn rules.

ML models. We used the SimplE model [31] as the ML classifier in
GARs due to its high accuracy and efficiency. To train SimplE, we
adopted the default configurations in [31], and took 85% and 15%
of each graph as the training set and validation set, respectively.
The trained model is used to recover missing information.

The LSTM model used for graph reduction was implemented
as [48] with its default training configuration and two 650 wide
layers. We targeted the discovery ofA-relevant GARs for a specific
applicationA. By default we considered 7 predicates in a singleA.

The algorithms were deployed on a cluster of up to 16 machines
connected by 10Gbps links. Each machine has 2 processors powered
by Intel Xeon 2.2 GHz and 64 GB memory. All the experiments were
repeated 5 times and the average is reported here.

Experimental results. We next report our findings.
Exp-1: Effectiveness of application-driven reduction. We first
evaluated the performance of our graph reduction strategy. The
ML-based method selects the top-m frequent label triplets from a
candidate set generated byMA , which are most closely relevant
to the application A (Section 4). We studied the impact ofm on
the effectiveness of graph reduction by varyingm from 3 to 10. We
fixed the upper bound k = 6 for pattern nodes, and set the same
support threshold as 1000 when miningGARs from both the graphs
G and A-graphs GA deduced by the reduction. Here movieLens is
omitted, since it only has 10 types of label triplets for scoring andML
models can hardly discern their semantics. The results on the other
four real-life graphs are reported in Table 2. We find the following.
(1) The graph reduction ratio (reduc.), measured as the ratio of
removed data to the entire graph, i.e., |G |− |GA |

|G | , becomes smaller
whenm increases, as expected since all data conforming to them
triplets is preserved in A-graph GA . In particular, the reduction is

Table 2: Effectiveness of ML-based graph reduction

Graphs top-3 top-7 top-10
Reduc. Recall Reduc. Recall Reduc. Recall

DBLP 57% 58% 53% 67% 50% 100%
IMDB 71% 71% 67% 100% 63% 100%
YAGO 98% 73% 96% 83% 86% 91%

DBpedia 94% 78% 92% 100% 90% 100%

very effective for YAGO and DBpedia, with an average ratio of 94%
whenm = 7. This is because that most data in these comprehensive
knowledge graphs is irrelevant to a given specific application.
(2) Over the four real-life graphs, the recall of GARs discovered
from GA is on average 87% (resp. 98%) whenm is 7 (resp. 10).
(3) Compared to mining GAR from entire graphsG , on average the
discovery of GARs from GA achieves a speedup of 7.6 times when
m = 7, using the parallel algorithm ParGARMinew (not shown). In
addition, such GA can be constructed in 320 seconds on average.

These verify the effectiveness of the ML-based graph reduction.
For all the other experiments,m was set to be 7 by default.

Exp-2: Effectiveness of graph sampling. We next evaluated the
quality of samplesH (A, ρ%) deduced byGSRD. Varying the sample
ratio ρ%, we assessed the impact of different (a) pivot sampling
policies, (b) substructure extraction methods, and (c) the number
N of sample graphs on the recall of GARs discovered. The support
thresholdsσ onA-graphsGA were set as 1000 in these experiments.
In addition, when enforcing BFS with bounded width (resp. random
walk) for substructure extraction, the bound on width (resp. size of
substructure) was set as 3 (resp. 30) by default.

(1) Impact of pivot sampling. Fixing k = 8 and N = 1, we varied ρ%
from 1% to 10% on DBLP and IMDB. Here the support thresholds
σ ′ for discovery in sample graphs were determined by following
the formula in Theorem 2, which is unaffected by the specific sub-
structure extraction strategy and hence is applicable to bothWB
and RW as well. As shown in Figures 4(a) and 4(b), (a)GSRDCA+RW
consistently performs the best among all the methods. (b) It out-
performs GSRDLC+RW (resp. GSRDLC+OB) by 24% (resp. 35%) on
average in the recall of the discovered GARs, validating the need
of node clustering in sampling pivots. We also find that clustering-
assisted sampling exhibits little difference with different types of
node features. It means that word embeddings, i.e., node attributes,
suffice to distinguish application-related pivots.

