
Stingy Sketch: A Sketch Framework for Accurate and Fast
Frequency Estimation

Haoyu Li∗

Peking University

lihy@pku.edu.cn

Qizhi Chen∗

Peking University

hzyoi@pku.edu.cn

Yixin Zhang∗

Peking University

yxzh@stu.pku.edu.cn

Tong Yang∗†

Peking University

yang.tong@pku.edu.cn

Bin Cui∗

Peking University

bin.cui@pku.edu.cn

ABSTRACT

Recording the frequency of items in highly skewed data streams

is a fundamental and hot problem in recent years. The literature

demonstrates that sketch is the most promising solution. The typical

metrics to measure a sketch are accuracy and speed, but existing

sketches make only trade-offs between the two dimensions. Our

proposed solution is a new sketch framework called Stingy sketch

with two key techniques: Bit-pinching Counter Tree (BCTree) and

Prophet Queue (PQueue) which optimizes both the accuracy and

speed. The key idea of BCTree is to split a large fixed-size counter

into many small nodes of a tree structure, and to use a precise encod-

ing to perform carry-in operations with low processing overhead.

The key idea of PQueue is to use pipelined prefetch technique to

make most memory accesses happen in L2 cache without losing

precision. Importantly, the two techniques are cooperative so that

Stingy sketch can improve accuracy and speed simultaneously. Ex-

tensive experimental results show that Stingy sketch is up to 50%

more accurate than the SOTA of accuracy-oriented sketches and is

up to 33% faster than the SOTA of speed-oriented sketches.

PVLDB Reference Format:

Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. Stingy Sketch:

A Sketch Framework for Accurate and Fast Frequency Estimation. PVLDB,

15(7): 1426-1438, 2022.

doi:10.14778/3523210.3523220

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/StingySketch/Stingy-Sketch.

1 INTRODUCTION

1.1 Background and Motivation

Recording the frequency of items in highly skewed data streams is

a fundamental and hot problem in recent years [1–3]. And it is also

the basis of many applications including finding top-𝑘 items [4–7],

∗School of Computer Science, and National Engineering Laboratory for Big Data
Analysis Technology and Application, Peking University.
†Peng Cheng Laboratory, Shenzhen, China.
Haoyu Li and Qizhi Chen are co-first authors, and the corresponding author is Tong
Yang. This work is supported by Key-Area Research and Development Program of
Guangdong Province 2020B0101390001, National Natural Science Foundation of China
(NSFC) (No. U20A20179, 61832001).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 7 ISSN 2150-8097.
doi:10.14778/3523210.3523220

joining tables [8, 9], multi-set querying [10], and more [11–14].

Sketch is widely acknowledged as the most promising probabilistic

algorithm for frequency estimation. The classical sketch, Count-

Min [15], hashes items into 𝑑 counters of 𝑑 arrays, and reports the

minimal value as the estimation. At an expense of determinacy,

sketch summarizes data streams in a compact space and 𝑂 (1) time,

making the item processing efficient.

The typical metrics to measure a sketch are accuracy and speed.

Unfortunately, there is an inherent conflict between these two

metrics. On the one hand, when optimizing the accuracy, sketch

often needs to introduce complex operations which consumes much

time; On the other hand, when optimizing the speed, sketch often

needs to reduce complex operations which in turn degrades the

accuracy. The ideal goal is to design a sketch that simultaneously

reaches the highest accuracy and fastest speed.

1.2 State of the Art and Their Limitations

We divide the existing sketches into 3 categories: the classical, the

accuracy-oriented, and the speed-oriented. The classical sketches

include Count-Min [CMS] [15], Conservative Update [CUS] [16],

and Count [CS] [17], which are simple to implement but have poor

accuracy and low speed. A number of improvements have emerged

to address these 2 drawbacks, and they are classified as accuracy-

oriented and speed-oriented algorithms respectively.

The reason for accuracy drawback is that classical sketches use

fixed-size counters, which mismatch the frequency distribution

in practice. It is known that item frequency often obeys a highly

skewed distribution [18–20]: Almost all items in a data stream

appear only once or a couple of times, while very few items appear

kilos or even millions of times. In other words, if we use only 32-bit

counters, most of the significant bits are wasted. The state of the

art (SOTA) of accuracy-oriented sketches is Self-Adjusting Lean

Streaming Analytics [SALSA] [3] which uses small counters at

first, and merges adjacent counters when they overflow. But in

turn, SALSA needs an additional bitmap and complex operations

to indicate the overflowing counters, making the speed very slow.

Further, SALSA is a flattened (rather than hierarchical) structure

and thus there is still room for accuracy improvement.

The reason for speed drawback is that classical sketches do not

exploit the L2 cache acceleration function. In general, the classical

sketches need to access 𝑑 counters totally randomly and such ran-

domness is cache-unfriendly. The ideal goal is to always keep all

counters in L2 cache [21]. But it seems unrealistic when the sketch

size is too large. To solve this problem, the mainstream solution

is to utilize temporal or spatial locality. The Augment sketch [22]

is the SOTA of speed-oriented work which utilizes temporal local-

ity. It creates a small additional filter to store hot items which can

1426

https://www.acm.org/publications/policies/artifact-review-and-badging-current

be fully kept in L2 cache. The Pyramid sketch [19] is the SOTA

of speed-oriented work which utilizes spatial locality. It forces all

𝑑 mapped counters to converge in one word so that they can be

fetched in one sitting and uses one hashing technique to reduce

the hash computation overhead. Although Augment and Pyramid

can speed up the counting process to some extends, both of them

have significant limitations: (1) Augment cannot deal with cold

items. For each incoming cold item, the traversal of the small filter

is totally an extra work. (2) Pyramid costs much precision. Once

two items are mapped into the same word, this method may lead

to severe hash collision. Further, Augment and Pyramid both need

complex operations, and thus there is room for speed improvement.

In brief, classical sketches have two serious drawbacks on accu-

racy and speed. Existing sketches make only trade-offs, but cannot

effectively optimize both of the 2 dimensions. Our goal is to pro-

pose a new sketch framework which performsmore accurate

than accuracy-oriented work SALSA, as well as faster than

speed-oriented works (Augment and Pyramid).

1.3 Our Proposed Solution

Towards the ideal goal, we propose a new sketch framework called

Stingy sketch. The Stingy sketch is a completely stingy guy who

budgets every penny of computing resources. It consists of two

cooperative techniques: Bit-pinching Counter Tree (BCTree) and

Prophet Queue (PQueue). BCTree makes most bits to count with

low processing overhead, while PQueue makes most memory ac-

cesses finish in L2 cache without losing precision. Unlike other

trade-off works, the Stingy sketch miserly combines the accuracy

and speed techniques, achieving high precision and throughput

simultaneously. Further, Stingy sketch is a generic and fundamental

sketch framework which can extend to many popular sketches such

as CMS, CUS, and CS (We call them 𝑆𝐶𝑀 , 𝑆𝐶𝑈 , and 𝑆𝐶). Next we
briefly introduce the key techniques of the Stingy sketch.

• Key Technique I: Bit-pinching Counter Tree (BCTree, Sec-

tion 3.1). In a nutshell, BCTree makes most bits to count by using

a well encoded tree-structure, achieving higher accuracy than the

SOTA of accuracy-oriented work - SALSA. SALSA uses a flatted

structure, and intuitively hierarchical structure has higher potential

than flattened structure to achieve memory efficiency. In our tree-

structure, each node has very few number of bits, such as 2 bits and

6 bits. To insert an item, we first map the item to the leaf node (6-bit

counter), and if it overflows, we will perform carry-in operation to

its parent node (2-bit counter). In BCTree, we have the following

two key designs. First, we manage to minimize the number of mem-

ory accesses for each insertion/query when carry-in operations

happen. In SALSA and Pyramid, once a carry-in operation happens,

one additional memory access is inevitable. Differently, in BCTree,

the child nodes are arranged near their parents, and thus they can be

read in one memory access. To achieve this, we physically organize

the counters in an in-order traversal of the binary tree (see details

in Section 3.1.1). In this way, given a frequent item overflowing 4

times to the 4th level, we need only 1 memory accesses rather than

4 memory accesses. Second, although the flags to indicate whether

overflows happen are inevitable, these flags do not contribute to

the accuracy. Therefore, we manage to minimize the memory usage

of such flags. In the tree structure - Pyramid, it uses around 25%

memory for flags. In contrast, we only use around 5.5% memory

for flags (see details in Section 3.1.2). In other words, 94.5% bits

are used for counting in BCTree.

• Key Technique II: Prophet Queue (PQueue, Section 3.2).

In a nutshell, PQueue foreknows the coming items like a prophet

and prefetches their addresses into L2 cache. Using PQueue, we can

make most memory accesses happen in L2 cache, though the size

of Stingy sketch may be much larger. Traditional insertion design

updates the incoming counters instantly. CPU has to wait until the

addresses of counters are fetched from L3 cache or even memory.

Our design seems like late update: Once a counter is required to

be updated, We only prefetch its address instantly, but update its

value after a short period. Specifically, PQueue is a variable-length

queue structure. It enqueues the counter’s address in the current

insertion, and dequeues it to update counters after a short period.

We make 3 further contributions. First, we propose Bounded

Hash Split (BHS, Section 3.3) to reduce the hash computation

cost. It computes only one hash function and split it into one in-

dex and 𝑑 offset parts to find 𝑑 mapped counters. Compared with

word acceleration technique, BHS uses variable-length offset parts

and provides a tight error bound. Second, we prove the unbiased-

ness1 of 𝑆𝐶 (the Stingy sketch extended to the Count sketch), so

Stingy sketch can be applied to extensive tasks like unbiased top-𝑘
detection. Third, we conduct comprehensive C++ simulation exper-

iments on multiple datasets, and deploy Stingy sketch on top of a

modern stream processing framework, Apache Flink [23], to show

its performance in distributed environment.

1.4 Key Contributions

• We propose the Stingy sketch, a new sketch framework that

achieves high accuracy, high speed and unbiasedness.

• We give detailed mathematical analyses of unbiasedness, time

complexity and error bound of our techniques.

