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ABSTRACT

Core maximization, that enlarges the 𝑘-core as much as possible

by inserting a few new edges into a graph, is particularly useful

for social group engagement and network stability improvement.

However, the core maximization problem has been theoretically

proven to be NP-hard even APX-hard for 𝑘 ≥ 3. Existing heuristic

approaches suffer from the limitation of inefficiency on large graphs.

To address this limitation, in this paper, we revisit this challenging

yet important problem of core maximization, that is, given a graph

𝐺 , a number 𝑘 , and a budget 𝑏, to insert 𝑏 new edges into 𝐺 such

that the corresponding 𝑘-core is maximized. We propose a novel

algorithm FastCM+ based on several fast search strategies. The

core idea is to apply graph partition to divide (𝑘 − 1)-shell into
different components. Then, FastCM+ considers each (𝑘 − 1)-shell
component independently to convert different layered vertices into

𝑘-core, in two manners of completely and partially. Based on the

complete/partial conversions, FastCM+ is generalized to further

handle (𝑘−𝜆)-shell conversions for 2 ≤ 𝜆 ≤ 𝑘 . Leveraging dynamic

programming combinations of different components’ potential an-

swers, FastCM+ finds a good-quality answer for edge insertions.

Experimental results on eleven datasets demonstrate that our al-

gorithm runs much faster than state-of-the-art methods on large

graphs meanwhile achieving better answers.
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1 INTRODUCTION

One fundamental task of graph analytics is detecting cohesive sub-

structures on various complex networks, e.g., social networks, bi-

ological networks, transportation networks, and so on [18, 42].

Among different notions of cohesive subgraphs in the literature,

a well-studied definition of 𝑘-core is the largest subgraph of a

given graph such that every vertex has at least 𝑘 neighbors in this
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Figure 1: An example of 𝑘-core maximization in graph 𝐺 .

Here, 𝑘 = 3 and the budget 𝑏 = 3. The updated graph𝐺 ′ is𝐺 in-

serted with three new edges (𝑣2, 𝑣5), (𝑣1, 𝑣4), and (𝑣10, 𝑣11). The
3-core has eight new vertices F = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣10, 𝑣11, 𝑣14}.

subgraph [26, 36]. The 𝑘-core discovery enjoys an efficient compu-

tational property in linear time of graph size, which has many ap-

plications, e.g., community detection and search [12, 14, 18, 33, 41],

group influence maximization [20, 35], user engagement [39], graph

visualization [1, 9, 42], anomaly detection [32], interdisciplinary

collaboration search [11], structural collapse prediction [28], and

also network robustness analytics [10, 22]. Recently, the problem

of core maximization has been studied to maximize the node size

of 𝑘-core by inserting 𝑏 new edges into a graph [8].

Motivating example. Figure 1(a) illustrates a graph 𝐺 with 13

vertices. The whole graph 𝐺 is the 1-core where every vertex

has at least one neighbor. The coreness of each vertex is marked

with a value nearby the vertex label in Figure 1, e.g., the core-

ness of 𝑣1 is 2. The 3-core has four vertices {𝑣6, 𝑣7, 𝑣8, 𝑣9}. Assume

that 𝑘 = 3 and the budget 𝑏 = 3, the core maximization aims

at enlarging the 3-core of 𝐺 by inserting three new edges into

graph 𝐺 . An optimal solution is to insert three new edges {(𝑣1, 𝑣4),
(𝑣2, 𝑣5), (𝑣10, 𝑣11)} into 𝐺 . The updated graph 𝐺 ′ and the new 3-

core are shown in Figure 1(b), which has eight new 3-core vertices

F = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣10, 𝑣11, 𝑣14}.
Core maximization has been shown to be useful in many real

applications via adding new edges, including the social group en-

gagement in social networks by creating new friendships via a func-
tion of friend recommendation [5, 23], identifying missing defense
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links in military networks, topology extension in distributed com-

puting networks, enhancing stability for resource exchanging in

P2P networks [8, 44], and also improving the connectivity of flight

networks by adding new airlines as shown in Exp-8 in Section 7.

Challenges and Contributions. In this paper, we revisit an impor-

tant problem of 𝑘-core maximization by adding 𝑏 new edges into

graph𝐺 [8, 44, 45]. The core maximization problem is theoretically

shown to be NP-hard and even APX-hard for 𝑘 ≥ 3 [44]. A greedy

approach EKC proposed in [44] inserts the best candidate edges

into graph 𝐺 one by one until using up all of 𝑏 budget. However,

EKC has a high time complexity of 𝑂 (𝑏𝑛2𝑚) where 𝑛 and𝑚 are

the sizes of vertices and edges in 𝐺 . Due to a large number of edge
candidates to be considered, EKC cannot easily handle large graphs.

To improve the efficiency, a faster approach VEK [45] is proposed

by considering vertex candidates rather than edge candidates in
𝑂 (𝑏𝑛𝑚) time. However, both methods suffer from another quality

limitation by using a greedy strategy of inserting one edge or con-
verting one vertex at each round of insertions, further improvements

on quality and efficiency remain open.

To address the above limitations, we propose a novel algorithm

FastCM+ based on (𝑘 − 1)-shell partition and dynamic program-

ming techniques, which allows inserting multiple edges to convert

a batch of vertices at each round of insertions. The key idea is to

identify candidate vertices outside of 𝑘-core and consider convert-

ing them into 𝑘-core followers level by level. First, we identify a

substructure of (𝑘 − 1)-shell that is very close to becoming 𝑘-core.

We then propose two insertion strategies of complete conversion
and partial conversion, which convert these (𝑘 − 1)-shell vertices
to 𝑘-core vertices under a budget 𝑏. After exploring all potential

answers for each (𝑘 − 1)-shell component, FastCM+ finally applies

a dynamic programming optimization to select edge insertions and

obtain good answers. If there is a remaining budget, it converts

vertices from other (𝑘−𝜆)-shells to followers for 𝜆 ≥ 2. In summary,

we make the main contributions in this paper as follows.

• We review the existing algorithms for𝑘-coremaximization and

analyze their pros and cons, which motivates the design of our

improved algorithms for fast core maximization (Section 4).

• We analyze the structural properties of (𝑘 − 1)-shell and iden-

tify (𝑘 − 1)-collapse as good candidates for edge insertion.

Then, we leverage the (𝑘 − 1)-shell partition to identify all

(𝑘 − 1)-shell components that are independent of each other.

Finally, we propose the FastCM algorithm to convert each

(𝑘 − 1)-shell component to 𝑘-core completely (Section 5).

• We propose another novel edge insertion strategy of partially

converting (𝑘 −1)-shell component to 𝑘-core when the budget

𝑏 is insufficient for complete conversion. We propose to an-

chor the low-layered vertices to followers by a well-designed

function of follower gain. Then, we integrate the dynamic pro-

gramming techniques to combine all (𝑘 − 1)-shell partitions’
results and return the answer of edge selections. Moreover, we

also extend the complete/partial (𝑘 − 1)-shell conversions to
handle (𝑘 − 𝜆)-shell conversion for 2 ≤ 𝜆 ≤ 𝑘 (Section 6).

• We conduct extensive experiments on large real-world graphs.

The results show that our proposed approach FastCM+ can
effectively enlarge 𝑘-core meanwhile running 34,000x and

391x faster than the state-of-the-art EKC [44] and VEK [45],

respectively (Section 7).

We discuss related work in Section 2 and give the problem for-

mulation in Section 3. Finally, we conclude the paper in Section 8.

2 RELATEDWORK

Our work is related to core maintenance, core maximization, and
core minimization.

Core maintenance. Core maintenance computes the vertex core-

ness efficiently over dynamic graphs where vertices/edges are in-

serted and removed, which is particularly useful for studying core

structure modification [31]. Existing studies [17, 19, 31, 40] theo-

retically prove that the coreness change of each vertex is at most

one after inserting/deleting one edge. Zhang et al. [40] propose a

novel order-based approach to efficiently update the vertex core-

nesses for a changed graph. Core maintenance algorithms are also

developed for edge-weighted graphs [24, 43]. Parallel algorithms

for core maintenance are studied in [17, 19].

Core maximization and minimization. Several recent studies

focus on changing the graph structure to maximizes/minimizes

the size of 𝑘-core [5, 21, 22, 25, 27, 37, 38, 45, 46]. Zhang et al. [38]

study the collapsed 𝑘-core problem to find critical users for social

network engagement. The core minimization is to remove a small

set of edges from a network such that it minimizes the 𝑘-core struc-

ture [27, 46]. [22] measures the stability of 𝑘-core under random

edge/node deletions. [10] introduces a network robustness measure

based on 𝑘-cores and evaluates the stability of the network under

node removals. On the other hand, the anchored 𝑘-core maximiza-

tion seeks to enlarge 𝑘-core by anchoring a set of nodes outside of

𝑘-core, even if these anchored vertices have less than 𝑘 neighbors

in the 𝑘-core [5, 21, 37]. In addition, there exist various studies

that manipulate other topology patterns, e.g., reducing polarized

bubble radius [16], enhancing communicability [2], improving be-

tweenness centrality [4], coverage centrality maximization [13],

eccentricity minimization [29], and truss maximization [7, 34].

3 PROBLEM FORMULATION

We consider an undirected and unweighted graph𝐺 (𝑉 , 𝐸) with the

set of vertices 𝑉 and the set of edges 𝐸 where |𝑉 | = 𝑛 and |𝐸 | =𝑚.

For a vertex 𝑢 ∈ 𝑉 and a subgraph 𝐻 ⊆ 𝐺 , we denote 𝑁𝐻 (𝑢) as
the set of 𝑢’s neighbors in graph 𝐻 , i.e., 𝑁𝐻 (𝑢) = {𝑣 ∈ 𝑉 (𝐻 ) :
(𝑣,𝑢) ∈ 𝐸 (𝐻 )}. Alternatively, for a vertex set 𝑃 ⊆ 𝑉 , we also use

the notation 𝑁𝑃 (𝑢) to represent the set of 𝑢’s neighbors in 𝑃 , i.e.,

𝑁𝑃 (𝑢) = {𝑣 ∈ 𝑃 : (𝑣,𝑢) ∈ 𝐸}. Moreover, the cardinality |𝑁𝐻 (𝑢) | is
called the degree of 𝑢 in 𝐻 . Given a vertex set 𝑆 ⊆ 𝑉 , the induced
subgraph of𝐺 by 𝑆 is denoted as𝐺𝑆 . Without loss of generality, we

assume that graph 𝐺 is connected, implying that𝑚 ≥ 𝑛 − 1.

