
NLC: Search Correlated Window Pairs on Long Time Series
Shuye Pan

Fudan University

pansy20@fudan.edu.cn

Peng Wang

Fudan University

pengwang5@fudan.edu.cn

Chen Wang

Tsinghua University

wang_chen@tsinghua.edu.cn

Wei Wang

Fudan University

weiwang1@fudan.edu.cn

Jianmin Wang

Tsinghua University

jimwang@tsinghua.edu.cn

ABSTRACT
Nowadays, many applications, like Internet of Things and Indus-

trial Internet, collect data points from sensors continuously to form

long time series. Finding correlation between time series is a fun-

damental task for many time series mining problems. However,

most existing works in this area are either limited in the type of

detected relations, like only the linear correlations, or not handling

the complex temporal relations, like not considering the unaligned

windows or variable window lengths. In this paper, we propose an

efficient approach, Non-Linear Correlation search (NLC), to search

the correlated window pairs on two long time series. Firstly, we

propose two strategies, window shrinking and window extending,

to quickly find the high-quality candidates of correlated window

pairs. Then, we refine the candidates by a nested one-dimensional

search approach. We conduct a systematic empirical study to verify

the efficiency and effectiveness of our approach over both synthetic

and real-world datasets.

PVLDB Reference Format:
Shuye Pan, Peng Wang, Chen Wang, Wei Wang, and Jianmin Wang. NLC:

Search Correlated Window Pairs on Long Time Series. PVLDB, 15(7): 1363 -

1375, 2022.

doi:10.14778/3523210.3523215

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/zhxjz/NLC.

1 INTRODUCTION
Due to the increase of data collection frequency of sensors and

the rapid progress in distributed storage systems, many up-to-date

applications produce a large number of long time series [13]. For

example, a sensor with frequency 1Hz can generate a time series

longer than thirty million data points in one year (3600 ∗ 24 ∗ 365 =
3.15 ∗ 107).

When analyzing time series data, an essential task is to assess

the correlation between time series. For example, correlation can

be used as an intuitive and handy similarity measure in searching,

categorizing, classifying and clustering time series [4]. However,

when analyzing long time series, measuring correlations between

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 7 ISSN 2150-8097.

doi:10.14778/3523210.3523215

time series becomes subtle. The well-known and popularly used

global measures, such as Pearson coefficient, are not effective, since

the chance that two time series are consistently correlated over a

long period is very small and unrealistic. More often than not, two

time series may be correlated on some intervals of time, but not

the whole time period [16, 18].

0 500 1000 1500 2000 2500 3000 3500

-3

0

3

Comp.

Temp.

Abnormal 1 Abnormal 2

500 600 700 800

-3

0

3

1400 1500 1600 1700

-3

0

3

Abnormal 3

2500 2650 2800 2950

-3

0

3

Figure 1: Example of TE benchmark

There also exist some works of local correlation mining, whose

goal is to find the subsequence on which two time series are cor-

related. Jocor [18] mines the correlated subsequence pair from

two time series which satisfies 1) the subsequence length exceeds

a threshold, 2) the correlation coefficient is maximized. DCI [16]

queries the longest correlated subsequence on an aligned time series

set given a query. Matrix Profile [27] aims to efficiently compute

the correlation between all possible fixed-length subsequence pairs

of two time series. Wang et al. [25] propose an approach to mine

local linear relationships on gapped subsequences.

All these works aim to mine local linear correlations from the

long time series pair. However, in many applications, the time series

have strong non-linear relationships due to the complex physical

or chemical mechanism [7, 26]. Below are two typical examples.

• In the industrial domain, Prognostics and Health Manage-

ment (PHM) is a crucial technology used to maintain the

reliability of engineering equipment and systems. In PHM

applications, a fundamental task is to find the correlations be-

tween monitored signals. The signals are often non-linearly

correlated due to reasons like kinetic relationships, external

disturbances, feedback control, etc [17, 26].

• In the medical and biology domain, multi-dimensional time

series classification is used widely [7]. To improve the accu-

racy, researchers utilize some non-linear measurements, like

Granger causality and mutual information, to measure the

relevance of variable time series to reduce the redundancy.

1363

https://doi.org/10.14778/3523210.3523215
https://github.com/zhxjz/NLC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3523210.3523215
https://www.acm.org/publications/policies/artifact-review-and-badging-current

We illustrate it with a concrete example. Tennessee Eastman

(TE) process benchmark [6] is a popular realistic simulation model

of an industrial chemical process. Consider a pair of time series,

one is the temperature and the other is the component, which are

collected during variable working conditions, as shown in Figure 1.

The Pearson correlation between the whole time series is 0.02.

However, when the system is working during conditions “abnormal

1”, “abnormal 2” and “abnormal 3”, these two time series have certain

non-linear correlations. The corresponding Pearson coefficients are

-0.13, 0.05 and -0.03 respectively. Moreover, we cannot recognize

them with DTW distance either, because the component fluctuates

more frequently while the temperature fluctuates smoothly. It is

interesting that in all three correlations, the mutual information

between these two time series exceeds 0.8, which means that they

are non-linearly correlated during these three periods.

In this paper, our goal is to search correlated time window pairs

from two long time series. We utilize the mutual information as the

correlation measurement due to its popularity. Mutual information

(MI for short) is a measure of the mutual dependence between

two random variables in information theory. It is widely used in

variable domains to discover various types of correlation relations,

including linear and non-linear, monotonic and non-monotonic,

functional and non-functional [9].

Although mutual information is already utilized in many appli-

cations, there exist few works to study how to efficiently search the

window pairs with high mutual information values. It is a challeng-

ing problem due to the following reasons. First, computing MI is

much more costly than the traditional measurement, like Pearson

correlation. Because it needs to estimate the density function of

each point. Second, the correlation may occur in variable-length

windows with variable time delay, which increases the search space

greatly. Third, it is not monotonic, which hinders us from using the

traditional pruning strategy.

Recently, Ho et al. propose TYCOS to solve the time delay cor-

relation search problem [9, 10]. It first generates a set of window

pair candidates and then uses the Hill Climbing based approach to

find the final correlated pairs. However, TYCOS suffers from two

drawbacks. First, during the candidate generation phase, it only

searches the aligned correlated window pairs. Therefore, it works

poorly to find the window pairs with a large time delay. Second, the

hill climbing approach makes it prone to find local optimal results,

instead of the true ones.
To solve this problem, in this paper, we propose a two-phase ap-

proach, Non-Linear Correlation search (NLC for short). In the first

phase, we generate a set of correlated window pair candidates. Two

strategies, window shrinking and window extending, are proposed.

The window shrinking strategy is more efficient which works for

the sparsely distributed correlations. It can quickly prune the un-

qualified intervals. In contrast, the window extending strategy is

slightly slower, but it can find more pairs when the correlation win-

dows are distributed more densely. In the second phase, we treat

the candidate refinement as an optimization problem and solve it

with a nested one-dimension search strategy.

In summary, the contributions of this paper are as follow:

• We carefully analyze three factors influencing the efficiency

of the mutual information search, and present the motivation

for our approach.

• We propose a two-phase approach, NLC. In the first phase,

two strategies are proposed to generate the candidate set.

Then in the second phase, we present a nested one-dimension

search algorithm to refine the candidates.

• We conduct extensive experiments to verify the effectiveness

and efficiency of the proposed approach on two synthetic

datasets and three real-world datasets.

The rest of the paper is organized as follows. In Section 2, we

present the problem statement and analyze the challenges. In Sec-

tion 3, we motivate our approach with illustrative examples and

overview our algorithm. In Section 4 and Section 5, we introduce

the two phases of our approach in detail. The experimental results

are presented in Section 6 and related works are discussed in Section

7. The paper is concluded in Section 8.

2 PRELIMINARY
Definition 1 (Time series). A time series 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑛}

is a sequence of data arranged in chronological order, where 𝑛 = |𝑋 |
is the length of 𝑋 .

Definition 2 (Time window). A time window𝑊 = (𝑠, 𝑙) is a
continuous subsection of the entire time period (1 ≤ 𝑠 ≤ 𝑛 − 𝑙 + 1).
The projection of series 𝑋 on window𝑊 , denoted as 𝑋𝑊 ,or 𝑋 (𝑠, 𝑙), is
a subsequence with the starting point 𝑠 and the length 𝑙 , i.e., 𝑋𝑤 =

{𝑥𝑠 , ..., 𝑥𝑠+𝑙−1}.

Later in the paper,𝑊 and 𝑋𝑊 are both used to represent the

time window interchangeably.

Definition 3 (Pair of Time series). A pair of time series (𝑋,𝑌)
= ({𝑥1, 𝑥2, · · · , 𝑥𝑛}, {𝑦1, 𝑦2, · · · , 𝑦𝑛}) consists of data collected from
two time series 𝑋 and 𝑌 during the same observation period, and the
length of the time series pair is 𝑛 = | (𝑋,𝑌) |.

Definition 4 (Pair of time windows). If two time windows,
𝑋 (𝑠, 𝑙) and 𝑌 (𝑠 ′, 𝑙), are equal in length, we can form a pair of time
windows (𝑋 (𝑠, 𝑙), 𝑌 (𝑠 ′, 𝑙)). The starting points 𝑠 and 𝑠 ′ may be dif-
ferent, and the time delay is defined as 𝜏 = 𝑠 ′ − 𝑠 . More conveniently,
the time window pair can also be represented as a triplet < 𝑠, 𝑙, 𝜏 >

by using the starting point 𝑠 of 𝑋 , the length 𝑙 , and the time delay 𝜏 .

Definition 5 (Mutual information of a time window pair).

Mutual information (𝑀𝐼) is a measure of the mutual dependence be-
tween two random variables in information theory. Given two discrete
random variables 𝑋 and 𝑌 ,𝑀𝐼 is calculated as follows:

𝐼 (𝑋 ;𝑌) =
∑
𝑥 ∈𝑋

∑
𝑦∈𝑌

𝑝 (𝑥,𝑦)𝑙𝑜𝑔 𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) (1)

where 𝑝 (𝑥) and 𝑝 (𝑦) are the marginal probability mass functions of𝑋
and 𝑌 respectively, and 𝑝 (𝑥,𝑦) is the joint probability mass function.
The larger the𝑀𝐼 value is, the more correlated the two variables are.
𝐼 (𝑋 ;𝑌) is zero if and only if 𝑋 and 𝑌 are independent.

Definition 6 (Correlated time window pair). For a time
window pair,𝑋 (𝑠, 𝑙) and 𝑌 (𝑠 ′, 𝑙), if 𝐼 (𝑋 (𝑠, 𝑙), 𝑌 (𝑠 ′, 𝑙)) ≥ 𝜃 , where 𝜃 is
the threshold, we say𝑋 (𝑠, 𝑙) and𝑌 (𝑠 ′, 𝑙) are a correlated time window
pair. It can also be called as correlated pair and denoted by the triplet
𝐶𝑃 =< 𝑠, 𝑙, 𝜏 >, where 𝜏 = 𝑠 ′ − 𝑠 is the time delay. Two correlated
pairs 𝐶𝑃𝑖 =< 𝑠𝑖 , 𝑙𝑖 , 𝜏𝑖 > and 𝐶𝑃 𝑗 =< 𝑠 𝑗 , 𝑙 𝑗 , 𝜏 𝑗 > (assuming 𝑠𝑖 < 𝑠 𝑗)

1364

are disjoint, if it holds that 𝑠𝑖 + 𝑙𝑖 ≤ 𝑠 𝑗 and 𝑠𝑖 + 𝜏𝑖 + 𝑙𝑖 ≤ 𝑠 𝑗 + 𝜏 𝑗 .
Otherwise, the two pairs are overlapping.

