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ABSTRACT
Personalized PageRank (PPR) is a popular node proximity metric in

graph mining and network research. A single-source PPR (SSPPR)

query asks for the PPR value of each node on the graph. Due to

its importance and wide applications, decades of efforts have been

devoted to the efficient processing of SSPPR queries. Among ex-

isting algorithms, LocalPush is a fundamental method for SSPPR

queries and serves as a cornerstone for subsequent algorithms. In

LocalPush, a push operation is a crucial primitive operation, which

distributes the probability at a node 𝑢 to ALL 𝑢’s neighbors via

the corresponding edges. Although this push operation works well

on unweighted graphs, unfortunately, it can be rather inefficient

on weighted graphs. In particular, on unbalanced weighted graphs

where only a few of these edges take the majority of the total weight

among them, the push operation would have to distribute “insignif-

icant” probabilities along those edges which just take the minor

weights, resulting in expensive overhead.

To resolve this issue, in this paper, we propose the EdgePush al-

gorithm, a novel method for computing SSPPR queries on weighted

graphs. EdgePush decomposes the aforementioned push operations

in edge-based push, allowing the algorithm to operate at the edge

level granularity. As a result, it can flexibly distribute the probabili-

ties according to edge weights. Furthermore, our EdgePush allows

a fine-grained termination threshold for each individual edge, lead-

ing to a superior complexity over LocalPush. Notably, we prove

that EdgePush improves the theoretical query cost of LocalPush by

an order of up to 𝑂 (𝑛) when the graph’s weights are unbalanced.

Our experimental results demonstrate that EdgePush significantly

outperforms state-of-the-art baselines in terms of query efficiency

on large motif-based and real-world weighted graphs.
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1 INTRODUCTION
Personalized PageRank (PPR), as a variant of PageRank [46], has

become a classic node proximity measure. It effectively captures

the relative importance of all the nodes with respect to a source

node in a graph. One particular interest is the single-source PPR

(SSPPR) query. Given a source node 𝑠 in a graph 𝐺 = (𝑉 , 𝐸) with
𝑛 nodes and𝑚 edges, the SSPPR query aims to return an SSPPR

vector 𝝅 ∈ R𝑛 , where 𝝅 (𝑢) denotes the PPR value of node 𝑢 ∈ 𝑉
with respect to the source node 𝑠 . We can consider the SSPPR vector

𝝅 as a probability distribution, with 𝝅 (𝑢) defined as the probability
that an 𝛼-random walk starting from the source node 𝑠 stops at

node 𝑢. Specifically, the 𝛼-random walk [46] represents a random

walk process that at each step, the walk either moves to a random

neighbor with probability 1 − 𝛼 , or stops at the current node with
probability 𝛼 . The teleport probability 𝛼 is a constant in (0, 1).

SSPPR queries has been widely adopted in various graph mining

and network analysis tasks. For example, the seminal local cluster-

ing paper [10] and its variant [22, 65] identify clusters based on the

SSPPR queries with the seed node as the source node. Additionally,

the recommendations in social networks employ SSPPR values to

evaluate the relative importance of other users regarding the target

user, such as the Point-of-Interest recommendation [26], the con-

nection prediction [12], the topical experts finding application [34]

and the Who-To-Follow recommendation in Twitter [27]. Recently,

several graph representation learning tasks [14, 17, 30, 68] compute

SSPPR queries to propagate initial node features in the graph.

In this paper, we focus on efficient SSPPR queries on weighted

graphs. Weighted graphs are extremely common in real life, where

the weight of each edge indicates the distance, similarity or other

strength measures of the relationships between two nodes. Various

real applications are in dire need of the SSPPR results on weighted

graphs. For instance, the personalized ranking results incorporating

user preference or feedback embedded in the edge weight are highly

valued in social network [20, 25, 57]. Additionally, to rank web

pages by SSPPR queries, taking into account the importance of

pages’ links shows increasingly significance for the performance

of page ranking [58]. In the local clustering application, computing

SSPPR queries on motif-based weighted graphs
1
can effectively

1
A motif is defined as a small subgraph (e.g. a triangle).
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Figure 1: A bad case for the LocalPush. The number on each
edge is the edge weight.

capture the high-order information of network structure which is

crucial to the clustering quality [65].

Despite the large-scale applications of SSPPR queries onweighted

graphs, this topic are less studied in literature due to its hardness.

The state-of-the-art algorithm is MAPPR [65], which is a version

of LocalPush on weighted graphs. LocalPush [10] is a crucial and

fundamental method for SSPPR queries, which has been regarded

as a cornerstone method for advanced developments [22, 28, 54–

56]. The main idea of LocalPush is to approximate SSPPR results by

deterministically pushing the probabilities on the graph. The push

operation in LocalPush restricts the computation in a local manner,

which achieves remarkable scalability on unweighted graphs. Unfor-

tunately, although LocalPush works well on unweighted graphs, it

can be rather ineffective on weighted graphs, leading to excessive

time consumption.

LocalPush’s Limitation onWeighted Graphs. As a crucial prim-

itive operation in LocalPush, the push operation pushes probability

mass from the current node to all its neighbors. Whenever the push

operation on a node is invoked, it has to touch all the edges incident

on the node. While this push strategy works fine on unweighted

graphs, unfortunately, it has evident drawbacks on weighted graphs.

When the weights of a node’s edges are unbalanced where only a

small number of edges taking a majority portion of the total weight

among them, the push operation has to spend a significant cost on

just pushing a tiny probability mass, resulting in severe overhead.

Figure 1 shows a toy example of the bad case for LocalPush.

Consider node 𝑢 whose total weight of edges is 1. There is an

edge (𝑢, 𝑣1) taking a weight 1 − 1

𝑛 , merely the total weight, and all

the others just share
1

𝑛 together. When a push operation on 𝑢 is

performed, it requires a cost of 𝑛 − 1 just on pushing an extremely

tiny probability mass for those “insignificant” edges. As a result, the

push operation is extremely inefficient on such severely unbalanced

weighted graphs.

It’s worth to mention that weighted graphs with severely unbal-

anced edge weights are common in many real-world applications.

Let’s take the affinity graph as an example. Affinity graphs are

frequently used in a variety of practical tasks [44, 51, 59, 60, 62, 64,

68, 69] to model the affinities between pairwise data points. Nodes

in affinity graphs represent high dimensional data points, i.e. 𝑉 =

{𝑥1, ..., 𝑥𝑛}, where 𝑥𝑖 ∈ R𝜿 . Edges are fully connected and weighted,
and the weight of edge (𝑥𝑖 , 𝑥 𝑗 ) indicates the affinity between data

points 𝑥𝑖 and 𝑥 𝑗 , defined as A𝑖 𝑗 = exp

(
−∥𝑥𝑖 − 𝑥 𝑗 ∥2/2𝜎2

)
. Here

∥𝑥𝑖 − 𝑥 𝑗 ∥ denotes the Euclidean distance between data points 𝑥𝑖

and 𝑥 𝑗 , and 𝜎
2
denotes the variance of all data points in 𝑉 . We

note that the value of distance ∥𝑥𝑖 − 𝑥 𝑗 ∥2 is exponential to the

edge weight A𝑖 𝑗 . Thus, small differences among pairwise distances

can lead to significantly-skewed edge weights distribution. On the

other hand, computing PPR values on affinity graphs is a commonly

adopted technique in various tasks, such as label propagation [68],

spectral clustering [64], image segmentation [62] and relationship

profiling [60]. Therefore, to apply LocalPush for PPR computation

on such heavily unbalanced weighted graphs can invoke expensive

but unnecessary time cost.

Our Contributions. To remedy the above issue of LocalPush on

weighted graphs, we make the following contributions:

• Edge-based Push Method. We propose EdgePush, a novel edge-

based push method for SSPPR queries. Our EdgePush further

decomposes the aforementioned atomic push operation of Lo-

calPush into separate edge-based push operations. As a result,

EdgePush can flexibly select edges to push probability mass based

on the edge weights.

• Theoretical Analysis. EdgePush admits a fine-grained individual

termination threshold \ (𝑢, 𝑣) for each edge. With careful choices

of \ (𝑢, 𝑣), EdgePush achieves superior query efficiency in terms of

the trade-offs between the approximation error and the expected

overall running time. In this paper, we analyze the time complex-

ity of EdgePush and present the suggested choice of \ (𝑢, 𝑣) with
two specific error measurements: the ℓ1-error and the normalized

additive error. In particular, when the edge weights are unbal-

anced (as shown in Figure 1), with the optimal setting of \ (𝑢, 𝑣),
EdgePush can approximate PPR values in time 𝑜 (𝑚), sub-linear to
the number of edges, with specified ℓ1-error. In other words, in

this case, we can solve the approximate PPR with ℓ1-error even

without touching every edge in the graph.

• Superiority Illustration. We demonstrate that EdgePush achieves

a superior expected time complexity over LocalPush on arbitrary

graphs as shown in Table 1. For the ease of illustration, here we

present superior results for a relatively restricted case, where all

the nodes in the graph are (𝑎, 𝑏)-unbalanced (which is defined

next). However, it should be noted that as proved in Section 5,

the conditions for EdgePush strictly outperforming LocalPush are

actually more general and less restrictive. Specifically, the notion

of (𝑎, 𝑏)-unbalanced node is used to quantify the unbalancedness
of the weighted graph. A node is said to be (𝑎, 𝑏)-unbalanced if 𝑎
fraction of its adjacency edges take 𝑏 fraction of its edge weights,

where 0 ≤ 𝑎 ≤ 𝑏 ≤ 1. Based on the (𝑎, 𝑏)-unbalanced definition,

we summarize three theoretical implications in the following.

Here we assume the source node is chosen according to the node

degree distribution.

– The overall running time bound of EdgePush is no worse than

that of LocalPush even on unweighted graphs, regardless of

whether the ℓ1-error or the normalized additive error.