3.1 K-Core and K-Shell

In the following, we give the definitions of 𝑘-core and coreness.

Definition 1 (𝑘-core). Given a graph 𝐺 and an integer 𝑘 ∈ Z,
the 𝑘-core, denoted by Ψ𝑘 , is the largest subgraph of𝐺 such that each
vertex has at least 𝑘 neighbors within Ψ𝑘 i.e., ∀𝑢 ∈ Ψ𝑘 , |𝑁Ψ𝑘 (𝑢) | ≥ 𝑘 .
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Definition 2 (coreness). The coreness of a vertex 𝑣 ∈ 𝑉 is
defined as the largest value 𝑘 such that there exists a non-empty
𝑘-core Ψ𝑘 containing 𝑣 , denoted as 𝑐 (𝑣) = max{𝑘 ∈ Z : 𝑣 ∈ Ψ𝑘 }.

Consider the graph 𝐺 in Figure 1(a). The 3-core of 𝐺 is Ψ3 =

{𝑣6, 𝑣7, 𝑣8, 𝑣9}. There exists no 4-core in 𝐺 . Thus, the coreness of

vertex 𝑣6 is 𝑐 (𝑣6) = 3. The core decomposition [3] is to compute

the coreness of all vertices 𝑣 in graph 𝐺 . The general idea of core

decomposition is to iteratively remove the smallest-degree vertex

and set its coreness as its degree at the time of removal. The vertices

with the same coreness form the 𝑘-shell as follows.

Definition 3 ((𝑘−1)-shell). The (𝑘−1)-shell of graph𝐺 , denoted
by 𝑆𝑘−1, is the set of vertices that have exactly the coreness of 𝑘 − 1,
i.e., 𝑆𝑘−1 = {𝑣 ∈ 𝑉 : 𝑐 (𝑣) = 𝑘 − 1}.

By Def. 3, a vertex that belongs to (𝑘−1)-shell, appears in (𝑘−1)-
core but not in 𝑘-core. Consider the graph𝐺 in Figure 1(a), there are

the 1-shell 𝑆1 = {𝑣12, 𝑣13}, the 2-shell 𝑆2 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣10, 𝑣11,
𝑣14}, and the 3-shell 𝑆3 = {𝑣6, 𝑣7, 𝑣8, 𝑣9}.

3.2 Problem Formulation

In this paper, we investigate the problem of core maximization,

which aims at inserting new edges 𝐸 into 𝐺 (𝑉 , 𝐸) such that the

𝑘-core of the new graph 𝐺 (𝑉 , 𝐸 ∪ 𝐸) becomes larger.

Problem 1 (Core Maximization). Given a graph 𝐺 (𝑉 , 𝐸), an
integer 𝑘 ∈ Z+ and a budget 𝑏 ∈ Z+, the problem is to insert a set of
new edges 𝐸 into 𝐺 such that the 𝑘-core of new graph 𝐺 (𝑉 , 𝐸 ∪ 𝐸)
(denoted as Ψ̂𝑘 ) is the largest. Equivalently,

𝐸 = argmax

|𝐸 | ≤𝑏,𝐸∩𝐸=∅
|Ψ̂𝑘 | − |Ψ𝑘 |.

Candidates and followers. The edges 𝐸 that may enlarge the

𝑘-core after insertions are called candidate edges. For a vertex 𝑣 ∈ 𝑉 ,

if 𝑣 has the coreness 𝑐 (𝑣) < 𝑘 in graph 𝐺 , but 𝑣 has the coreness

𝑐 (𝑣) ≥ 𝑘 in the new graph 𝐺 (𝑉 , 𝐸 ∪ 𝐸), we say that 𝑣 is a 𝑘-core
follower. The set of followers is defined as F = Ψ̂𝑘 \ Ψ𝑘 = {𝑣 ∈ 𝑉 :

𝑣 ∉ Ψ𝑘 , 𝑣 ∈ Ψ̂𝑘 }. Alternatively, the problem of core maximization is

to increase the most 𝑘-core followers F .

Example 1. Assume that the graph 𝐺 in Figure 1, 𝑘 = 3, and
𝑏 = 2. The best answer is to insert 𝐸 = {(𝑣1, 𝑣4), (𝑣2, 𝑣5)} edges into𝐺 ,
which brings five 3-core followers F = Ψ̂𝑘 \ Ψ𝑘 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}
as Ψ3 = {𝑣6, 𝑣7, 𝑣8, 𝑣9} and Ψ̂3 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9}. How-
ever, another solution 𝐸 = {(𝑣1, 𝑣4), (𝑣2, 𝑣3)} only brings four follow-
ers, which is a suboptimal solution. Even worse, the insertion of two
edges 𝐸 = {(𝑣1, 𝑣4), (𝑣2, 𝑣6)} cannot enlarge the 3-core at all.

Hardness. We present the problem hardness as follows.

Corollary 1. For two integers 𝑘 ≥ 3 and 𝑏 ≥ 1, the problem of
core maximization is NP-hard and even APX-hard, which cannot be
approximated in polynomial time within a ratio of (1 − 1

𝑒 + 𝜖) for
any small 𝜖 > 0, unless 𝑃 = 𝑁𝑃 [44].

Given the APX -hardness of core maximization problem and

the non-submodularity of its objective function 𝑓𝐺 (𝐸) = |Ψ̂𝑘 | −
|Ψ𝑘 | [44], it shows non-trivial challenges to develop polynomial-

time algorithms with approximate quality guarantee.

4 EXISTING ALGORITHMS AND OUR IDEAS

In this section, we review the existing heuristic solutions for 𝑘-

core maximization and identify their limitations [44, 45]. Then, we

present an overview of our solution framework.

4.1 Limitations of Existing Algorithms

EKC [44] and VEK [45] address the core maximization problem by

inserting new edges. EKC [44] adopts a greedy strategy to itera-

tively find the best candidate edge. Although several optimization

techniques are proposed to improve efficiency, EKC is inefficient

on large-scale graphs [45]. Thus, Zhou et al. [45] propose a vertex-

oriented algorithm VEK faster than EKC. The idea of VEK is to

convert one best candidate vertex to a follower by their proposed

scoring function in each iteration. However, both methods still

suffer from two major limitations as follows.

Limitation 1: high time complexities. EKC [44] takes 𝑂 (𝑏𝑚𝑛2)
time and the faster algorithm VEK [45] still takes 𝑂 (𝑏𝑚𝑛) time.

The time complexities may be hard to be scalable on large-scale

graphs with millions of vertices and edges. The reason is two-fold.

EKC needs to consider a huge number of valid candidate edges

in 𝑉 × 𝑉 \ 𝐸. For example, there exist 3,114,351 candidate edges

in EKC for enlarging the 10-core of a social network Twitter as

shown in Table 2. Second, computing followers for each candidate

edge/vertex by EKC and VEK is also time-consuming.

Limitation 2: poor-quality results and a limited pool of target

followers. EKC adopts the greedy strategy to insert edges one by

one, without considering inserting multiple edges simultaneously,
which may lead to a poor-quality answer. For example, consider

the graph 𝐺 in Figure 1(a), 𝑘 = 3 and 𝑏 = 2. In the first iteration,

EKC finds the best candidate edge 𝑒 = {(𝑣10, 𝑣11)} and three follow-
ers {𝑣10, 𝑣11, 𝑣14}. However, no more candidate edge can be chosen

in the next iteration. Similarly, VEK seeks to convert vertices one

by one, without considering converting multiple vertices simultane-
ously. VEK returns four followers F = {𝑣4, 𝑣10, 𝑣11, 𝑣14}. Thus, both
EKC and VEK fail to find the best answer as shown in Example 1.

Moreover, both approaches only consider the target followers of

vertices in (𝑘 − 1)-shell, without the consideration of converting

other (𝑘 − 𝜆)-shells into 𝑘-core for 2 ≤ 𝜆 ≤ 𝑘 . The limited target

pool of EKC and VEK also neglects that a special instance may

happen with an empty (𝑘 − 1)-shell for large 𝑘 and 𝑏. Therefore,

the core maximization results of EKC and VEK can be poor.

To address the above shortcomings, it motivates us to develop

faster and more effective core maximization algorithms.

4.2 Our Proposed Framework

In this section, we present our framework of fast core maximization

(FastCM+). In general, FastCM+ is a heuristic algorithm focusing

on the development of fast search strategies to identify important

vertices and convert them to followers in batch.

Overview. The FastCM+ algorithm has four phases:

(1) (𝑘 − 1)-shell partition phase: This phase partitions (𝑘 − 1)-
shell into several disjoint components. Each component can

be dealt with edge insertions for core conversion indepen-

dently. Moreover, it identifies a few key vertices in (𝑘 − 1)-
collapse for complete 𝑘-core conversion (Sections 5.1& 5.2).

1352



(2) Converting (𝑘 − 1)-shell to 𝑘-core phase: This phase ex-

plores to add new edges between the vertices of each (𝑘−1)-
shell component to convert these vertices to followers. We

propose efficient insertion strategies that consume a small

budget to complete the conversion. However, the input bud-

get 𝑏 may still be not enough for a full conversion in some

components. Specifically, we consider two cases:

• Case I: converting a (𝑘 − 1)-shell component to 𝑘-core

completely (Section 5.3).

• Case II: converting a partial of vertices in a (𝑘−1)-shell
component to 𝑘-core partially (Sections 6.1& 6.2).

(3) Dynamic programming based edge selection phase: Based

on the above exploration of conversion cases, this phase

uses𝑏 new edges to carefully select the components for edge

insertions, leveraging dynamic programming optimizations

to achieve the most followers (Section 6.3).

(4) Converting (𝑘−𝜆)-shell to𝑘-core phase: This phase extends
the techniques of (𝑘 −1)-shell conversion to handle (𝑘 −𝜆)-
shell conversion for 𝜆 ≥ 2. It further enlarges the 𝑘-core for

a budget surplus after the complete conversation of whole

(𝑘 − 1)-shell (Section 6.4).