Definition 7 (Directly reachable time window pair). We
call two correlated pairs 𝐶𝑃𝑖 and 𝐶𝑃 𝑗 are directly reachable, if there
exists a correlated pair𝐶𝑃𝑘 satisfying: 1)𝐶𝑃𝑖 and𝐶𝑃𝑘 are overlapping;
2) 𝐶𝑃 𝑗 and 𝐶𝑃𝑘 are overlapping. As a special case, two overlapping
pairs are directly reachable.

Definition 8 (Significant time window pair). Correlated pair
𝐶𝑃𝑖 is significant if it holds that 𝐼 (𝐶𝑃𝑖) ≥ 𝐼 (𝐶𝑃 𝑗) for any correlated
pair 𝐶𝑃 𝑗 direct reachable with 𝐶𝑃𝑖 .

Since in real applications, the correlationwill last for a reasonable

time period, we constrain the window length neither too long nor

too short. Moreover, if two windows, one from 𝑋 and the other

from 𝑌 , are correlated, they should not be far away. So, we also

constrain the time delay. These two constraints can be determined

by the problem scenario and expert knowledge.

Problem statement: Given a pair of long time series (𝑋,𝑌), a
threshold 𝜃 , the length constraint [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] and the delay con-

straint [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], our goal is to find a set of disjoint significant

time window pairs, CP = {𝐶𝑃1,𝐶𝑃2, · · · ,𝐶𝑃 |CP |}, so that |CP| is
maximized. Each𝐶𝑃𝑖 =< 𝑠𝑖 , 𝑙𝑖 , 𝜏𝑖 > is a correlated pair, 𝑋 (𝑠𝑖 , 𝑙𝑖) and
𝑌 (𝑠𝑖 + 𝜏𝑖 , 𝑙𝑖), which satisfies

𝐼 (𝑋 (𝑠𝑖 , 𝑙𝑖), 𝑌 (𝑠𝑖 + 𝜏𝑖 , 𝑙𝑖)) ≥ 𝜃

𝑙𝑖 ∈ [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] and 𝜏𝑖 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥]
As an extreme case, it may happen that two significant pairs are

overlapping and have exact MI values. In this case, we randomly

select one of them.

2.1 MI Computation
Eq. 1 is the theoretical definition of MI but is usually not used for

calculation, as it needs the distributions of the underlying data

which are often unknown. In practice, analysts use estimators.

KSG estimator [15] is a popularMI estimator, which simulates the

density function by 𝑘 nearest neighbors. Formally, given window

pair,𝑋𝑊 = 𝑋 (𝑠, 𝑙) and𝑌𝑊 ′ = 𝑌 (𝑠 ′, 𝑙), the MI value can be efficiently

estimated as:

𝐼 (𝑋𝑤 , 𝑌𝑤′) = 𝜓 (𝑘)− 1
𝑘
− 1
𝑙

∑
𝑧𝑖 ∈(𝑋𝑤 ,𝑌

′
𝑤)
[𝜓 (𝑛𝑥 (𝑧𝑖))+𝜓 (𝑛𝑦 (𝑧𝑖))]+𝜓 (𝑙)

(2)

where 𝜓 denotes the digamma function. Data points in 𝑋𝑊 and

𝑌𝑊 ′ correspond one-to-one, which can form two-dimensional data

points, i.e., 𝑧𝑖 = (𝑥𝑠+𝑖−1, 𝑦𝑠′+𝑖−1), 1 ≤ 𝑖 ≤ 𝑙 . For each point 𝑧𝑖 ,

KSG estimator rank neighbors’ distances 𝑧𝑖 by Chebyshev distance

𝑑𝑖, 𝑗 = | |𝑧𝑖−𝑧 𝑗 | |, to obtain𝑑𝑖, 𝑗1 ≤ 𝑑𝑖, 𝑗2 ≤ ... ≤ 𝑑𝑖, 𝑗𝑙−1 . Then it gets the

𝑘 nearest neighbors of 𝑧𝑖 . 𝑑𝑥 and 𝑑𝑦 represent the maximum length

in the X and Y directions between the 𝑘 points and 𝑧𝑖 . Then we

count the number of points 𝑧 𝑗 that satisfies |𝑥𝑠+𝑗−1 − 𝑥𝑠+𝑖−1 | < 𝑑𝑥 ,

which is denoted as 𝑛𝑥 (𝑧𝑖). 𝑛𝑦 (𝑧𝑖) can be calculated similarly.

We illustrate it with the example in Figure 2. We want to com-

pute the 𝑀𝐼 value of the time window < 8, 10, 0 >. First, KSG

transforms them into 10 two-dimensional data points in Figure 2(b),

𝑧𝑖 = (𝑥7+𝑖 , 𝑦7+𝑖), 1 ≤ 𝑖 ≤ 10. We illustrate the process of computing

𝑛𝑥 (𝑧1) and 𝑛𝑦 (𝑧1). Assume 𝑘 = 2. 𝑧3 and 𝑧7 are 2 nearest neigh-

bours of 𝑧1. So based on them, we can obtain 𝑑𝑥 and 𝑑𝑦. Points 𝑧8,

0 10 20 30
-1

-0.5

0

0.5

1

X

Y

X
w

=X(8,10)

Y
w'

=Y(8,10)

(a) Window pair < 8, 10, 0 > (b) MI Calculation

Figure 2: MI calculation with KSG estimator

𝑧9 and 𝑧10 are located within 𝑑𝑥 in the 𝑋 direction, so 𝑛𝑥 (𝑧1) = 5.

Similarly, we can obtain 𝑛𝑦 (𝑧1) = 2 since only two points, 𝑧3 and 𝑧7
are located within the 𝑑𝑦 region. Next, we do the same operations

for the rest points, 𝑧𝑖 (2 ≤ 𝑖 ≤ 10), and finally get𝑀𝐼 = 0.3473.

Table 1: Runtime comparison
PCC(brute-force) MI(brute-force) Jocor NLC𝐸 NLC𝑆

812.89 21120.23 2.45 7.57 0.95

|𝑋 | = |𝑌 | = 1000, 𝑙 ∈ [300, 500], 𝜏 ∈ [−100, 100]

-5 0 5

0

10

20

800 900 1000 1100 1200 1300 1400

0

10

20

30

40

 X

 Y

0 1000 2000
-10

0
10

20

Y

X

0 500 1000 1500 2000
0.0

0.5

1.0

1.5

2.0

2.5

1350

851

M
I

Starting point

 l = 250

 l = 500

 l = 1000

 l = 2000

(a) Example time series pair (b) Influence of 𝑠 and 𝑙

Figure 3: Illustrative example of 𝜏 = 0

2.2 Mutual Information vs. Pearson Coefficient
The problem complexity depends on the size of the search space and

the cost ofMI calculation. Let𝑛 be the length of the time series, 𝜏 and

𝑙 be the average delay and length of the window pair respectively.

We need to search 𝑂 (𝜏𝑛𝑙) window pairs in total, i.e., the size of the
search space. When computing MI for a length-𝑙 window pair with

KSG estimator, the basic kNN algorithm requires 𝑂 (𝑙2), which can

be reduced to𝑂 (𝑙 log 𝑙) by utilizing the k-d tree structure. Therefore,
the overall time complexity of the problem is 𝑂 (𝜏𝑛𝑙2 log 𝑙). If we
measure the correlation with PCC, the search space is the same and

the unit cost becomes 𝑙 . So, the overall complexity is 𝑂 (𝜏𝑛𝑙2).
Although the difference is only log 𝑙 , it actually takes dozens of

times longer. In Table 1, we list the runtime of computing PCC and

MI with both the brute-force approach and the advanced approach.

It can be seen that MI search is an order of magnitude slower than

PCC search. The core reason is that MI computation needs to find

the 𝑘 nearest neighbours of each data point. Jocor [18] accelerates

PCC pair searching by frequency domain transformation and in-

cremental computation. However, the speedup techniques of Jocor

cannot be applied to MI computation.

1365

3 MOTIVATION
Asmentioned beforehand, the core challenge is the huge time cost to

verify all window pairs. Since each time window pair is determined

by three factors, starting point, window length and time delay, we

analyze the influence of these factors on the MI value.

3.1 Starting Point and Window Length
We start with a simple casewith only one aligned correlatedwindow

pair in (𝑋,𝑌), as shown in Figure 3(a). The length of 𝑋 and 𝑌 is

2000. In window𝑊 = [851, 1350], 𝑋𝑊 and 𝑌𝑊 satisfy 𝑦 = 𝑥2, while

in the remaining parts,𝑋 and𝑌 conform to the Gaussian distributed

(𝑋 ∼ 𝑁 (0, 1) and 𝑌 ∼ 𝑁 (0, 1)). Since the correlated window pair,

𝑋𝑊 and 𝑌𝑊 , is aligned, our goal is to find the correlated window

𝑊 . We show 4 curves in Figure 3(b), each of which is the MI value

sequence of the sliding windows with 4 different window lengths,

i.e., 𝑙 = 250, 500, 1000, 2000. Given any starting point 𝑠 and length

𝑙 , the corresponding window is 𝑊 ′ = (𝑠, 𝑙). We enumerate the

relationship between𝑊 ′ and the target window𝑊 in Table 2.

Table 2: Correlation type
Case 𝑙 𝑠 rel with𝑊 𝑀𝐼

1.1

250

𝑠 < 600 ∨ 𝑠 > 1350 𝑊 ′ ∩𝑊 = ∅ 0

1.2 𝑠 ∈ [851, 1100] 𝑊 ′ ⊂𝑊 2.4

1.3 𝑠 ∈ [600, 850] ∨ [1100, 1350] 𝑊 ′ ∩𝑊 ≠ ∅ [0,2.4]

2.1

500

𝑠 < 350 ∨ 𝑠 > 1350 𝑊 ′ ∩𝑊 = ∅ 0

2.2 𝑠 = 851 𝑊 ′ =𝑊 2.3

2.3 𝑠 ∈ [350, 850] 𝑊 ′ ∩𝑊 ≠ ∅ [0,2.3]

3.1

1000

𝑠 > 1350 𝑊 ′ ∩𝑊 = ∅ 0

3.2 𝑠 ∈ [351, 851] 𝑊 ′ ⊃𝑊 1.25

3.3 𝑠 ∈ [1, 350] ∨ [852, 1350] 𝑊 ′ ∩𝑊 ≠ ∅ [0,1.25]

4.1

2000

𝑠 > 1350 𝑊 ′ ∩𝑊 = ∅ 0

4.2 𝑠 ∈ [1, 851] 𝑊 ′ ⊃𝑊 0.64

4.3 𝑠 ∈ [852, 1350] 𝑊 ′ ∩𝑊 ≠ ∅ [0,0.64]

According to Figure 3(b), the relationship between𝑊 ′ and𝑊 , as

well as the MI values computed with𝑊 ′, can be categorized into 4

types as follows,

• Case 1.1, 2.1, 3.1 and 4.1. MI values are close to 0, since 𝑋𝑊 ′

and 𝑌𝑊 ′ are independent.

• Case 1.2 and 2.2. In these cases, 𝑊 ′ is surrounded by 𝑊 .

The MI value reaches the maximum because in the whole

window𝑊 ′, 𝑋 and 𝑌 are always correlated.

• Case 3.2 and 4.2. In contrast, when𝑊 is surrounded by𝑊 ′,
The MI values reach the maximum only within their own

lengths (1.25 for 𝑙 = 1000 and 0.64 for 𝑙 = 2000). Note that

these two values are smaller than those of case 1.2 and 2.2.