– When the edge weights are unbalanced, EdgePush achieves

superior query efficiency over LocalPush. And the superiority

of EdgePush over LocalPush can be quantified by the unbal-

ancedness of the weighted graphs.

– When the graph 𝐺 is a complete graph with 𝑛 nodes, 𝑎 = 1/𝑛
and 𝑏 = 1 − 1/𝑛, EdgePush outperforms LocalPush by a 𝑂 (𝑛)
factor, both for the ℓ1 and normalized additive error.

– When 𝑎 = 𝑜 (1) and 𝑏 = 1 − 𝑜 (1), EdgePush compute SSPPR

queries in time sub-linear to the number of edges in the graph

with any specified ℓ1-error.
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• Extensive Experiments.We conduct comprehensive experiments

to show the effectiveness of our EdgePush on both motif-based

and real-worldweighted graphs. The experimental results demon-

strate that when achieving the same approximation error (e.g.

normalized additive error or ℓ1-error), EdgePush outperforms

LocalPush on large real-world graphs by orders of magnitude

in terms of query efficiency. Notably, even on the graphs with

less unbalanced edge weights, EdgePush still shows superior

performances over the state-of-the-art baselines.

2 PRELIMINARIES
Notations. Consider an undirected and weighted graph 𝐺 = (𝑉 , 𝐸)
with |𝑉 | = 𝑛 nodes and |𝐸 | = 𝑚 edges. We define 𝐸 as the set of

bi-directional edges of𝐺 , that is, for every edge (𝑢, 𝑣) ∈ 𝐸, there are
two directed edges ⟨𝑢, 𝑣⟩ and ⟨𝑣,𝑢⟩ in 𝐸, and these two edges are

treated differently.We useA to denote the adjacencymatrix of graph

𝐺 , andA𝑢𝑣 to denote the weight of edge ⟨𝑢, 𝑣⟩ ∈ 𝐸. Furthermore, we

assume that eachA𝑢𝑣 is a non-negative real number. For∀⟨𝑢, 𝑣⟩ ∉ 𝐸,
we have A𝑢𝑣 = 0. As a result, ∥A∥1 =

∑
⟨𝑢,𝑣⟩∈𝐸 A𝑢𝑣 denotes the

total weights of all edges. For every edge ⟨𝑢, 𝑣⟩ ∈ 𝐸, we say 𝑣 is
a neighbor of 𝑢. For each node 𝑢 ∈ 𝑉 , we denote the set of all

the neighbors of 𝑢 by 𝑁 (𝑢), and 𝑛(𝑢) = |𝑁 (𝑢) |, the neighborhood
size of 𝑢. Moreover, 𝑑 (𝑢) = ∑

𝑣∈𝑁 (𝑢) A𝑢𝑣 denotes the (weighted)

degree of node 𝑢, and D denotes the diagonal degree matrix with

D𝑢𝑢 = 𝑑 (𝑢). Finally, the transition matrix is denoted by P = AD−1
.

In this paper, we use 𝝅𝑠 ∈ R𝑛 to denote the SSPPR vector w.r.t

node 𝑠 as the source node. The 𝑢-th coordinate 𝝅𝑠 (𝑢) records the
PPR value of node 𝑢 ∈ 𝑉 w.r.t 𝑠 . Unless specified otherwise, we

denote node 𝑠 as the source node by default and omit the subscript in

𝝅𝑠 and 𝝅𝑠 (𝑢) for short (i.e. 𝝅 and 𝝅 (𝑢)). In Section 3, we use 𝒓 ∈ R𝑛
and �̂� ∈ R𝑛 to denote the residue and reserve vectors in LocalPush,

respectively. In Section 4, we define three variables: node income

vector 𝒒 ∈ R𝑛 , edge expense matrix Q ∈ R𝑛×𝑛 and edge residue

matrix R ∈ R𝑛×𝑛 for the EdgePush algorithm. Additionally, in this

paper, we analyze all of the theoretical complexities under the word

RAM model [23] (a brief introduction of the Word RAM Model is

deferred to the technical report [1]). Following the aforementioned

convention of the model, we assume that every the numerical value,

such as the edge weight A𝑢𝑣 or the constant teleport probability 𝛼

in PPR computation, can fit into 𝑂 (1) words of 𝑂 (log𝑛) bits.
Single-Source Personalized PageRank (SSPPR). PageRank [46]

is first proposed by Google to rank the overall importance of nodes

in the graph. Personalized PageRank (PPR) is a variant of PageRank,

which evaluates each node’s relative importance w.r.t a given source

node. The single-source PPR (SSPPR) query is a type of PPR com-

putations, which aims to return all the PPR values (w.r.t the source

node) in the graph. More precisely, given node 𝑠 as the source node,

the SSPPR query aims to derive an SSPPR vector 𝝅 ∈ R𝑛 , where
the 𝑢-th coordinate 𝝅 (𝑢) represents the PPR value of node 𝑢.

In the seminal paper of PPR [46], the SSPPR vector 𝝅 w.r.t source

node 𝑠 is defined as the solution to the recursive equation:

𝝅 = (1 − 𝛼)P𝝅 + 𝛼𝒆𝑠 , (1)

where 𝛼 ∈ (0, 1) is a constant teleport probability, P is the transition

matrix that P = AD−1
, and 𝒆𝑠 is an one-hot vector that 𝒆𝑠 (𝑠) = 1

and 𝒆𝑠 (𝑢) = 0 if 𝑢 ≠ 𝑠 . By applying a power series expansion [11],

the SSPPR vector 𝝅 can be derived as:

𝝅 = 𝛼 · (I − (1 − 𝛼)P)−1 · 𝒆𝑠 =
∞∑︁
𝑖=0

𝛼 (1 − 𝛼)𝑖P · 𝒆𝑠 . (2)

Note that this expansion provides an alternative interpretation of

PPR values: the SSPPR vector 𝝅 can be regarded as a probability

distribution, where 𝝅 (𝑢) denotes the probability that an 𝛼-random

walk from the given source node 𝑠 stops at 𝑢 [38, 46]. Each step of

an 𝛼-random walk either stops at the current node with probability

𝛼 , or stays alive to move forward with (1 − 𝛼) probability. Specifi-
cally, if an 𝛼-random walk is currently alive at node 𝑢, then in the

next step, the walk will move to one of 𝑢’s neighbors 𝑣 ∈ 𝑁 (𝑢)
with the probability proportional to the edge weight A𝑢𝑣 , i.e., with

probability
(1−𝛼) ·A𝑢𝑣

𝑑 (𝑢) .

Problem Definition. As shown in Equation (2), the exact com-

putation of SSPPR vector involves the inverse of the 𝑛 × 𝑛 matrix:

(I − (1 − 𝛼)P), where 𝑛 is the number of graph nodes. This is infea-

sible on large graphs with millions of nodes. Thus, in this paper, we

aim to approximate the SSPPR vector 𝝅 on large graphs with spec-

ified approximation error. Specifically, we consider the following

two problems:

Definition 1 (Approximate SSPPRwithnormalized additive

error). Given an undirected and weighted graph 𝐺 = (𝑉 , 𝐸), a
source node 𝑠 ∈ 𝑉 and a normalized additive error tolerance 𝑟max ∈
(0, 1), the goal of an approximate SSPPR query (w.r.t the source node

𝑠) with normalized additive error is to return an estimated SSPPR

vector �̂� such that for each 𝑢 ∈ 𝑉 ,
���𝝅 (𝑢)
𝑑 (𝑢) −

�̂� (𝑢)
𝑑 (𝑢)

��� ≤ 𝑟max.

The normalized additive error is a commonly used evaluation

metric in local clustering tasks. More precisely, the majority of

existing local clustering algorithms [10, 18, 19, 22, 31, 48, 63, 65]

operate in two stages: first, they treat the given seed node as the

source node and calculate the approximate SSPPR vector �̂� (or other

scores to rank nodes’ relative importance w.r.t the source node).

Then the they feed the vector �̂� in a sweep process to identify

local cluster around the seed node. The detailed steps in the sweep

process are given below:

• (i) Put all the nodes with non-zero
�̂� (𝑢)
𝑑 (𝑢) into a set 𝑆 .

• (ii) Sort each node 𝑢 ∈ 𝑆 in the descending order by
�̂� (𝑢)
𝑑 (𝑢) , such

that 𝑆 = {𝑣1, 𝑣2, ..., 𝑣 𝑗 } and �̂� (𝑣1)
𝑑 (𝑣1) ≥

�̂� (𝑣2)
𝑑 (𝑣2) ≥ ... ≥

�̂� (𝑣𝑗 )
𝑑 (𝑣𝑗 ) .

• (iii) Scan the set 𝑆 from 𝑣1 to 𝑣 𝑗 and find the subset withminimum

conductance among all the partial sets 𝑆𝑖 = {𝑣1, 𝑣2, ..., 𝑣𝑖 } for
𝑖 = 1, 2, ..., 𝑗 .

In the third step, we calculate the conductance of all partial sets.

Conductance is a popular measure to evaluate the cluster quality.

More precisely, given a cluster set 𝑆𝑖 ⊆ 𝑉 , the conductance of

set 𝑆𝑖 is defined as Φ(𝑆𝑖 ) = 𝑐𝑢𝑡 (𝑆𝑖 )
min{𝑣𝑜𝑙 (𝑆𝑖 ),𝑣𝑜𝑙 (𝑉 \𝑆𝑖 ) } , where 𝑣𝑜𝑙 (𝑆𝑖 ) =∑

𝑢∈𝑆𝑖 𝑑 (𝑢) denotes the volume of set 𝑆𝑖 , and 𝑐𝑢𝑡 (𝑆𝑖 ) denotes the
sum of edge weights for those edges crossing 𝑆𝑖 and 𝑉 \ 𝑆𝑖 . Thus,
the conductance values are the smaller, the better.