Integrating all the above techniques, the whole FastCM+ algo-
rithm is presented in Section 6.5.

5 FastCM USING COMPLETE CONVERSION

In this section, we present a fast algorithm of core maximization,

which first finds the edge candidates in (𝑘−1)-shell and then inserts
𝑏 edges for full conversions to enlarge 𝑘-core.

5.1 (𝑘 − 1)-Collapse
Wefirst analyze the structural properties of (𝑘−1)-shell and identify
a good candidate of (𝑘 − 1)-collapse.

The vertices 𝑣 ∈ 𝑆𝑘−1 with the coreness 𝑐 (𝑣) = 𝑘 − 1 are good
candidates to be inserted with new edges, as they have only one

coreness difference gap to become 𝑘-core follower in a very close

way. Instead of randomly inserting edges associated with (𝑘 − 1)-
shell vertices, it needs to carefully select the edge candidates for

effectively increasing the degrees of (𝑘 − 1)-shell vertices and their

corresponding corenesses. Specifically, we discuss the degree of

(𝑘 − 1)-shell vertex 𝑣 ∈ 𝑆𝑘−1 in (𝑘 − 1)-core Ψ𝑘−1, i.e., |𝑁Ψ𝑘−1 (𝑣) |.
First, it clearly holds that |𝑁Ψ𝑘−1 (𝑣) | ≥ 𝑘 − 1, as the coreness 𝑐 (𝑣) ≥
𝑘 − 1. On the other hand, according to 𝑘-core in Def. 1, the vertices

of 𝑘-core have at least 𝑘 neighbors in 𝑘-core. As the (𝑘 − 1)-shell
vertex 𝑣 ∉ Ψ𝑘 , we have |𝑁Ψ𝑘 (𝑣) | < 𝑘 . However, it is common that

there exist (𝑘 − 1)-shell vertices having enough 𝑘 neighbors within

(𝑘 − 1)-core Ψ𝑘−1, i.e., |𝑁Ψ𝑘−1 (𝑣) | ≥ 𝑘 . For example, consider the

vertices 𝑣3 and 𝑣4 in Figure 1(a) and 𝑘 = 3, both 𝑣3 and 𝑣4 have three

neighbors within 2-core of graph𝐺 , e.g., |𝑁Ψ2
(𝑣3) | = |{𝑣1, 𝑣4, 𝑣5}| ≥

3. However, they fail to be contained in 3-core due to the peeling

property of other 2-shell neighbors 𝑣1, 𝑣2, and 𝑣5, as they have

exact 2 neighbors within 2-core, e.g., |𝑁Ψ2
(𝑣1) | = |{𝑣2, 𝑣3}| = 2 < 3.

Therefore, we divide the (𝑘 − 1)-shell vertices 𝑣 ∈ 𝑆𝑘−1 into two

categories: |𝑁Ψ𝑘−1 (𝑣) | = 𝑘 − 1 and |𝑁Ψ𝑘−1 (𝑣) | ≥ 𝑘 . The first one is

that the (𝑘 − 1)-shell vertex has exact 𝑘 − 1 neighbors within Ψ𝑘−1,
defined as (𝑘 − 1)-collapse as follows.

Definition 4 ((𝑘−1)-Collapse). The (𝑘−1)-collapse of graph𝐺 ,
denoted by𝐷𝑘−1, is a set of (𝑘−1)-shell vertices that have exactly 𝑘−1
neighbors in (𝑘−1)-core, i.e.,𝐷𝑘−1 = {𝑣 ∈ 𝑆𝑘−1 : |𝑁Ψ𝑘−1 (𝑣) | = 𝑘−1}.

Example 2. Consider the graph 𝐺 in Figure 1(a) and 𝑘 = 3. The
(𝑘 − 1)-collapse is 𝐷𝑘−1 = {𝑣1, 𝑣2, 𝑣5, 𝑣10, 𝑣11}.

The (𝑘 − 1)-collapse 𝐷𝑘−1 is the first batch to be deleted from

(𝑘 − 1)-shell 𝑆𝑘−1 in the process of 𝑘-core decomposition. The

departure of 𝐷𝑘−1 causes the departure of other vertices 𝑢 ∈ 𝑆𝑘−1
with |𝑁Ψ𝑘−1 (𝑢) | ≥ 𝑘 . The key idea of fast 𝑘-core maximization is to

insert news edges incident to vertices 𝐷𝑘−1.

5.2 (𝑘 − 1)-Shell Partition
Next, we develop a novel strategy of (𝑘 − 1)-shell partition, which
divides the (𝑘 − 1)-shell into multiple independent components

based on the graph connectivity. The (𝑘 − 1)-shell partition is

effective for inserting candidate edges associated with (𝑘−1)-collapse,
based on the following three important observations.

• Observation 1: There exists a large number of edge candidates

associated with (𝑘 − 1)-collapse in 𝐷𝑘−1 ×𝑉 \ 𝐸, with regard

to a limited budget 𝑏, i.e., 𝑏 ≪ |𝐷𝑘−1 ×𝑉 \ 𝐸 |. This desires a
significant pruning of edge candidates in the search space.

• Observation 2: If a (𝑘 − 1)-collapse vertex has no increment

in degree after 𝑏 edge insertions, it may cause a cascade degree

decrease, leading to a waste of all 𝑏 edge insertions. For exam-

ple, consider 𝑘 = 3 and 𝑏 = 1, an edge insertion of (𝑣1, 𝑣5) into
𝐺 in Figure 1(a), leads to no 𝑘-core follower. As the (𝑘 − 1)-
collapse vertex 𝑣2 still has the degree of 2, its departure from

3-core leads the further departure of 𝑣1, 𝑣3, 𝑣4, and 𝑣5.

• Observation 3: The edge insertions have heavy locality for

𝑘-core maximization. Continue the graph 𝐺 in Figure 1(a), if

we insert two edges {(𝑣1, 𝑣4), (𝑣2, 𝑣5))} into𝐺 , 𝑣10, 𝑣11, and 𝑣14
cannot become 𝑘-core followers. This suggests that we can

partition (𝑘 − 1)-shell into different components and consider

the edge insertion in each component independently.

Motivated by these observations, we make a (𝑘 − 1)-shell parti-
tion on the induced subgraph of 𝐺 by 𝑆𝑘−1 as 𝐺𝑆𝑘−1 below.

Definition 5 ((𝑘 − 1)-Shell Partition). The (𝑘 − 1)-shell parti-
tion is the set of ℎ components in graph𝐺𝑆𝑘−1 , denoted as P(𝑆𝑘−1) =
{T1, . . . ,Tℎ}, where

⋃ℎ
𝑖=1 T𝑖 = 𝑆𝑘−1 and |P(𝑆𝑘−1) | = ℎ.

For two different components T𝑖 and T𝑗 where 1 ≤ 𝑖, 𝑗 ≤ ℎ, T𝑖
and T𝑗 are disconnected in 𝐺𝑆𝑘−1 . Thus, the two vertex sets T𝑖 and
T𝑗 are also disjoint, i.e., T𝑖 ∩ T𝑗 = ∅.

Example 3. Consider graph 𝐺 in Figure 1(a) and 𝑘 = 3. The
2-shell is 𝑆2 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣10, 𝑣11, 𝑣14}. Base on (𝑘 − 1)-shell
partition, 𝑆2 is divided into two components P(𝑆2) = {T1,T2}, where
T1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} and T2 = {𝑣10, 𝑣11, 𝑣14}.

Independent insertions on (𝑘 − 1)-shell components. The

(𝑘 − 1)-shell partition enjoys an important property of insertion
independence for core maximization as follows.

Theorem 1. For two (𝑘 − 1)-shell components T𝑖 and T𝑗 , an edge
insertion (𝑢, 𝑣) where 𝑣,𝑢 ∈ T𝑖 , leads to no 𝑘-core follower in T𝑗 .

Proof. Assume that a vertex 𝑤 ∈ T𝑗 is a new 𝑘-core follower

for an edge insertion (𝑢, 𝑣). Obviously, 𝑐 (𝑢) = 𝑐 (𝑣) = 𝑐 (𝑤) = 𝑘 − 1.
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Algorithm 1 Complete Component Conversion

Input: a (𝑘 − 1)-shell component T𝑖 , budget 𝑏
Output: C𝑖 : the selected edge insertions, F𝑖 : the followers in T𝑖
1: The (𝑘 − 1)-collapse vertices of T𝑖 : 𝐿0 ← T𝑖 ∩ 𝐷𝑘−1;
2: if |𝐿0 | > 2 ∗ 𝑏 then return ∅;
3: Initialization: C𝑖 ← ∅, F𝑖 ← ∅;
4: while ∃ two vertices {𝑢, 𝑣} ⊆ 𝐿0 and (𝑢, 𝑣) ∉ 𝐸 do

5: C𝑖 ← C𝑖 ∪ {(𝑢, 𝑣)}; 𝐿0 ← 𝐿0 \ {𝑢, 𝑣};
6: while ∃ vertex 𝑢 ∈ 𝐿0 do
7: Select an arbitrary vertex 𝑣 from T𝑖 ∪Ψ𝑘 for (𝑢, 𝑣) ∉ 𝐸 ∪C𝑖 ;
8: C𝑖 ← C𝑖 ∪ {(𝑢, 𝑣)}; 𝐿0 ← 𝐿0 \ {𝑢};
9: F𝑖 ← T𝑖 ;
10: return {(C𝑖 , F𝑖 )};

According to the 𝑘-core maintenance rules [31], the vertex𝑤 ∈ 𝑉
has the coreness increased, satisfying that 𝑐 (𝑤) = 𝑘 − 1 and 𝑤 is

reachable from 𝑢 or 𝑣 via a path that consists of vertices with the

coreness of 𝑘 −1. It infers that𝑤 ,𝑢, and 𝑣 are in the same connected

subgraph of 𝑇𝑖 , i.e., 𝑤 ∈ 𝑇𝑖 . Thus, 𝑇𝑖 ∩ 𝑇𝑗 ⊇ {𝑤} ≠ ∅ contradicts
to the (𝑘 − 1)-shell partition of 𝑇𝑖 ∩𝑇𝑗 = ∅ by Def. 5. Thus, there

exists no new 𝑘-core follower in 𝑇𝑗 . □

From the above theorem, we can deal with each (𝑘 − 1)-shell
component T𝑖 independently for edge insertions.