•We conduct simulation experiments on frequency estimation and

unbiased top-𝑘 detection tasks and deploy Stingy sketch on top of

Apache Flink framework. In frequency estimation task, the Stingy

sketch is up to 50% more accurate than SOTA accuracy-oriented

sketch SALSA and 123% faster than speed-oriented sketch Pyramid.

In unbiased top-𝑘 detection task, Stingy sketch achieves up to 19

times more accurate than SOTA algorithm USS [5]. The integration

into Apache Flink shows that Stingy sketch also works well on

modern distributed stream processing framework.

2 RELATEDWORK

2.1 Preliminaries

•Data Stream: A data stream S is a sequence of 𝑁 items 〈𝑒1, 𝑒2, ...,
𝑒𝑁 〉 (𝑒𝑖 ∈ 𝐸), where 𝐸 is the item set. Items in 𝐸 can appear more

than once, but the algorithm should process items in order to sup-

port online query. A more formal definition of the data stream is a

sequence of 𝑁 pairs 〈(𝑒1,𝑤1), (𝑒2,𝑤2), ..., (𝑒𝑁 ,𝑤𝑁)〉, where𝑤𝑖 rep-
resents weights of 𝑒𝑖 . We only consider the first definition because

some comparison algorithms don’t support the second one.

• Frequency Estimation: Given a data stream S = 〈𝑒1, 𝑒2, ..., 𝑒𝑁 〉,

we use an algorithm 𝑓 (𝑒) (∀𝑒 ∈ 𝐸) to measure 𝑓 (𝑒) :=
∑
𝑖 I{𝑒 = 𝑒𝑖 }.

1Given an item 𝑒 , we say the estimation 𝑓 (𝑒) is unbiased if and only ifE𝑓 (𝑒) = E𝑓 (𝑒) .

1427

Of course, we don’t know 𝑒 until we finish processing S. So we

should record the frequency of all items during the procedure.

•UnbiasedTop-𝑘 Detection:Given a data streamS and an integer

𝑘 , we want to record the most frequent 𝑘 items with its frequency.

If an algorithm not only records the top-𝑘 items, but also reports

the unbiased frequency [i.e. E𝑓 (·) = E𝑓 (·)], we say the algorithm

detects unbiased top-𝑘 items.

2.2 Related Sketches

The sketch is widely used in many domains, including real-time IP

traffic [15–17, 21], natural language processing (NLP) [24], graph

stream [25], sensor database [26], and more [27, 28]. For frequency

estimation problem, classic sketches are Count-Min sketch [CMS]

[15], Conservative Update sketch [CUS] [16] and Count sketch [CS]

[17]. CMS consists of 𝑑 arrays 𝐴0 [], 𝐴1 [], ..., 𝐴𝑑−1 []. Every array is

𝐿 fixed-size counters. For each item 𝑒 , CMS picks one counter per ar-

ray by independent hash functions ℎ𝑖 (·). When counting frequency,

CMS increases all mapped counters𝐴𝑖 [ℎ𝑖 (𝑒)] by 1; When querying

frequency, CMS reports the min value of all mapped counters. CMS

has zero underestimate rate, low overestimate rate, and keeps the

optimal theoretical result: Within 𝑂 (1/𝜖 × log(1/𝛿)) space, CMS

ensures P
(
|𝑓 (𝑒) − 𝑓 (𝑒) | � 𝜖𝑁

)
� 1 − 𝛿 . CMS has more accurate

variants such as Conservative Update sketch [CUS] [16], but it

loses the ability to delete. Another classic sketch is CS. It increases

the mapped counters by +1 or -1 with equal probability. When

querying frequency, CS reports the mean or median value of all

mapped counters. In this way, 𝑓 (·) is proved to be the unbiased

estimation of 𝑓 (·). Within 𝑂 (1/𝜖2 × log(1/𝛿)) space, CS ensures

P

(
|𝑓 (𝑒) − 𝑓 (𝑒) | � 𝜖

∑
𝑒∈𝐸

𝑓 2 (𝑒)

)
� 1−𝛿 .With an additional heap

to record hot items, CS can also be used to find unbiased top-𝑘
items.

Most existing works are optimizations from CMS or CS. But they

only make trade-offs among space, accuracy and speed. In some

scenarios, sketches are designed to achieve high throughput (e.g.

Nitro sketch [29], Morton Filter [30], Cache Assisted Randomized

Sharing Counters [31], and Additive-Error Counters [2]) at cost of

accuracy. While in some other scenarios, sketches would rather

cost time in exchange for accuracy or compact space (e.g. Counter

Braids [32], Counter Tree [33], Hyper Log Log [34], and Diamond

sketch [20]). We introduce some typical and most related sketches

in the following parts and use them as comparison algorithms in

Section 5.

• Self-Adjusting Lean StreamingAnalytics [SALSA] [3]. SALSA

is a typical accuracy-oriented sketch framework which is a flat-

tened and simplified version of ABC sketch [35]. Initially, SALSA

uses only one 8-bit char rather than 32-bit int to count frequency2.

It establishes an extra bitmap to tag overflowing counters, and

merges small neighboring counters to dynamically form a bigger

one. SALSA achieves high accuracy but its shortcomings is also

obvious: The extra bitmap is not only space consuming, but also

decreases the speed. That’s because SALSA always looks up the

bitmap at every operation, to check if the corresponding counter

merges with others.

2In fact, SALSA has other versions such as the 2-, the 4-, and the 16-bit ones, but the
8-bit version is recommended by the authors.

• Augment Sketch [AS] [22] and Pyramid Sketch [PS] [19].

Augment and Pyramid are typical speed-oriented works. Augment

adds a pre-filtering stage when inserting items. The filter can be

totally loaded in L2 cache, so a hot item can be sought and updated

efficiently. However, for cold items, this sought process is just a

waste of time. Pyramid has twomain contributions: Counter sharing

and word acceleration. Counter sharing is similar to Counter Tree

but uses 2 flag bits per counter to accelerate query process. Word

acceleration forces counters map in the same word to utilize spatial

locality. Further, because these counters locate near, Pyramid can

use only one hash function to find 𝑑 mapped counters. On the one

hand, Pyramid is much faster than existing works. But on the other

hand, the extra flag bits make 3/4 states of a counter be sentinels, and

the word acceleration technique causes serious collisions. Both of

them greatly limit the accuracy. Further, the cumbersome encoding

also leaves room for speed.

• Self-adaptive Counters [SAC] [36]. SAC is a trade-off between

accuracy-oriented and speed-oriented sketches. It designs a new

counter that switches between normalized and denormalized num-

bers and updates them with a certain probability. SAC is less accu-

rate and faster than SALSA, but is more accurate and slower than

Pyramid.

• Unbiased Space Saving [USS] [5] and Waving Sketch [WS]

[6]. USS and WS are typical unbiased top-𝑘 detection algorithms.

USS is an extension of Space Saving [37]. It guesses top-𝑘 items

in advance and organizes them in a minimum heapH . When the

coming item 𝑒 is an element ofH , USS increases its frequency by

1. Otherwise, USS increases the frequency of the top element 𝑓𝑚𝑖𝑛
by 1 and exchange 𝑒𝑚𝑖𝑛 by 𝑒 with probability 1/(𝑓𝑚𝑖𝑛 + 1). WS is

another SOTA work on finding unbiased top-𝑘 items. It identifies

hot items like traditional CS+Heap (Count sketch + Minheap). But

it uses a more delicate heavy part to record the top-𝑘 items.

3 THE STINGY SKETCH FRAMEWORK

In this section, we briefly introduce the data structure of the Stingy

sketch. For convenience, we use 𝑆𝐶 (the Stingy sketch extended to

Count sketch) as an example.

3.1 Bit-pinching Counter Tree (BCTree)

BCTree is a specialized technique to make full use of every bit of

a sketch. In this subsection, we implement BCTree in three steps.

In the first step, we give an explicit carry direction if a counter

overflows; In the second step, we demonstrate how to deal with

multilayered carry chains and query a counter’s value; And in the

last step, we "kick" the conflict counters off as a further optimization,

by which we can ultimately report an unbiased estimation. We call

the three steps as Inlay Carry Mode, Counting State Machine,

and Open Addressing Method respectively.

3.1.1 Inlay Carry Mode (ICM) (Fig. 1).

The idea of ICM is derived from the in-order traversal of the bi-

nary tree. Unlike the existing works (e.g. Pyramid), ICM ensures

a counter overflow to a relative near address, so we can fetch all

counters together into L2 cache. As preliminaries, we suppose every

array has 𝐿 bytes and every byte consists of two counters: The least

significant 6 bits form a 0-level counter and the most significant 2

bits form a nonzero-level counter. The key contribution of ICM is,

1428

once a k-level counter 𝑥𝑖
𝑘
(𝑘 � 0) overflows, it carries to a (k+1)-level

counter 𝑥𝑖
𝑘+1

whose address is

𝑥𝑖𝑘+1 :=

{
𝑥𝑖
𝑘
|1, 𝑘 = 0;

(𝑥𝑖
𝑘
| (2 × 𝑏)) ⊕ 𝑏, 𝑘 > 0.

where 𝑏 := 𝑥𝑖𝑘&(−𝑥𝑖𝑘). (1)

In this formula, "|" represents OR, "⊕" represents XOR and &"

represents AND.

0 1 2 3 5 6 7

1 3

2

7

4

5

6

4

0-level

...
...

......

1-level

2-level

3-level

Counter Number

Counter Level

0000 0010 0100 0110 1000 1010
0001 0011 0101 0111 1001 1011

kk : The most/least significant 2/6 bits in the kth byte.
: Carry direction. : The 5th counter.0101

ICM

Figure 1: Inlay Carry Mode (ICM).

3.1.2 Counting State Machine (CSM) (Fig. 2).

CSM uses Finite State Machine (FSM) to describe the counting process.