Reviewing the sweep process, we note that the quality of the

identified clusters heavily depends on the approximation accuracy

of the normalized PPR values (i.e.
𝝅 (𝑢)
𝑑 (𝑢) for each 𝑢). Therefore, in
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Table 1: The comparison between the complexities of LocalPush and EdgePush. The “Improvements" column quantifies the
superiority of EdgePush over LocalPush in terms of the expected time complexities when the source node is chosen according
to the degree distribution. 𝜑 and 𝜑𝑣 denote specific angles on weighted graphs, which are formally illustrated in Section 5.

LocalPush EdgePush Improvements

ℓ1-error Y 𝑂
(
𝑚
𝛼Y

)
𝑂

©« (1−𝛼 )𝛼Y ∥A∥1 ·
( ∑
⟨𝑢,𝑣⟩∈𝐸

√
A𝑢𝑣

)
2ª®¬ = 𝑂

( (
(1 − 𝛼) cos

2 𝜑
)
· 𝑚
𝛼Y

)
(1 − 𝛼) cos

2 𝜑

normalized additive error 𝑟max 𝑂

(
𝑚

𝛼𝑟max ·∥A∥1

)
𝑂

(
(1−𝛼 )

𝛼𝑟max ∥A∥1 ·
∑
𝑣∈𝑉

(∑
𝑥∈𝑁 (𝑣)

√
A𝑥𝑣

)
2

𝑑 (𝑣)

)
= 𝑂

((
1−𝛼
𝑚
· ∑
𝑣∈𝑉

𝑛 (𝑣) cos
2 𝜑𝑣

)
· 𝑚
𝛼𝑟max ∥A∥1

)
(1−𝛼 )

2𝑚
· ∑
𝑣∈𝑉

𝑛 (𝑣) cos
2 𝜑𝑣

Algorithm 1: The LocalPush Algorithm [65]

Input: undirected and weighted Graph 𝐺 = (𝑉 , 𝐸) with
adjacency matrix A, source node 𝑠 , constant teleport
probability 𝛼 ∈ (0, 1), termination threshold \

Output: an estimation �̂� of SSPPR vector 𝝅 w.r.t 𝑠

1 �̂� ← 0, 𝒓 ← 𝒆𝑠 ;

2 while there exists a node 𝑢 with 𝒓 (𝑢) ≥ 𝑑 (𝑢) · \ do
3 �̂� (𝑢) ← �̂� (𝑢) + 𝛼 · 𝒓 (𝑢);
4 for every neighbors 𝑣 ∈ 𝑁 (𝑢) do
5 𝒓 (𝑣) ← 𝒓 (𝑣) + (1 − 𝛼)𝒓 (𝑢) · A𝑢𝑣

𝑑 (𝑢) ;

6 𝒓 (𝑢) ← 0;

7 return �̂� as the estimator for 𝝅 ;

this paper, we introduce normalized additive error as one of the eval-

uation criteria. Additionally, we employ a classic evaluation metric,

ℓ1-error, to assess the approximation quality of each algorithm:

Definition 2 (Approximate SSPPR with ℓ1-error). Given an

undirected weighted graph𝐺 = (𝑉 , 𝐸), a source node 𝑠 ∈ 𝑉 , a constant
teleport probability 𝛼 , and an ℓ1-error tolerance Y ∈ (0, 1), the goal of
an approximate PPR query with respect to 𝑠 is to return an estimated

PPR vector �̂� such that ∥�̂� − 𝝅 ∥1 =
∑
𝑢∈𝑉 |�̂� (𝑢) − 𝝅 (𝑢) | ≤ Y.

2.1 The LocalPush Algorithm
Among existing algorithms for SSPPR queries, the LocalPush al-

gorithm [10, 65] is a fundamental method which serves as a cor-

nerstone in various subsequent algorithms [22, 28, 54–56]. The

basic idea of LocalPush is to “simulate” 𝛼-random walks in a de-

terministic way by pushing the probability mass from a node to

its neighbors. More specifically, given an undirected and weighted

graph𝐺 = (𝑉 , 𝐸), a source node 𝑠 , a constant teleport probability
𝛼 ∈ (0, 1) and a global termination threshold \ , LocalPushmaintains

two variables for each node 𝑢 ∈ 𝑉 during the executing process:

• Residue 𝒓 (𝑢): the probability mass currently on 𝑢 and will be

distributed to other nodes. Alternatively, in an 𝛼-random walk

process, 𝒓 (𝑢) records the probability mass of the 𝛼-random walk

from 𝑠 alive at 𝑢 at the current state. Note that if a walk has not

yet stopped, we say the walk is alive at the current node;

• Reserve �̂� (𝑢): the probability mass that stays at node 𝑢. �̂� (𝑢) is
an underestimate of the real PPR value 𝝅 (𝑢).

The push Operation. push is a critical primitive operation that

is repeated throughout the LocalPush process. A push operation

consists of three steps (see the left side of Figure 2 for illustration):

Figure 2: A sketch for comparing push and edge-based push.
The number on each edge is the edge weight.

• convert 𝛼 portion of 𝒓 (𝑢) to �̂� (𝑢), i.e., �̂� (𝑢) ← �̂� (𝑢) + 𝛼 · 𝒓 (𝑢),
simulating the fact that 𝛼 portion of the random walk alive at 𝑢

has stopped here at 𝑢;

• distribute the rest (1 − 𝛼) portion of 𝒓 (𝑢) to each neighbor 𝑣

proportional to the corresponding edge weight by increasing

the residue of 𝑣 , i.e., 𝒓 (𝑣) ← 𝒓 (𝑣) + (1 − 𝛼)𝒓 (𝑢) · A𝑢𝑣

𝑑 (𝑢) ; this
essentially simulates that (1−𝛼) portion of the random walk will

move one step forward to each 𝑢’s neighbor with the probability

proportional to the edge weights;

• reset the residue 𝒓 (𝑢) to 0, indicating that, after the above two

steps, there is no 𝛼-random walk alive at 𝑢 at the moment.

Invariant. The analysis of localpush algorithm is built upon an

invariant between the residue and the reserve, which is formalized

in the following lemma:

Lemma 1 (Invariant by LocalPush). For each node 𝑡 in the

graph, the reserve 𝝅𝑡 and residues satisfy the following invariant

after each push operation:

𝝅 (𝑡) = �̂� (𝑡) +
∑︁
𝑢∈𝑉

𝒓 (𝑢) · 𝝅𝑢 (𝑡), (3)

where 𝝅 (𝑡) denotes the PPR value of node 𝑡 w.r.t the source node 𝑠 (by

default) and 𝝅𝑢 (𝑡) denotes the PPR value of 𝑡 w.r.t node 𝑢.

We defer the proof of Lemma 1 to the technical report [1] due to

the space limit. Intuitively, �̂� (𝑡) is the probability mass that stays

at 𝑡 . Aside from �̂� (𝑡), 𝝅 (𝑡) also includes probability mass that is

currently on other nodes and will be delivered to 𝑡 . To calculate this

part, recall that 𝒓 (𝑢) refers to the probability mass that is currently

at 𝑢 but will be distributed to other nodes. Given that 𝝅𝑢 (𝑡) is
the probability of a random walk starting at 𝑢 and ending at 𝑡 ,

𝒓 (𝑢) · 𝝅𝑢 (𝑡) is the probability mass now residing at 𝑢 and to be

distributed to 𝑡 . Summing over all nodes 𝑢 ∈ 𝑉 and the lemma

follows. For a illustration, see the left part of Figure 3.

AlgorithmDescriptions of LocalPush. Initially, the node residue
vector 𝒓 is initialized as 𝒓 = [𝒓 (𝑢)]𝑢∈𝑉 = 𝒆𝑠 , indicating that, at the
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Figure 3: A sketch for comparing the invariants of LocalPush
and EdgePush.

beginning, the walk is only alive at the source node 𝑠 (with prob-

ability 1). Meanwhile, �̂� = [�̂� (𝑢)]𝑢∈𝑉 = 0. During the LocalPush

process, LocalPush repeatedly performs the push operations until

there is no node 𝑢 with residue 𝒓 (𝑢) ≥ 𝑑 (𝑢) · \ . After the termina-

tion, LocalPush returns the reserve vector �̂� as the approximation

of SSPPR vector 𝝅 . The pseudo code of the LocalPush algorithm is

illustrated in Algorithm 1.

Error Analysis and Time Complexity of LocalPush. On un-

weighted graphs, it is known that LocalPush costs 𝑂
(
𝑚
𝛼Y

)
and

𝑂

(
1

𝛼𝑟max

)
to answer the approximate SSPPR queries with ℓ1-error Y

and normalized additive error 𝑟max, respectively [10, 54, 56]. With

a slight modification, we can derive the time complexities of Local-

Push on weighted graphs:

Fact 1. By setting the termination threshold \ in Algorithm 1 as

\ = Y/∥A∥1, LocalPush answers the SSPPR query with an ℓ1-error Y.

When the source node is randomly chosen according to the degree

distribution, the expected cost of LocalPush is bounded by 𝑂
(
𝑚
𝛼Y

)
.

Fact 2. By setting the termination threshold \ in Algorithm 1

as \ = 𝑟max, LocalPush returns an approximation of SSPPR vector

with normalized additive error 𝑟max. When the source node is ran-

domly chosen according to the degree distribution, the expected cost

of LocalPush is bounded by 𝑂

(
𝑚

𝛼𝑟max · ∥A∥1

)
.

Considering Fact 2, if the number of edges𝑚 equals the total

weights ∥A∥1, which always holds for unweigthed graphs, the

overall running time bound can be simplified to 𝑂 ( 1

𝛼𝑟max

). For the
sake of readability, we defer the proofs of Fact 1 and Fact 2 to our

technical report [1]. Note that in these two facts, we assume the

source node is randomly chosen according to the degree distribution

for the sake of simplicity. This is also a common assumption in the

context of local clustering application (i.e. the seed node is sampled

according to the node degree).