5.3 Complete Component Conversion

In this section, we introduce a method of converting all vertices

in a (𝑘 − 1)-shell component T𝑖 to 𝑘-core. The key idea is to insert

new edges incident to (𝑘 − 1)-collapse vertices 𝐷𝑘−1 ⊆ T𝑖 . We have

a useful theorem for complete 𝑘-core conversion as follows.

Theorem 2. Given a (𝑘 − 1)-shell component T𝑖 ⊆ 𝑆𝑘−1, if every
(𝑘 − 1)-collapse vertex 𝑢 ∈ T𝑖 ∩ 𝐷𝑘−1 has a new edge (𝑢, 𝑣) where
𝑣 ∈ T𝑖 ∪ Ψ𝑘 , then all vertices of T𝑖 become 𝑘-core followers.

Proof. Let be 𝑋 = T𝑖 ∪ Ψ𝑘 and the new edges 𝐸 = {(𝑢, 𝑣) :
𝑢 ∈ T𝑖 ∩ 𝐷𝑘−1, 𝑣 ∈ 𝑋 } where 𝐸 ∩ 𝐸 = ∅. Before insertions, each
vertex 𝑢 ∈ T𝑖 ∩𝐷𝑘−1 has |𝑁𝑋 (𝑢) | = 𝑘 − 1 in original graph𝐺 (𝑉 , 𝐸).
After insertions, each vertex 𝑢 ∈ T𝑖 has |𝑁𝑋 (𝑢) | ≥ 𝑘 in new graph

𝐺 (𝑉 , 𝐸 ∪ 𝐸). Thus, T𝑖 ⊆ 𝑋 becomes 𝑘-core followers.

By Theorem 2, we propose an algorithm of complete conversion

to ensure that each vertex 𝑣 ∈ 𝐷𝑘−1 has a new neighbor for edge

insertions in the new 𝑘-core Ψ̂𝑘 .

Algorithm. The algorithm of complete 𝑘-core conversion on T𝑖 is
presented in Algorithm 1. The algorithm first identifies the (𝑘 − 1)-
collapse vertices of T𝑖 as 𝐿0 = T𝑖 ∩ 𝐷𝑘−1. Since one single edge

insertion can only convert two vertices from (𝑘 − 1)-collapse, we
can give up the conversion in advance if the budget is not enough

for |𝐿0 | > 2𝑏 (line 2). Next, we consider two vertices 𝑣,𝑢 ∈ 𝐿0 to add
edge (𝑢, 𝑣) into C𝑖 and remove them from 𝐿0 (lines 4-5). After that

if there is a remaining vertex 𝑣 ∈ 𝐿0, we add a new edge between 𝑣

and any𝑢 ∈ T𝑖 ∪Ψ𝑘 (lines 6-8). The algorithm finishes the complete

conversion and returns the edge insertion answer (lines 9-11).

Algorithm 2 FastCM

Input: graph 𝐺 (𝑉 , 𝐸), core value 𝑘 , budget 𝑏
Output: A set 𝐸 of newly inserted edges

1: Partition (𝑘 − 1)-shell 𝑆𝑘−1 with P(𝑆𝑘−1) = {T1, . . . ,Tℎ};
2: for each component T𝑖 ∈ P(𝑆𝑘−1) do
3: {(C𝑖 , F𝑖 )} ← Apply the complete conversion on T𝑖 using

Algorithm 1;

4: Sort T𝑖 ∈ P(𝑆𝑘−1) in decreasing order of expected gain
|F𝑖 |
|C𝑖 | ;

5: 𝐸 ← ⋃ℎ′
𝑖=1 C𝑖 such that

∑ℎ′
𝑖=1 |C𝑖 | ≤ 𝑏;

6: return 𝐸;

Example 4. Continue Example 3, we apply Algorithm 1 on (𝑘−1)-
shell component T1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} for complete 𝑘-core conver-
sion with 𝑘 = 3. The (𝑘 − 1)-collapse is 𝐿0 = {𝑣1, 𝑣2, 𝑣5}. Algo-
rithm 1 first inserts a new edge (𝑣2, 𝑣5) into C1. Then, for another
vertex 𝑣1, it inserts a new edge (𝑣1, 𝑣4) as 𝑣4 ∈ T1 ∪ Ψ3. Thus,
C1 = {(𝑣2, 𝑣5), (𝑣1, 𝑣4)}.

5.4 FastCM Algorithm

Integrating with (𝑘 − 1)-collapse 𝐷𝑘−1 and (𝑘 − 1)-shell parti-
tion P(𝑆𝑘−1), we propose our fast core maximization (FastCM)

approach using complete 𝑘-core conversion, which is outlined in

Algorithm 2. The algorithm first identifies (𝑘 − 1)-shell partition
and obtains P(𝑆𝑘−1) (line 1). It then applies Algorithm 1 on each

component T𝑖 ∈ P(𝑆𝑘−1) for complete 𝑘-core conversion (lines 2-3).

Next, it sorts all components T𝑖 of P(𝑆𝑘−1) in decreasing order of

expected gain
|F𝑖 |
|C𝑖 | and returns a greedy answer of 𝑘-core followers

by inserting the candidate edges

⋃ℎ′
𝑖=1 C𝑖 (lines 4-6).

Theorem 3. Algorithm 2 takes𝑂 (𝑚 +ℎ(𝑏 + logℎ)) time in𝑂 (𝑚)
space.

Proof. The core decomposition for calculating all vertices’ core-

nesses takes𝑂 (𝑚) time. The (𝑘−1)-shell identification and partition
also takes𝑂 (𝑚) time. The complete 𝑘-core conversion for all (𝑘−1)-
shell components takes 𝑂 (𝑏ℎ) time. The sorting of ℎ components

takes𝑂 (ℎ logℎ) time. Overall, Algorithm 2 takes𝑂 (𝑚+ℎ(𝑏+logℎ))
time in 𝑂 (𝑚) space. □

6 FastCM+ USING PARTIAL CONVERSION

In this section, we propose a new edge insertion strategy of par-

tial component conversion in Sections 6.1 and 6.2. Integrating a

dynamic programming combination of complete and partial con-

versions on all independent components, we finally develop a fast

core maximization algorithm FastCM+.

6.1 Onion Layers and Partial Conversion

Given a small budget 𝑏, a (𝑘 − 1)-shell component T𝑖 cannot be
fully converted into 𝑘-core by Algorithm 1 for 𝑏 <

|𝐿0 |
2
. Thus, we

consider a new insertion strategy, which convents only partial (𝑘 −
1)-shell vertices of T𝑖 to 𝑘-core followers. According to Theorem 1,

we can considerℎ components one by one and treat each component

independently. Without loss of generality, we consider one (𝑘 − 1)-
shell component T𝑖 ∈ 𝑆𝑘−1 throughout this section.
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Figure 2: The distribution of requisite degree sumR( 𝑗) and
layer size |𝐿𝑗 | w.r.t. the layer level 𝑗 . Here, 𝑘 = 10.

Onion layers of (𝑘 − 1)-shell component T𝑖 . We begin with a

definition of the onion layer. According to the vertex removal order

of core decomposition, the vertices are deleted sequentially in a

batch way, layer by layer like peeling an onion. Thus, the structure

of (𝑘 − 1)-shell component T𝑖 can be regarded in an organization

of onion layers. Specifically, the (𝑘 − 1)-collapse vertices 𝐿0 =

𝐷𝑘−1 ∩ T𝑖 ⊆ T𝑖 can be regarded as the outermost layer of T𝑖 , which
is the first batch of vertices deleted from the 𝑘-core of graph 𝐺 .

Definition 6. (Onion Layer) Given (𝑘 − 1)-shell component T𝑖
and integer 𝑗 ≥ 1, the 𝑗-th onion layer 𝐿𝑗 is the largest vertex set such
that 𝐿𝑗 = {𝑣 ∈ T𝑖 : |𝑁𝑋 (𝑣) | ≤ 𝑘 − 1}, where 𝑋 = Ψ𝑘−1 \

⋃𝑗−1
𝑟=0

𝐿𝑟
and the 0-th layer 𝐿0 = 𝐷𝑘−1 ∩ T𝑖 = {𝑣 ∈ T𝑖 : |𝑁Ψ𝑘−1 (𝑣) | = 𝑘 − 1}.

We denote the largest layer number of innermost layer in T𝑖 is
Φ(T𝑖 ). Hence,

⋃Φ(T𝑖 )
𝑟=0

𝐿𝑟 = 𝑆𝑘−1. Moreover, for each vertex 𝑢 ∈ T𝑖 ,
we represent its corresponding layer as 𝑙 (𝑢), i.e., 𝑢 ∈ 𝐿𝑙 (𝑢) . Given
two vertices 𝑣 and 𝑢 with 𝑙 (𝑣) > 𝑙 (𝑢), we say that 𝑣 locates at a

higher layer than 𝑢, or 𝑢 locates at a lower layer than 𝑣 . Continue

with Example 3, the 2-shell component T1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} has
two-level onion layers as 𝐿0 = {𝑣1, 𝑣2, 𝑣5} and 𝐿1 = {𝑣3, 𝑣4}.
Requisite degree of layer 𝐿𝑗 . We observe a useful degree property

of (𝑘 − 1)-shell onion layers as follows.

Lemma 1. Given an onion layer 𝐿𝑗 in T𝑖 for 1 ≤ 𝑗 ≤ Φ(T𝑖 ), vertex
𝑣 ∈ 𝐿𝑗 has |𝑁𝑋 (𝑣) | ≥ 𝑘 , where 𝑋 = Ψ𝑘 ∪ {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≥ 𝑗 − 1}.