• Case 1.3, 2.3, 3.3 and 4.3. For each length 𝑙 , the MI values are

smaller than the maximum of this length, because𝑊 ′ only
contains the partial of𝑊 . Moreover, the larger portion of𝑊

is contained in𝑊 ′, the larger the MI value.

The above observations give us a clue motivating our approach.

We can use the window larger than 𝐿𝑚𝑎𝑥 to prune the unnecessary

windows. Specifically, assume 𝐿𝑚𝑎𝑥 = 800 and 𝑊0 is a length-

2000 window. If we find that 𝐼 (𝑋𝑊0
, 𝑌𝑊0
) is close to 0, we can

determine that there doesn’t exist any qualified window𝑊1 within

𝑊0 (|𝑊1 | < |𝑊0 |). Therefore, we can prune plenty of windows.

3.2 Delay
Now we come to a more complicated case where the correlated

windows are not aligned, that is, 𝜏 ≠ 0. Continue the example in Fig-

ure 3.We fix𝑋 unchanged and shift𝑌 to right by 50 points, as shown

in Figure 4(a). That is, 𝑋 [851,1350] is correlated with 𝑌[901,1400] .

800 900 1000 1100 1200 1300 1400

-10

0

10

20

30

40

 X

 Y

0 1000 2000

-10
0

10
20

-100 -50 0 50 100
0.0

0.5

1.0

1.5

2.0

2.5

M
I

τ

 l = 250

 l = 500

 l = 1000

 l = 2000

(a) Example time series pair (b) Influence of delay 𝜏

Figure 4: Illustrative example of 𝜏 ≠ 0

Figure 4(b) shows the largest MI values as the delay varies for

different window lengths. For example, in the curve of 𝑙 = 250, for

each delay value 𝜏 , we compute all MI values between 𝑋 (𝑖, 250)
and 𝑌 (𝑖 + 𝜏, 250) (1 ≤ 𝑖 ≤ 1751) and the maximal one is shown in

𝑌 -axis. It can be seen that all 4 curves have common trends, that is,

the values are almost 0 before 𝜏 = 50, burst sharply at this point,

and then decrease to 0 quickly.

This example reveals a property of the MI computation. If two

equal-length windows with delay 𝜏 , 𝑊1 and 𝑊2, are correlated.

Then two larger window with delay 𝜏 , which surround𝑊1 and𝑊2

respectively, will be also correlated.

Combining with the previous observation, we give the rationale

behind our window shrinking strategy. To search for correlated

pairs with appropriate starting points and delays, we use the large

window to prune the unqualified window pairs. Moreover, to find

the optimal delay value, we directly compute MI values with differ-

ent delay values on the large window. For a fixed large window𝑊0,

if all possible values of 𝜏 cannot generate a correlated window pair,

we can prune all window pairs surrounded by𝑊0.

To be specific, for window𝑊0 = (𝑠, 2000), we compute 𝐼 (𝑋𝑊0
, 𝑌 (

𝑠 + 𝑗, 2000)) for any 𝑗 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥]. If all MI values are small, we

can prune all windows surrounded by 𝑊0. In contrast, if there

exists 𝜏 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], which satisfies that 𝐼 (𝑋𝑊0
, 𝑌(𝑆+𝜏,2000)) is

obviously large, it means that there may exist two windows,𝑊1 =

(𝑠 ′, 𝑙) and𝑊2 = (𝑠 ′ + 𝜏, 𝑙), which are correlated.

In other words, we generate candidates with fuzzy starting points

and lengths, but exact time delays. Another reason to support our

choice is that the MI values fluctuate more quickly as time delay

varies, compared to starting point and length.

This strategy works well when the correlated pairs disperse

sparsely. However, when they distribute more densely, this strategy

may suffer because the large window is likely to contain more than

one correlated pair. The consequence is that we may only obtain

the dominant pair in a large window, and ignore other pairs.

To avoid this problem, we propose another strategy, window

extending, to generate candidates for the densely distributed pairs.

Note that in examples of both Figure 3 and Figure 4, windows

𝑊 ′ of length 250, although it is smaller than 500, can still achieve

1366

high MI values. So, in the extending strategy, we use length-𝐿𝑚𝑖𝑛

windows to make pruning. Specifically, for window𝑊0 = (𝑠, 𝐿𝑚𝑖𝑛),
we compute 𝐼 (𝑋𝑊0

, 𝑌 (𝑠 + 𝑗, 𝐿𝑚𝑖𝑛)) for any 𝑗 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥]. If all
MI values are small, we can prune all windows surrounding𝑊0.

3.3 Theoretical Foundation
In this section, we present the theoretical foundation of the pro-

posed approach. We formally analyze the relationship between

MI value of the correlated pair and a larger pair surrounding it. A

concise proof version is given here, and the complete proof can be

found at https://github.com/zhxjz/NLC.

Theorem 1. Given a window pair (𝑋,𝑌), 𝑋 is spliced by 𝑍 and
𝑈 , and 𝑌 is spliced by𝑊 and 𝑉 . The length ratio between |𝑍 | and
|𝑋 | (or |𝑊 | and |𝑌 |) is 𝜂. Assume 𝑍 and𝑈 are identically distributed,
and the value ranges of𝑊 and 𝑉 are disjoint, 𝑅𝑊 ∩ 𝑅𝑉 = ∅, then

𝐼 (𝑋 ;𝑌) = 𝜂𝐼 (𝑍 ;𝑊) + (1 − 𝜂)𝐼 (𝑈 ;𝑉)
As a special case, when 𝑈 and 𝑉 are independent, it holds that

𝐼 (𝑋 ;𝑌) = 𝜂𝐼 (𝑍 ;𝑊)

Proof. From a statistical perspective, the probability mass den-

sity functions are 𝑝𝑍 (𝑧), 𝑝𝑊 (𝑤), 𝑝𝑈 (𝑢), 𝑝𝑉 (𝑣) for 𝑍 ,𝑊 ,𝑈 , 𝑉 and

𝑝𝑍,𝑊 (𝑧,𝑤), 𝑝𝑈 ,𝑉 (𝑢, 𝑣) for (𝑍,𝑊), (𝑈 ,𝑉).
Since 𝑍 and 𝑈 are identically distributed, the probability of 𝑋

satisfies 𝑝𝑋 (𝑥) = 𝑝𝑍 (𝑥) = 𝑝𝑈 (𝑥).
Because 𝑌 is spliced by𝑊 and 𝑉 , the probability of 𝑌 is

𝑝𝑌 (𝑦) = 𝜂𝑝𝑊 (𝑦) + (1 − 𝜂)𝑝𝑉 (𝑦) (3)

The joint probability 𝑝𝑋,𝑌 (𝑥,𝑦) can be written as:

𝑝𝑋,𝑌 (𝑥,𝑦) = 𝜂𝑝𝑍,𝑊 (𝑥,𝑦) + (1 − 𝜂)𝑝𝑈 ,𝑉 (𝑥,𝑦) (4)

We define the value range of𝑊 and 𝑉 as 𝑅𝑊 and 𝑅𝑉 , the value

range of (𝑋,𝑌), (𝑍,𝑊) and (𝑈 ,𝑉) as 𝑅𝑋𝑌 , 𝑅𝑍𝑊 and 𝑅𝑈𝑉 respec-

tively. The MI between 𝑋 and 𝑌 is as follows:

𝐼 (𝑋 ;𝑌) =
∑

(𝑥,𝑦)∈𝑅𝑋𝑌

𝑝𝑋,𝑌 (𝑥, 𝑦)𝑙𝑜𝑔
𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

=
∑

(𝑧,𝑤)∈𝑅𝑍𝑊

𝑝𝑋,𝑌 (𝑧, 𝑤)𝑙𝑜𝑔
𝑝𝑋,𝑌 (𝑧, 𝑤)
𝑝𝑋 (𝑧)𝑝𝑌 (𝑤)

+
∑

(𝑢,𝑣)∈𝑅𝑈𝑉

𝑝𝑋,𝑌 (𝑢, 𝑣)𝑙𝑜𝑔
𝑝𝑋,𝑌 (𝑢, 𝑣)
𝑝𝑋 (𝑢)𝑝𝑌 (𝑣)

−
∑

(𝑥,𝑦)∈𝑅𝑍𝑊 ∩𝑅𝑈𝑉

𝑝𝑋,𝑌 (𝑥, 𝑦)𝑙𝑜𝑔
𝑝𝑋,𝑌 (𝑥, 𝑦)
𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)

=
∑

(𝑧,𝑤)∈𝑅𝑍𝑊

𝜂𝑝𝑍,𝑊 (𝑧, 𝑤)𝑙𝑜𝑔 [
𝑝𝑍,𝑊 (𝑧, 𝑤)
𝑝𝑍 (𝑧)𝑝𝑊 (𝑤)

· 𝑝𝑊 (𝑤)
𝑝𝑌 (𝑤)

·
𝑝𝑋,𝑌 (𝑧, 𝑤)
𝑝𝑍,𝑊 (𝑧, 𝑤)

]

+
∑

(𝑢,𝑣)∈𝑅𝑈𝑉

(1 − 𝜂)𝑝𝑈 ,𝑉 (𝑢, 𝑣)𝑙𝑜𝑔 [
𝑝𝑈 ,𝑉 (𝑢, 𝑣)
𝑝𝑈 (𝑢)𝑝𝑉 (𝑣)

·
𝑝𝑉 (𝑣)
𝑝𝑌 (𝑣)

·
𝑝𝑋,𝑌 (𝑢, 𝑣)
𝑝𝑈 ,𝑉 (𝑢, 𝑣)

]

= 𝜂𝐼 (𝑍 ;𝑊) + (1 − 𝜂)𝐼 (𝑈 ;𝑉)

+
∑

(𝑧,𝑤)∈𝑅𝑍𝑊

𝜂𝑝𝑍,𝑊 (𝑧, 𝑤)𝑙𝑜𝑔 [
𝑝𝑊 (𝑤)
𝑝𝑌 (𝑤)

·
𝑝𝑋,𝑌 (𝑧, 𝑤)
𝑝𝑍,𝑊 (𝑧, 𝑤)

]

+
∑

(𝑢,𝑣)∈𝑅𝑈𝑉

(1 − 𝜂)𝑝𝑈 ,𝑉 (𝑢, 𝑣)𝑙𝑜𝑔 [
𝑝𝑉 (𝑣)
𝑝𝑌 (𝑣)

·
𝑝𝑋,𝑌 (𝑢, 𝑣)
𝑝𝑈 ,𝑉 (𝑢, 𝑣)

] (5)

Since we assume𝑅𝑊 ∩𝑅𝑉 = ∅, any value of𝑌 is taken from either

𝑅𝑊 or 𝑅𝑉 , i.e., Eq. 3 changes to 𝑝𝑌 (𝑤) = 𝜂𝑝𝑊 (𝑤) and 𝑝𝑌 (𝑣) =

(1−𝜂)𝑝𝑉 (𝑣). Similarly, any value pair of (𝑋,𝑌) is taken from either

𝑅𝑍𝑊 or 𝑅𝑈𝑉 . In consequence, we have 𝑝𝑋,𝑌 (𝑧,𝑤) = 𝜂𝑝𝑍,𝑊 (𝑧,𝑤)
and 𝑝𝑋,𝑌 (𝑢, 𝑣) = (1−𝜂)𝑝𝑈 ,𝑉 (𝑢, 𝑣) respectively. By combining these

4 formulas with Eq. 5, we have

𝐼 (𝑋 ;𝑌) = 𝜂𝐼 (𝑍 ;𝑊) + (1 − 𝜂)𝐼 (𝑈 ;𝑉) (6)

If U and V are independent, then 𝐼 (𝑈 ;𝑉) = 0 and 𝐼 (𝑋 ;𝑌) =
𝜂𝐼 (𝑍 ;𝑊). In the example of Figure 3, we can consider range [851,
1350] as (𝑍,𝑊) here and other parts as (𝑈 ,𝑉). Since values of 𝑌 in

[851, 1350] and those in other parts are almost non-overlapping, the

MI relationships in Table 2 are consistent with Theorem 1. Although

it is assumed that the value ranges of W and V are disjoint, similar

results can be obtained in the general case. □

3.4 Overview
We propose a two-phase approach to search the correlated pairs,

as shown in Figure 5. In phase one, we scan 𝑋 and 𝑌 sequentially

and generate a candidate set , denoted as CP0. In phase two, we

refine the correlated pairs in CP0 to form the final set CP. Each
window pair in CP, 𝐶𝑃 =< 𝑠, 𝑙, 𝜏 >, is derived from a pair in CP0,

𝐶𝑃 ′ =< 𝑠 ′, 𝑙 ′, 𝜏 ′ >, which satisfies that they have the same delay,

that is, 𝜏 = 𝜏 ′. These two phases are outlined as follows.