3 RELATEDWORK
Power Method. Power Method [46] is an iterative method to com-

pute the SSPPR vector 𝝅 . Recall that in Equation (2), we present a

power series expansion to compute 𝝅 , which alternatively suggests

an iterative algorithm:

𝝅 (ℓ+1) = (1 − 𝛼)P𝝅 (ℓ) + 𝛼𝒆𝑠 , (4)

where 𝝅 (ℓ) denotes the estimated SSPPR vector after the ℓ-th iter-

ation. Power Method employs the recursive formula 𝐿 times and

regards 𝝅 (𝐿) as the approximation of 𝝅 , leading to an 𝑂 (𝑚𝐿) time

complexity. By setting 𝐿 = log
1

Y and 𝐿 = log
1

𝑟max

, Power Method

can achieve an ℓ1 error of Y and a normalized additive error of

𝑟max, respectively. Note that the settings of 𝐿 show logarithmic

dependence on the error parameters (i.e. Y or 𝑟max), which enables

Power Method to answer high-precision SSPPR queries. However,

in each iteration, Power Method needs to touch the every edge

on the graph, resulting in a Θ(𝑚) time cost per iteration. This can

severely limit the scalability of Power Method on large graphs.

Monte-Carlo Sampling.Monte-Carlo sampling [21, 29] estimates

SSPPR vector 𝝅 by simulating the random walk process. More

precisely, recall that the PPR value 𝝅 (𝑢) of node 𝑢 equals to the

probability that an 𝛼-random walk from the given source node 𝑠

stops at node𝑢. Based on this interpretation, Monte-Carlo sampling

first generates multiple 𝛼-random walks from the source node 𝑠 ,

then uses the fraction that the number of walks terminates at 𝑢

as an approximation of 𝝅 (𝑢). However, due to the uncertainty of

random walks, Monte-Carlo method is inefficient to achieve small

approximation error on large graphs [54].

FORA. Existing methods [36, 41, 53, 54] adopt various approaches

to improve the efficiency of Monte-Carlo Sampling. As a represen-

tative algorithm, FORA [54] combines LocalPush with Monte-Carlo

Sampling to approximate the SSPPR vector. By theoretical analy-

sis, FORA provides the optimal settings of the error parameters in

LocalPush and Monte-Carlo sampling to balance the two phases.

Additionally, FORA introduces an index scheme, as well as a module

for top-𝑘 selection with high pruning power, which, however, is

out of the scope of this paper.

PowForPush and SpeedPPR. Recently, Wu et al. [56] proposes

PowForPush to accelerate the efficiency of high-precision SSPPR

queries. PowForPush is based on the Power Method and adopts two

optimization techniques, sequential scanning and dynamic ℓ1-error

threshold, for better performance from an engineering point of

view. However, the time complexity of PowForPush is still the same

as that of Power Method, which still has a linear dependency on

the number of edges𝑚.

As a variant of PowForPush, SpeedPPR [56] combines PowFor-

Push with Monte-Carlo Sampling for efficient approximation of

SSPPR queries. As shown in [56], SpeedPPR achieves superior time

complexity over FORA under relative error constraints. The success

of SpeedPPR demonstrates that LocalPush serves as a cornerstone

approach for SSPPR queries, and hence, any improvement on Lo-

calPush can be applied to the subsequent methods for advanced

developments.

Other Related Work. Except for SSPPR queries, there are other

lines of researches concerning single-target PPR queries [8, 9, 41,

52], single-pair PPR queries [24, 39, 40, 42, 53], distributed PPR

queries [28, 37, 43, 47, 70], or SSPPR computation on dynamic

graphs [45, 66, 67]. However, these works are orthogonal to the

focus of this paper.

4 EDGE-BASED LOCAL PUSH
An Overview. At a high level, EdgePush decomposes the atomic

push operation into edge level granularity, which enables to flexibly

distribute probabilities according to the edge weights. To demon-

strate the superiority of edge-based push, consider the toy graph

shown in Figure 1. We note that the atomic push operation hinders

LocalPush to flexibly arrange the push order in the finer-grained

edge granularity, leading to the 𝑂 (𝑛) time cost even after the first
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push step (i.e. from node 𝑢 to 𝑣1, 𝑣2, . . . , 𝑣𝑛). However, due to the

unbalanced edge weights, the probability mass distributed from𝑢 to

𝑣2, . . . , 𝑣𝑛 are “insignificant" compared to the probability distributed

to 𝑣1. Consequently, in this toy example, the optimal push strategy

is to directly distribute the probability mass at node 𝑢 along edge

⟨𝑢, 𝑣1⟩, then along edge ⟨𝑣1,𝑤⟩, and ignore the other edges, which

is allowed in our EdgePush framework.

4.1 A primitive operation: edge-based push
Notations. Before presenting the algorithm structure of EdgePush,

we first define three variables which are conceptually maintained

in the EdgePush process.

• A node income 𝒒(𝑣) for each node 𝑣 ∈ 𝑉 : it records the total

probability mass received by 𝑣 so far. Therefore, 𝛼𝒒(𝑣) is indeed
the reserve �̂� (𝑣) in the context of LocalPush.

• An edge expense Q𝑢𝑣 for each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸: this variable

records the total probability mass that has been transferred from

𝑢 to 𝑣 via the edge ⟨𝑢, 𝑣⟩. By definition, the node income of

node 𝑣 is the sum of all the expenses of edges ∀⟨𝑢, 𝑣⟩ ∈ 𝐸, i.e.,
𝒒(𝑣) = ∑

𝑢∈𝑁 (𝑣) Q𝑢𝑣 .

• An edge residue R𝑢𝑣 for each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸: it records the

probability mass that is to be transferred from 𝑢 to 𝑣 at the

moment. Thus, by definition, we have:

R𝑢𝑣 = (1 − 𝛼)𝒒 (𝑢) · A𝑢𝑣

𝑑 (𝑢) − Q𝑢𝑣, (5)

where (1 − 𝛼)𝒒(𝑢) · A𝑢𝑣

𝑑 (𝑢) indicates the total probability mass

that should be transferred from 𝑢 to 𝑣 so far.

Correctness. Similar to the invariant maintained by LocalPush,

we can prove an analogous invariant for EdgePush:

Lemma 2 (Invariant by EdgePush). For each node 𝑡 in the graph,

the node income 𝒒(𝑡) and edge residues satisfy the following invariant
during the EdgePush process:

𝝅 (𝑡) = 𝛼𝒒(𝑡) +
∑︁
⟨𝑢,𝑣⟩∈𝐸

R𝑢𝑣 · 𝝅𝑣 (𝑡) , (6)

where 𝝅𝑣 (𝑡) denotes the PPR value of node 𝑡 w.r.t node 𝑣 as the source

node. When the source node is 𝑠 , we use 𝝅 (𝑡) by default.

A sketch for the invariant is shown in the right side of Figure 3.

To see the correctness of this invariant, recall that in LocalPush,

the probability mass to be distributed from each node 𝑢 is recorded

by the node residue 𝒓 (𝑢). In contrast, in our EdgePush, we further

decompose the probability mass maintained by node residue into

edge level granularity and use edge residue to record it. Hence, the

PPR value of node 𝑡 is divided to two types of probabilities. 𝛼𝒒(𝑡)
maintains the probability mass that has been received by node 𝑡 .

Except that,

∑
⟨𝑢,𝑣⟩∈𝐸 R𝑢𝑣 · 𝝅𝑣 (𝑡) records the probability mass to

be distributed to 𝑡 . The formal proof of this invariant is deferred to

the Technical Report [1] due to the space limit.

The Edge-based Push Operation. In an edge-based push along

edge ⟨𝑢, 𝑣1⟩ as shown in the right side of Figure 2, EdgePush transfers
the probability mass at R𝑢𝑣1

to node 𝑣1 (i.e. to the edge residues of

all edges ⟨𝑣1,𝑤⟩), and reset R𝑢𝑣1
to 0.

Notably, in the EdgePush process, we don’t explicitly modify

the edge residue. Instead, we update the node income and edge

Algorithm 2: The EdgePush Algorithm

Input: Graph𝐺 = (𝑉 , 𝐸) , source node 𝑠 ∈𝑉 , teleport probability 𝛼 ,

termination threshold \ (𝑢, 𝑣) for ∀⟨𝑢, 𝑣⟩ ∈𝐸
Output: �̂� as the estimation of SSPPR vector 𝝅

1 𝒒← 𝒆𝑠 , Q← 0𝑛×𝑛 ;

2 C =

{
⟨𝑢, 𝑣⟩ ∈ 𝐸 | (1 − 𝛼)𝒒 (𝑢) · A𝑢𝑣

𝑑 (𝑢) − Q𝑢𝑣 ≥ \ (𝑢, 𝑣)
}
;

3 while C is not empty do
4 pick an edge ⟨𝑢, 𝑣⟩ ∈ C;
5 𝑦 ← (1 − 𝛼)𝒒 (𝑢) · A𝑢𝑣

𝑑 (𝑢) − Q𝑢𝑣 ;

6 Q𝑢𝑣 ← Q𝑢𝑣 + 𝑦;
7 𝒒 (𝑣) ← 𝒒 (𝑣) + 𝑦;
8 Update the set C;
9 return �̂� = 𝛼𝒒 as the estimation of 𝝅 ;

expense with the edge residue maintained implicitly according

to Equation (5). For example, in the edge-based push along ⟨𝑢, 𝑣1⟩
as shown in Figure 2, we first calculate R𝑢𝑣1

at current stage by

R𝑢𝑣1
=
(1−𝛼)A𝑢𝑣𝒒 (𝑢)

𝑑 (𝑢) −Q𝑢𝑣1
. Thenwe increase 𝒒(𝑣1) ← 𝒒(𝑣1)+R𝑢𝑣1

and Q𝑢𝑣1
← Q𝑢𝑣1

+ R𝑢𝑣1
. By this means, R𝑢𝑣1

is implicitly set to 0

and for ∀⟨𝑣1,𝑤⟩, R𝑣1𝑤 is increased simultaneously because of the

increment of 𝑞(𝑣1).