Because every counter of 𝑆𝐶 is either 6 bits (0-level counter) or 2 bits

(nonzero-level counter), we use 2 kinds of FSM (FSM0 and FSM1)

to describe them. To be more specific, FSM0 represent the true form

of a 0-level counter which has 26 = 64 states ±0,±1, ...,±31. Except
the state "-0" is used as Kick Tag3, the states transfer from one

to another according to Fig. 2. For instance, if the initial state of

FSM0 is "+31", it will overflow to a 1-level counter and turns to

state "+1" after an insertion. Similarly, we use FSM1 to represent a

nonzero-level counter in Fig. 2. FSM1 has exactly 4 states 0, 1, 2, 3.

For state 0, 1, 2, their successor is naturally 1, 2, 3; And for state 3,

its successor is 1 rather than 0. In this way, a nonzero-level counter

can not transfer to state 0 once it is inserted.

+30 +31+2+1
+0

… Overflow

0-level Counter

3210

Carry Terminator

Nonzero-levelCounter-30 -31-2-1 …

Overflow

+1

-1

-0

-0 : Counting state -0 (Unused).
: Transfer direction.

+1

-1

1

CSM

Figure 2: Counting State Machine (CSM).

CSM helps to terminate the query process: Since the query

process is bottom-up, if we meet state "0", we can simply stop

the query process because the counter is never carried. For in-

stance, if we inductively consider a carry chain including 𝑘 counters

(−1)𝑆 × 𝑣0, 𝑣1, 𝑣2, ..., 𝑣𝑘−1 (𝑣𝑘−1 = 0), we can quickly calculate its

value by Horner scheme:

𝑉 := (−1)𝑆 × (𝑣0 +
𝑘−2∑
𝑖=1

3𝑖−1 × 31𝑣𝑖) = (−1)𝑆 × (𝑣0 + 31𝑉1), (2)

3We explain the Kick Tag in Section 3.1.3.

where 𝑉𝑗 :=

{
𝑣 𝑗 + 3 ×𝑉𝑗+1, 𝑗 = 1, 2, ...𝑘 − 2;

𝑣 𝑗 = 0, 𝑗 = 𝑘 − 1.

So we call a nonzero-level counter in state 0 as a carry terminator

(We show a more explicit example in Section 3.4). For 𝑆𝐶𝑀 , 𝑆𝐶𝑈 ,
FSM0 doesn’t need a sign bit thus 𝑉 = 𝑣0 + 62𝑉1.

3.1.3 Open Addressing Method (OAM) (Fig. 3).

OAM further reduce the error and ensure the unbiasedness of 𝑆𝐶
4.

From Section 3.1.1 we find ICM divides the estimation error into

2 kinds: One is caused by hash collision, which is a common error

of all sketches; The other is caused by carry conflict, which means

both of two child nodes overflows to the same parent node. Carry

conflict error prevents 𝑆𝐶 giving an unbiased estimation. To address

this problem, we borrow a concept from the hash table and propose

a technique called OAM.

The main idea of OAM is, if two carry chains overflow to the same

parent node, we kick the smaller one to another place. We use the

reserved state "-0" to tag a kicked counter (That’s why we name it

Kick Tag), and simply use 𝑝 (𝑥) to represent the kicked place5 of the
original carry chain 𝑥 . That is, if 𝑥 is kicked to 𝑝 (𝑥), we tag chain 𝑥
with "-0" and use the sum value of 𝑥 and 𝑝 (𝑥) to replace the original
value of 𝑝 (𝑥). If carry chain 𝑝 (𝑥) overflows as well, we adopt the
following steps to handle carry conflict (Fig. 3): (a) If the overflow

Kick!Kick!e e e

(a) Natural Insertion (b) Kick Case I (c) Kick Case II

: Blank node.
: A Blank node to be carried.

: The purple node.
: The gold node.

OAM

Figure 3: Open Addressing Method (OAM).

doesn’t cause a conflict error, we allow it to overflow and terminate

the kick process; (b) If it overflows to a counter, but this counter

has a nonempty parent, we kick 𝑝 (𝑥) to 𝑝 (𝑝 (𝑥)); (c) If it overflows
to a carry terminator (Recall a carry terminator is a nonzero-level

counter in state 0, see Section 3.1.2) of another item 𝑦, we kick 𝑦
to 𝑝 (𝑦) and start a new kick process. Based on the 3 steps, we can

completely avoid carry conflict. It seems time consuming because

we may kick 2𝑘 derived nodes from a k-level carry terminator in

the worse case. But in fact, our worry is unwarranted: According

to OAM, every node has at most one nonempty child in BCTree.

Therefore, the branch of a k-level counter has only (𝑘 + 1) nodes

and the kick process doesn’t cost much time. In Theorem 4.4, we

prove the kick process is a small probability event.

3.2 Prophet Queue (PQueue)

PQueue significantly reduces L3 cache misses during the opera-

tions. In general, the sketch size often exceeds the capacity of L2,

which leads to severe cache misses. A common sense solution is to

4For simplicity, we do not apply OAM to biased algorithms 𝑆𝐶𝑀 and 𝑆𝐶𝑈 .
5We use linear probing 𝑝 (𝑥)=x+31 in our experiment. But other settings such as

quadratic probing are also recommended.

1429

utilize locality. But in this subsection, We take a different approach.

That is, PQueue makes L2 cache prefetch all addresses before they

are really updated.

The data structure of PQueue is a queue that contains 𝑍 slots,

where 𝑍 can be dynamically adjusted based on the data stream

speed. We describe PQueue in two steps: (a) Given a series counters

𝑐1, 𝑐2, ..., 𝑐𝑛 to update, we first prefetch the coming counter’s address

𝑎𝑖 , then enqueue𝑎𝑖 intoPQueue but do not reallymodify 𝑐𝑖 . Instead,
we dequeue the tail address 𝑎𝑖−𝑍+1 and update the tail counter

𝑐𝑖−𝑍+1 (We do nothing when 𝑖 � 𝑍). We repeat above process for

𝑍 times, thus PQueue has enqueued and dequeued for 𝑍 times. (b)

After 𝑍 such operations, 𝑐𝑖 has already been fetched in L2 and 𝑎𝑖
has been moved to PQueue’s tail. Then can simply dequeue 𝑎𝑖 and
modify 𝑐𝑖 without worrying about L3 cache misses.

PQueue consumes only 0.2KB memory (when 𝑍 = 16) but

explores the cache ability. As a price, we need to flush all items

out of PQueue before querying an item. This latency is a draw-

back when 𝑍 is getting larger. Let 𝑡 be the average insertion time

thus 𝑍𝑡 be the expected latency per insertion. We further want

to dynamically change 𝑍 based on data stream speed to minimize

𝑢 (𝑡, 𝑍) := (1 + 𝛾𝑍)𝑡 , where 𝛾 ≈ 0.001 is a hyper-parameter. To

address this problem, we divide all items into windows of size 𝑛,
and periodically measure 𝑡 to calculate 𝑢 (𝑡, 𝑍) per 𝑛 continuous in-

sertions. When a new window comes, we either increase or decrease

𝑍 by one6 (𝑍 = 1 at the beginning): When 𝑢 (𝑡, 𝑍) increases at this
window, we follow the operation of the previous window; Else we

do the opposite operation. In this way, we can automatically adjust

the queue size as the data stream speed changes.

3.3 Bounded Hash Split (BHS)

0 2 8…

0 2 … 6

0 2 4 …

Index

h1(e)=6

h2(e)=4

h3(e)=2

counters

…

…

…

h0 (e)=2e

Hash64(e)

bitsbitsbitsbits
h0(e) h1(e) h2(e) h3(e)

[]
[]
[]

8 6 4 : Mapped counters.

We suppose = = 3.

BHS
: Offset.

Figure 4: Bounded Hash Split (BHS).

BHS is a useful technique to save hash computation overhead

without losing much accuracy. We assume the sketch has 𝑑 arrays

and every array has 𝐿 bytes. Originally, given an item 𝑒 , we need 𝑑
hash functions to calculate the counters 𝐴𝑖 [𝑥

𝑖
0] (𝑖 ∈ [0..𝑑 − 1], 𝑥𝑖0 ∈

[0..(𝐿 − 1)]). This calculation needs 𝑑 �log𝐿	 hash bits. BHS saves

hash bits by dividing one hash value into one index part ℎ0 (𝑒) and
𝑑 offset parts ℎ1 (𝑒) ∼ ℎ𝑑 (𝑒) (Fig. 4). At every operation, we call

the hash function only once, and use formula

𝑥𝑖0 := ℎ0 (𝑒) + ℎ𝑖 (𝑒) (𝑚𝑜𝑑 𝐿)

to calculate the address of 𝑥𝑖0. In other words, the 𝑑 addresses have

the same index but have their own offsets. In particular, when

𝛼 = �log𝐿�, this optimization has no difference from the original

6Specially, we can not decrease 𝑍 when 𝑍 = 0.

method; when 𝛼 = 0, the 𝑑 array is exactly one array copied 𝑑
times.

Although BHS resembles the word acceleration technique in

Pyramid, they still have differences. Word acceleration aims at

reducing the average number of memory accesses, so it strictly

limits all mapped counters in one word. As a by-product, it saves

the number of hash bits from 𝑑 �log𝐿� to (�log𝑑𝐿� + (𝑑−1) log𝑊)7

and uses one hashing technique to accelerate. However, such a

small number of hash bits inevitably leads to severe hash collisions.

Differently, BHS is a simple technique that reduces the number of

hash bits from �log𝐿�𝑑 to (�log𝐿� + (𝑑 − 1)𝛼). We can prove that an

appropriate 𝛼 (e.g. 𝛼 = 8) of BHS only brings a slight extra error rate

(Theorem 4.5) which can be almost ignored. BHS do not reduce the

number of memory accesses, but with the help of PQueue, Stingy

sketch can be even faster than the cumbersome Pyramid.

3.4 Operations and Example

In this subsection, we show the insertion and query operations

of the Stingy sketch. We omit the deletion operation because it is

only the inverse process of insertion.

Insertion: For each item 𝑒 , we first use Hash(𝑒) to map it to 𝑑
counters. Then we enqueue their address and prefetch them into

L2 cache. At the same time, we update the tail counter of PQueue

and update the old counter. If the carry chain 𝑥 is kicked away, we

search 𝑝 (𝑥), 𝑝 (𝑝 (𝑥)) ... until we find a counter that isn’t in the Kick

Tag state. Then we immigrate the carry chain to the new counter

and terminate the insertion.