• Phase one: Candidate generation. In this phase, we gen-

erate the candidate set CP0. Each candidate determines 1)

the approximate location and window length, 2) the exact
delay. We propose two strategies to generate CP0, window

shrinking and window extending.

• Phase two: Window refinement.We refine candidates in

CP0 to obtain the final results CP. We consider it as an

optimization problem, and adapt the DIRECT strategy [14]

to propose a nested one-dimensional search algorithm.

Window extending strategy

Window shrinking strategy

For each

𝑪𝑷 ∈ 𝒞𝒫0

Search max(MI)

𝒞𝒫0

Filter

Phase two: Window refinement.

Phase one: Candidate generation.
𝑪𝑷𝟏

𝑪𝑷𝟏

𝑪𝑷𝟐

𝑪𝑷𝟐

𝑪𝑷𝟑

𝑪𝑷𝑪…

𝒞𝒫…… … …MI

ls

Figure 5: Algorithm overview

4 PHASE ONE: CANDIDATE GENERATION
To generate the candidate set CP0, we propose two strategies,

window shrinking and window extending. The former first finds

the large window pairs which may contain the qualified correlated

pair, and shrinks the windows by trimming the uncorrelated parts.

In contrast, the latter first finds the small window pairs, and extends

them to appropriate lengths. Next, we introduce them in turn.

1367

https://github.com/zhxjz/NLC

4.1 Window Shrinking
The window shrinking strategy is used to deal with the sparsely dis-

tributed correlations, whose pseudo-code is shown in Algorithm 1.

Note that our goal is to find all correlated window pairs whose

size falls within [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]. Instead of computing𝑀𝐼 of each pair

directly, we utilize a window longer than 𝐿𝑚𝑎𝑥 to filter unqualified

candidates, named as envelope window, whose size is denoted

as 𝑤𝑒 . Formally, we split 𝑋 into a sequence of disjoint envelope

windowswith length𝑤𝑒 , (𝑋1, 𝑋2, · · · , 𝑋 𝑛
𝑤𝑒
), where𝑋𝑖 = 𝑋 (𝑠𝑝𝑖 ,𝑤𝑒)

and 𝑠𝑝𝑖 = (𝑖 − 1) ∗𝑤𝑒 + 1 (Line 2). We assume in each window 𝑋𝑖 ,

there exists at most one smaller window correlated with 𝑌 .

Algorithm 1 Window shrinking

Input: (𝑋,𝑌) : a pair of time series

Output: CP0: the candidate set

1: while (𝑋,𝑌) is not scanned entirely do
2: Initialize𝐶𝑃 ←< 𝑠𝑝𝑖 , 𝑤𝑒 , 0 > with 𝐼𝑏𝑒𝑠𝑡 = 0

3: for 𝜏 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥] do
4: 𝐸𝑊 ← (𝑋𝑖 , 𝑌 (𝑠𝑝𝑖 + 𝜏, 𝑤𝑒))
5: if 𝐼 (𝐸𝑊) > 𝐼𝑏𝑒𝑠𝑡 then
6: 𝐼𝑏𝑒𝑠𝑡 ← 𝐼 (𝐸𝑊) , update𝐶𝑃 ←< 𝑠𝑝𝑖 , 𝑤𝑒 , 𝜏 >

7: if 𝐼𝑏𝑒𝑠𝑡 > 𝜃0 then
8: 𝐶𝑃.𝑡𝑟𝑖𝑚 (𝑚𝑖𝑛𝑖𝐿, 𝜃0)
9: add𝐶𝑃 to CP0

X

Y

w
e
= 2000X

2
X

5

Y(1951,2000)

Y(2001,2000)

Y(2051,2000)

 = -50

 = 0

Y(8051,2000)
 = 50

Y(8001,2000)

Y(7951,2000)

I=0.6 >
0

I=0.5 >
0

I=0.7 >
0

I=0.1

I=0.2

I=0.1
Y

X

... ...

85018401 9301

8600 9300 9400

9201

I=0.2
×

I=0.6

I=0.4

...

8500

miniL=100

 = 0

I = 0.7

I=0.1
×

(a) Envelope window filter process (b) The trim operation

Figure 6: Window shrinking

Then we visit the envelope windows one-by-one to determine

whether it may contain a candidate pair (Line 3-6). For each 𝑋𝑖 , we

compute MI values between 𝑋𝑖 and all windows 𝑌 (𝑠𝑝𝑖 + 𝜏,𝑤𝑒)’s
(𝜏𝑚𝑖𝑛 ≤ 𝜏 ≤ 𝜏𝑚𝑎𝑥). If all MI values are smaller than threshold 𝜃0,

we determine that there is no correlated pair here and move to𝑋𝑖+1.
Otherwise, we select the window 𝑌 (𝑠𝑝𝑖 + 𝜏 ′,𝑤𝑒) with the largest

MI value as a candidate𝐶𝑃 =< 𝑠𝑝𝑖 ,𝑤𝑒 , 𝜏
′ >. It means that it is very

likely that there exists one window within 𝑋𝑖 , which is correlated

with a window in 𝑌 (𝑠𝑝𝑖 + 𝜏 ′,𝑤𝑒) with delay 𝜏 ′.
By default, threshold 𝜃0 is set as

𝜃𝐿𝑚𝑖𝑛

𝑤𝑒
. Figure 3 shows that

when the current envelope window 𝑊𝑒 contains the correlated

window pair 𝑊𝑐 (other parts are completely uncorrelated), the

correlation length ratio is approximately the same as the MI value,

i.e., 𝐼 (𝑊𝑒)/𝐼 (𝑊𝑐) ≈ |𝑊𝑒 |/|𝑊𝑐 |. Since the correlation length is at

least 𝐿𝑚𝑖𝑛 , the envelope window length is𝑤𝑒 , 𝜃0 is set to
𝜃𝐿𝑚𝑖𝑛

𝑤𝑒
.

We illustrate it with the example in Figure 6(a), in which 𝜃0 is set

to 0.3 and𝑤𝑒 = 2000. In window 𝑋2 = (2001, 2000), 𝑌 (2001, 2000)
and 𝑌 (2051, 2000) will be pruned since the MI values are smaller

than 0.3. Since 𝑌 (1951, 2000) has the highest MI value, we generate

a candidate < 2001, 2000,−50 >. Similarly, in window 𝑋5, both

𝑌 (8001, 2000) and 𝑌 (8051, 2000) have MI values higher than 0.3,

and finally the candidate is < 8001, 2000, 0 >.

Obviously, candidate 𝐶𝑃 =< 𝑠, 𝑙, 𝜏 > may contain uncorrelated

parts, since it has a large window length and a smaller threshold

𝜃0. So we need to trim these parts (Line 8). To be specific, we split

the envelop window into a sequence of smaller disjoint windows,

and trim the uncorrelated windows on both ends. Formally, we first

divide the envelope window into windows of length𝑚𝑖𝑛𝑖𝐿, named

as mini window. Then, we trim the unqualified mini windows from

the left end. We calculate the MI value between 𝑋 (𝑠,𝑚𝑖𝑛𝑖𝐿) and
𝑌 (𝑠 + 𝜏,𝑚𝑖𝑛𝑖𝐿). If the MI value is less than 𝜃0, we discard it and

move to the second mini window. This process continues until we

meet a window with MI value larger than 𝜃0. Then we trim mini

windows from the right end with a similar manner. After trimming

on both ends, we again calculate the MI value of the remaining

parts, and add it into CP0 if the MI value exceeds 𝜃0.

Continue the example in Figure 6(b). The envelop window is

< 8001, 2000, 0 > and 𝑚𝑖𝑛𝑖𝐿 = 100. On the left, we trim mini

windows until (8501, 100), while on the right, we trim windows

until (9301, 100). The rest part is (8501, 800). We recalculate MI and

get 𝐼 = 0.7 > 𝜃0, so we add < 8501, 800, 0 > to CP0.

4.2 Window Extending
Now we introduce our second strategy, window extending. When

the correlated pairs are densely distributed, if we still use the large

window, it may occur that two different correlated pairs appear in

one envelop window, which will cause certain correlated pairs to

be ignored since we only keep one pair in an envelop window.

So the window extending strategy is to use small windows to

find the candidates. The pseudo-code is shown in Algorithm 2.

Formally, we use the length-𝐿𝑚𝑖𝑛 windows to traverse 𝑋 (Line

2). Assume the current window is 𝑋 (𝑠𝑝, 𝐿𝑚𝑖𝑛). We compute MI

values of all windows 𝑌 (𝑠𝑝 + 𝜏, 𝐿𝑚𝑖𝑛)’s, where 𝜏𝑚𝑖𝑛 ≤ 𝜏 ≤ 𝜏𝑚𝑎𝑥 .

If all MI values are smaller than threshold 𝜃0, we determine that

there is no correlated pair here and move to the next window

𝑋 (𝑠𝑝 + 𝐿𝑚𝑖𝑛, 𝐿𝑚𝑖𝑛) (Line 14). Otherwise, we select 𝜏 which leads

to the maximal MI value to form a pair < 𝑠𝑝, 𝐿𝑚𝑖𝑛, 𝜏 >. Here 𝜃0 is

set to
𝜃𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥+𝐿𝑚𝑖𝑛
, with the same reason as the shrinking strategy.

Different from the window shrinking, the correlated pairs we

find here may be only a fraction of the whole pair due to the small

window size. So, we try to find the complete pair by extending the

window on both ends. Formally, for window pair 𝑋 (𝑠𝑝, 𝐿𝑚𝑖𝑛) and
𝑌 (𝑠𝑝 + 𝜏, 𝐿𝑚𝑖𝑛), we generate two candidates,

𝐶𝑃1 =< 𝑠𝑝, 𝐿𝑚𝑖𝑛 + 𝐿𝑚𝑎𝑥 , 𝜏 >

𝐶𝑃2 =< 𝑠𝑝 − 𝐿𝑚𝑎𝑥 , 𝐿𝑚𝑖𝑛 + 𝐿𝑚𝑎𝑥 , 𝜏 >

Then we do the trim operation on both𝐶𝑃1 and𝐶𝑃2, and obtain

two shorter pairs (Line 7,8). We compare their corresponding MI

values and add the one with larger MI into CP0 (Line 10,12).

We illustrate thewindow extending strategywith Figure 7, where

𝜃0 = 0.3. The length constraint is [300, 600], so we use the length-

300windows for pruning. The currentwindow𝑋 (8501, 300) achieves
the highest MI value when 𝜏 = 0. Then we extend the pair to get

two candidates, 𝐶𝑃1 =< 8501, 900, 0 > and 𝐶𝑃2 =< 7901, 900, 0 >.