4.2 The EdgePush Algorithm
In Algorithm 2, we present the pseudo code of the EdgePush algo-

rithm. More precisely, given a weighted and undirected graph𝐺 =

(𝑉 , 𝐸), a source node 𝑠 , a constant teleport probability 𝛼 ∈ (0, 1)
and the termination threshold \ (𝑢, 𝑣) for ∀⟨𝑢, 𝑣⟩ ∈ 𝐸, EdgePush ini-

tializes the node income vector 𝒒 as 𝒆𝑠 and the edge expense matrix

Q as 0𝑛×𝑛 . During the EdgePush process, the EdgePush algorithm

conceptually maintains a set C for the candidate edges, which is

defined as C =
{
⟨𝑢, 𝑣⟩ ∈ 𝐸 | R𝑢𝑣 ≥ \ (𝑢, 𝑣)

}
. EdgePush repeatedly

picks edges from the candidate set C to perform edge-based push

operations until C = ∅. Specifically, EdgePush repeats the following

process until the termination.

• Pick an arbitrary edge ⟨𝑢, 𝑣⟩ ∈ C and let 𝑦 ← R𝑢𝑣 ;
• Perform an edge-based push operation on ⟨𝑢, 𝑣⟩ by “pushing” the

edge residueR𝑢𝑣 along the edge ⟨𝑢, 𝑣⟩ from𝑢 to 𝑣 ; as a result, both
the node income of 𝑣 and the edge expense of ⟨𝑢, 𝑣⟩ are increased
by an amount of 𝑦, i.e., 𝒒(𝑣) ← 𝒒(𝑣) + 𝑦 and Q𝑢𝑣 ← Q𝑢𝑣 + 𝑦,
where 𝑦 = R𝑢𝑣 =

(1−𝛼)A𝑢𝑣𝒒 (𝑢)
𝑑 (𝑢) − Q𝑢𝑣 .

• Conceptually maintain the set C according to the increases of

𝒒(𝑣) and Q𝑢𝑣 .

When the above process terminates, EdgePush returns �̂� = 𝛼𝒒 as

the estimator of the SSPPR vector 𝝅 .

4.3 Maintaining Candidate Set C
It remains to show how to maintain the candidate set C efficiently

in Algorithm 2. Clearly, the cost of maintaining C explicitly can

be expensive. To see this, consider the moment right after an edge-

based push operation on edge ⟨𝑢, 𝑣⟩ is performed. First, due to the

increment of 𝒒(𝑣), according to Equation (5), the edge residues of

all 𝑣 ’s adjacency edges ⟨𝑣,𝑤⟩ ∈ 𝐸 are increased, and thus, can be

possibly inserted to C. This cost can be as large as Ω(𝑛(𝑣)). Second,
due to the increment of Q𝑢𝑣 , the edge residue R𝑢𝑣 is equivalently
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reduced to 0. As a result, ⟨𝑢, 𝑣⟩ will be removed from C. Therefore,
maintaining C explicitly would lead to a Ω(𝑛(𝑣) + 1) cost, which
is hardly considered as more efficient than a push operation in

LocalPush.

Fortunately, a key observation is that the EdgePush algorithm just

needs to pick an arbitrary edge in C to perform an edge-based push

operation. There is actually no need to maintain C explicitly. Based

on this observation, we propose a two-level structure to efficiently

find “eligible” edges in C to push. As we shall show shortly, this

two-level structure dramatically brings down the aforementioned

Ω(𝑛(𝑣) + 1) cost to 𝑂 (1) amortized.

A Two-Level Structure. Recall that in the EdgePush algorithm,

the candidate set C is defined as C = {⟨𝑢, 𝑣⟩ ∈ 𝐸 | R𝑢𝑣 ≥ \ (𝑢, 𝑣)}.
According to Equation (5) that R𝑢𝑣 = (1 − 𝛼)𝒒(𝑢) · A𝑢𝑣

𝑑 (𝑢) − Q𝑢𝑣 , we

can rewrite the definition of C as:

C =

{
⟨𝑢, 𝑣⟩ ∈ 𝐸 | (1 − 𝛼)𝒒(𝑢)

𝑑 (𝑢) ≥ 1

A𝑢𝑣
· (Q𝑢𝑣 + \ (𝑢, 𝑣))

}
. (7)

We note that in the above inequality, the right side focuses on the

probability mass distributed to node 𝑢’s adjacency edges, at a local

level. The left side of the inequality maintains the probability mass

of each node 𝑢 in the graph, that is, at a global level. Thus, we

propose a two-level structure to update the set C at the local and

global level separately:

• At the local level, for each node 𝑢 ∈ 𝑉 , we maintain a priority

queue of all the neighbors of 𝑢, denoted by Q(𝑢), where the

priority of each neighbor 𝑣 is defined as:

𝑘𝑢 (𝑣) =
1

A𝑢𝑣
· (Q𝑢𝑣 + \ (𝑢, 𝑣)) . (8)

• At the global level, for ∀𝑢 ∈ 𝑉 , we define the key of node 𝑢 as:

𝐾𝑢 = − (1 − 𝛼)𝒒(𝑢)
𝑑 (𝑢) + Q(𝑢) .top, (9)

where Q(𝑢).top is the smallest priority value in Q(𝑢). We main-

tain a linked list L for storing all the nodes 𝑢 such that 𝐾𝑢 ≤ 0.

According to the definition of the two-level structure, we have a

crucial observation given below:

Observation 1. Let 𝑣 be the neighbor of 𝑢 with the smallest

priority in Q(𝑢). Then the edge ⟨𝑢, 𝑣⟩ ∈ C if and only if 𝐾𝑢 ≤ 0.

Proof. Since 𝑣 is the neighbor of 𝑢 with the smallest priority in

Q(𝑢), we have

𝐾𝑢 = − (1 − 𝛼)𝒒(𝑢)
𝑑 (𝑢) + Q(𝑢) .top = − (1 − 𝛼)𝒒(𝑢)

𝑑 (𝑢) + (Q𝑢𝑣 + \ (𝑢, 𝑣))
A𝑢𝑣

.

As a result,𝐾𝑢 ≤ 0 if and only if
(1−𝛼)𝒒 (𝑢)

𝑑 (𝑢) − 1

A𝑢𝑣
· (Q𝑢𝑣 + \ (𝑢, 𝑣)) ≥

0, which is concurs with the definition of C given in Equation (7).

Thus, the observation follows. □

Based on the two-level structure and Observation 1, we can pick

edges from the candidate set C without updating the edge residues

of all adjacency edges.

Conceptually Pick an Edge from C. To pick an edge from C, by Ob-

servation 1, it suffices to first pick an arbitrary node 𝑢 from the

linked list L, and then, take the edge ⟨𝑢, 𝑣⟩ with 𝑣 having the small-

est priority in Q(𝑢). This can be implemented easily by taking a

node from a linked list and by invoking the find-min operation of

the priority queue.

Conceptually Maintain C. Let ⟨𝑢, 𝑣⟩ be the edge picked. After the
edge-based push operation on ⟨𝑢, 𝑣⟩, our EdgePush performs the

following steps: (i) invoke an increase-key operation for 𝑣 in Q(𝑢)
(we discuss how to implement this with allowed priority queue

operations shortly); (ii) check the key 𝐾𝑢 : if 𝐾𝑢 > 0, remove 𝑢 from

the linked list L; and (iii) check the key 𝐾𝑣 : if 𝐾𝑣 ≤ 0, add 𝑣 to L.
Correctness of the two-level structure. The correctness of the
two-level structure for maintaining the candidate set C can be

proved based on two facts. First, we observe that the linked list L
always keeps all the nodes𝑢 with𝐾𝑢 ≤ 0. Second, the edge expense

Q𝑢𝑣 can be increased only and this happens only when a push is

performed on the edge ⟨𝑢, 𝑣⟩. According to Equation (8), if an edge

of 𝑢 is eligible for a push, it will eventually appear at the top of

Q(𝑢), and then be captured by Observation 1.

Cost per edge-based push. Recall that we assume the word RAM

model where each edge weight value A𝑢𝑣 and each priority value

𝑘𝑢 (𝑣) can be represented by 𝑂 (log𝑛) bits. In this model, we can

sort all the edge weights A𝑢𝑣 and all the priorities 𝑘𝑢 (𝑣) in 𝑂 (𝑚)
time with the standard Radix sort [32]. The key idea is to perform

Counting Sort on every log𝑛 bits rather than on every bit, leading

to the number of passes as 𝑂 (1). For the detailed proof on this

complexity, please refer to the technical report [1] due to the space

limit. Furthermore, we have the following fact:

Fact 3 (Theorem 1 in [50]). If all the𝑚 priorities 𝑘𝑢 (𝑣) can be

sorted in 𝑂 (𝑚) time, there exists a priority queue Q with capacity

of𝑚 which supports each: (i) find-min operation in 𝑂 (1) worst-case
time, (ii) delete operation (removing an element from Q) in 𝑂 (1)
amortized time, and (iii) restricted insert operation (inserting an

element with priority > Q .top) in 𝑂 (1) amortized time.

In the above implementation, each edge-based push operation

only involves: one find-min and one increase-key in the priority

queues, and 𝑂 (1) standard operations in the linked list L. As the
increase-key operation can be implemented by a restricted insert

followed by a delete operation in Q(𝑢), the cost of increase-key is
bounded by 𝑂 (1) amortized. Thus, we can derive the following

theorem:

Theorem 1. The cost of each edge-based push operation is bounded

by 𝑂 (1) amortized.