(2) Impact of substructure extraction. In the same setting, Figures
4(c) and 4(d) report the recall of GARs mined from the samples
deduced by different strategies from DBLP and IMDB, respectively.
We can see that when combing clustering with various approaches
for substructure extraction, GSRDCA+RW still offers the highest
recall and GSRDCA+WB performs better than GSRDCA+OB. We
examine the substructures extracted by RW and find that the se-
mantics related to them, e.g., node labels, is more diversified than
those extracted by OB and WB, making it possible to find more
GARs. That is, while the theoretical bounds (Theorem 2) are proved
for GSRDCA+OB, GSRDCA+RW achieves better bounds in practice
since OB andWB introduce a bias towards high-degree nodes [33].

(3) Impact of N . Using the same k , σ and range of ρ% as in Exp-
2(1), Figures 4(e) to 4(h) report the results with different number
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Figure 4: Performance evaluation

N of samples deduced from four real-life graphs (the results on
movieLens are consistent and are not shown). Here we only tested
GSRDCA+RW for framework GSRD, which has been verified to be
the best combination in Exps(2)(a) and (2)(b) and this also holds
when N>1. We find that (a) all sampling methods perform better
with more sample graphs, as expected. (b) GSRDCA+RW on aver-
age beats UniNode (resp. UniEdge and PRA) by 8.0 (resp. 5.3 and
4.3) times when ρ% varies from 7% to 10% and using 2 samples,
which is consistent with Figures 4(a) to 4(d). (c) The recall offered
by GSRDCA+RW “converges” fast as N increases. For instance, on
DBpedia, the recall already reaches 92% when N=2 and ρ%=10%.
These validate the effectiveness of GSRD for GAR discovery.

We also find that if GSRDCA+RW is applied on original graphs
with k = 6, N = 2 and ρ% = 10%, then an average recall of 72% is
achieved (not shown). Compared with Exp-1, this suggests graph
reduction contributes more to a better accuracy of GAR discovery.

Exp-3: Efficiency. Using n = 8 machines, we tested the efficiency
of ParGARMine in finding GARs from sample graphs, and com-
pared it with ParGARMinew andDisGFD that operate on the entire
graphs. We took the sample graphs deduced by GSRDCA+RW from
IMDB, YAGO and DBpedia with sample ratio 10% and N = 2; the
support thresholds were decided along the same lines as that in Exp-
2(1). Figures 4(i) to 4(k) report the runtime for mining GARs with
different upper bounds k for patterns. The corresponding time for
building samples is on average 198 seconds. We find the following.
(1) ParGARMine constantly outperforms both ParGARMinew and
DisGFD, although GARs include edge, attribute and ML predicates
beyond GFDs. ParGARMine is on average 60.6 (resp. 10.5) times
faster than ParGARMinew (resp. DisGFD). DisGFD is faster than
ParGARMinew since mining edge and ML predicates of GARs has
to check additional edges beyond the matches of patterns.
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(2) It is feasible for ParGARMine to discover GARs with large pat-
terns. From N = 2 sample graphs of YAGO (resp. IMDB), it takes
ParGARMine 285 (resp. 492) seconds to find GARs with k = 10,
while ParGARMinew cannot terminate in 7 (resp. 16) hours.
(3) When ParGARMine is used to discover GFDs only, it outper-
forms DisGFD by 52.7 times when using N = 2 sample graphs.

Results on DBLP and movieLens are consistent and not shown.
(4)With 8machines, we also compared the runtime of ParGARMine
with AnyBURL in mining 100 Horn rules from DBLP and DBpedia.
Here we target finding 100 rules with support above 1000 and path
length of at most 3, since AnyBURL cannot return the complete set
of rules. We find that ParGARMine is 3.0 (resp. 12.3) times faster
than AnyBURL in Horn rule discovery on DBLP (resp. DBpedia).

Exp-4: Scalability. We tested the scalability of GAR discovery.
(1) Parallel scalability. Fixing k = 6 and employing the same ρ%,
σ and N as in Exp-3, we varied the number n of machines used
from 4 to 16. As reported in Figures 4(l) to 4(o) on the four real-life
graphs, respectively, (a) ParGARMine and ParGARMinew are on
overage 3.2 and 3 times faster, respectively, i.e., they scale well with
n. (b) ParGARMine outperforms ParGARMinew by 58.3 times on
average. These empirically verify Theorem 3 and further show the
effectiveness of sampling-based GAR discovery.

(2) Larger graphs. Fixing k = 6, n = 8, σ = 1000, ρ% = 10% and
N = 2, we varied the size |G | = |V |+ |E | of synthetic graphsG from
1.6M to 28M . The results in Fig. 4(p) show that sampling-based
GAR discovery can scale with large graphs, e.g., when |G | = 28M ,
it takes 735 seconds to mine GARs from two sample graphs.