Query: To query an item 𝑒 , we first use Hash(𝑒) to map it to 𝑑
0-level counters. For each counter 𝑥 , If it is kicked away, we search

𝑝 (𝑥), 𝑝 (𝑝 (𝑥)) ... until we find a counter that is not in the Kick Tag

state. Next we call Calculate(𝑥) to trace all ancestor counters until

the Carry Terminator calculate its value. Finally we compare the

values of its 𝑑 counters and report the mean or median value as its

unbiased estimation. Note that we should flush PQueue to make

sure all items are inserted before a formal query.

: Flow node.
: Blank node.

: Kick Tag.
: Blank node to be Carried.

: Carry Terminator.

(a) Kick to ().
+31

3
0

-31

2
3

3

-1
1

e ()
124 0

-0 -31

2
3

3

-1

1

1

1
1

-32
()

-1240
()

125 125
(b) Kick to ().

-0 -1

1 1
1

-0 1

1
1

1

()
-1272

()
-1272125 125

(c) After insertion.

Figure 5: Basic Operations of Stingy Sketch Framework.

Example: Here we suppose 𝑑 = 1 and give a simple example of

Stingy Sketch Framework (Fig. 5). To start with, there are 3 distinct

kinds of items marked as purple, orange and green respectively.

Based on Formula 2, the purple items has frequency𝑉𝑃 = (−1)0 ×

(31 + 31 × 3) = 124, the orange items has frequency 𝑉𝑂 = (−1)1 ×

(31 + 31 × (2 + 3 × (3 + 3 × 3))) = −1209, and the green items has

frequency 𝑉𝐺 = (−1)1 × (1 + 31) = −32. We demonstrate how the

7In Pyramid, all mapped counters are in one rather than𝑑 arrays, so it uses (�log𝑑𝐿�−
log𝑊) hash bits to identify a word.𝑊 is the number of counters in a word whose

value is about 16 on many of today’s CPUs.

1430

Algorithm 1: Insertion for 𝑆𝐶
Input: Item 𝑒 .

1 Function Insert (𝑒):
2 Address[0..d) ← Hash(𝑒);
3 for 𝑖 in [0..𝑑) do
4 Prefetch Address[i] and put Address[i] in PQueue;

5 𝑥 ← the tail counter of PQueue;

6 𝑥 ← 𝑝 (𝑥) while 𝑥 is in state "-0";

7 Increase 𝑥 by (−1)Sign; //Sign ← Hash(𝑥, 𝑒) ∈ {0, 1}
8 if Abs(𝑥) changes from 𝑇 to 0 then
9 𝑦 ← 𝑥 ′𝑠 highest ancestor counter;

10 if 𝑦′𝑠 grandfather ≠ 0 (We say the carry chain
cannot hold this value): Kick(𝑥); //Kick Case I

11 else if (𝑦𝑠 ← 𝑦′𝑠 sibling) ≠ 0 then
12 while 𝑦𝑠 is not a 0-level counter do
13 𝑦𝑠 ← the nonempty child of 𝑦𝑠 ;

14 Kick(𝑦𝑠); //Kick Case II

15 else 𝑥 ← (−1)Sign and Carry (𝑥𝑝 ← 𝑥 ′𝑠 parent, +1);

16 if Abs(𝑥) changes from 1 to 0 then
17 if (𝑥𝑝 ← 𝑥 ′𝑠 parent) ≠ 0 then

18 𝑥 ← (−1)Sign𝑇 and Carry (𝑥𝑝 ← 𝑥 ′𝑠 parent, -1);

19 else Set 𝑥 to 0;

20 Function Carry (𝑥 , 𝑣): //𝑣 ∈ {+1,−1}
21 Increase 𝑥 by 𝑣 and 𝑥𝑝 ← 𝑥 ′𝑠 parent;
22 if 𝑥 changes from 𝜏 to 0: Set 𝑥 to 1 and Carry (𝑥𝑝 , 𝑣);
23 if 𝑥 changes from 1 to 0: then
24 if 𝑥𝑝 ≠ 0: Set 𝑥 to 𝜏 and Carry (𝑥𝑝 , 𝑣) else Set 𝑥 to 0;

25 Function Kick (𝑥):

26 𝐶 ← Calculate(𝑥) + 1 + (−1)Sign𝑇 ; //Calculate is in Alg. 2

27 while This carry chain cannot hold 𝐶 items do
28 Set 𝑥 to "-0" and set all father counters of 𝑥 to "0";

29 𝑥 ← 𝑝 (𝑥) and 𝐶 ← 𝐶 + Calculate(𝑥); //Kick Case I

30 ∀ 0-level node 𝑦 s.t. the carry chain of 𝑦 shares counters
with the carry chain of 𝑥 : Kick(𝑦); //Kick Case II

31 Set the carry chain of 𝑥 to C;

Algorithm 2: Query for 𝑆𝐶
Input: Item 𝑒 .
Output: Query result 𝑄𝑒

1 Function Query (𝑒):
2 𝑄𝑒 ← +∞;

3 Address[0..d) ← Hash(𝑒);
4 for 𝑖 in [0..𝑑) do
5 𝑥 ← the counter at Address[i];

6 𝑥 ← 𝑝 (𝑥) while 𝑥 is in state "-0";

7 𝑄𝑒 ← min{𝑄𝑒 , Abs(Calculate(𝑥))}; //Absolute value

8 return 𝑄𝑒 ;
9 Function Calculate(𝑥): //return a signed integer

10 𝑣 ← the value of 𝑥 ;
11 if 𝑣 = ±0: return 0;

12 𝛾 ←

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑇 = 25 − 1, 𝑥 is a 0-level counter and 𝑣 > 0;

−𝑇, 𝑥 is a 0-level counter and 𝑣 < 0;

𝜏 = 3, 𝑥 is a nonzero-level counter.

13 return 𝑣 + 𝛾 Calculate (𝑥𝑝 ← 𝑥′𝑠 parent);

Stingy sketch react to the insertion of purple item 𝑒 . (a) First of all,
we find the two purple nodes are full thus the insertion overflows

to the red carry terminator. Unfortunately, the red node’s parent

has already been taken by the orange items. To eliminate the carry

conflict, we set the counter to state "-0" and kick the whole purple

branch to 𝑝 (𝑥). (b) However, this kick also leads to another carry

conflict because the green’s carry terminator is taken. So we kick

the green items to 𝑝 (𝑦) and merge the orange and green items. (c)

Finally, the mixed items overflows to a 4-level counter and causes

no more carry conflicts. So we can end the kicking process and the

query results ultimately become 𝑉 ′
𝑃 = (−1)0 × (1 + 31 × (1 + 3)) =

125,𝑉 ′
𝑂 = 𝑉 ′

𝐺 = (−1)1× (1+31× (1+3× (1+3× (1+3)))) = −1241.

4 MATHEMATICAL ANALYSIS

In general, the Stingy sketch can extend to many popular sketches

such as CMS, CUS and CS. But for convenience, we only conduct

theoretical analysis on 𝑆𝐶 in this section. The only one exception is

Theorem 4.5, since BHS can be directly applied to CMS. For space

constraints, we only list the conclusions in this section, but leave

detailed proofs in a technical report on GitHub [38].

Theorem 4.1. 𝑆𝐶 reports the unbiased frequency estimation. In

other words, ∀𝑒 ∈ 𝐸, we have E𝑓 (𝑒) = E𝑓 (𝑒).

Proof. See Appendix A.1 in the technical report. �

Theorem 4.1 shows the unbiasedness of 𝑆𝐶 , so it can be applied

to more tasks such as unbiased top-𝑘 detection. In following parts,

we analysis the speed and accuracy of 𝑆𝐶 .
According to ICM, every counter consists of 6 bits (0-level

counter) or 2 bits (nonzero-level counter). So the capacities of

the two kind are 𝑇 := 25 − 1 (-31 ∼ +31) and 𝜏 := 22 − 1 re-

spectively. In this way, an item with value 𝐶 (𝐶 > 𝑇) occupies

�log𝜏 (𝐶𝜏/𝑇)� counters. So increasing items seems to cost much

time. However, Theorem 4.2 shows that although we need to tra-

verse all �log𝜏 (𝐶𝜏/𝑇)� counters in the worse case, the amortized

cost of inserting an item is no more than 1.05 counters.

Theorem 4.2. If a natural insertion (Fig. 3 (a)) costs 1 dollar, the

price of inserting 𝑁 items won’t exceed 1.05𝑁 dollars.

Proof. See Appendix A.2 in the technical report. �

Remark. In one carry chain, 0~7-level counters are in the same

8-byte word. We can similarly prove (1) Less than 0.12% insertions

cause extra memory accesses. (2) As long as log𝐿 ∈ N and |S| <

𝑇𝜏 log𝐿 (= 1.1 × 1011 when 𝐿 = 1MB), Stingy sketch won’t lead to

an out-of-range error.

Next we analysis the accuracy of 𝑆𝐶 . Initially, we provide the
number of carry chains of 𝑆𝐶 is more than the number of counters

of original CS.

Theorem 4.3. When |S| � 𝑇𝐿, the number of carry chains of 𝑆𝐶
is larger than the number of counters of CS under the same memory

cost.

Proof. See Appendix A.3 in the technical report. �

Remark. Under certain conditions, we can prove 𝑆𝐶𝑀 , 𝑆𝐶𝑈 are

also better than original sketches in terms of accuracy. Thus we can

simply take their theoretical error bounds in Section 2.2 as ours.

1431

Then we give a more precise result of kick rate. Suppose 𝑁
distinct kinds of items are independent identically distributed, we

have a more precise upper bound:

Theorem 4.4. When 𝑇𝐿/E|S| > 3, the kick rate 𝐾 <
E |S |

𝐿𝑇−E |S |
.

Proof. See Appendix A.4 in the technical report. �

Remark. In reality, the data stream is highly skewed and |S| is

usually less than 5 𝐿 (𝐾 < 9%). So the kicking process is a really

small probability event.

Finally we estimate the error rate of BHS optimization. Error

rate is defined as the not correctly estimated items proportion, i.e.