Pre-processing. As the edge weights can be sorted in 𝑂 (𝑚) time

and by Fact 3, we can pre-process the input graph 𝐺 in 𝑂 (𝑚) time,

such that for each node 𝑢 ∈ 𝑉 : (i) all the out-going edges of 𝑢 are

sorted by their weights A𝑢𝑣 , and (ii) the priority queue Q(𝑢) is
constructed. Furthermore, we may also store certain aggregated

information in memory such as ∥A∥1 and
∑
⟨𝑢,𝑣⟩∈𝐸

√
A𝑢𝑣 (which

we shall see shortly in the analyses).

5 THEORETICAL ANALYSIS
In this section, we analyze the theoretical error and time complexity

of EdgePush. Additionally, we provide a novel notion, cos
2 𝜑 , to

characterize the unbalancedness of weighted graphs and to assist

in evaluating the theoretical advantage of EdgePush over LocalPush.

Due to the space limit, we defer all proofs in this section to the

technical report [1].
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5.1 Analysis for the EdgePush Algorithm
Overall Time Complexity. To bound the overall time cost of Edge-

Push, recall that Theorem 1 states each edge push operation takes

amortized constant time. Consequently, it suffices to bound the total

number of edge push operations as the overall time complexity.

Lemma 3 (Time cost of EdgePush). The overall running time of

EdgePush is bounded by 𝑂

(∑
⟨𝑢,𝑣⟩∈𝐸

(1−𝛼)𝝅 (𝑢)A𝑢𝑣

𝛼 ·𝑑 (𝑢) ·\ (𝑢,𝑣)

)
. In particular,

when the source node is randomly chosen according to the degree

distribution, the expected overall running time of EdgePush is bounded

by 𝑂

(∑
⟨𝑢,𝑣⟩∈𝐸

(1−𝛼)A𝑢𝑣

𝛼 · ∥A∥1 ·\ (𝑢,𝑣)

)
.

Error Analysis. Recap the Invariant (6) shown in Section 4. By

using 𝛼𝒒(𝑡) as an approximate PPR value of 𝝅 (𝑡), we have two

straightforward observations: (i) 𝛼𝒒(𝑡) is an underestimate because

all edge residuals are non-negative, and (ii) the additive error 𝝅 (𝑡)−
𝛼𝒒(𝑡) is bounded by

∑
⟨𝑢,𝑣⟩∈𝐸 R𝑢𝑣 · 𝝅𝑣 (𝑡), the edge residuals to be

distributed to 𝑡 . Summing over all possible target node 𝑡 , we have

the following lemma about the bound on the ℓ1-error of EdgePush.

Lemma 4 (ℓ1-error). The EdgePush method shown in Algorithm 2

returns an approximate SSPPR vector within an ℓ1-error
∑
⟨𝑢,𝑣⟩∈𝐸 \ (𝑢, 𝑣).

Moreover, in fact, the proof of Lemma 4 also derives the additive

error bound for EdgePush. We have the following Lemma.

Lemma 5 (Normalized Additive Error). For each node 𝑡 ∈ 𝑉
in the graph, the EdgePush method answers the SSPPR queries within

a normalized additive error
1

𝑑 (𝑡 ) ·
∑
⟨𝑢,𝑣⟩∈𝐸 \ (𝑢, 𝑣) · 𝝅𝑣 (𝑡) for each

node 𝑡 ∈ 𝑉 .

5.2 Settings of the Termination Threshold
As shown in Algorithm 2, our EdgePush admits an individual termi-

nation threshold \ (𝑢, 𝑣) for each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸. As we shall show
in the following, by setting \ (𝑢, 𝑣) carefully, the EdgePush achieves

superior query efficiency over LocalPush.

Before illustrating the setting of \ (𝑢, 𝑣), we first present an im-

portant inequality: Cauchy-Schwarz Inequality [49], which serves

as the basis of the following analysis.

Fact 4 (Cauchy-Schwarz Ineqality [49]). Given two vectors

𝜻 = {𝜻 (1), 𝜻 (2), ..., 𝜻 (𝑚)} ∈ R𝑚 , 𝝌 = {𝝌 (1), 𝝌 (2), ..., 𝝌 (𝑚)} ∈
R𝑚 , the Cauchy-Schwarz Inequality states that:(

𝑚∑︁
𝑖=1

𝜻 (𝑖) · 𝝌 (𝑖)
)

2

≤
(
𝑚∑︁
𝑖=1

𝜻 2 (𝑖)
) (

𝑚∑︁
𝑖=1

𝝌2 (𝑖)
)
, (10)

where the equality holds when
𝜻 (1)
𝝌 (1) =

𝜻 (2)
𝝌 (2) = ... =

𝜻 (𝑚)
𝝌 (𝑚) .

The Choice of 𝜽 (𝒖, 𝒗). We first present the optimal choice of

\ (𝑢, 𝑣) for EdgePushwith ℓ1-error Y. Let us recap two results. Firstly,
Lemma 4 shows that the ℓ1-error is bounded by

∑
⟨𝑢,𝑣⟩∈𝐸 \ (𝑢, 𝑣).

On the other hand, by Lemma 3, when the source node is chosen

according to the degree distribution, the overall expected running

time is bounded by 𝑂

(∑
⟨𝑢,𝑣⟩∈𝐸

(1−𝛼)A𝑢𝑣

𝛼 · ∥A∥1 ·\ (𝑢,𝑣)

)
. Clearly, there is a

trade-off between the error and the running time cost via the values

of \ (𝑢, 𝑣) for all ⟨𝑢, 𝑣⟩ ∈ 𝐸. As a result, it suffices to aim at a setting

of all \ (𝑢, 𝑣)’s such that: (i) the overall ℓ1-error
∑
⟨𝑢,𝑣⟩∈𝐸 \ (𝑢, 𝑣)=Y,

and (ii) the quantity 𝐶𝑜𝑠𝑡 ≜
∑
⟨𝑢,𝑣⟩∈𝐸

(1−𝛼)A𝑢𝑣

𝛼 ∥A∥1 ·\ (𝑢,𝑣) is minimized.

Consequently, we prove the following theorem:

Theorem 2. By setting \ (𝑢, 𝑣) = Y ·
√
A𝑢𝑣∑

⟨𝑥,𝑦⟩∈𝐸
√
A𝑥𝑦

for each ⟨𝑢, 𝑣⟩ ∈

𝐸, the EdgePush algorithm returns an approximate SSPPR vector

within ℓ1-error at most Y. In particular, when the source node is ran-

domly chosen according to the degree distribution, the expected overall

running time is bounded by 𝑂

(
(1−𝛼)
𝛼Y ∥A∥1 ·

(∑
⟨𝑢,𝑣⟩∈𝐸

√
A𝑢𝑣

)
2

)
.

Likewise, we can derive the optimal choice of\ (𝑢, 𝑣) for EdgePush
with normalized additive error 𝑟max, illustrated in Theorem 3.

Theorem 3. By setting \ (𝑢, 𝑣) = 𝑟max ·𝑑 (𝑣)
√
A𝑢𝑣∑

𝑥∈𝑁 (𝑣)
√
A𝑥𝑣

for each ⟨𝑢, 𝑣⟩ ∈
𝐸, the EdgePush algorithm returns an approximate SSPPR vector

within normalized additive error at most 𝑟𝑚𝑎𝑥 . When the source node

is randomly chosen according to the degree distribution, the expected

overall running time is bounded by𝑂
©« (1−𝛼)
𝛼𝑟max ∥A∥1 ·

∑
𝑣∈𝑉

(∑
𝑥∈𝑁 (𝑣)

√
A𝑥𝑣

)
2

𝑑 (𝑣)
ª®¬.

5.3 Comparison to the LocalPush Algorithm
Next, we show the superiority of EdgePush over LocalPush. To facil-

itate our analysis, we first define the following four characteristic

vectors of a given undirected weighted graph:

Definition 3 (characteristic vectors on weighted graphs).

Consider an undirected weighted graph 𝐺 = (𝑉 , 𝐸) with 𝑛 nodes,𝑚

edges and 𝐸 being the set of the bi-directional edges of every edge in

𝐸; clearly, |𝐸 | = 2|𝐸 | = 2𝑚. Denote the (weighted) adjacency matrix

by A. We define four characteristic vectors 𝜻 , 𝝌 , 𝜻𝑣 and 𝝌𝑣 of 𝐺 as

follows:

• 𝜻 ∈ R2𝑚
: the vector whose the 𝑖th entry 𝜻 (𝑖) =

√
A𝑢𝑣 corresponds

to the 𝑖th edge ⟨𝑢, 𝑣⟩ ∈ 𝐸;
• 𝝌 ∈ R2𝑚

: an all-one vector in the 2𝑚-dimensional space;

• 𝜻𝑣 ∈ R𝑛𝑣
for each node 𝑣 ∈ 𝑉 : the vector whose the 𝑗 th entry

𝜻𝑣 ( 𝑗) =
√
A𝑢𝑣 corresponds to the 𝑗

th
neighbor node 𝑢 in 𝑁𝑣 ;

• 𝝌𝑣 ∈ R𝑛𝑣
for each node 𝑣 ∈ 𝑉 : an all-one vector in the 𝑛𝑣-

dimensional space.

Then the improvement of EdgePush over LocalPush can be quan-

tified by the the above characteristic vectors.

Lemma 6 (Superiority of EdgePush with ℓ1-error). For the

approximate SSPPR queries with ℓ1-error Y, we have

(1 − 𝛼)
𝛼Y∥A∥1

· ©«
∑︁
⟨𝑢,𝑣⟩∈𝐸

√︁
A𝑢𝑣

ª®¬
2

=

(
(1 − 𝛼) cos

2 𝜑

)
· 2𝑚

𝛼Y
, (11)

where 𝜑 is the angle between the characteristic vectors 𝜻 and 𝝌 .