After trimming, 𝐶𝑃1 gets higher MI, so we add it to CP0.

1368

Algorithm 2 Window extending

Input: (X,Y): a pair of time series

Output: 𝑅𝐿
: a set of located window pairs

1: while (𝑋,𝑌) is not scanned entirely do
2: Initialize𝐶𝑃 ←< 𝑠𝑝, 𝐿𝑚𝑖𝑛, 0 > with 𝐼𝑏𝑒𝑠𝑡 = 0

3: ◀ Follow the steps 3-6 in Algorithm 1 to get 𝐼𝑏𝑒𝑠𝑡 and update𝐶𝑃

4: if 𝐼𝑏𝑒𝑠𝑡 ≥ 𝜃0 then
5: 𝐶𝑃1 ←< 𝑠𝑝, 𝐿𝑚𝑖𝑛 + 𝐿𝑚𝑎𝑥 , 𝜏 >,

6: 𝐶𝑃2 ←< 𝑠𝑝 − 𝐿𝑚𝑎𝑥 , 𝐿𝑚𝑖𝑛 + 𝐿𝑚𝑎𝑥 , 𝜏 >

7: 𝐶𝑃1 .𝑡𝑟𝑖𝑚 (𝑚𝑖𝑛𝑖𝐿, 𝜃0)
8: 𝐶𝑃2 .𝑡𝑟𝑖𝑚 (𝑚𝑖𝑛𝑖𝐿, 𝜃0)
9: if 𝐼 (𝐶𝑃1) ≥ 𝐼 (𝐶𝑃2)) then
10: Add𝐶𝑃1 to CP0, update 𝑠𝑝 ← 𝑠𝑝 + |𝐶𝑃1 |
11: else
12: Add𝐶𝑃2 to CP0, update 𝑠𝑝 ← 𝑠𝑝 + |𝐶𝑃2 |
13: else
14: 𝑠𝑝 ← 𝑠𝑝 + 𝐿𝑚𝑖𝑛

X(8501,300) Extend

CP
2
 = < 7901, 900, 0 >

Y(8451,300)

Y(8501,300)

 < 8401, 400, 0 > I=0.6

CP
1
 = < 8501, 900, 0 >

I=0.2

I=0.5 >
0

I=0.1

Y(8551,300)

Trim

I = 0.8 add to

< 8601, 750, 0 >

Extend

Trim

Figure 7: Window extending

5 PHASE TWO: WINDOW REFINEMENT
In phase two, we refine the candidates in CP0, by taking it as an

optimization problem. Formally, for each candidate pair 𝐶𝑃 =<

𝑠, 𝑙, 𝜏 >, we aim to find < 𝑠∗, 𝑙∗, 𝜏 >, which satisfies, 1) window

(𝑠∗, 𝑙∗) ⊂ (𝑠, 𝑙), and 2) 𝐼 (𝑠∗, 𝑙∗, 𝜏) is the largest. We call 𝑠∗ and 𝑙∗

as the optimal starting point and window length respectively. The

naive approach is to enumerate all possible 𝑠 and 𝑙 and select the

optimal one. However, it is infeasible due to the high computation

cost. In this paper, we adapt the popular DIRECT strategy [14] to

accelerate the searching process.

In general, DIRECT is a sampling-based search strategy for the

optimization problem. For an objective function over a search space,

DIRECT can effectively find the global optimum through an itera-

tive process. DIRECT is kind of a ternary search strategy. The basic

idea is to partition the search space into intervals, and select the

rectangles to search next by sampling and evaluating the center

points of each interval.

For candidate pair𝐶𝑃 =< 𝑠, 𝑙, 𝜏 >, the search space is a rectangle:

one dimension for the starting point 𝑠 and the other for length 𝑙 .

To ensure that the window length is always legal, the range of the

starting point is [𝑠, 𝑠 + 𝑙 − 𝐿𝑚𝑖𝑛], and the range of 𝑙 is [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥].
For multivariate variables, DIRECT divides dimensions in turn to

ensure the balance of sampling in each dimension. However, the

fashion of one-dimension-per-time is not suitable for our problem

because the starting point 𝑠 and length 𝑙 are highly correlated.

To solve this problem, we propose a nested one-dimensional

DIRECT search strategy, that is, we try to find the optimal 𝑠∗. The
basic idea is as follows. In each round, we split the current rectangle

into three equal-size rectangles, left, middle and right. Then we

shrink the rectangle by removing the left or right one, which is

less likely to contain the point (𝑠∗, 𝑙∗). The decision is made by

evaluating the MI values of the center points 𝑠 . Note that the range

of length 𝑙 is kept unchanged during the iteration.

Our approach works as follows. Initially, the range of 𝑠 is [𝑙𝑏,𝑢𝑏]
= [𝑠, 𝑠+𝑙−𝐿𝑚𝑖𝑛]. In the first round, we split [𝑙𝑏,𝑢𝑏] into three equal
length ranges, 𝑆1 = [𝑙𝑏, 𝑙𝑏 + 𝑢𝑏−𝑙𝑏

3
], 𝑆2 = [𝑙𝑏 + 𝑢𝑏−𝑙𝑏

3
, 𝑢𝑏 − 𝑢𝑏−𝑙𝑏

3
]

and 𝑆3 = [𝑢𝑏 − 𝑢𝑏−𝑙𝑏
3

, 𝑢𝑏]. We compute the optimal MI values of

the central values of 𝑠 , 𝑠1 and 𝑠3, in 𝑆1 and 𝑆3. That is, for each 𝑠 ,

we find the optimal length 𝑙∗ (𝑠) satisfying

𝑙∗ (𝑠) = max

𝑙 ∈[𝐿𝑚𝑖𝑛,𝐿𝑚𝑎𝑥]
𝐼 (𝑠, 𝑙, 𝜏)

How to find 𝑙∗ (𝑠) will be discussed later. After we obtain 𝐼 (𝑠1, 𝑙∗ (𝑠1),
𝜏) and 𝐼 (𝑠3, 𝑙∗ (𝑠3), 𝜏), we compare them and remove 𝑆1 (or 𝑆3) from

[𝑙𝑏,𝑢𝑏] if the former is lower (or larger). Then we use the new

range to begin the second round. This process until 𝑙𝑏 and 𝑢𝑏 is

smaller than a threshold, denoted as 𝛿𝑠 .

Figure 8: Search process

The process of finding 𝑙∗ (𝑠) for each 𝑠 is similar to finding 𝑠∗,
except that we can directly compute the MI values for the sampled

lengths. The stopping threshold is 𝛿𝑙 . After we find the optimal 𝑠∗,
we finally verify whether it is a qualified pair, that is, 𝐼 (𝑠∗, 𝑙∗, 𝜏) ≥ 𝜃 .

If it is the case, we add it into the final set CP. Note that the

candidates generated by the extending strategy may overlap. We

adjust candidates according to the qualified CPs that have been

refined to ensure that there is no overlap in CP.
We use an example in Figure 8 to illustrate the process. In the

left part, the blue curve is the MI values of different starting points

in the range [1001, 1900]. We aim to find the optimal starting points

𝑠∗ with the highest MI value within this range. In the first round,

we split it into three equal-length ranges 𝑆1 = [1001, 1300], 𝑆2 =

[1301, 1600], 𝑆3 = [1601, 1900], and obtain three center points, 𝑠1,

𝑠2 and 𝑠3. Then we find 𝑙∗ for 𝑠1 and 𝑠3, which will be described

later. After we found them, we compare MI values 𝐼 (𝑠1, 𝑙∗ (𝑠1)) and
𝐼 (𝑠3, 𝑙∗ (𝑠3)). Since the MI value of 𝑠1 is less than that of 𝑠3, we

remove 𝑆1 and generate a smaller range [1301, 1900]. In the second

round, we again split range [1301, 1900] into three ranges, 𝑆4, 𝑆5
and 𝑆6, with center points 𝑠4, 𝑠5 and 𝑠6. It can be seen that after

three rounds, the MI value at 𝑠5 is very close to the highest.

In the right part of Figure 8, we show the range splitting in the

first round of searching 𝑙∗ (𝑠2). We split range [300, 600], which are

𝐿𝑚𝑖𝑛 and 𝐿𝑚𝑎𝑥 , into three ranges 𝐿1, 𝐿2 and 𝐿3 with center points

𝑙1 = 550, 𝑙2 = 450 and 𝑙3 = 350. We directly compute 𝐼 (𝑠2, 550) and
𝐼 (𝑠2, 350), and then remove 𝐿1 since 𝐼 (𝑠2, 550) is smaller. Then, we

iteratively search range [300, 500] to find 𝑙∗ (𝑠2).

1369

Complexity analysis. Now we analyze the complexity of the al-

gorithm. In phase one, we filter the candidate with two strategies.

The shrinking strategy splits (𝑋,𝑌) into length-𝑤𝑒 envelope win-

dows. Here the cost is 𝑂 (𝑛𝑤𝑒
𝜏𝑙 log 𝑙). The extending strategy uses

length-𝐿𝑚𝑖𝑛 windows, so the cost is 𝑂 (𝑛
𝐿𝑚𝑖𝑛

𝜏𝑙 log 𝑙).
In phase two, we use a nested ternary search to refine the can-

didates. Since the size of the search rectangle is approximately

𝑙2, we need 𝑂 (𝑙 (log 𝑙)3). If there are𝑚 candidates in CP, the to-
tal cost is 𝑂 (𝑚𝑙 (log 𝑙)3). Overall, our algorithm reduces the prob-

lem complexity from 𝑂 (𝑛𝜏𝑙2 log 𝑙) to 𝑂 (𝑛𝑤𝑒
𝜏𝑙 log 𝑙 +𝑚𝑙 (log 𝑙)3) or

𝑂 (𝑛
𝐿𝑚𝑖𝑛

𝜏𝑙 log 𝑙 +𝑚𝑙 (log 𝑙)3).

6 EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments to verify the effi-

ciency and effectiveness of the proposed approach. All experiments

are conducted on are on a standard PC with 3.0 GHz processor, 16

GB RAM and 256 GB SSD.

6.1 Experimental Setting
6.1.1 Dataset.
Weuse five datasets for experiments, including two synthetic datasets

and three real-world datasets.

Synthetic Datasets. Two synthetic datasets are generated with
linear and non-linear correlations respectively. Initially, we generate

two independent time series 𝑋 and 𝑌 of length 100000, where the

values are randomly picked from a standard normal distribution.

Then we plant correlations as follows.

Non-linear dataset. Table 3 shows ten types of planted correla-

tions, logarithmic, exponential, square and so on. To plant a corre-

lated pair, we execute the following two steps. (i) We randomly se-

lect a starting point, and a non-linear relation type 𝑡 from Table 3. (ii)

Then a correlated window pair𝐶𝑃 (𝑙 ∈ [400, 850] ∧𝜏 ∈ [−150, 150])
is generated and inserted into (𝑋,𝑌) according to 𝑡 . We plant 40

correlated window pairs.

Linear dataset. The data generation process is similar to the

non-linear dataset with the same length constraint, delay range

and data scale, but the correlation type is always Linear (Table 3).