Proof. We prove this lemma by contradiction. Assume that

there exists a vertex 𝑣 ∈ 𝐿𝑗 with |𝑁𝑋 (𝑣) | < 𝑘 . Thus, 𝑣 must be

deleted early before removing any vertex at layer 𝐿𝑗 by the peeling

rule of 𝑘-core decomposition. By Def. 6, we have 𝑣 ∈ 𝐿𝑗 ′ where

∃0 ≤ 𝑗 ′ < 𝑗 , which contradicts to 𝑣 ∈ 𝐿𝑗 . □

Lemma 1 shows that we can convert the partial vertices {𝑣 ∈
T𝑖 : 𝑙 (𝑣) ≥ 𝑗} to 𝑘-core followers by only inserting new edges at

the layer 𝐿𝑗 . Actually, the complete conversion in Algorithm 1 is to

convert the whole vertices inT𝑖 to followers through edge insertions
at the 0-th layer 𝐿0. However, for a vertex𝑢 with 𝑙 (𝑢) > 0, the degree

gap to 𝑘-core requirements may be larger than 1, which is different

from the complete conversion case. For example, assume that 𝑘 = 3

and 𝑗 = 1 for graph 𝐺 in Figure 1, if we discard the vertices 𝐿0 =

{𝑣1, 𝑣2, 𝑣5}, the remaining vertex 𝑣3 ∈ 𝐿1 has only one neighbor 𝑣4.

Thus, the degree gap to 𝑘-core for 𝑣3 is two, indicating that two

inserted edges associated with 𝑣3 are needed. In the following, we

3-core

2-shell component

(a) Graph𝐺1

3-core

Anchor Anchor

(b) The new 3-core Ψ3 .

Figure 3: An example of partial 3-core conversion on 𝐺1 by

anchoring two vertices𝑢1, 𝑢4 in 𝐿0 and C3 = {(𝑢1, 𝑢4)} for𝑏 = 1.

give a new definition of requisite degree to estimate the required

degree for a vertex to become a 𝑘-core follower.

Definition 7. (Requisite Degree) The requisite degree of vertex
𝑢 ∈ T𝑖 , denoted as 𝑅(𝑢), is defined as the number of extra new neigh-
bors required for 𝑢 to become 𝑘-core follower at the layer 𝐿𝑙 (𝑢) above,
i.e., 𝑅(𝑢) = 𝑘 − |𝑁𝑋 (𝑢) | where 𝑋 = Ψ𝑘 ∪ {𝑣 ∈ T𝑖 : 𝑙 (𝑣) ≥ 𝑙 (𝑢)}.

The requisite degree indicates how ‘far’ the vertices to become

𝑘-core followers. If the requisite degrees of all the vertices at the

same layer 𝐿𝑗 are 0 after a few edge insertions, the vertices of the

whole set {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≥ 𝑗} are 𝑘-core followers.
Practical feasibility of partial 𝑘-core conversion. We show

the practical feasibility of partial 𝑘-core conversion. This can be

validated by the number of required edge insertions w.r.t. the level

of onion layers 𝐿𝑗 . We use sumR( 𝑗) to denote the total requisite

degrees of all vertices in layer 𝐿𝑗 , i.e, sumR( 𝑗) = ∑
𝑢∈𝐿𝑗

𝑅(𝑢). The
larger sumR( 𝑗) is, the more edge insertions are needed. Figure 2

depicts the requisite degree distribution of sumR( 𝑗) w.r.t. layer
levels 𝑗 over two real datasets Gowalla and Stanford as shown in

Table 2. We have two useful observations: (1) As the layer level 𝑗

increases, the requisite degree sumR( 𝑗) and the number of vertices

|𝐿𝑗 | decrease greatly. (2) The average requisite degree of vertices
sumR( 𝑗)
|𝐿𝑗 | is close to 1 onmost cases. Based on these two observations,

it is practically feasible to finish the partial conversion successfully

at layer 𝐿𝑗 for a particular 𝑗 using a small budget 𝑏, even the fail

case of complete conversion by Algorithm 1 happens.

6.2 (𝑘 − 1)-Shell Partial Conversion Algorithm

In this section, we propose a (𝑘 − 1)-shell partial conversion algo-

rithm, which converts a part of vertices in T𝑖 to 𝑘-core followers.
Motivations. The key idea of partial conversion is to determine

the lowest onion layer 𝑗∗ ∈ [0,Φ(T𝑖 )] such that we can convert

the vertices of whole subset 𝑋 = {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≥ 𝑗∗} to 𝑘-core

using 𝑏 budget. The smaller the layer level 𝑗∗ is, the more the 𝑘-

core followers are. The best case is when 𝑗∗ = 0, it corresponds

to the complete conversion of 𝑋 = {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≥ 0} = T𝑖 .
One straightforward method of finding the lowest layer is to check

the conversion feasibility of 𝐿𝑗 , starting from 𝑗 = 0 to 𝑗 = Φ(T𝑖 )
layer by layer. Unfortunately, the answer may be not the lowest
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layer 𝑗∗, even worse no feasible answer may exist. For example,

consider a graph 𝐺1 as shown in Figure 3(a), 𝑘 = 3, and 𝑏 = 1.

𝐺1 has three layers: 𝐿0 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5} , 𝐿1 = {𝑢6, 𝑢7, 𝑢8} , 𝐿2 =
{𝑢9, 𝑢10}. The conversion of 𝐿0 needs at least three edge insertions,

e.g., (𝑢1, 𝑢2), (𝑢3, 𝑢4), and (𝑢4, 𝑢5), which takes a budget of 3 greater
than 𝑏 = 1. Similarly, each conversion of 𝐿1 and 𝐿2 takes a budget

of 2, which leads to no feasible answer for 𝑏 = 1. To dismiss the

limitation, we propose an improved partial conversion algorithm

based on a novel anchoring strategy, which converts lower-layered

vertices 𝑣 ∈ 𝐿𝑗 into followers for a given layer 𝐿𝑗∗ and 𝑗 < 𝑗∗. This
can reduce the total requisite degree sumR( 𝑗∗) of 𝐿𝑗∗ for obtaining
more 𝑘-core followers using a smaller budget. Continue the above

example for 𝑗∗ = 1 and 𝑏 = 1, if we add a new edge between 𝑣1 and

𝑣4 in layer 𝐿0, we can successfully convert the layers 𝐿1 and 𝐿2 into

𝑘-core as shown in Figure 3(b).

Anchor. We first define an action called anchor. Given a layer 𝐿𝑗 ,

the action of anchor, is to add a few new edges incident to a vertex

𝑢 ∈ 𝑌 at lower layers such that 𝑢 becomes 𝑘-core follower, where

𝑌 =
⋃𝑗−1

𝑟=0
𝐿𝑟 . In other words, we say that we anchor a vertex 𝑢,

meaning that we convert vertex 𝑢 to 𝑘-core follower.

Anchor gain. We give a definition of anchor gain, to evaluate the

importance of anchoring a vertex 𝑢 ∈ 𝑌 where 𝑌 =
⋃𝑗−1

𝑟=0
𝐿𝑟 .

Definition 8. (Anchor Gain) Given T𝑖 and an integer 𝑗 ∈
[1,Φ(T𝑖 )], the anchor gain of vertex 𝑢 ∈ T𝑖 with 𝑙 (𝑢) < 𝑗 is de-
noted as gain(𝑢, 𝑗) = Benefit(𝑢, 𝑗) − Cost(𝑢, 𝑗). Here, the degree
benefit Benefit(𝑢, 𝑗) = |{𝑣 ∈ 𝑁 (𝑢) ∩ 𝐿𝑗 : 𝑅(𝑣) > 0}| and the budget
cost Cost(𝑢, 𝑗) = 𝑘 − |𝑁𝐻 (𝑢) | where 𝐻 = Ψ𝑘 ∪ {𝑣 ∈ T𝑖 : 𝑙 (𝑣) ≥ 𝑗}.

The gain(𝑢, 𝑗) consists of two parts: Benefit(𝑢, 𝑗) and Cost(𝑢, 𝑗).
We analyze these two terms in terms of positive and negative as-

pects. As the anchored 𝑢 may have edge connections to vertices at

layer 𝐿𝑗 , thus the requisite degree of each vertex 𝑣 ∈ 𝑁 (𝑢)∩𝐿𝑗 could
decrease by one. Thus, the total requisite degree of 𝐿𝑗 decreases

by Benefit(𝑢, 𝑗), which is a contribution score. On the other hand,

it takes an extra cost for converting 𝑢 to become 𝑘-core follower.

Assume that the whole set of 𝐻 = Ψ𝑘 ∪ {𝑣 ∈ 𝑇𝑖 : 𝑙 (𝑣) ≥ 𝑗} becomes

𝑘-core, Cost(𝑢, 𝑗) = 𝑘 − |𝑁𝐻 (𝑢) | indicates how many new edges

are needed to insert between 𝑢 and 𝐻 such that 𝑢 becomes 𝑘-core

follower, which is a budget consumption. For example, consider the

vertex 𝑢1 in Figure 3(a) and 𝑗 = 1, Benefit(𝑢1, 1) = | {𝑢6, 𝑢7} | = 2,

Cost(𝑢1, 1) = 3 − | {𝑢6, 𝑢7} | = 1, and gain(𝑢1, 1) = 2 − 1 = 1, indi-

cating that it anchors 𝑢1 for bringing two ‘useful’ edges and using

one budget for edge insertion. Correspondingly, the anchor gain of

𝑢2 is gain(𝑢2, 1) = 1 − 2 = −1. In summary, an integrated function

gain(𝑢, 𝑗) measures a trade-off evaluation of anchoring this low-

level vertex 𝑢 to increase 𝑘-core followers. We have a useful lemma

on anchor gain as follows.

Lemma 2. Given an existing partial conversion plan P on T𝑖 and
an integer 𝑗 ∈ [1,Φ(T𝑖 )], it converts all vertices F𝑖 to 𝑘-core follower
using a budget 𝑏, where F𝑖 ⊇

⋃Φ(T𝑖 )
𝑟=𝑗

𝐿𝑟 . For a vertex 𝑢 ∈ ⋃𝑗−1
𝑟=0

𝐿𝑟

and 𝑢 ∉ F𝑖 , if gain(𝑢, 𝑗) ≥ 0, there exists a new plan P𝑢 based on
P with an additional action of anchoring 𝑢, which can achieve more
𝑘-core followers F𝑖

′
= F𝑖 ∪ {𝑢} using a new budget 𝑏 ′ ≤ 𝑏.