Exp-5: Effectiveness of GARs. We evaluated the effectiveness of
the discovered A-relevant GARs with different applications A.
(1) Knowledge graph completion. We first applied GARs to restore
missing information, including edges and attributes, in knowledge
graphs YAGO and DBpedia. We picked edge and attribute predi-
cates for application A, e.g., member_of(x,y) and x .education. To
evaluate the performance, for each graph, we constructed a test set
by randomly selecting 10K application-related edges and attributes
that conform to the predicates ofA in the original graph as positive
samples, and picking 10K nonexistent links and attributes as nega-
tive ones. Then we applied the GARs discovered with GSRDCA+RW
and N = 2, ρ% = 10%, σ = 1000, k = 8 andm = 7, referred to as the
default setting, to classify the information in test set, i.e., whether
they should be restored. F-measure was employed as the accuracy
metric, and link prediction models SimplE [31] and ComplEx [69]
were treated as baselines. We find that enforcing the A-relevant
GARs consistently achieves high accuracy above 0.87, and on aver-
age it beats SimplE and ComplEx by 9.2% and 11.5%, respectively.

(2) Recommendation. As another case study, we tested the effec-
tiveness of the A-relevant GARs mined with default setting, in
recommendation. We used movieLens and specified application A
with predicate 5–star_rating(x,y), indicating that movie y should
be recommended to person x . The configuration of train/test dataset
split and training follows [28] for a fair comparison. We find that
applying the GARs performs better than recommendation model
LightGCN [28], with top-20 recommendation recall of 0.83 vs. 0.71.

Table 3: Ablation study on the efficiency of GAR discovery
Graphs No graph reduction No sampling Full method
DBpedia 31.3s 1663.0s 8.0s
YAGO 117.6s 541.6s 18.6s

(3) Inconsistency detection. We also studied error detection. This
experiment was conducted over DBpedia, with an application A
consisting of predicate same_kingdom(x,y). That is, the “kingdom”
of two species should be the same under certain conditions, e.g.,
two species are in the same “class”. We randomly drew 7% of species
entities from DBpedia and changed their kingdom values, to form
the test set. The A-relevant GARs discovered with default setting
were used to detect the erroneous kingdom values. We find that
such GARs perform comparably to the entire set of GFDs mined
from the same graph [18], with F-measure above 0.96.

Exp-6: Ablation study. Observe that Exp-1 and Exp-2 already
show graph reduction is more important for achieving high recall
in GAR discovery. We next preformed an ablation study using
DBpedia and YAGO to investigate how each stage influences the
efficiency. Fixing k=3, n=8, σ=1000, ρ%=10% and N=1, we omitted
one of graph reduction and sampling stages. As shown in Table 3,
the discovery time significantly increases when sampling is left out,
indicating that sampling is more critical for improving efficiency.

Summary. We find the following. (1) The application-driven graph
reduction method is effective. It reduces the graphs by 76% on
average, while achieving recall of 85% for discovered A-relevant
GARs. (2) The sample graphs deduced by framework GSRD are of
high quality. On 4 such samples with sample ratio 10%, more than
94% of the GARs in the A-graphs GA can be mined, with support
at least 1000 in GA . (3) The sampling-based discovery scheme is
efficient. It speeds up mining from the entire graphs by 60.6 times
on 2 sample graphs with sample ratio 10%, while retaining recall
above 91%. It speeds up algorithm DisGFD of [18] by 52.7 times for
GFD discovery. (4) Algorithm ParGARMine is parallelly scalable:
on average it is 3.2 times faster when n varies from 4 to 16.

8 CONCLUSION
We have explored a new approach for discovering rules from big
graphs G, consisting of (1) a graph reduction scheme to deduce a
smaller graphGA of data pertaining to a given application A, (2)
a method to sample a set H of small graphs fromGA , such that the
rules mined from H satisfy given support and recall bounds in G,
and (3) an algorithm with the parallel scalability to mine rules from
small H instead of from the entireG , for GARs that may embed ML
predicates and subsumeGPARs andGEDs as special cases. We have
experimentally verified that the approach is promising in reducing
excessive number of rules and scaling with large graphs.

One topic for future work is to explore strategies to reduce the
impact of noise in real-life graphs on rule discovery. Another topic
is to develop incremental discovery algorithms on dynamic graphs.
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