Table 3: Correlations in different relations
Relations 𝑦 = 𝑓 (𝑥)
Independent 𝑥 ∼ 𝑁 (0, 1), 𝑦 ∼ 𝑁 (0, 1)
Linear 𝑦 = 2𝑥 + 𝑢, 𝑥 ∼ 𝑈 (−5, 5)
Log. 𝑦 = 𝑙𝑛(𝑡𝑥), 𝑥 ∼ 𝑈 (0, 10)
Exp. 𝑦 = 0.1𝑥 , 𝑥 ∼ 𝑈 (−10, 10)
Square 𝑦 = 𝑥2 + 𝑢, 𝑥 ∼ 𝑈 (−4, 4)
Squareroot 𝑦 = 𝑠𝑞𝑟𝑡 (𝑥 + 𝑢 ∗ 𝑥), 𝑥 ∼ 𝑈 (0, 25), 𝑢 ∼ 𝑈 (5, 10)
Circle 𝑦 = 𝑠𝑞𝑟𝑡 (9 − 𝑥2 + 𝑢), 𝑥 ∼ 𝑈 (−3, 3)
Sine. 𝑦 = 2𝑠𝑖𝑛(𝑥) + 𝑢, 𝑥 ∼ 𝑈 (0, 10)
Cross 𝑦 = 𝑥 + 𝑢, 𝑥 ∼ 𝑈 (−5, 5)
Quartic 𝑦 = 𝑥4 − 4𝑥3 + 4𝑥2 + 𝑥 + 𝑢, 𝑥 ∼ 𝑈 (−1, 3)
Reciprocal 𝑦 = 10/(𝑥 + 𝑢 ∗ 𝑥), 𝑥 ∼ 𝑈 (0, 5)
Trig. 𝑦 = 𝑐𝑜𝑠 (𝑥) + 𝑠𝑖𝑛(𝑥) + 𝑡𝑎𝑛(𝑥), 𝑥 ∼ 𝑈 (−5, 5)

Note: 𝑁 (𝜇, 𝜎) : normal distribution,𝑈 (𝑎,𝑏) : uniform distribution,

default noise 𝑢 ∼ 𝑈 (0, 1)

Real-worldDatasets. Three real-world datasets are collected from
different domains, covering industry, economy, and technology.

(1) TE dataset. Tennessee Eastman (TE) process [6] is a realis-

tic simulation model of an industrial chemical process. TE

dataset includes 21 abnormal conditions and 1 normal con-

dition, which are connected after z-normalization. There are

52 time series in total, and the length of each is 10580. For

pairwise combinations, we actually need to analyze 1326

pairs of time series, with a total length of 14029080.

(2) Stock market dataset. Stock market dataset [19] contains

historical daily prices for tickers trading on NASDAQ. Here

we select 50 well-known company stocks for analysis. Specif-

ically, we select 1500-day closing data during the period from

04/2014 to 04/2020. Most of the selected stocks are in the

technology sector, some catering and cultural stocks are also

included. Similarly, we make correlation analyses in pairs.

(3) Electrical dataset. NIST Net-Zero dataset [8] captures di-

verse measurements from a high-precision lab home. The

dataset enables engineers to better understand how to build

more energy-efficient homes. We extract electrical system

data from 02/2015 to 01/2016. Each time series represents

the electricity consumption of a specific object, and each

value records the instantaneous electricity consumption in

minutes. There are 72 time series, all of which are 518792 in

length. We pick 141 time series pairs for correlation analysis.

Table 4: Experimental parameter settings

Datasets

Parameters [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥]

(Non-)Linear dataset [400,850] [-150,150]

TE dataset [120,240](mins) [-60,60](mins)

Stock market dataset [200,400](days) [-30,30](days)

Electrical dataset [40,120](mins) [-30,30](mins)

6.1.2 Counterpart Approaches.
In this paper, NLC is compared with three baseline methods: TY-

COS [9], MASS [22] and Jocor [18].

TYCOS [9] extracts non-linear correlated window pairs from

long time sequence pairs, and also uses MI as the correlation coef-

ficient. TYCOS combines Late Acceptance Hill Climbing [3] with

window methods to perform bottom-up correlated window pair

search. We have reproduced it according to the paper description.

Jocor [18] finds the most correlated pairs with length longer

than the minimum length threshold, and uses PCC as the metric. We

use the code provided by the author. Since Jocor requires𝑂 (𝑛2𝑙𝑜𝑔𝑛)
when preprocessing the cross product matrix, which is too slow

for long time series. So when 𝑛 > 10000, we divide the entire time

series into non-overlapping segments and perform Jocor in each

segment, just like the window shrinking strategy.

MASS [22] can efficiently find the subsequence most similar to

the query in a long time series. Since the original intention of MASS

is different from our problem, some adjustments are needed. Con-

sidering the lag constraint [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], we take the time interval

𝑤𝑋 = (𝑠, 𝑙) as the query, and 𝑤𝑌 = (𝑠 + 𝜏𝑚𝑖𝑛, 𝑙 + 𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛) as
the long time series. Note that MASS uses the traditional PCC and

Euclidean distance as the correlation coefficient, which means that

we need to set appropriate linear and non-linear thresholds, which

will be discussed in Section 6.5.1.

1370

 Precision Recall F1-score Runtime

120

0.1 0.2 0.3 0.4 w/o trim
0.7

0.8

0.9

1.0

miniL / Lmin

80

90

100

110

120

R
u
n
tim

e
(s)

(a) NLC𝐸

0.1 0.2 0.3 0.4 w/o trim
0.7

0.8

0.9

1.0

miniL / Lmin

80

90

100

110

120

R
u
n
tim

e
(s)

(b) NLC𝑆

Figure 9: Influence of parameter𝑚𝑖𝑛𝑖𝐿

0.05 0.1 0.5 1 w/o P2
0.4

0.6

0.8

1.0

dl / Lmin

60

80

100

120

R
u
n
tim

e
(s)

(a) NLC𝐸

0.05 0.1 0.5 1 w/o P2
0.4

0.6

0.8

1.0

dl / Lmin

60

80

100

120

R
u
n
tim

e
(s)

(b) NLC𝑆

Figure 10: Influence of parameter 𝛿𝑙

0.05 0.1 0.5 1 w/o P2
0.4

0.6

0.8

1.0

ds / Lmin

60

80

100

120

R
u
n
tim

e
(s)

(a) NLC𝐸

0.05 0.1 0.5 1 w/o P2
0.4

0.6

0.8

1.0

ds / Lmin

60

80

100

120

R
u
n
tim

e
(s)

(b) NLC𝑆

Figure 11: Influence of parameter 𝛿𝑠

6.1.3 Implementation and Parameter Settings.
NLC is implemented in MATLAB, and the code is publicly available

on Github. The k-d tree structure is used for searching nearest

neighbors in MI computation, due to its high efficiency.We use

NLC𝐸 and NLC𝑆 to represent NLC with the extending strategy and

the shrinking strategy respectively.

All parameters are of two types: problem constraint parameters

and algorithm parameters. The former is shown in Table 4. For

synthetic datasets, the known window length and delay range of

data generation are used as the constraints of our search. For real-

world datasets, the parameters are set according to the domain

common sense.

The default values of algorithm parameters are as follows. In

phase one, we use𝑤𝑒 in the shrinking strategy and𝑚𝑖𝑛𝑖𝐿 in trim

operations of both strategies. In phase two, we use 𝛿𝑙 and 𝛿𝑠 as

the termination parameter of the search process. 𝑚𝑖𝑛𝑖𝐿 =
𝐿𝑚𝑖𝑛

10

for both strategies, 𝑤𝑒 = 2𝐿𝑚𝑎𝑥 and 𝛿𝑠 = 𝛿𝑙 =
𝐿𝑚𝑖𝑛

10
for NLC𝐸 ,

𝛿𝑠 = 𝛿𝑙 =
𝐿𝑚𝑖𝑛

2
for NLC𝑆 . We discuss them in more detail in

Section 6.2.

Measurements. The algorithm quality is measured by precision,

recall and F1-score. According to the results, all data points in the

time series pair are divided into two types: positive and negative.

Positive means that the point falls in a correlated window pair, and

negative means the opposite. There are four situations for each

point. True Positives (TP), means that the true correlated point

is marked as positive by the algorithm. False Positives (FP), False

negatives (FN) and True negatives (TN) are defined similarly. The

quality is evaluated by 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
𝑇𝑃+𝐹𝑁 and

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 accordingly.

6.2 Parameter Influences
First, we study the influence of parameters, 𝑤𝑒 ,𝑚𝑖𝑛𝑖𝐿, 𝛿𝑠 and 𝛿𝑙 .

When adjusting one parameter, other parameters keep default val-

ues. The used dataset is the synthetic non-linear dataset.

𝑚𝑖𝑛𝑖𝐿. The trim operation used in phase one is controlled by

𝑚𝑖𝑛𝑖𝐿. As shown in Figure 9(a), all F1-score, precision, and recall of

NLC𝐸 are always greater than 0.9 when𝑚𝑖𝑛𝑖𝐿 is below 0.5 ∗ 𝐿𝑚𝑖𝑛 .

Recall reaches the best when𝑚𝑖𝑛𝑖𝐿 is set to 0.1∗𝐿𝑚𝑖𝑛 , F1-score and

precision are the highest when𝑚𝑖𝑛𝑖𝐿 = 0.4 ∗ 𝐿𝑚𝑖𝑛 . Without the

trim operation, the time consumption of NLC𝐸 increases apparently,

and the recall and precision drop below 0.9, which also verifies the

effectiveness of the trim operation.

Figure 9(b) shows that all three indicators of NLC𝑆 are almost

unchanged when 𝑚𝑖𝑛𝑖𝐿 is less than 0.5 ∗ 𝐿𝑚𝑖𝑛 . Similarly, the ef-

ficiency decreases when NLC𝑆 is without trim operation. So we

recommend𝑚𝑖𝑛𝑖𝐿 to be set as 0.1 ∗ 𝐿𝑚𝑖𝑛 .

0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

 Precision

 Recall

 F1-score

 Runtime

we / Lmax

70

80

90

100

110

120

R
u
n
tim

e
(s)

Figure 12: Influence of parameter𝑤𝑒

𝛿𝑙 and 𝛿𝑠 . In phase two, the search termination is determined

by 𝛿𝑠 and 𝛿𝑙 . It can be seen from Figure 10 and Figure 11 that as

𝛿𝑙 and 𝛿𝑠 increase, time consumption, recall and F1-score decrease.

The changes caused by 𝛿𝑙 are more significant than 𝛿𝑠 . This is

because in our nested one-dimensional search strategy, 𝛿𝑙 are used

more frequently. When 𝛿𝑠 and 𝛿𝑙 are set within 𝐿𝑚𝑖𝑛 , F1-score is

always greater than 0.8. To balance effectiveness and efficiency, the

recommended values are 𝛿𝑠 = 𝛿𝑙 =
𝐿𝑚𝑖𝑛

10
for NLC𝐸 , 𝛿𝑠 = 𝛿𝑙 =

𝐿𝑚𝑖𝑛

2

for NLC𝑆 . In fact, both of them perform stably. As long as they are

set within a reasonable range, good results will be obtained.

Here, we also compare the performance without phase two. Fig-

ure 10 and Figure 11 show that without phase two, the precision

drops significantly, which verifies its effectiveness.

𝑤𝑒 . Results are shown in Figure 12. It can be seen that 𝑤𝑒 is a

trade-off between precision and recall. As𝑤𝑒 becomes larger, preci-

sion increases and recall decreases gradually. Moreover, the larger

the 𝑤𝑒 , the less time it takes. To balance efficiency and accuracy,

the recommended value of𝑤𝑒 is 2 ∗ 𝐿𝑚𝑎𝑥 .

6.3 Results on Synthetic Datasets
In this experiment, we compare NLC with other approaches on

synthetic datasets.

6.3.1 Linear dataset results.
In this experiment, we compare NLC𝐸 and NLC𝑆 with MASS, Jocor

and TYCOS. Since MI and PCC are both used, a unified standard

needs to be set. Among all the known correlated pairs, the minimum

PCC and MI are used as the threshold for linear and non-linear

methods respectively.