Proof. First, the current 𝑘-core in P is 𝐻 ′ = Ψ𝑘 ∪ F𝑖 and F𝑖 ⊇⋃Φ(T𝑖 )
𝑟=𝑗

𝐿𝑟 = {𝑣 ∈ 𝑇𝑖 : 𝑙 (𝑣) ≥ 𝑗}. By Def. 8,𝐻 = Ψ𝑘∪{𝑣 ∈ 𝑇𝑖 : 𝑙 (𝑣) ≥

j

lower higher

XY

(k-1)-shell component k-core

A

layer level

Figure 4: The framework of our partial conversion based on

anchoring lower-layered vertices 𝐴 ⊆ 𝑌 in T𝑖 and converting

𝐴 ∪ 𝑋 into followers. Here, 𝑌 =
⋃𝑗−1

𝑟=0
𝐿𝑟 and 𝑋 =

⋃Φ(T𝑖 )
𝑟=𝑗

𝐿𝑟 .

𝑗} ⊆ 𝐻 ′ holds. Second, we prove that |F𝑖
′ | > |F𝑖 |. The action of

anchoring 𝑢 is to add 𝑘 − |𝑁𝐻 ′ (𝑢) | new edges incident to 𝑢. As

𝐻 ′ ⊇ 𝐻 , the extra budget cost is 𝑏𝑒𝑥𝑡𝑟𝑎 = 𝑘− |𝑁𝐻 ′ (𝑢) | ≤ Cost(𝑢, 𝑗)
in Def. 8. Thus, we have the new followers F𝑖

′
= F𝑖∪{𝑢}. Obviously,

|F𝑖
′ | = |F𝑖 | + 1 > |F𝑖 |. Third, we prove that the new budget 𝑏 ′ ≤ 𝑏.

Due to the newly joining vertex 𝑢, it brings additional edges (𝑢, 𝑣)
for 𝑣 ∈ F𝑖 , indicating that the new planP𝑢 can insert less edges than

original plan P by saving a budget 𝑏𝑠𝑎𝑣𝑖𝑛𝑔 . We derive 𝑏𝑠𝑎𝑣𝑖𝑛𝑔 as

follows. The total increased degree of vertices 𝑣 ∈ F𝑖 is no less than
Benefit(𝑢, 𝑗) + 𝑏𝑒𝑥𝑡𝑟𝑎 , where Benefit(𝑢, 𝑗) comes from the original

edges incident to 𝑢 and 𝑏𝑒𝑥𝑡𝑟𝑎 comes from the new edges to anchor

𝑢. As one budget of edge insertion increases two degrees for vertices

in F𝑖 at most. Thus, we obtain that Benefit(𝑢, 𝑗) +𝑏𝑒𝑥𝑡𝑟𝑎 ≤ 2𝑏𝑠𝑎𝑣𝑖𝑛𝑔 .

The new cost is 𝑏 ′ = 𝑏 − 𝑏𝑠𝑎𝑣𝑖𝑛𝑔 + 𝑏𝑒𝑥𝑡𝑟𝑎 ≤ 𝑏 − Benefit(𝑢,𝑗)+𝑏𝑒𝑥𝑡𝑟𝑎
2

+
𝑏𝑒𝑥𝑡𝑟𝑎 = 𝑏 − Benefit(𝑢,𝑗)−𝑏𝑒𝑥𝑡𝑟𝑎

2
≤ 𝑏 − Benefit(𝑢,𝑗)−Cost(𝑢,𝑗)

2
= 𝑏 −

gain(𝑢,𝑗)
2

≤ 𝑏. □.

By Lemma 2, we can anchor vertices with non-negative gains for

saving budget and increasing 𝑘-core followers, which is presented

in the partial 𝑘-core conversion on T𝑖 in Algorithm 3.

Overview. The overview of Algorithm 3 is to find the lowest layer

𝐿𝑗 for partial conversion within 𝑏 budget, by starting from 𝑗 = 1

layer by layer until 𝑗 = Φ(T𝑖 ) (lines 4-33). For a given layer 𝐿𝑗 , it

has three major steps: find all lower-layered vertices 𝐴 with non-

negative anchor gains (lines 5-21), check feasibility of converting

𝐴 ∪ 𝑋 to 𝑘-core followers where 𝑋 = {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≥ 𝑗} (lines
22-30), and return the answer if the inserted edge size |C𝑖 | ≤ 𝑏

(lines 31-33), otherwise repeating the above process on next layer

𝐿𝑗+1. The whole framework of Algorithm 3 is outlined in Figure 4.

Algorithm. Now, we present the details of Algorithm 3. It first

identifies all onion layers {𝐿0, . . . , 𝐿Φ(T𝑖 ) } in T𝑖 via core decom-

position, and computes requisite degree 𝑅(𝑢) and layer number

𝑙 (𝑢) for all vertices 𝑢 ∈ T𝑖 (lines 1-3). Next, it iteratively starts

from the low layer 𝑗 = 1 to the highest layer Φ(T𝑖 ) for finding
a feasible plan to convert the anchored vertices 𝐴 and the ver-

tices 𝑋 = {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≥ 𝑗} (lines 4-33). Given a layer 𝐿𝑗 , it

first initializes the variables of edge insertion C𝑖 , followers F𝑖 ,
anchored vertices 𝐴, the requisite degree of layer 𝐿𝑗 , and so on

(lines 5-10). Note that it partitions 𝑇𝑖 into two parts: upper layer

𝑋 = {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≥ 𝑗} and lower layer 𝑌 = {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≤ 𝑗}
(lines 7-8). It uses 𝑟 (𝑢) to record a dynamic requisite degree of

vertex 𝑢 ∈ 𝐿𝑗 based on the dynamic updated set 𝐻 = 𝑋 ∪𝐴 ∪ Ψ𝑘 ,
where 𝑟 (𝑢) = 𝑅(𝑢) in Def. 7 for 𝐴 = ∅ (line 9). It also calculates the
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Algorithm 3 Partial Component Conversion

Input: a (𝑘 − 1)-shell partition T𝑖 , coreness 𝑘 , budget 𝑏
Output: C𝑖 : the selected edge insertions, F𝑖 : the followers in T𝑖
1: Identify all onion layers {𝐿0, . . . , 𝐿Φ(T𝑖 ) } in T𝑖 by Def. 6;

2: Compute the layer number 𝑙 (𝑢) for all 𝑢 ∈ T𝑖 ;
3: Compute the requisite degree 𝑅(𝑢) for all 𝑢 ∈ T𝑖 by Def. 7;

4: for 𝑗 ← 1 to Φ(T𝑖 ) do
5: Initialization: C𝑖 ← ∅, F𝑖 ← ∅;
6: Anchored vertex set: 𝐴← ∅;
7: Upper layer: 𝑋 ← {𝑢 ∈ T𝑖 : 𝑙 (𝑢) ≥ 𝑗};
8: Lower layer: 𝑌 ← {𝑢 ∈ T𝑖 : 𝑙 (𝑢) < 𝑗};
9: Initialize a dynamic requisite degree 𝑟 (𝑢) of each vertex

𝑢 ∈ 𝐿𝑗 based on𝐻 = 𝑋∪𝐴∪Ψ𝑘 , i.e., 𝑟 (𝑢) = 𝑘−|𝑁𝐻 (𝑢) | = 𝑅(𝑢);
10: The requisite degree of layer 𝐿𝑗 : sumR( 𝑗) = ∑

𝑢∈𝐿𝑗
𝑟 (𝑢);

11: Calculate gain(𝑢, 𝑗) for each vertex 𝑢 ∈ 𝑌 by Def. 8;

12: while ∃ a vertex 𝑢 ∈ 𝑌 with gain(𝑢, 𝑗) ≥ 0 do

13: 𝑢∗ ← argmax𝑢∈𝑌 gain(𝑢, 𝑗);
14: 𝐴← 𝐴 ∪ {𝑢∗};
15: 𝑌 ← 𝑌 \ {𝑢∗};
16: sumR( 𝑗) ← sumR( 𝑗) − gain(𝑢∗, 𝑗);
17: for each vertex 𝑣 ∈ 𝑁 (𝑢∗) ∩ 𝐿𝑗 do
18: if 𝑟 (𝑣) > 0 then

19: 𝑟 (𝑣) ← 𝑟 (𝑣) − 1; // Due to the edge (𝑢∗, 𝑣) in 𝐻 .

20: if 𝑟 (𝑣) = 0 then

21: Update gain(𝑤, 𝑗), where𝑤 ∈ 𝑌 ∩ 𝑁 (𝑣);
22: if sumR( 𝑗) ≤ 2𝑏 then

23: Let𝑄 ← {𝑣 ∈ 𝐻 : |𝑁𝐻 (𝑣) | < 𝑘} where𝐻 = 𝑋 ∪𝐴∪Ψ𝑘 ;
24: while ∃ two vertices 𝑢, 𝑣 ∈ 𝑄 and (𝑢, 𝑣) ∉ 𝐸 ∪ C𝑖 do
25: C𝑖 ← C𝑖 ∪ {(𝑢, 𝑣)};
26: Remove 𝑢 (or 𝑣) from 𝑄 if its current degree in 𝐻 is

no less than 𝑘 in 𝐻 after the insertion of new edges C𝑖 ;
27: while ∃ vertex 𝑢 ∈ 𝑄 do

28: Pick arbitrary vertex 𝑣 ∈ 𝐻 with (𝑢, 𝑣) ∉ 𝐸 ∪ C𝑖 ;
29: C𝑖 ← C𝑖 ∪ {(𝑢, 𝑣)};
30: Remove 𝑢 from 𝑄 if the degree |𝑁𝐻 (𝑢) | ≥ 𝑘 after

the insertion of new edges C𝑖 ;
31: if |C𝑖 | ≤ 𝑏 then

32: F𝑖 ← 𝐴 ∪ 𝑋 ;

33: return {(C𝑖 , F𝑖 )};
34: return ∅;

anchor gain gain(𝑢, 𝑗) for each lower-layer vertex 𝑢 ∈ 𝑌 (line 11).