𝐸𝑅 := P𝑒∈𝐸 [𝑓 (𝑒) ≠ 𝑓 (𝑒)]. For convenience, we analysis 𝐸𝑅 on

CMS rather than 𝑆𝐶 .

Theorem 4.5. Let Δ be the expectation of extra error rate caused
by Bounded Hash Split, we have

Δ � Δ := 𝜙 (2𝛼) − 𝜙 (𝐿), where 𝜙 (𝜁) :=
𝑁

𝐿
×

(
1

𝜁

)𝑑−1
+
𝑁 2

𝐿2

×

{
𝑑

2
(𝜁 − 1)

(
1

𝜁

)𝑑
+ 2𝑑−2

[(
1 −

1

𝜁

) (
1 −

1

2𝜁

)𝑑−1
− 1

]}
.

Proof. See Appendix A.5 in the technical report. �

Remark. We point out that although Theorem 4.5 seems some-

what complex, this formula indeed provides a quite tight error

bound of error rate. For example, when 𝑑 = 2, 3, Δ can be written as

Δ =

⎧⎪⎪⎨⎪⎪⎩
𝑁
𝐿

(
1
2𝛼 − 1

𝐿

)
, 𝑑 = 2;

𝑁
𝐿

(
1
22𝛼

− 1
𝐿2

)
+ 𝑁 2

𝐿2

[(
9
2𝛼 − 3

22𝛼

)
−
(
9
𝐿 − 3

𝐿2

)]
, 𝑑 = 3.

We conduct experiments on 10 CAIDA real IP datasets with 10,0000

distinct items each, finding that the experimental results agree well

with the theory (Fig. 6, 𝐿 = 4MB).

Figure 6: Empirical Result vs Theoretical Bound.

5 PERFORMANCE EVALUATION

In this section, we extend popular sketches to Stingy Sketch Frame-

work and evaluate its performance. In Subsection 5.1 to 5.5, we

conduct simulation experiments to evaluate parameter setting,

memory efficiency, accuracy and throughput of Stingy sketch on

frequency estimation and top-𝑘 detection tasks8. And in Subsec-

tion 5.6, we deploy Stingy sketch into Apache Flink framework

and evaluate its throughput in distributed environment. For con-

venience, we use SS to represent the Stingy sketch.

8In Fig. 8, 9, 10, 16, 17, 18, 22, 23 in this paper, we merely show the experimental
results on Campus and Synthetic datasets for space constraints. We put the complete
results in Appendix B of our technical report on GitHub [38].

5.1 Experimental Setup

5.1.1 Implementation: For simulation experiments, we imple-

ment CMS, CUS, CS, SS, SALSA, PS, AS, SAC, USS, and WS in C++9

and equip them with PQueue (Section 3.2) and BHS (Section 3.3).

We only apply PQueue to accelerate insertion process since the

query process may not be continuous. For PS and AS, we simply use

the provided open-source code at [39]. We equip every sketch with

a well known fast hash function, MurmurHash [40], to compute

indices. Because PQueue and BHS are separate accelerate tech-

niques from BCTree, we also apply them to CMS, CUS, CS, SALSA,

SAC and form 3 subversions: The Basic version, the BHS version,

and the BHS+PQueue version. To form the BHS version, we make

the mapped counters share the common index to save hash bits,

and use a 64-bit hash function to calculate them (we have veri-

fied it is enough for our experiments); To form the BHS+PQueue

version, we add PQueue to the BHS version to further accelerate

the insertion process10. In fact, the only difference between 𝑆𝐶𝑀
and the BHS+PQueue version of CMS is that 𝑆𝐶𝑀 uses BCTree

to increase accuracy. We perform all simulation experiments on a

machine with 4 core CPUs (Intel (R) Core (TM) i7-10510U CPU @

1.80GHz) and 16 GB DRAM memory. The CPU core has 256KB L1

cache, 1.0MB L2 cache, and 8.0 MB L3 cache.

Figure 7: Data Distribution.

5.1.2 Datasets: We use 4 kinds of datasets during the experiments.

• Campus. 10 real IP trace datasets collected from the gateway of

our campus. Each dataset have about 180 Kilo kinds of items and

2.4 million items in total.

• Synthetic. To demonstrate the adaptability of Stingy sketch over

a wide range of distributions, we generate 11 synthetic datasets

with the skewness11 varies from 0.3 to 3.0. Every dataset has 32

million items with 4 bytes item ID. Unless otherwise stated, we use

the dataset with skewness of 1.5 for general experiments.

•Web Stream. 8 real datasets downloaded from [41]. Every dataset

has 0.9 million kinds of items (32 million items in total). The item in

this dataset represents the number of different terms in web pages.

9SS, SALSA and PS are sketch frameworks so they represents 9 explicit algo-
rithms 𝑆𝐶𝑀 , 𝑆𝐶𝑈 , 𝑆𝐶 , 𝑆𝐴𝐿𝑆𝐴𝐶𝑀 , 𝑆𝐴𝐿𝑆𝐴𝐶𝑈 , 𝑆𝐴𝐿𝑆𝐴𝐶 , 𝑃𝐶𝑀 , 𝑃𝐶𝑈 and𝑃𝐶 . For SS,
we change their 𝑑 arrays into 𝑑 BCTrees (Section 3.1).
10We do not extend these PQueue and BHS to speed-oriented sketches Augment and
Pyramid because they conflict to their builtin optimizations (i.e. the pre-filter stage in
Augment and the word acceleration technique in Pyramid).
11Skewness is a measure of the asymmetry of the item count distribution of a flow
about its mean. Let 𝑋 be the random variable representing the number of items of a

flow, the skewness is defined as E
[
(𝑋−E𝑋)3

D3/2𝑋

]
where E𝑋 and D𝑋 are the expectation

and variance of 𝑋 .

1432

• CAIDA. 10 real IP trace datasets collected by CAIDA 2018 [42].

Each item has 13 bytes IP address and 8 bytes time stamp. Ev-

ery dataset has about 1.3 million kinds of items and 26 million

anonymized IP traces in total.

Summary: Here we list some key characteristics of all the 4

kinds of datasets: (1) Campus, Web stream and CAIDA are real

datasets, while Synthetic are a series of generated datasets. (2) The

number of items of Synthetic (32 million), Web Stream (26 million)

and CAIDA (32 million) are large, while the number of items of a

Campus dataset (2.4 million) is relatively small. (3) All these datasets

are highly skewed, while the Web Stream dataset has the highest

skewness. Further, the skewness of Synthetic datasets could vary

from 0.0 to 3.0. Fig. 7 shows the numbers (The ordinate is the

logarithm to base 10) of items of the top 0% (the max), 10%, 20%, ...

, 90%, 100% (the min) flows in each dataset which provides some

intuition about the item count distribution of the datasets.

5.1.3 Evaluation Metrics: We measure the following metrics for

frequency estimation and top-𝑘 detection:

• Tree Occupation Ratio (TOR): The number of occupied coun-

ters versus the number of all counters, where occupied means the

counters have been inserted and are not Kick Tags. Similarly, we use

TOR[𝑖] (𝑘 = 0, 1, 2, ..., �log𝐿) to represent the number of occupied

𝑖-level counters versus the number of all 𝑖-level counters, and use

Waste Rate (WR) to represent the number of Kick Tags versus the

number of all 0-level counters.

• Average Absolute Error (AAE): 1
|𝐸 |

∑
𝑒∈𝐸

|𝑓 (𝑒) − 𝑓 (𝑒) |, where |𝐸 |

is the number of distinct items, 𝑓 (·) and 𝑓 (·) are real and estimated

frequency respectively. For top-𝑘 detection task, we regard the

estimated value of a misreported item 𝑒 ′ as 0.

• F1-Score: 2𝑅𝑅×𝑃𝑅𝑅𝑅+𝑃𝑅 , where𝑅𝑅 := Reported top-𝑘
𝑘 , 𝑃𝑅 := Reported top-𝑘

Reported items
.

F1-Score is only for top-𝑘 detection.

• Average Insert Throughput (AIT): 𝑇𝐼
|S |

, where 𝑇𝐼 is the total

time to insert all items in S. The unit of measurement of AIT is

Million operations per second (Mops).

• Average Query Throughput (AQT):
𝑇𝑄
|𝐸 | (Mops), where 𝑇𝑄

is total time to query all items in 𝐸. AQT is only for frequency

estimation, because the query process in top-𝑘 detection isn’t that

important in real applications.

When we measure speed, we repeat every experiment for 10 times

and record the mean value as our result.

5.2 Parameters of the Stingy sketch

In this subsection, we use 𝑆𝐶𝑀 as an example to explore suitable

hyper parameters for the Stingy sketch. For convenience, we list

related parameters in Table 1.

Table 1: Parameters and their meanings.

Hyper Parameters General Parameters

𝛼 The offset of BHS 𝑑 The number of arrays

𝑍 The length of PQueue 𝐿 Array size

𝑇 /𝜏 The capacity of counter 𝑘 The number of top items

Figure 8: Impact of 𝛼 for Different Memory.

5.2.1 Impact of parameter 𝛼 .
•Analysis: In Section 3.3 and Theorem 4.5, we have respectively

proved (1) BHS uses (�log𝐿	 + (𝑑 − 1)𝛼) hash bits to find 𝑑 mapped

counters, (2) An adequate 𝛼 only leads to low extra error rate. In

this part, we show that as long as 𝛼 is not too small (e.g. 𝛼 � 8),

using 64 hash bits is optimal after weighing accuracy and speed.

• Experiment: We fix 𝑑 = 4, using one, two, and four 32-bit Mur-

murHash functions (𝛼 = �
32−�log𝐿	

𝑑−1 	, �
32−�log𝐿	

𝑑−1 	, �log𝐿� respec-
tively to make full use of all hash bits) to conduct the experiments.