We note that the left hand side of Equation (11) is the over-

all expected running time of EdgePush and
2𝑚
𝛼Y is that of Local-

Push, both expressed by ignoring the Big-Oh notation. To see

the correctness of Lemma 6, observe that 2𝑚 · ∥A∥1 · cos
2 𝜑 =(∑

⟨𝑢,𝑣⟩∈𝐸 1

)
·
(∑
⟨𝑢,𝑣⟩∈𝐸 A𝑢𝑣

)
· cos

2 𝜑 = ∥𝝌 ∥2 · ∥𝜻 ∥2 · cos
2 𝜑 =

⟨𝝌 , 𝜻 ⟩2 =

(∑
⟨𝑢,𝑣⟩∈𝐸

√
A𝑢𝑣

)
2

. A more detailed proof can be found

in the Technical Report [1].

Likewise, the superiority of EdgePush for the SSPPR queries with

normalized additive error can be quantified as follows.
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Table 2: Real-World Datasets.

Dataset 𝒏 𝒎
Edge weight

cos2𝝋mean max
YouTube (YT) 1,138,499 2,795,228 6.6 4,034 0.65

LiveJournal (LJ) 4,847,571 71,062,058 24 4,445 0.51

IndoChina (IC) 7,414,768 295,191,370 1,221 178,448 0.31

Orkut-Links (OL) 3,072,441 202,392,682 18 9,145 0.69

Tags (TA) 49,945 8,294,604 13 469,258 0.27

Threads (TH) 2,321,767 42,012,344 1.1 546 0.97

blockchair (BC) 595,753 1,773,544 5.2 17,165 0.5

Spotify (SP) 3,604,308 3,854,964,026 8.6 2,878,970 0.29

Lemma 7 (Superiority of EdgePush with normalized ad-

ditive error). For the approximate SSPPR queries with specified

normalized additive error 𝑟max, the expected overall running time

of EdgePush is at most a portion
(1−𝛼)

2𝑚 ·
(∑

𝑣∈𝑉 𝑛𝑣 · cos
2 𝜑𝑣

)
of the

LocalPush’s running time cost, where 𝜑𝑣 is the angle between vectors

𝜻𝑣 and 𝝌𝑣 . Specifically, we have

(1−𝛼)
𝛼𝑟max∥A∥1

·
∑︁
𝑣∈𝑉

( ∑
𝑥 ∈𝑁 (𝑣)

√
A𝑥𝑣

)
2

𝑑 (𝑣) =

(1−𝛼) ·
( ∑
𝑣∈𝑉
𝑛(𝑣) ·cos

2𝜑𝑣

)
2𝑚

· 2𝑚

𝛼𝑟max∥A∥1
.

Superiority of EdgePush over LocalPush. Based on Lemma 6

and Lemma 7, we can derive several interesting observations:

• First, cos
2 𝜑 ≤ 1 holds for all values of 𝜑 (also applies for ∀𝜑𝑣 ).

This implies that the overall expected running time bound of

EdgePush is never worse than that of LocalPush, regardless of the

SSPPR queries with either ℓ1-error or normalized additive error.

• Second, when cos
2 𝜑 = Θ(1/𝑛) (resp., cos

2 𝜑𝑣 = Θ(1/𝑛) for ∀𝑣),
EdgePush outperforms LocalPush in terms of efficiency by a Θ(𝑛)
factor for answering SSPPR queries with ℓ1-error (resp., normal-

ized additive error). This case could happen (but not necessarily)

when all the nodes in a complete graph 𝐺 are (𝑎, 𝑏)-unbalanced
with 𝑎 = 1/𝑛 and 𝑏 = 1 − 1/𝑛. As an example, one can consider

the case that each node in𝐺 shares the same structure as node 𝑢

shown in Figure 1.

• Third, when cos
2 𝜑 = 𝑜 (1), e.g. cos

2 𝜑 = 1/log𝑚, EdgePush can

achieve a sub-linear expected time complexity 𝑜 ( 𝑚𝛼Y ) for solving
the approximate SSPPR problem with specified ℓ1-error Y. This is

impressive because EdgePush can answer the SSPPR query even

without “touching” all the edges of 𝐺 . It can be verified that the

aforementioned complete graph example satisfies this condition

with cos
2 𝜑 = 1/𝑛.

Intuitively, both the notions of cos
2 𝜑 (resp., cos

2 𝜑𝑣) and the (𝑎, 𝑏)-
unbalanced (mentioned in Introduction) capture the unbalance of

the undirected weighted graph 𝐺 . However, we note that the for-

mer is actually more general than the latter. For more detailed

discussions, please refer to our technical report [1].

6 EXPERIMENTS
In this section, we conduct experiments to show the effectiveness

of EdgePush on large real-world datasets. Additionally, we evalu-

ate the sensitivity of EdgePush to the unbalancedness of weighted

graphs. Due to the space limit, we defer the sensitivity studies to

the technical report [1]

Experiment Environment. We conduct all the experiments on a

machine with an Intel(R) Xeon(R) Gold 6126@2.60GHz CPU and

500GB memory in Linux OS. All the methods are implemented in

C++ compiled by g++ with O3 turned on.

Datasets. In the experiments, we use eight real-world datasets:

Youtube [61], LiveJournal [35], IndoChina [15, 16], Orkut-Links [61],

Tags [13], Threads [13], BlockChair [2] and Spotify [33]. All the

datasets are available at [3–6]. The first four datasets (i.e. YT, LJ, IC

and OL) are unweighted and undirected graphs. Following [65],we

convert the four unweighted graphs tomotif-basedweighted graphs

by counting the number of motifs. More precisely, we first calculate

the motif number 𝜙 (𝑒) of each edge 𝑒 ∈ 𝐸, which is defined as the

number of motifs that 𝑒 participates in. Then we set the weight

of 𝑒 as 𝜙 (𝑒) to obtain a weighted graph. Note that 𝜙 (𝑒) might

be 0 if 𝑒 doesn’t participate in any motif. In the experiments, we

set the type of motif as “clique3” defined in [7]. The other four

datasets (i.e. TA, TH, BC and SP) are real-world weighted graphs.

Specifically, Tags (TA) and Threads (TH) are two question-and-

answer (Q&A) datasets. BlockChair (BC) is a bitcoin transaction

dataset, and Spotify (SP) is a music streaming dataset. We defer

the detailed descriptions of the four real weighted datasets to the

technical report [1] due to the space limit.

In Table 2, we list the meta data of all these datasets. We also

report the average and maximum edge weight and the value of

cos
2 𝜑 to quantify the unbalancedness of graphs. Recall that the

cos
2 𝜑 notation is defined in Lemma 6. The smaller the cos

2 𝜑 is,

the more unbalanced the graph is.

Ground Truths and Query Sets. In the experiments, we employ

Power Method [46] to compute the ground truth results. More

precisely, we compute Equation (4) for 100 iterations and regard the

returned results as ground truths for comparison. For each dataset,

we randomly generate 10 source nodes for SSPPR queries according

to the degree distribution. We issue one SSPPR query from each

query node and report the average performances over the 10 query

nodes for each method and each set of parameters.

6.1 SSPPR with Normalized Additive Error
In this subsection, we evaluate the effectiveness of EdgePush with

normalized additive error. Furthermore, we apply EdgePush to the

local clustering application to achieve better efficiency.

Evaluation Metrics.We adopt three metrics for evaluation.

• normalized MaxAddErr: In the experiments, we calculate the

maximum of the normalized additive error for each node to eval-

uate the approximation quality of the SSPPR queries. More pre-

cisely, we define normalizedMaxAddErr asmax𝑢∈𝑉
���𝝅 (𝑢)
𝑑 (𝑢) −

�̂� (𝑢)
𝑑 (𝑢)

���,
where 𝝅 (𝑢) and �̂� (𝑢) denote the ground-truth and estimated

PPR value of 𝑢 (w.r.t the source node 𝑠 by default), respectively.

• normalized precision@k: We use normalized precision@k to eval-

uate the performances for identifying top-𝑘 results. Specifically,

for an SSPPR vector 𝝅 , we define 𝑉𝑘
(
D−1𝝅

)
(resp. 𝑉𝑘

(
D−1�̂�

)
)

as the set of the top-𝑘 nodes 𝑢 with the largest
𝝅 (𝑢)
𝑑 (𝑢) (resp.

�̂� (𝑢)
𝑑 (𝑢) )

among all nodes in the graph. The normalized precision@𝑘 is

defined as the fraction of nodes in 𝑉𝑘
(
D−1𝝅

)
that concurs with

𝑉𝑘
(
D−1�̂�

)
. We set 𝑘 = 50 in the experiments.

• Conductance: We employ conductance to measure the quality of

the clusters, which is defined in Section 2.

Methods. For the SSPPR queries with normalized additive er-

ror, we compare our EdgePush (dubbed as EdgePush-Add) against
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Figure 4: normalized MaxAddErr v.s. query time on motif-based weighted graphs.
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Figure 5: normalized precision@50 v.s. query time on motif-based weighted graphs.
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Figure 6: conductance v.s. query time on motif-based weighted graphs.

four competitor methods: (i) MAPPR [65]: a version of the Local-

Push algorithm on weighted graphs; (ii) Monte-Carlo sampling [21,

29]; (iii) FORA [54]: an approximate SSPPR algorithm which com-

bines the strength of LocalPush and Monte-Carlo smapling; (iv)

SpeedPPR [56]: an approximate SSPPR algorithm which combines

PowForPush (an optimized version of Power Method) and Monte-

Carlo sampling.