Next, it anchors vertices of 𝑌 with non-negative gains and adds

them into 𝐴 by Lemma 2 (lines 12-21). At each iteration, it selects

one vertex𝑢∗ ∈ 𝑌 with the largest gain(𝑢∗, 𝑗) (line 13), and updates
the requisite degree for layer-level sumR( 𝑗) and vertex-level 𝑟 (𝑣)
where 𝑣 ∈ 𝑁 (𝑢∗) ∩𝐿𝑗 (lines 16-21). If 𝑟 (𝑣) of a vertex 𝑣 decreases to
0, it needs to update the anchor gain for all vertices𝑤 ∈ 𝑌 ∩ 𝑁 (𝑣)
to decrease their benefit contributions by Def. 8 (lines 20-21). Af-

ter obtaining the anchored vertices 𝐴, it checks the condition of

sumR( 𝑗) ≤ 2𝑏 (line 22). If sumR( 𝑗) > 2𝑏, it takes more than 𝑏 bud-

get for the conversion, which is not feasible and needs to consider

the next layer 𝐿𝑗+1; Otherwise, it adds edges into C𝑖 for converting
𝐴 ∪ 𝑋 to 𝑘-core followers (lines 23-30). To find new edges, it first

extracts all vertices having degree less than 𝑘 from 𝐻 into 𝑄 , i.e.,

Table 1: The conversion solutions of each (𝑘 −1)-shell compo-

nent in a new graph 𝐺2 = 𝐺 ∪𝐺1, where 𝐺 and 𝐺1 are shown

in Figure 1(a) and Figure 3(a), respectively. Here, 𝑏 = 2.

(𝑘 − 1)-shell components Selected candidate edges C𝑖 Followers F𝑖
T1 {(𝑣1, 𝑣4), (𝑣2, 𝑣5)} {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}
T2 {(𝑣10, 𝑣11)} {𝑣10, 𝑣11, 𝑣14}
T3 {(𝑢1, 𝑢4)} {𝑢1, 𝑢4, 𝑢6, 𝑢7, 𝑢8, 𝑢9, 𝑢10}

𝑄 = {𝑣 ∈ 𝐻 : |𝑁𝐻 (𝑣) | < 𝑘} (line 23). It adds a new edge between

two vertices in 𝑄 and discards them if they admit the condition

of 𝑘-core followers (lines 23-26). When no edge can be inserted

between any two vertices of 𝑄 , it adds new edges between 𝑢 ∈ 𝑄
and 𝑣 ∈ 𝐻 (lines 27-30). Finally, if |C𝑖 | ≤ 𝑏, it returns the answer of

C𝑖 and its corresponding followers F𝑖 = 𝐴 ∪ 𝑋 (lines 31-33). The

algorithm terminates with an empty answer if no feasible solution

exists at any layer 𝐿𝑗 for 1 ≤ 𝑗 ≤ Φ(T𝑖 ) (line 34).

Example 5. Consider a graph 𝐺1 in Figure 3(a), 𝑘 = 3, and 𝑏 = 1.
The 2-shell component of 𝐺1 denoted as T3 has three onion layers:
𝐿0 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5} , 𝐿1 = {𝑢6, 𝑢7, 𝑢8} , 𝐿2 = {𝑢9, 𝑢10}. The req-
uisite degree 𝑅(𝑣) = 1 for each vertex 𝑣 ∈ 𝐿0 ∪ 𝐿1 ∪ 𝐿2. The com-
plete conversion of 𝐿0 needs at least three edge insertions. Thus, it
starts the partial conversions from 𝐿1 using Algorithm 3. First, it
initializes the upper layer 𝑋 = {𝑢6, 𝑢7, 𝑢8, 𝑢9, 𝑢10}, the lower layer
𝑌 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5}, and the requisite degree sumR(1) = 3. It com-
putes the anchor gain for 𝑢 ∈ 𝑌 as gain(𝑢1, 1) = gain(𝑢4, 1) =

1, gain(𝑢5, 1) = 0, gain(𝑢2, 1) = gain(𝑢3, 1) = −1 (lines 7-11 of
Algo. 3). It first anchors 𝑢4 with the largest non-negative gain and
collects 𝑢4 to 𝐴 by Lemma 2. Then, it updates sumR(1) = 2, the
dynamic requisite degree 𝑟 (𝑢7) = 0, 𝑟 (𝑢8) = 0, and the anchor gains
gain(𝑢1, 1) = 0, gain(𝑢5, 1) = −1 (lines 12-21 of Algo. 3). In the
next round, it anchors 𝑢1 with the largest gain, 𝐴 = {𝑢4, 𝑢1}, and
sumR(1) = 1. It stops finding the vertices to be anchored as all the
remaining anchor gains are negative. As sumR(1) = 1 ≤ 2 × 𝑏 = 2,
it assigns 𝑄 = {𝑢4, 𝑢1} and inserts an edge (𝑢4, 𝑢1) into C3, lead-
ing that |𝑁𝐻 (𝑢4) | = 3 and |𝑁𝐻 (𝑢1) | = 3 where 𝐻 = 𝐴 ∪ 𝑋 ∪ Φ3

(lines 22-30 of Algo. 3). Thus, Algorithm 3 returns the edge insertions
C3 = {(𝑢4, 𝑢1)} and the followers F3 = {𝑢1, 𝑢4, 𝑢6, 𝑢7, 𝑢8, 𝑢9, 𝑢10}.

6.3 Dynamic Programming Edge Selections

In this section, we develop a dynamic programming solution to

select the (𝑘−1)-shell components P(𝑆𝑘−1) = {T1, . . . ,Tℎ} for edge
insertions, to achieve the largest followers for a given budget 𝑏.

Based on the insertion strategies by Algorithms 1 and 3, we

get the new edges C𝑖 and the corresponding followers F𝑖 for each
(𝑘 − 1)-shell component T𝑖 . Therefore, the objective function is

formulated to maximize

ℎ∑
𝑗=1
|F𝑗 |𝑥 𝑗 , where

ℎ∑
𝑗=1
|C𝑗 |𝑥 𝑗 ≤ 𝑏 and

𝑥 𝑗 ∈ {0, 1} for 𝑗 ∈ [1, ℎ], denoted by Eq. (1). For a component

T𝑖 , 𝑥𝑖 = 1 indicates that it selects the C𝑖 edges set for insertions,
which costs a budget of |C𝑖 | and achieves a gain of |F𝑖 | followers;
otherwise, it abandons T𝑖 by inserting no new edges for 𝑥𝑖 = 0.

The problem can be resolved by adopting a similar 0-1 knapsack

dynamic programming solution [15]. Note that if the budget 𝑏 is

not used up, we consider to convert other (𝑘 − 𝜆)-shells using the

remaining budget in the next section.
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Example 6. Consider a new graph𝐺2 composed of two graphs:𝐺 as
shown in Figure 1(a) and𝐺1 as shown in Figure 3(a), i.e.,𝐺2 = 𝐺 ∪𝐺1.
Here, 𝑘 = 3 and 𝑏 = 2. As discussed in previous examples, 𝐺 has
two 2-shell components T1 and T2, and 𝐺1 has one 2-shell component
T3. The new edges C𝑖 and the corresponding followers T𝑖 for each
component are shown in Table 1. We apply our dynamic programming
solution on𝐺2 for 3-core maximization. Finally, it obtains the answer
𝐸 = C2 ∪ C3 = {(𝑣10, 𝑣11), (𝑢1, 𝑢4)}, which brings ten new 3-core
followers F = F2 ∪ F3 = {𝑣10, 𝑣11, 𝑣14, 𝑢1, 𝑢4, 𝑢6, 𝑢7, 𝑢8, 𝑢9, 𝑢10}.

6.4 Handle (𝑘 − 𝜆)-Shell Conversion
In this section, we discuss how to handle (𝑘 − 𝜆)-shell conversion
for 2 ≤ 𝜆 ≤ 𝑘 . In practice, this case may happen when 𝑆𝑘−1 = ∅ for
an extremely large budget 𝑏 or a large coreness parameter 𝑘 . Thus,

it is necessarily important to generalize the existing techniques to

handle coverting the vertices of non-empty (𝑘 − 𝜆)-shell to 𝑘-core
followers when a budget surplus is available.

We extend the existing (𝑘 − 1)-shell techniques of complete con-
version and partial conversion for (𝑘 −𝜆)-shell 𝑆𝑘−𝜆 conversion. The

key idea is very similar but has a few differences. One significant

difference is that it needs to check the degree of all vertices in 𝑆𝑘−𝜆
instead of the (𝑘 − 𝜆)-collapse 𝐿0 ⊆ 𝑆𝑘−𝜆 at outermost layer for

conversion only, due to an increased degree gap 𝜆 > 1.

• Complete (𝑘 − 𝜆)-shell conversion: It first partitions 𝐺𝑆𝑘−𝜆
into disjoint components based on graph connectivity. In each

component T𝑖 of 𝑆𝑘−𝜆 , each vertex candidate has the coreness

of 𝑘 − 𝜆 and the degree gap of no greater than 𝜆 to become

𝑘-core. Let be the vertex set 𝑋 = {𝑣 ∈ T𝑖 : |𝑁T𝑖 (𝑣) | < 𝑘}. The
complete (𝑘 −𝜆)-shell conversion on T𝑖 needs to insert at least
⌈
∑

𝑣∈𝑋 𝑘−|𝑁T𝑖 (𝑣) |
2

⌉ new edges.

• Partial (𝑘−𝜆)-shell conversion: It identifies the onion layers
of T𝑖 . Then, it finds the lowest layer 𝐿𝑗∗ to convert

⋃Φ(T𝑖 )
𝑟=𝑗∗ 𝐿𝑟

and the anchored vertices to 𝑘-core, similar as Algorithm 3.

Note that one major change lies on the calculation of anchor

gain in Def. 8, where Benefit(𝑢, 𝑗) changes as Benefit(𝑢, 𝑗) =
|{𝑣 ∈ 𝑁 (𝑢) ∩ 𝑋 : 𝑅(𝑣) > 0}| where 𝑋 = {𝑣 ∈ T𝑖 : 𝑙 (𝑣) ≥ 𝑗}.