The experimental result is shown in Fig. 8: On the campus and

Synthetic datasets, we find that 32-bit BHS achieves up to 167%

and 100% faster speed, but leads to about 52470% and 1809% extra

AAE; while 64-bit BHS achieves about 121% and 87% faster than the

original version, but leads to less than 5% and 0.02% extra AAE.We

reckon the Stingy sketch performs the optimal performance when

𝛼 = �
64−�log𝐿	

𝑑−1 	. So we use a 64-bit MurmurHash for further ex-

periments. However, when (�
64−�log𝐿	

𝑑−1) is very small, we have to

use more than 64 hash bits. For example, when 𝑑 = 9 and 𝐿 = 216,

we should combine a 32-bit function and a 64-bit hash function to

calculate 96 hash bits, and use 𝛼 = �
96−�log𝐿	

𝑑−1 	 = 10-bit offset.

5.2.2 Impact of parameter 𝑍 .
•Analysis:When 𝑍 is small (e.g. 𝑍 = 1), the time interval between

the prefetch instruction and the actual change of counters is less

than the addressing time. Thus PQueue cannot show its full power.

When 𝑍 is too large (e.g. 𝑍 = 220), the prefetched counters may

be frequently swapped out from L2 cache. Thus PQueue performs

poorly either. Our induction is, there exists an appropriate constant

𝑍 ∈ [1..220] that achieves the highest throughput.
• Experiment: We conduct 3 experiments to find the optimal 𝑍
and the results are shown in Fig. 9, 10, 11. In the first experiment

we fix 𝑑 = 2, finding that when the sketch can be loaded in L2 cache

(1 MB), the improvement of PQueue is small. When the space is

getting larger (e.g.𝑚𝑒𝑚𝑜𝑟𝑦 = 8MB), PQueue accelerates 56% and

72% on Campus and Synthetic datasets. In the second experiment

we fix𝑚𝑒𝑚𝑜𝑟𝑦 = 8MB, finding that AIT is the highest when 𝑍 ≈ 16,

so we fix 𝑍 to 16 for further (except the next) experiments. We note

that the recommended 𝑍 may be different based on data stream

speed. So we set 𝑢 (𝑡, 𝑍) = (1 + 1
1024𝑍)𝑡 and dynamically change

the PQueue length to minimize 𝑢 (𝑡, 𝑍) per 𝑛 = 256 insertions as

described in Section 3.2. In the third experiment, we manually

prolong the item reading time for about 100 ns when we read data

that between 25% and 75% in the dataset, finding that higher reading

speed often leads to longer PQueue length (Fig. 11 (a)) because a

1433

Figure 9: Impact of 𝑍 for Different Memory.

Figure 10: Impact of 𝑍 for Different Array Number 𝑑 .

Figure 11: Dynamic PQueue Length.

longer PQueue can increase the time interval between prefetching

and addressing. Fig. 11 (b) shows that the dynamically changing

𝑍 do helps to minimize the average 𝑢 (𝑡, 𝑍) when the data stream

speed is constantly changing12.

5.2.3 Impact of parameters 𝑇 /𝜏 .
• Analysis: In all existing hierarchical works (e.g. Pyramid), every

level counter uses the same number of bits. In the Stingy sketch,

however, we use 6-bit 0-level counter (𝑇 = 26−1) and 2-bit nonzero-

level counter (𝜏 = 22 − 1) instead. An imprecise reason has been

written in Theorem 4.4: As long as 𝜏 � 2, the loose upper bound

of kick rate |S|/𝑇 . So we decrease 𝜏 and increase𝑇 to optimize this

upper bound. In this part, we conduct a more solid experiment on

the size of the 0-level counter, finding that a 6-bit 0-level counter is

really better than a 4-bit version.

• Experiment: The experimental result is shown in Fig. 12 (𝑑 = 2

and𝑚𝑒𝑚𝑜𝑟𝑦 =8MB). We find that a 6-bit 0-level counter brings 15%

and 37% reduction of AAE than 4-bit one on Campus and Synthetic

datasets. Furthermore, since a 6-bit 0-level counter can hold more

items, most insertions can finish in the 0-level counter rather than

12To control variables, when 𝑍 is fixed, we still periodically measure 𝑢 (𝑡, 𝑍) which
takes some time.

Figure 12: Impact of 𝑇 /𝜏 .

carry to a higher level counter13, so AIT of 𝑆𝐶𝑀 slightly increases

as well.

5.3 Memory Efficiency Evaluation

In this subsection, we use 𝑆𝐶 as an example to illustrate the memory

efficiency of Stingy sketch on TOR, TOR[𝑖] and WR. We give upper

bounds of these metrics before experiments.

= () = + 1/()
Figure 13: Relation between𝜓 (𝐿) and𝜓 (2𝐿).

• Upper bounds: First, we point out TOR is always less than 2/3.

Suppose 𝐿 is a power of 2, and the max TOR is defined as𝜓 (𝐿). We

have (1) If𝜓 (𝐿) is taken only when the highest-level (i.e. the (log𝐿)-
level) counter is occupied, then𝜓 (2𝐿) = 𝜓 (𝐿) and the new highest-

level counter is not necessarily occupied to reach 𝜓 (2𝐿) (Fig. 13
(a)). (2) If the highest-level counter is not necessarily occupied to

reach𝜓 (𝐿), then𝜓 (2𝐿) = 𝜓 (𝐿) + 1/(2𝐿) and the new highest-level

counter must be occupied to reach𝜓 (2𝐿) (Fig. 13 (b)). Note𝜓 (1) =

𝜓 (2) = 1/2, so we have 𝑇𝑂𝑅 < lim
𝐿→+∞

𝜓 (𝐿) =
+∞∑
𝑛=0

4−𝑛/2 = 2/314.

Second, we point out the upper bound of TOR[𝑖] is simply 1 since

all 𝑘-level counters may be occupied at the same time. Third, let

𝜙 (𝑥) :=
(
𝑇 𝜏

𝑥−1
𝜏−1

𝐿
2𝑥

)
, 𝑥 ∈ [0, +∞). Then according to Theorem 4.3,

we have WR < 1 − 2−𝜙
−1 (|S |) where |S| is the number of items in

the dataset.

• Experiments and analysis: Generally speaking, a high and

stable TOR often means a high and stable memory efficiency. In

this part, we conduct 2 experiments on all the 4 kinds of datasets.

In the first experiment, we fix 𝑑 = 4 and change 𝑚𝑒𝑚𝑜𝑟𝑦 from

0.25 MB to 8 MB (Fig. 14). We find that except on Campus, when

memory is very small (e.g. 0.25 MB), TOR is low since most 0-level

counters are kicked away and gathered to the higher layers; When

memory is very large (e.g. 8 MB), TOR is also low because the

number of occupied counters is limited (less than flow number

𝑁). We also find that although TOR[𝑖] continuously changes, TOR

keeps high and stable in a wide range of memory (e.g. 1∼4 MB). In

the second experiment, we fix𝑚𝑒𝑚𝑜𝑟𝑦 = 1MB and 8 MB, changing

13Following the proof inTheorem 4.2, we can prove that if we use 4-bit 0-level counter,

inserting an item modifies (1+ [15× (1− 1/15)−1 ≈ 1.07) counters on average, which

is more than 6-bit 0-level counter (which modifies (1+ [𝑇 (1−1/𝜏)−1 ≈ 1.03) counters
on average).
14Above formula still holds when 𝐿 is any positive integer.

1434

Figure 14: TOR for Different Memory.

Figure 15: TOR for Different Skewness of Datasets.

the skewness from 0.0 to 3.0 (Fig. 15). We find that as the skewness

getting larger, TOR becomes higher when𝑚𝑒𝑚𝑜𝑟𝑦 = 1MB15, but

decreases when𝑚𝑒𝑚𝑜𝑟𝑦 = 8MB. That’s because when𝑚𝑒𝑚𝑜𝑟𝑦 = 1

MB, a higher skewness often reduces the number of large flows even

though a large flowmay kick more counters. So the waste rate (WR)

drops and TOR even increases. However, when𝑚𝑒𝑚𝑜𝑟𝑦 = 8MB, the

increment of skewness greatly reduces the number of overflows and

thus decreases TOR. We also find that when a carry chain overflows

to a 1-level counter, it probably kicks another one 0-level counter

away, so TOR keeps stable in a wide range of skewness. Therefore,

we say Stingy sketch has a sound adaptability towards different

item count distributions and has a sound memory efficiency.

5.4 Comparison on Accuracy

In this subsection, we conduct experiments to illustrate the accuracy

of Stingy Sketch based on AAE and F1-Score.

5.4.1 Accuracy of Frequency Estimation.

• Compare with limestone algorithms: We fix 𝑑 = 2 and con-

duct experiments on 𝑆𝐶𝑀 , 𝑆𝐶𝑈 and 𝑆𝐶 . The experimental result

(Fig. 16, 17, 18) shows that 𝑆𝑆 significantly outperforms original

sketches. The blue dotted line is the AAE of a quadrupled original

sketch. Because BCTree compress four bytes into one, its accu-

racy has no reason to exceed an original sketch that consumes 4

times memory. So the blue dotted line is the theoretical limit of

15Skewness = 0.0 is a fortunate exception, that’s because a Synthetic dataset has 32
MB items and about 1 MB flows. So most flows take exactly 1 or 2 counters and thus
TOR is high.

Figure 16: AAE of 𝑆𝐶𝑀 , 𝑃𝑆𝐶𝑀 and CMS.

Figure 17: AAE of 𝑆𝐶𝑈 , 𝑃𝑆𝐶𝑈 and CUS.

Figure 18: AAE of 𝑆𝐶 , 𝑃𝑆𝐶 and CS.

accuracy. In this experiment, we find that the Stingy sketch has

almost approached the limit.

•Comparewith other SOTA algorithms:We fix𝑚𝑒𝑚𝑜𝑟𝑦 = 2MB

and conduct 3 comprehensive experiments (Fig. 19, 20, 21). In

the first experiment, we find AAE of 𝑆𝐶𝑀 is up to 50% (Campus),

17% (Synthetic), 41% (Web Stream), and 39% (CAIDA) lower than

SOTA accuracy-oriented work SALSA𝐶𝑀
16. We also find when the

𝑚𝑒𝑚𝑜𝑟𝑦 is constant, blindly increasing 𝑑 may increase AAE. So

we wonder given𝑚𝑒𝑚𝑜𝑟𝑦 and the flow number 𝑁 , how to choose

an appropriate 𝑑 to reach optimal accuracy. For AAE, we cannot

give such a 𝑑 because it depends on the item count distribution.