1371

Table 5: Comparison between NLC𝐸 and NLC𝑆

Density

NLC𝐸 NLC𝑆 (𝑤𝑒 = 3000) NLC𝑆 (𝑤𝑒 = 4000)

Runtime(s) Precision(%) Recall(%) F1-score Runtime(s) Precision(%) Recall(%) F1-score Runtime(s) Precision(%) Recall(%) F1-score

0.05 38.284 98.39 98.78 0.9858 25.849 97.20 98.22 0.9771 24.945 95.52 88.46 0.9186

0.1 41.155 98.14 97.92 0.9803 28.979 97.98 81.02 0.8869 29.051 95.60 76.54 0.8501

0.15 39.538 96.63 97.53 0.9708 32.506 97.39 73.92 0.8405 30.879 96.09 71.35 0.8189

0.2 41.437 96.82 97.17 0.9700 33.293 96.11 63.57 0.7653 33.766 95.16 49.64 0.6525

0.25 43.702 97.04 95.66 0.9635 35.165 95.99 57.65 0.7203 33.333 95.17 43.55 0.5975

0.3 46.816 95.92 95.84 0.9588 35.829 95.80 46.42 0.6254 32.854 95.16 39.17 0.5549

0.35 45.548 96.47 96.18 0.9633 39.174 95.45 44.78 0.6096 37.612 93.18 32.71 0.4842

0.4 49.520 96.39 96.11 0.9625 41.317 96.10 41.96 0.5842 33.993 95.31 31.15 0.4695

0.45 54.242 96.38 95.96 0.9617 41.783 95.14 38.20 0.5451 37.144 94.43 27.19 0.4223

0.5 57.840 96.87 95.48 0.9617 44.485 94.83 34.32 0.5040 34.953 93.95 24.34 0.3867

 Precision Recall F1-score Runtime

120

0.0

0.2

0.4

0.6

0.8

1.0

NLCE NLCS MASS JOCOR TYCOS 0

50

100

150

200

250

R
u
n
tim

e
(s)

Figure 13: Linear dataset

0.0

0.2

0.4

0.6

0.8

1.0

NLCE NLCS MASS JOCOR TYCOS 0

50

100

150

200

250

R
u
n
tim

e
(s)

Figure 14: Non-linear dataset

0 2 4 6 8 10
0

500

1000

1500

2000

2500

Data scale

R
u
n
ti

m
e
(s

)

 TYCOS

 NLCE

105

Figure 15: Efficiency

-150 -100 -50 0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

F
1
-s

co
re

Time delay

 TYCOS

 NLCE

Figure 16: Delay influence

The experimental results are shown in Figure 13. Except TY-

COS, all other approaches perform well for the linear correlation.

Moreover, NLC𝐸 achieves the highest precision, recall and F1-score.

Precision of NLC𝑆 is the second highest, but it is more efficient

than NLC𝐸 .

MASS has the second highest F1-score, but precision is slightly

lower. This is because MASS tends to find more windows that may

contain noise. Jocor’s precision is very high while recall is lower

than MASS due to the reduced search space. And the runtime is

much larger except TYCOS due to the preprocessing step. TYCOS’s

poor performance here is mainly because it only tries a few possible

values of the delay parameters.

6.3.2 Non-linear dataset results.
Experimental results are shown in Figure 14. 𝑁𝐿𝐶𝐸 achieves the

best on all three indicators, and 𝑁𝐿𝐶𝑆 is in the second place. Differ-

ent from the result on the linear dataset, MASS and Jocor, although

more efficient, work poorly when dealing with non-linear correla-

tions, which demonstrates the advantage of the MI-based approach.

Compared to 𝑁𝐿𝐶𝐸 , the merit of 𝑁𝐿𝐶𝑆 is that it is more efficient,

and also can achieve high F1-score when the density of correlation

pairs is low, Table 5 gives a more detailed comparison.

We further compare NLC𝐸 with TYCOS on the non-linear dataset.

Figure 15 shows the runtime results as the data size increases. It

can be seen that NLC𝐸 is much more efficient than TYCOS. In

Figure 16, we compare F1-score for different time delays of the

planted correlated pairs. NLC𝐸 always maintains a high F1-score no

matter the time delay. In contrast, the F1-score of TYCOS decreases

quickly as |𝜏 | increases. This result also verifies our observation

that 𝜏 has a larger influence on the MI value.

(a) Non-linear dataset (b) Electrical dataset

Figure 17: MI search space on time delay

We also compare the influence of 𝑠 , 𝑙 and 𝜏 on the MI value

in Figure 17. It can be found that in both synthetic datasets and

real-world datasets, the delay 𝜏 clearly has a greater influence on

the MI value, compared with 𝑠 and 𝑙 . In other words, if 𝜏 is correct

but 𝑠 and 𝑙 are wrong, it is still very hopeful to find the correlated

window pair. In contrast, it is difficult to find the target if we select

the wrong 𝜏 .

6.4 Effectiveness of Phase One
In this experiment, we compare two strategies in the first phase. As

mentioned above, NLC𝐸 and NLC𝑆 work well for different distribu-

tions of correlated pairs. So, we use correlated density to measure

the distribution of the correlated pairs. Formally, correlated density
is the ratio between the sum of the lengths of all planted correlated

window pairs and the total length 𝑛. The data generation process

is the same as the non-linear dataset, but the length constraint

is [300,700], and the delay constraint is [-30,30]. We generate ten

different non-linear datasets with different correlated densities.

The results of the experiments are shown in Table 5. It can be

seen that NLC𝐸 always maintains good performance: precision and

recall are always greater than 95%, and F1-score is always greater

than 0.95. Regardless of the distribution of correlated window pairs,

the performance of the window extending strategy in terms of data

accuracy is almost unaffected. The tolerance of correlation density

is a major advantage of this extending strategy. At the same time,

the runtime increases as the density increases, since the number of

windows needed to be searched also increases.

For the shrinking strategy, precision is hardly affected by the

correlated density. However, recall and F1-score decrease as the

density increases. This is determined by the nature of window

shrinking strategy. In order to ensure the advantage of efficiency, it

reduces the search space and inevitably misses some results. The

1372

greater the correlated density, the more correlated window pairs

will be lost. It is more efficient than the extending strategy.

In summary, window extending strategy is more accurate and

stable to variable data characteristics, but it takes more time. In con-

trast, window shrinking strategy has high precision and takes less

time, but it will miss window pairs when the density increases. The

choice between these two strategies is the consideration of accu-

racy and efficiency. If we are more focused on the accuracy or want

to know the specific positions, and we are willing to spend more

time, NLC𝐸 is a good choice. Otherwise, using window shrinking

strategy is a better choice.

6.5 Case Study
Next, we compare them on three real-world datasets.

6.5.1 Case 1: TE dataset.
In this experiment, to make the comparison fair, we determine

the threshold as follows. We first sample data and set a PCC thresh-

old, use a linear method to search results, based on which, we

determine the MI threshold. Specifically, we sample 10 time series,

the PCC threshold is set as 0.9, and MASS is used to detect corre-

lations. There are 138 correlated window pairs found by MASS in

total. We set the MI threshold to 0.8, there are 117 pairs with the

MI value greater than 0.8, which means that theoretically 85% of

linear correlations can be found by methods using MI.

It can be seen from Table 6 that NLC𝐸 has found the most corre-

lated window pairs (|CP|), and the longest total correlation length

(

∑ |CP |
𝑖=1

𝑙𝑖). TYCOS finds the second most |CP|, but is much slower.

MASS is the fastest but finds less correlated window pairs than

NLC𝐸 and TYCOS. As examples in Figure 1, it is impossible for linear

methods to identify such non-linear correlations. Jocor finds the

least results, which is also due to the limitations of linear methods.

Table 6: TE dataset results

Methods Runtime (s) |CP | ∑|CP|
𝑖=1

𝑙𝑖
¯𝑙

MASS 597.79 6114 945560 154.65

Jocor 1043.71 3297 536781 162.81

TYCOS 5226.97 6374 995260 156.14

NLC𝑆 1896.47 5585 1164839 208.57

NLC𝐸 2717.79 7435 1635262 219.94

6.5.2 Case 2: stock market dataset.
In this experiment, We compare MASS, Jocor, TYCOS and NLC.

For NLC𝑆 , 𝑤𝑒 is set as 600 here. The threshold 𝜃 is determined

similarly as TE dataset. Similarly, we sample 10 time series, set PCC

threshold to 0.8, use MASS to find 74 linear correlated window pairs.

We set MI threshold to 0.7, there are 70 pairs meeting the threshold

condition, which can theoretically be detected by MI methods.

Table 7: Stock market dataset results

Methods Runtime (s) |CP | ∑|CP|
𝑖=1

𝑙𝑖
¯𝑙

Jocor 4707.90 2398 704599 293.83

MASS 457.75 2526 742910 294.11

TYCOS 2483.38 3447 717370 208.11

NLC𝑆 805.59 2297 751481 327.16

NLC𝐸 1958.83 4138 1368163 330.63

The result is shown in Table 7. NLC𝐸 and TYCOS find much

more pairs (|CP|) than Jocor and MASS, which still benefits from

the MI metric.

Compared with the synthetic datasets, TYCOS performs much

better in stock market dataset. Due to the strong correlation of

stocks in the same industry, imprecision of time delay has little

effect. However, the average length found by TYCOS is the shortest.

This is because TYCOS always stays in the starting window pair,

the search process is stuck and cannot give better results. MASS

finds more pairs than Jocor, and takes much less time. Although

MASS is not proposed for the problem here, it has wide applicability

and high efficiency.

Some detected non-linear windows are shown in Figure 18. For

AAPL and IBM, the whole correlation length is 355 days and PCC

value is 0.0965, of which the first 80 days show a positive correlation

(𝑃𝐶𝐶 = 0.7571), the 81-200 days show a negative correlation (𝑃𝐶𝐶 =

−0.8493), and the last 155 days show a positive correlation (𝑃𝐶𝐶 =

0.8234). For INTC and ORCL, the window correlation length is 200

days, of which the first 140 days show a negative correlation(𝑃𝐶𝐶 =

−0.6256), and the last 40 days show a positive correlation(𝑃𝐶𝐶 =

0.7272). The overall PCC is close to 0, but𝑀𝐼 > 1.

If positive and negative correlations alternate rapidly, the PCC

value will be very low. However, we cannot deny that they are

correlated. This change process is similar to the Cross relation in

Table 3, and is very common in stock changes. MI can detect such

alternating positive and negative correlations.

17/09/20 18/03/19 18/09/15 19/03/14

120

140

160

180

200

220

C
lo

s
e
 P

ri
c
e

 AAPL IBM

14/04/01 14/07/20 14/11/07 15/02/25

25

30

35

40

45

C
lo

s
e
 P

ri
c
e

 INTC ORCL

(a) AAPL VS IBM (b) INTC VS ORCL

Figure 18: Non-linear pairs in stock market dataset

6.5.3 Case 3: electrical dataset.
Electrical dataset records the instantaneous electrical power of

various devices per minute. If the device is not in use, the power

consumption is 0. We compare TYCOS and NLC. We set the initial

threshold 𝜃0 to 0.2, and 𝜃 to 0.8.

MASS and Jocor are not compared here, since they cannot detect

meaningful correlations in this dataset. They tend to detect the

unused state of the device. As shown in Figure 19(a), analyzing

the time series of two dryers, the PCC value of correlated window

pairs found by MASS is approximately 1.0, but most results are

meaningless. In contrast, the results of our approach are obviously

more meaningful. Figure 19(b) shows an example.

The results are shown in Table 8. NLC𝐸 still finds the most pairs

and has the longest length. TYCOS finds the second most pairs but

takes much more time. NLC𝑆 with𝑤𝑒 = 160 is the fastest but finds

fewer results.