According to Algorithm 1, LocalPush only has one parameter:

the termination threshold \ . We vary \ in [10
−3, 10

−9] on both

motif-based and real-world weighted graphs. For Monte-Carlo

sampling, FORA and SpeedPPR, they all have three parameters:

the relative error threshold 𝛿 , the relative error Y𝑟 and the failure

probability 𝑝 𝑓 . Following [54, 56], we fix Y𝑟 = 0.5 and 𝑝 𝑓 = 1

𝑛 ,

where 𝑛 is the number of node in the graph. For Monte-Carlo

sampling and FORA, we vary 𝛿 in [10
−1, 10

−5]. For SpeedPPR, we
vary 𝛿 in [5 × 10

−1, 5 × 10
−5] on motif-based weighted graphs,

and in [10
−1, 10

−5] on real weighted graphs. For our EdgePush,

as shown in Algorithm 2, each edge ⟨𝑢, 𝑣⟩ ∈ 𝐸 has an individ-

ual termination threshold \ (𝑢, 𝑣). According to Theorem 3, we set

\ (𝑢, 𝑣) = 𝑟max ·
√
A𝑢𝑣∑

⟨𝑥,𝑦⟩∈𝐸
√
A𝑥𝑦

for normalized additive error 𝑟max and vary

𝑟max from 10
−3

to 10
−9
. All of the decay step is 0.1. Additionally,

we set the teleport probability 𝛼 to 0.2 in all the experiments.

Results. In Figure 4 and Figure 7, we draw the trade-off plots

between the query time and the normalized maximum additive

error (denoted as normalized MaxAddErr) on motif-based weighted

graphs and real weighted graphs, respectively. Due to the out-of-

memory problem, we omit the experimental results of FORA on

SP. We observe that under the same normalized MaxAddErr, Edge-

Push costs the smallest query time among all these methods on all

datasets. In particular, even on Threads (TH) whose cos
2 (𝜑) = 0.97,

EdgePush still outperforms all baselines in terms of query efficiency,

which demonstrates the effectiveness of EdgePush. Moreover, in

Figure 5 and Figure 8, we show the trade-offs between normalized

precision@50 and query time. For the eight datasets, an overall

observation is that EdgePush outperforms all competitors by achiev-

ing higher precision results with less query time. Most notably,

on the Orkut-Links (OL) dataset, EdgePush achieves a normalized

precision@50 of 0.8 using a query time of 0.0002 seconds, while the

closest competitor, MAPPR, achieves a normalized precision@50 of

0.6 using 0.026 seconds. Additionally, in Figure 8, we observe that

compared to the performance of EdgePush on TH, the superiority

of EdgePush over LocalPush are more clear on TA, BC and SP. This

concurs with the analysis that the superiority of EdgePush changes

with the unbalancedness of edge weights.

Furthermore, Figure 6 and Figure 9 show the trade-offs between

conductance and the query time on motif-based and real weighted

graphs. Again, our EdgePush outperforms other competitors by

achieving smaller conductance values under the same query time.

Additionally, we note that FORA and SpeedPPR gradually outper-

forms MAPPR in terms of the query efficiency for conductance.

However, in the trade-off plots between query time and normalized

MaxAddErr or normalized precision@50, MAPPR costs less query

1385



10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

query time(s) -TA

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

n
o
rm

a
liz

e
d
 M

a
x
A

d
d
E

rr
 -

T
A

EdgePush-Add
SpeedPPR
MAPPR
FORA
MC

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

query time(s) -TH

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

n
o
rm

a
liz

e
d
 M

a
x
A

d
d
E

rr
 -

T
H

EdgePush-Add
SpeedPPR
MAPPR
FORA
MC

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

query time(s) -BC

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

n
o
rm

a
liz

e
d
 M

a
x
A

d
d
E

rr
 -

B
C

EdgePush-Add
SpeedPPR
MAPPR
FORA
MC

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

query time(s) -SP

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

n
o
rm

a
liz

e
d
 M

a
x
A

d
d
E

rr
 -

S
P

EdgePush-Add
SpeedPPR
MAPPR
MC

Figure 7: normalized MaxAddErr v.s. query time on real weighted graphs.
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Figure 8: normalized precision@50 v.s. query time on real weighted graphs.
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Figure 9: conductance v.s. query time on real weighted graphs.

time compared to FORA or SpeedPPR under the same normal-

ized MaxAddErr or normalized precision@50. Recall that FORA and

SpeedPPR all combines LocalPush with the Monte-Carlo sampling

process. This suggests that the Monte-Carlo sampling method is in

favor of the conductance criterion, while the LocalPush process ben-

efits from the normalized MaxAddErr and normalized precision@50.

6.2 SSPPR with ℓ1-Error
Next, we demonstrate the effectiveness of EdgePush with ℓ1-error.

Evaluation Metrics. To compare the query efficiency of EdgePush

against other competitors, we adopt three metrics, actual ℓ1-error,

MaxAddErr and precision@50, for overall evaluation.

• actual ℓ1-error: As a classic evaluation metric, actual ℓ1-error is

defined as: ∥�̂� − 𝝅 ∥1 =
∑
𝑢∈𝑉 |�̂�𝑢 − 𝝅𝑢 |, where 𝝅 and �̂� is the

ground-truth and estimated SSPPR vectors, respectively.

• MaxAddErr: To evaluate the maximum additive error of each

SSPPR approximation,MaxAddErr is defined asmax𝑢∈𝑉 |𝝅𝑢 − �̂�𝑢 |.
• precision@50: To evaluate the relative order of the estimated top-

𝑘 nodes with the highest SSPPR values, precision@50 is defined

as the percentage of the nodes in 𝑉𝑘 (�̂�) that coincides with the

actual top-𝑘 results 𝑉𝑘 (𝝅). Here 𝑉𝑘 (𝝅) and 𝑉𝑘 (�̂�) denote the
top-𝑘 node sets for the ground-truth and estimated SSPPR values,

respectively. Similarly, we set 𝑘 = 50 in the experiments.

Methods. In this section, we compare the performance of EdgePush

with ℓ1-error against two algorithms: Power Method [46] and Pow-

ForPush [56]. Recall that Power Method computes SSPPR queries

by iteratively computing Equation (4). Thus, we vary the number

of iterations from 3 to 15 with an interval of 2. PowForPush is the

state-of-the-art algorithm for high-precision SSPPR queries, which

gradually switches LocalPush to Power Method with decreasing

ℓ1-error. Specifically, in the first phase, PowForPush adopts Local-

Push to compute the SSPPR queries. When the current number

of active nodes is greater than a specified scanThreshold, PowFor-

Push switches to Power Method by performing a sequential scan

technique to access active nodes for the push operation. A node

is called active if its residue is larger than the global termination

threshold \ . The rationale behind this switching mechanism is that

sequential scan is often more efficient if the number of random

access is relatively large. In our experiments, we vary \ from 10
−3

to 10
−12

with 0.1 decay step. Inspired by PowForPush, we apply

the same switching technique to our EdgePush for the fairness of

comparison. Specifically, when the number of edges in the can-

didate set C is significantly great, we switch EdgePush to Power

Method by performing sequential scanning to access active edges

and stop maintaining the two-level structure for each node. An

edge ⟨𝑢, 𝑣⟩ ∈ 𝐸 is active if its edge residue is larger than the ter-

mination threshold \ (𝑢, 𝑣). According to Theorem 3, by setting

\ (𝑢, 𝑣) = Y ·
√
A𝑢𝑣∑

⟨𝑥,𝑦⟩∈𝐸
√
A𝑥𝑦

for ∀⟨𝑢, 𝑣⟩ ∈ 𝐸, EdgePush achieves the mini-

mum of the expected overall running time subjected to the ℓ1-error

constraint. To align with the global termination threshold \ adopted

in PowForPush, we vary \ (𝑢, 𝑣) for ∀⟨𝑢, 𝑣⟩ ∈ 𝐸 from
10
−3 · ∥A∥1 ·

√
A𝑢𝑣∑

⟨𝑥,𝑦⟩∈𝐸
√
A𝑥𝑦

to
10
−11 · ∥A∥1 ·

√
A𝑢𝑣∑

⟨𝑥,𝑦⟩∈𝐸
√
A𝑥𝑦

with 0.1 decay step. To understand the variation
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Figure 10: ℓ1-error v.s. query time on motif-based weighted graphs.
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Figure 11: MaxAddErr v.s. query time on motif-based weighted graphs.
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Figure 12: precision@50 v.s. query time on motif-based weighted graphs.

interval of \ (𝑢, 𝑣), note that on unweighted graphs where A𝑢𝑣 = 1,

\ (𝑢, 𝑣) is varied in [10
−3, 10

−12], which concurs with the variation

of termination threshold \ in PowForPush.

Results. In Figure 10, we plot the trade-offs between query time

and actual ℓ1-error on motif-based weighted graphs. We observe

that under relatively large ℓ1-error, EdgePush costs the smallest

query time on all datasets. Additionally, we observe that the plot

curves of the three methods gradually overlap with the decreasing

of ℓ1-error. This is because with strict ℓ1-error constraints, Edge-

Push has to touch most of edges in the graph, which have actually

become PowForPush. On the other hand, recall that the ℓ1-error

is defined as the sum of additive error over all nodes in the graph

(i.e.

∑
𝑢∈𝑉 |�̂� (𝑢) − 𝝅 (𝑢) |). Hence, even with some relatively large

ℓ1-error, the (normalized) additive error can be small enough for

real applications (e.g., local clustering [10]) Due to the space limit,

we defer the experimental results of EdgePush with ℓ1-error on

real-world weighted graphs to our technical report [1].

7 CONCLUSION
In this paper, we propose a novel edge-based local push method

EdgePush for approximating the SSPPR vector on weighted graphs.

EdgePush decomposes the push operation in LocalPush into separate

edge-based push operations, each of which can be performed in𝑂 (1)
amortized time. We show that when the source node is randomly

chosen according to the node degree distribution, the expected

running time complexity of EdgePush is never worse than that of

LocalPush within certain ℓ1-error and normalized additive error.

In particular, when the graph is dense and the edge weights are

unbalanced, EdgePush can achieve a time complexity sub-linear to𝑚,

and can outperform LocalPush by up to a𝑂 (𝑛) factor, where𝑛 and𝑚
are the numbers of nodes and edges in the graph. Our experimental

results show that when achieving the same approximation error,

EdgePush outperforms LocalPush on large-scale real-world datasets

by orders of magnitude in terms of efficiency.
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