But for error rate 𝐸𝑅, we can give a recommended 𝑑 on CMS: Let

𝑑𝐿 = 𝐶 is a constant, where 𝐿 represents the number of coun-

ters in one array. According to Theorem 4.5, we have 𝐸𝑅 :=(
1 − (1 − 1/𝐿)𝑁−1

)𝑑
=

(
1 − (1 − 1/𝐿)𝐿

𝑁−1
𝐿

) 𝑁−1
𝐿 𝑑𝐿 (1−1/𝐿)𝐿≈1/𝑒

−−−−−−−−−−−−→
𝑑𝐿=𝐶[(

1 − 𝑒−
𝑁−1
𝐶 𝑑

) 𝑁−1
𝐶 𝑑

] 𝐶
𝑁−1

. Note ℎ(𝑡) :=
(
1 − 𝑒−𝑡

)𝑡
takes the max

value when 𝑡 = 𝑡0 := 0.693. So the recommended 𝑑 is around 𝑡0𝐶
𝑁−1 .

In the second experiment, we fix 𝑑 = 2 and change the skewness of

Synthetic datasets. We find that unless the skewness of the dataset

is extremely low (skewness� 0.3), 𝑆𝐶𝑀 is the optimal algorithm on

metric AAE. In the third experiment, we also fix 𝑑 = 2 but compare

𝑆𝐶 (not 𝑆𝐶𝑀) with SALSA𝐶 . The experimental result shows that

AAE of 𝑆𝐶 is up to 49% lower than SALSA𝐶 .

16Because PS (Pyramid) maps all counters into one cache line, the most feasible 𝑑 of
PS is 5. So AAE of PS does not change when 𝑑 > 5.

1435

Figure 19: AAE of 𝑆𝐶𝑀 and Existing Algorithms.

Figure 20: AAE for Different Skewness of Datasets.

Figure 21: AAE of 𝑆𝐶 and SALSA𝐶 .

5.4.2 Accuracy of Unbiased Top-𝑘 Detection.

Top-𝑘 detection can be regarded as an extension of frequency es-

timation. It has many applications such as finding top-𝑘 frequent

items [43–47], heavy changes [48–50], persistent items [51, 52], and

super-spreaders [53]. Although there are many existing algorithms

(e.g. Space Saving [37], Lossy Counting [54], Heavy Guardian [4],

Heavy Keeper [55], Elastic Sketch [56], CS+Heap, USS, WS), only

CS+Heap, USS and WS among them can keep the unbiasedness. In

this part, we fix 𝑑 = 3 and conduct experiments on finding top-𝑘
frequent items task to show the performance of 𝑆𝐶 +𝐻𝑒𝑎𝑝 . Note
the heap part in CS+Heap and 𝑆𝐶+Heap is a simple minimum heap

that records and updates the top-𝑘 items.

• Compare with CS+Heap (Fig. 22, 23): We find that no matter

𝑘 = 500, 1000, or 2000, 𝑆𝐶 +𝐻𝑒𝑎𝑝 is more accurate on both F1-Score

and AAE metrics. Specially, AAE of 𝑆𝐶 + 𝐻𝑒𝑎𝑝 is up to 275 and 36

times lower than 𝐶𝑆 + 𝐻𝑒𝑎𝑝 on Campus and Synthetic datasets.

Figure 22: F1-Score of 𝑆𝐶 + 𝐻𝑒𝑎𝑝 and 𝐶𝑆 + 𝐻𝑒𝑎𝑝.

Figure 23: AAE of 𝑆𝐶 + 𝐻𝑒𝑎𝑝 and 𝐶𝑆 + 𝐻𝑒𝑎𝑝.

Figure 24: AAE of 𝑆𝐶 + 𝐻𝑒𝑎𝑝 and Existing Algorithms.

• Compare with other SOTA algorithms: In this part, we com-

pare 𝑆𝐶 with other SOTA algorithms USS and WS for different

𝑚𝑒𝑚𝑜𝑟𝑦. Because we reckon a larger 𝑘 helps to reduce contingency,

we fix 𝑑 = 2 and 𝑘 = 2000. The experimental results are shown in

Fig. 24. We find that AAE of 𝑆𝐶 +𝐻𝑒𝑎𝑝 is up to 19 times lower than

USS, as well as 224 times lower than existing SOTA work WS17. So

we reckon 𝑆𝐶 + 𝐻𝑒𝑎𝑝 achieves comparably higher accuracy than

existing SOTA algorithms.

5.5 Comparison on Throughput

In this subsection, we conduct experiments to illustrate the through-

put of the Stingy sketch based on AIT and AQT.

5.5.1 Throughput of Frequency Estimation.

•Overview: In this part, we fix 𝑑 = 2 and change𝑚𝑒𝑚𝑜𝑟𝑦 from 1

to 8 MB and conduct 2 experiments on all the 4 kinds of datasets.

The experimental results are shown in Fig. 25, 26 respectively. The

first experiment shows that AIT of 𝑆𝐶𝑀 is up to 343% (Campus),

331% (Synthetic), 266% (Web Stream), and 327% (CAIDA) faster than

accuracy-oriented work 𝑆𝐴𝐿𝑆𝐴𝐶𝑀 , as well as 100%, 114%, 123%,

17In the paper of Waving Sketch [6], the authors provide the unbiased and biased
versions of WS. They prove the unbiasedness of the unbiased WS but conduct experi-
ments on the biased WS. So the experimental result seems very accurate. In our paper,
however, we use the truly unbiased version of WS as a comparison algorithm, that’s
why our experimental results seem inconsistent with the original paper.

1436

Figure 25: AIT of 𝑆𝐶𝑀 and Existing Algorithms.

Figure 26: AQT of 𝑆𝐶𝑀 and Existing Algorithms.

Figure 27: Improvement of BHS and PQ.

and 107% faster than speed-oriented work 𝑃𝑆𝐶𝑀 . The second exper-

iment shows that AQT of the Stingy sketch also belongs to the first

team, which is up to 70%, 28%, 31%, and 30% faster than SALSA𝐶𝑀 ,

as well as 33%, 24%, 32%, and 29% faster than PS𝐶𝑀 . Such a high

AQT owes to the Carry Terminator ofCSM (Section 3.1.2), because

it lets the query process terminate once it searches to a blank node.

Summarizing the above 2 experiments, we reckon Stingy Sketch

outperforms existing SOTA algorithms on throughput.

•Improvement of BHS and PQ: In this part, we give a more

detailed comparison about our speed up techniques: BHS and

PQueue. As we said before, BHS and PQueue are two generic

and fundamental techniques that can be used in a wide range of

sketches. So we fix 𝑑 = 4,𝑚𝑒𝑚𝑜𝑟𝑦 = 8MB, and equip SALSA, CMS,

CUS, CS, SAC with (1) BHS, (2) BHS+PQueue to demonstrate

their effects on AIT18. Further, we notice that a Basic version uses

only 𝑑 �log𝐿� = 92 hash bits. So we use a 64-bit hash function and

18We do not apply BHS and PQueue to AS and PS because AS and PS use their own
acceleration techniques (Section 2.2) which conflict to ours.

Figure 28

a 32-bit hash function and split them to form a Basic+ version

for fair comparison. The experimental result is shown in Fig. 27.

We find that except a tiny distance from CMS, 𝑆𝐶𝑀 is comparably

faster than all existing algorithms even if we use the same speed

up techniques. For example, AIT of 𝑆𝐶𝑀 is up to 228% faster than

the BHS+PQueue version of 𝑆𝐴𝐿𝑆𝐴𝐶𝑀 .

5.5.2 Throughput of Top-𝑘 Detection.

We fix𝑚𝑒𝑚𝑜𝑟𝑦 = 8𝑀𝐵,𝑑 = 3, 𝑘 = 2000 and compare the AIT of

𝑆𝐶 + 𝐻𝑒𝑎𝑝 , USS, and WS. The experimental result is shown in the

left subfigure of Fig. 28. We find that although 𝑆𝐶 + 𝐻𝑒𝑎𝑝 cannot

exceed WS, the AIT of 𝑆𝐶 is up to 114% faster than the Unbiased

Space Saving (USS).

5.6 Integration into Apache Flink

We implement Stingy sketch on top of Apache Flink [23], a modern

data stream processing framework to show its throughput in dis-

tributed environment. To finish the experiment, we rewrite 𝑆𝐶𝑀 in

Java and deploy a Hadoop Distributed File System (HDFS) to feed

data into the application where insertion and query are equally

seen as events. We use a Flink cluster with 1 master node and 4

worker nodes, each of them has 4 Intel XEON Platinum 8369B

vCPU cores and 16 GB DRAM. Every Task Manager uses Flink

1.13.1, Java 11 and Hadoop 2.8.3 running on Ubuntu 20.04 LTS,

providing 4 available slots and is configured with 1GB memory.

We fix𝑚𝑒𝑚𝑜𝑟𝑦 = 8𝑀𝐵,𝑑 = 4, change 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 from 1 to 5 and

repeat the test for 20 times on CAIDA. The experimental result is

shown in the right subfigure of Fig. 28. In this experiment, we find

that Stingy sketch works smoothly on top of Flink, and the overall

running speed grows linearly with the growth of parallelism.

6 CONCLUSION

In this paper, we propose a sketch framework called Stingy sketch

which budgets every penny of computing resource. The Stingy

sketch uses BCTree which splits large counters into small nodes

of a tree structure to reduce error, and uses pipelined prefetch tech-

nique PQueue to reduce memory access without losing precision.

Theoretical and experimental results show that the Stingy sketch

outperforms existing works on both accuracy and speed. We believe

that the Stingy sketch is a generic and fundamental contribution

that can be used in many domains (e.g. data mining and database)

and problems (e.g. top-𝑘 detection and joining tables). We have

released our code at GitHub [38].

1437

REFERENCES
[1] Ran Ben-Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik, and Erez

Waisbard. Memento: making sliding windows efficient for heavy hitters. In
CoNEXT, pages 254–266. ACM, 2018.