We analyze the results of NLC𝑆 by taking different values of𝑤𝑒 .

When𝑤𝑒 = 240, |CP| is the most, and
¯𝑙 is also the longest. But why

𝑤𝑒 = 240 is better than𝑤𝑒 = 180 and𝑤𝑒 = 480? In the comparison

1373

0

500

1000

1500

2000

2500

3000

In
st

an
ta

n
eo

u
s

P
o
w

er
 U

se
d
(W

) Dryer1 Dryer2

0

500

1000

1500

2000

2500

3000

In
st

an
ta

n
eo

u
s

P
o
w

er
 U

se
d
(W

) Dryer1 Dryer2

(a) Found by linear method (b) Found by non-linear method

Figure 19: Detected correlations in electrical dataset

Table 8: Electrical dataset results

Methods Runtime (s) |CP | ∑|CP|
𝑖=1

𝑙𝑖
¯𝑙

TYCOS 37427.13 2871 162549 56.62

NLC𝑆 (180) 850.57 1504 122831 81.67

NLC𝑆 (240) 1107.27 1826 151943 83.21
NLC𝑆 (480) 854.90 1461 121321 83.04

NLC𝐸 2485.92 4491 338053 75.27

experiment in section 6.4, the shrinking strategy’s precision is high

but recall is low, which means many answers have been missed.

In this real-world case, the distribution is uncertain. If 𝑤𝑒 is set

shorter (𝑤𝑒 = 180), the search range will become smaller since we

should ensure that the window length is in [40,120]. The target may

also be missed if it is just between two envelope windows. If𝑤𝑒 is

set higher (𝑤𝑒 = 480), the search range will be wider. However, if

the envelop window contains multiple correlations, other results

would be missed. Therefore,𝑤𝑒 must be set at a suitable value.

We have quantified the coverage of results between NLC𝐸 and

TYCOS from two directions. First, we mark all CP found by TYCOS,

check with CP found by NLC𝐸 in these marked sequences, and

count the overlap length ratio. The statistical coverage in the other

direction is also the same way. The results are shown in Table 9.

Most pairs found by TYCOS can be found by NLC𝐸 , while most

pairs found by NLC𝐸 cannot be found by TYCOS.

Table 9: Coverage results between NLC𝐸 and TYCOS
Types X Coverage Y Coverage Total Coverage

NLC𝐸 ->TYCOS 0.8758 0.8931 0.8845

TYCOS->NLC𝐸 0.3700 0.3657 0.3678

We show examples of non-linear pairs in Figure 20. Lights1st-
FloorA refers to a subset of lighting on the first floor, including lights

living room, hallway, and bedroom 4, while Lights1stFloorB includes

the hallway, bathroom, kitchen, and dining room. We have found a

total of 60 correlated window pairs between Lights1stFloorA and

Lights1stFloorB, of which 40 pairs’ PCC is less than 0.5. Between

Kitchen and Dining room, 42 correlated window pairs are found, of

which 13 pairs’ PCC is less than 0.5.

7 RELATEDWORKS
Past research usually uses covariance and Pearson correlation coef-

ficient (PCC) [20] to measure the correlation between data. In the

financial field, Buraschi et al. [2] study significant covariance com-

ponents and derive optimal portfolio implications for economies.

In the medical field, Huang et al. [12] apply PCC to identify disease-

specific biomarkers by comparing the gene expression profiles

0

20

40

60

80

100

120

In
st

an
ta

n
eo

u
s

P
o
w

er
 U

se
d
(W

) Lights1stFloorA Lights1stFloorB

... ...

68

69

70

71

72

73

74

In
st

an
ta

n
eo

u
s

P
o
w

er
 U

se
d
(W

) Kitchen Dining Room

... ...

(a) Lighting system correlations (b) Kitchen VS Dining room

Figure 20: Non-linear pairs in electrical dataset

between normal and disease states. In the field of geology, Dean et
al. [5] analyze correlation to study the stratigraphic sequence.

Recently, researchers expand the concept of correlation. Sarma

et al. [24] and Alawini et al. [1] capture relatedness between data

tables. Roy et al. [23] explain relations among the outputs of SQL

queries based on the notion of intervention. Pochampally et al. [21]
model correlations between sources and apply it in truth finding.

However, these studies all focus on the overall correlation and

lack of attention to the local time windows. Also, there exist some

works searching the local correlation. Rakthanmanon et al. [22]
propose MASS to quickly find the most similar subsequence to

the query in the time series, which greatly improves the search

performance. Unfortunately, MASS cannot perform the correlation

search between two long time series when the position of correla-

tion is uncertain since the search relies on queries. Mueen et al. [18]
propose Jocor, an efficient algorithm to join two long time series

in their most correlated segments of arbitrary lag and duration.

Jocor also takes into account the influence of window length and

uses length-adjusted distance. Yeh et al. [27] propose MatrixProfile

series algorithms to search for time series subsequence all-pairs-

similarity-search. Although the time window is considered more

carefully, the length of the window of MatrixProfile is still fixed.

All approaches mentioned above use traditional correlation,

which fundamentally determines that they are limited to linear

and monotonic dependencies, and unable to detect complex corre-

lation correlations. Ho et al. [11] study the use of MI for correlation

discovery, and proposed AMIC to search for the multi-scale cor-

relation of big data. Later, Ho et al.propose the complete TYCOS

approach in [9], which considers the time delay factor and improves

the performance. However, TYCOS suffers from dealing with the

large time delay. Also, the efficiency is much worse than NLC.

8 CONCLUSION
In this paper, we study the problem of non-linear correlation search

in two long time series. We propose a two-phase approach. In phase

one, we propose two strategies to generate candidates. Window

shrinking strategy is suitable for the sparsely distributed correla-

tions, while window extending strategy is slightly slower, but can

find more pairs when the correlations are distributed densely. In

phase two, we propose a nested search strategy to refine candidates.

Experimental results verify the efficiency and effectiveness of NLC.

ACKNOWLEDGMENTS
The work is supported by the Ministry of Science and Technology

of China, National Key Research and Development Program (No.

2020YFB1710001).

1374

REFERENCES
[1] Abdussalam Alawini, David Maier, Kristin Tufte, and Bill Howe. 2014. Help-

ing scientists reconnect their datasets. In Proceedings of the 26th International
Conference on Scientific and Statistical Database Management. 1–12.

[2] Andrea Buraschi, Paolo Porchia, and Fabio Trojani. 2010. Correlation risk and

optimal portfolio choice. The Journal of Finance 65, 1 (2010), 393–420.
[3] EdmundKBurke and Yuri Bykov. 2017. The late acceptance hill-climbing heuristic.

European Journal of Operational Research 258, 1 (2017), 70–78.

[4] C. Chatfield. 2004. The analysis of time series: an introduction. Chapman &

Hall/CRC.

[5] Walter E Dean and Roger Y Anderson. 1974. Application of some correlation coef-

ficient techniques to time-series analysis. Journal of the International Association
for Mathematical Geology 6, 4 (1974), 363–372.

[6] James J Downs and Ernest F Vogel. 1993. A plant-wide industrial process control

problem. Computers & chemical engineering 17, 3 (1993), 245–255.

[7] Liying Fang, Han Zhao, Pu Wang, Mingwei Yu, Jianzhuo Yan, Wenshuai Cheng,

and Peiyu Chen. 2015. Feature selection method based on mutual information

and class separability for dimension reduction in multidimensional time series

for clinical data. Biomedical Signal Processing and Control 21 (2015), 82–89.
[8] William Healy, Farhad Omar, Lisa Ng, Tania Ullah, William Payne, Brian

Dougherty, and A Hunter Fanney. 2016. Net zero energy residential test fa-

cility instrumented data; year 2. National Institute of Standards and Technology,
Gaithersburg, MD (2016).

[9] Nguyen Ho, Torben Bach Pedersen, Van Long Ho, and Mai Vu. 2020. Efficient

Search for Multi-Scale Time Delay Correlations in Big Time Series Data.. In EDBT.
37–48.

[10] Nguyen Ho, Torben Bach Pedersen, Mai Vu, Christophe AN Biscio, et al. 2019.

Efficient bottom-up discovery of multi-scale time series correlations using mutual

information. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 1734–1737.

[11] Nguyen Ho, Huy Vo, Mai Vu, and Torben Bach Pedersen. 2019. Amic: An adaptive

information theoretic method to identify multi-scale temporal correlations in big

time series data. IEEE Transactions on Big Data 7, 1 (2019), 128–146.
[12] Hung-Chung Huang, Siyuan Zheng, and Zhongming Zhao. 2010. Application of

Pearson correlation coefficient (PCC) and Kolmogorov-Smirnov distance (KSD)

metrics to identify disease-specific biomarker genes. Bmc Bioinformatics 11, 4
(2010), 1–2.

[13] S. K. Jensen, T. B. Pedersen, and C. Thomsen. 2017. Time Series Management

Systems: A Survey. TKDE 29, 11 (2017), 2581–2600.

[14] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. 1993. Lipschitzian

optimization without the Lipschitz constant. Journal of optimization Theory and

Applications 79, 1 (1993), 157–181.
[15] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating

mutual information. Physical review E 69, 6 (2004), 066138.

[16] Yuhong Li, Leong Hou U, Man Lung Yiu, and Zhiguo Gong. 2013. Discovering

Longest-lasting Correlation in Sequence Databases. Proc. VLDB Endow. 6, 14
(2013), 1666–1677.

[17] Matthieu Lucke, Xueyu Mei, Anna Stief, Moncef Chioua, and Nina F Thornhill.

2019. Variable selection for fault detection and identification based on mutual

information of alarm series. IFAC-PapersOnLine 52, 1 (2019), 673–678.
[18] Abdullah Mueen, Hossein Hamooni, and Trilce Estrada. 2014. Time series join on

subsequence correlation. In 2014 IEEE International Conference on Data Mining.
IEEE, 450–459.

[19] Oleh Onyshchak. 2020. StockMarket Dataset. https://doi.org/10.34740/KAGGLE/

DSV/1054465 (Last accessed 3 March 2022).

[20] Karl Pearson. 1895. VII. Note on regression and inheritance in the case of two

parents. proceedings of the royal society of London 58, 347-352 (1895), 240–242.

[21] Ravali Pochampally, Anish Das Sarma, Xin Luna Dong, Alexandra Meliou, and

Divesh Srivastava. 2014. Fusing data with correlations. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 433–444.

[22] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,

BrandonWestover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Searching

and mining trillions of time series subsequences under dynamic time warping.

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. 262–270.

[23] Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations for

database queries. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. 1579–1590.

[24] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y Halevy, Hongrae Lee, Fei Wu,

Reynold Xin, and Cong Yu. 2012. Finding related tables. (2012).

[25] Jiaye Wu, Yang Wang, Peng Wang, Jian Pei, and Wei Wang. 2018. Finding

maximal significant linear representation between long time series. In 2018 IEEE
International Conference on Data Mining (ICDM). IEEE, 1320–1325.

[26] Chunhua Yang, Sen Xie, Xiaofeng Yuan, Xiaoli Wang, and Yongfang Xie. 2018.

A new data reconciliation strategy based on mutual information for industrial

processes. Industrial & Engineering Chemistry Research 57, 38 (2018), 12861–

12870.

[27] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. 2016.

Matrix profile I: all pairs similarity joins for time series: a unifying view that

includes motifs, discords and shapelets. In 2016 IEEE 16th international conference
on data mining (ICDM). Ieee, 1317–1322.

1375

https://doi.org/10.34740/KAGGLE/DSV/1054465
https://doi.org/10.34740/KAGGLE/DSV/1054465