[2] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. Faster
and more accurate measurement through additive-error counters. In IEEE INFO-
COM 2020 - IEEE Conference on Computer Communications, 2020.

[3] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. SALSA:
self-adjusting lean streaming analytics. In ICDE, pages 864–875. IEEE, 2021.

[4] Y. Tong, J. Gong, H. Zhang, Z. Lei, and X. Li. Heavyguardian: Separate and guard
hot items in data streams. In the 24th ACM SIGKDD International Conference,
2018.

[5] Daniel Ting. Data sketches for disaggregated subset sum and frequent item
estimation. In Proceedings of the 2018 International Conference on Management of
Data, 2018.

[6] Jizhou Li, Zikun Li, Yifei Xu, Shiqi Jiang, Tong Yang, Bin Cui, Yafei Dai, and
Gong Zhang. Wavingsketch: An unbiased and generic sketch for finding top-k
items in data streams. In KDD, pages 1574–1584. ACM, 2020.

[7] B. Shi, Z. Zhao, Y. Peng, F. Li, and J. M. Phillips. At-the-time and back-in-
time persistent sketches. In SIGMOD/PODS ’21: International Conference on
Management of Data, 2021.

[8] Y. Izenov, A. Datta, F. Rusu, and J. H. Shin. Compass: Online sketch-based
query optimization for in-memory databases. In SIGMOD/PODS ’21: International
Conference on Management of Data, 2021.

[9] A. Santos, A. Bessa, F. Chirigati, C. Musco, and J. Freire. Correlation sketches
for approximate join-correlation queries. In SIGMOD/PODS ’21: International
Conference on Management of Data, 2021.

[10] Rundong Li, Pinghui Wang, Jiongli Zhu, Junzhou Zhao, and Kai Ye. Building fast
and compact sketches for approximately multi-set multi-membership querying.
In SIGMOD/PODS ’21: International Conference on Management of Data, 2021.

[11] Z. Dai, A. Desai, R. Heckel, and A. Shrivastava. Active sampling count sketch
(ascs) for online sparse estimation of a trillion scale covariance matrix. In
SIGMOD/PODS ’21: International Conference on Management of Data, 2021.

[12] Peng Jia, Pinghui Wang, Junzhou Zhao, Shuo Zhang, Yiyan Qi, Min Hu, Chao
Deng, and Xiaohong Guan. Bidirectionally densifying LSH sketches with empty
bins. In SIGMOD Conference, pages 830–842. ACM, 2021.

[13] Pinghui Wang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, Chenxu Wang, John
C. S. Lui, and Xiaohong Guan. A memory-efficient sketch method for estimating
high similarities in streaming sets. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD, 2019,
pages 25–33. ACM, 2019.

[14] Yang Yang, Ying Zhang, Wenjie Zhang, and Zengfeng Huang. GB-KMV: an
augmented KMV sketch for approximate containment similarity search. In ICDE,
pages 458–469. IEEE, 2019.

[15] Graham Cormode and S. Muthukrishnan. An improved data stream summary:
The count-min sketch and its applications. In LATIN, Lecture Notes in Computer
Science, pages 29–38, 2004.

[16] Cristian Estan and George Varghese. New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice. ACM Trans. Comput.
Syst., pages 270–313, 2003.

[17] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent
items in data streams. In ICALP, pages 693–703, 2002.

[18] Kai Cheng, Limin Xiang, Mizuho Iwaihara, Haiyan Xu, and Mukesh K. Mohania.
Time-decaying bloom filters for data streams with skewed distributions. In RIDE,
pages 63–69. IEEE Computer Society, 2005.

[19] Tong Yang, Yang Zhou, Hao Jin, Shigang Chen, and Xiaoming Li. Pyramid sketch:
a sketch framework for frequency estimation of data streams. Proc. VLDB Endow.,
10(11):1442–1453, 2017.

[20] Tong Yang, Siang Gao, Zhouyi Sun, Yufei Wang, Yulong Shen, and Xiaoming Li.
Diamond sketch: Accurate per-flow measurement for big streaming data. IEEE
Trans. Parallel Distributed Syst., pages 2650–2662, 2019.

[21] Tao Li, Shigang Chen, and Yibei Ling. Per-flow traffic measurement through
randomized counter sharing. IEEE/ACM Trans. Netw., pages 1622–1634, 2012.

[22] Pratanu Roy, Arijit Khan, and Gustavo Alonso. Augmented sketch: Faster and
more accurate stream processing. In SIGMOD Conference, pages 1449–1463. ACM,
2016.

[23] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[24] Amit Goyal, Hal Daumé III, and Graham Cormode. Sketch algorithms for esti-
mating point queries in NLP. In EMNLP-CoNLL, pages 1093–1103. ACL, 2012.

[25] Peixiang Zhao, Charu C. Aggarwal, andMinWang. gsketch: On query estimation
in graph streams. Proc. VLDB Endow., pages 193–204, 2011.

[26] George Kollios, John W. Byers, Jeffrey Considine, Marios Hadjieleftheriou, and
Feifei Li. Robust aggregation in sensor networks. IEEE Data Eng. Bull., pages
26–32, 2005.

[27] Gero Dittmann and Andreas Herkersdorf. Network processor load balancing
for high-speed links. In Proceedings of the 2002 International Symposium on
Performance Evaluation of Computer and Telecommunication Systems, 2002.

[28] Atul Kant Kaushik, Emmanuel S. Pilli, and Ramesh C. Joshi. Network forensic
analysis by correlation of attacks with network attributes. In ICT, pages 124–128,
2010.

[29] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. Nitrosketch: robust and general sketch-based
monitoring in software switches. In SIGCOMM, pages 334–350. ACM, 2019.

[30] Alex D Breslow and Nuwan S Jayasena. Morton filters: faster, space-efficient
cuckoo filters via biasing, compression, and decoupled logical sparsity. Proceed-
ings of the VLDB Endowment, pages 1041–1055, 2018.

[31] Qian Liu, Haipeng Dai, Alex X. Liu, Qi Li, Xiaoyu Wang, and Jiaqi Zheng. Cache
assisted randomized sharing counters in network measurement. In ICPP, pages
40:1–40:10. ACM, 2018.

[32] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Abdul
Kabbani. Counter braids: a novel counter architecture for per-flow measurement.
In SIGMETRICS, pages 121–132. ACM, 2008.

[33] Min Chen, Shigang Chen, and Zhiping Cai. Counter tree: A scalable counter
architecture for per-flow traffic measurement. IEEE/ACM Trans. Netw., pages
1249–1262, 2017.

[34] Yun William Yu and Griffin Weber. Hyperminhash: Jaccard index sketching in
loglog space. CoRR, 2017.

[35] Junzhi Gong, Tong Yang, Yang Zhou, Dongsheng Yang, Shigang Chen, Bin
Cui, and Xiaoming Li. ABC: A practicable sketch framework for non-uniform
multisets. In IEEE BigData, pages 2380–2389. IEEE Computer Society, 2017.

[36] Tong Yang, Jiaqi Xu, Xilai Liu, Peng Liu, Lun Wang, Jun Bi, and Xiaoming Li. A
generic technique for sketches to adapt to different counting ranges. In INFOCOM,
pages 2017–2025, 2019.

[37] AhmedMetwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation
of frequent and top-k elements in data streams. In ICDT, pages 398–412. Springer,
2005.

[38] Related source code. https://github.com/StingySketch/Stingy-Sketch.
[39] Open source code of augment and pyramid. https://github.com/zhouyangpkuer/

Pyramid_Sketch_Framework, 2017.
[40] Murmur hashing source code. https://github.com/aappleby/smhasher/blob/

master/src/MurmurHash3.cpp.
[41] The web stream dataset. http://fimi.ua.ac.be/data/.
[42] The caida anonymized internet traces dataset. http://www.caida.org/data/

overview/.
[43] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent

items in data streams. In ICALP, volume 2380 of Lecture Notes in Computer
Science, pages 693–703. Springer, 2002.

[44] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algo-
rithm for finding frequent elements in streams and bags. ACM Trans. Database
Syst., pages 51–55, 2003.

[45] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algo-
rithm for finding frequent elements in streams and bags. ACM Trans. Database
Syst., 28:51–55, 2003.

[46] Lukasz Golab, David DeHaan, Erik D. Demaine, Alejandro López-Ortiz, and
J. Ian Munro. Identifying frequent items in sliding windows over on-line packet
streams. In Internet Measurement Conference, pages 173–178. ACM, 2003.

[47] Nishad Manerikar and Themis Palpanas. Frequent items in streaming data: An
experimental evaluation of the state-of-the-art. Data Knowl., 2009.

[48] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-
based change detection: methods, evaluation, and applications. In Internet Mea-
surement Conference, pages 234–247. ACM, 2003.

[49] Robert T. Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang,
Peter A. Dinda, Ming-Yang Kao, and Gokhan Memik. Reversible sketches: en-
abling monitoring and analysis over high-speed data streams. IEEE/ACM Trans.
Netw., 15(5):1059–1072, 2007.

[50] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better
netflow for data centers. In NSDI, pages 311–324. USENIX Association, 2016.

[51] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. Persistent data
sketching. In SIGMOD Conference, pages 795–810. ACM, 2015.

[52] Haipeng Dai, Muhammad Shahzad, Alex X. Liu, and Yuankun Zhong. Finding
persistent items in data streams. Proc. VLDB Endow., pages 289–300, 2016.

[53] Shobha Venkataraman, Dawn Xiaodong Song, Phillip B. Gibbons, and Avrim
Blum. New streaming algorithms for fast detection of superspreaders. In NDSS.
The Internet Society, 2005.

[54] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts
over data streams. Proc. VLDB Endow., page 1699, 2012.

[55] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig, Shigang Chen,
and Xiaoming Li. Heavykeeper: An accurate algorithm for finding top-k elephant
flows. IEEE/ACM Trans. Netw., pages 1845–1858, 2019.

[56] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. Elastic sketch: adaptive and fast network-wide
measurements. In SIGCOMM, pages 561–575. ACM, 2018.

1438