6.5 FastCM+ Algorithm

Integrating the techniques of complete and partial component con-

versions and DP-based edge selections, we propose the FastCM+
algorithm outlined in Algorithm 4. The first step is to partition the

(𝑘 − 1)-shell 𝑆𝑘−1 into multiple independent components P(𝑆𝑘−1)
(line 2). Then, for each component T𝑖 , we first invoke Algorithm 1

and try to convert the whole vertices to followers (line 3). If the

budget is not enough to complete the conversion, we invoke the

Algorithm 3 to convert a part of the vertices to followers using

a smaller budget (line 6). Next, we apply dynamic programming

techniques to tackle the edge selections optimally and add new

edges into 𝐸 (lines 7-8). Let be 𝜆 = 1. When there are a remaining

budget 𝑏 ′ = 𝑏 − |𝐸 | > 0 and 𝑆𝑘−𝜆 = ∅, we iteratively increase 𝜆 by

one and convert non-empty (𝑘 − 𝜆)-shell into 𝑘-core followers as
shown in Section 6.4 (lines 9-11). Finally, if the budget is not used

up, we iteratively insert new edges (𝑢, 𝑣) into 𝐸 in the decreasing

order of |𝑁Ψ̂𝑘
(𝑢) | (line 12-14).

Algorithm 4 FastCM+
Input: graph 𝐺 (𝑉 , 𝐸), core value 𝑘 , budget 𝑏
Output: a set 𝐸 of newly inserted edges

1: 𝐸 ← ∅; 𝜆 ← 1;

2: Partition (𝑘 − 1)-shell 𝑆𝑘−1 with P(𝑆𝑘−1) = {T1, . . . ,Tℎ};
3: for each component T𝑖 ∈ P(𝑆𝑘−1) do
4: {(C𝑖 , F𝑖 )} ← Apply the full conversion on T𝑖 by Algo. 1;

5: if C𝑖 = ∅ then
6: {(C𝑖 , F𝑖 )} ← Apply the partial conversion on T𝑖 using

Algorithm 3;

7: Solve the dynamic programming formulation in Eq. (1) and

obtain the edge selections {𝑥𝑖 : 1 ≤ 𝑖 ≤ ℎ};
8: 𝐸 ← 𝐸 ∪⋃

1≤𝑖≤ℎ,𝑥𝑖=1 C𝑖 ; Insert edges 𝐸 into 𝐺 ;

9: while the remaining budget 𝑏 ′ = 𝑏 − |𝐸 | > 0 and 𝑆𝑘−𝜆 = ∅ do
10: 𝜆 ← 𝜆 + 1;
11: Convert (𝑘 −𝜆)-shell to 𝑘-core followers by inserting edges

into 𝐺 , following the similar steps at lines 2-8;

12: if the remaining budget 𝑏 ′ = 𝑏 − |𝐸 | > 0 then

13: Add 𝐸 with new edges (𝑢, 𝑣) in the decreasing order of

|𝑁Ψ̂𝑘
(𝑢) | where 𝑢 ∉ Ψ̂𝑘 , 𝑣 ∈ Ψ̂𝑘 , and Ψ̂𝑘 is the new 𝑘-core of

new graph 𝐺 (𝑉 , 𝐸 ∪ 𝐸), until using up all budgets for |𝐸 | = 𝑏;

14: return 𝐸;

Theorem 4. FastCM+ in Algorithm 4 for converting non-empty

(𝑘 − 1)-shell partially takes 𝑂 (𝑚 + 𝑏𝑛) time in 𝑂 (𝑚 + 𝑏ℎ) space.

Proof. FastCM+ consists of four search phases. In the first

phase, Algorithm 4 partitions (𝑘 −1)-shell 𝑆𝑘−1 in𝑂 (𝑚+𝑛) time. In

the second phase, we consider two cases of 𝑘-core conventions. For

the complete 𝑘-core conversion, for a component T𝑖 , Algorithm 1

takes𝑂 (𝑏) time. If Algorithm 1 fails to return a non-empty solution

of complete conversion, Algorithm 3 is then invoked for partial

conversion. The time complexity for generating all onion layers and

calculating all requisite degrees is𝑂 (𝑚). For a given 𝑗-th level 𝐿𝑗 at

component T𝑖 , it takes 𝑂 ( |𝐿𝑗 | +
∑

𝑣∈𝐿𝑗
|𝑁 (𝑣) |) time for calculating

gains and anchoring nodes, and 𝑂 (𝑏) time for finding candidate

edges in each layer. Thus, it takes

𝑂 (
∑︁

1≤𝑖≤ℎ

∑︁
1≤ 𝑗≤Φ(T𝑖 )

( |𝐿𝑗 | +
∑︁
𝑣∈𝐿𝑗

|𝑁 (𝑣) | + 𝑏))

= 𝑂 (
∑︁

1≤𝑖≤ℎ,1≤ 𝑗≤Φ(T𝑖 )
|𝐿𝑗 | +

∑︁
1≤𝑖≤ℎ,1≤ 𝑗≤Φ(T𝑖 )

∑︁
𝑣∈𝐿𝑗

|𝑁 (𝑣) | + 𝑏𝑛)

= 𝑂 (𝑛 +𝑚 + 𝑏𝑛) = 𝑂 (𝑚 + 𝑏𝑛) time.

In the third phase, the dynamic programming based edge selection

takes 𝑂 (𝑏ℎ) time. In the fourth phase, if a budget 𝑏 is remaining

and 𝑆𝑘−1 ≠ ∅, it does not use (𝑘 − 𝜆)-shell conversion (lines 9-11).

Instead, the remaining budget for edge insertions takes 𝑂 (𝑚 + 𝑏)
time using the bin sorting (lines 12-13). Overall, as ℎ ≤ 𝑛, the time

complexity of Algorithm 4 is 𝑂 (𝑚 + 𝑏𝑛 + 𝑏ℎ) ⊆ 𝑂 (𝑚 + 𝑏𝑛).
Next, we analyze the space complexity. The candidate edges and

dp-based selection takes𝑂 (𝑏ℎ) space. The graph𝐺 takes𝑂 (𝑚+𝑛) =
𝑂 (𝑚) space. Computing follower gains takes 𝑂 (𝑛) space for each
layer one time. Overall, Algorithm 4 takes 𝑂 (𝑏ℎ +𝑚) space. □
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Table 2: Network statistics. Here, the parameters 𝑘𝑚𝑎𝑥 and |P(𝑆𝑘−1) | represent the largest coreness and the component number

of (𝑘 − 1)-shell, respectively. ‘-’ denotes that the algorithm cannot finish within 48 hours.

Dataset Addr. |𝑉 | |𝐸 | 𝑘𝑚𝑎𝑥 |P (𝑆𝑘−1) |
#Followers Running time (s)

EKC VEK FastCM FastCM+ EKC VEK FastCM FastCM+
Facebook FB 4,039 88,234 59 25 39 77 77 198 0.53 0.28 0.0007 0.0024

email-Enron EN 36,692 183,831 43 97 112 140 140 241 3.13 0.66 0.06 0.13

Brightkite BT 58,228 214,078 52 24 93 218 218 518 18.8 1.03 0.112 0.68

Gowalla GW 196,591 950,327 51 306 571 571 671 671 1,071 15.17 0.34 0.47

Twitter TW 81,306 1,768,149 96 669 712 712 755 761 3,923 28.05 3.01 3.18

Stanford ST 281,903 2,312,497 71 3,253 - 508 734 747 - 193 0.82 0.97

Google GL 875,713 5,105,039 44 475 - 1,668 2,009 2,017 - 922 2.3 5.6

Youtube YT 1,134,890 2,987,624 51 772 734 665 831 838 9,472 35.38 2.31 2.40

Baidubaike BD 2,142,101 17,014,946 78 9,852 - 1,035 1,161 1,178 - 1,987 4.59 5.08

as-Skitter AS 1,696,415 11,095,298 111 5,182 - 1,618 1,739 1,809 - 716 3.31 3.69

socfb-konec KN 59,216,211 92,522,012 16 1,466 - 1,950 488 5,081 - 10,413 106 276

Note that for a limited budget 𝑏 <
|𝐷𝑘−1 |

2
in practice, Algorithm 4

cannot completely convert 𝑆𝑘−1 into 𝑘-core, indicating the new (𝑘−
1)-shell 𝑆𝑘−1 ≠ ∅ in graph𝐺 (𝑉 , 𝐸∪𝐸). Thus, FastCM+ takes𝑂 (𝑚+
𝑏𝑛) time much faster than𝑂 (𝑏𝑛2𝑚) time by EKC [44] and𝑂 (𝑏𝑚𝑛)
time by VEK [45]. However, when there is a large remaining budget

𝑏 and 𝑆𝑘−1 = ∅, Algorithm 4 takes extra cost to handle (𝑘 −𝜆)-shell
conversions. Experimental efficiency evaluations in Table 2 validate

the superiority of our approach FastCM+ against EKC and VEK on

real large graph datasets.

7 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness

and efficiency of our proposed algorithms.

Datasets. We use 11 datasets of real-world networks in experiments.

Table 2 reports graph statistics of these datasets. All graphs are

downloaded from http://networkrepository.com and http://snap.

stanford.edu, and treated as undirected graphs.

Compared methods. To evaluate the effectiveness and efficiency

of core maximization, we compare four methods as follows.

• EKC [44]: is a greedy algorithm that selects one best edge for

edge insertion in each round and ends after 𝑏 rounds.

• VEK [45]: is a vertex-oriented heuristic method to convert one

vertex to a follower in each round.

• FastCM: is our proposed Algorithm 2 using the complete 𝑘-

core conversion.

• FastCM+: is our proposed Algorithm 4 based on complete and

partial 𝑘-core conversions and DP-based edge selections.

Beside the above four core maximization approaches using the

model of edge insertions, we also evaluate another different model

for core maximization using anchored nodes [21].
• RCM [21]: is the anchored 𝑘-core algorithm for maximizing

𝑘-core by fixing 𝑏 vertices outside of 𝑘-core.

Parameters and evaluationmetrics. By default, we set parameter

𝑘 = 10 for KN, and 𝑘 = 20 consistently for the remaining graphs.

The default parameter budget 𝑏 = 200. We report the number of

𝑘-core followers (denoted as #Followers) and the running time (in

seconds). Note that we treat the #Followers as N/A and the running

time as infinite if the algorithm runs exceeding 48 hours.

Exp-1: Quality and efficiency evaluations of different algo-

rithms on all datasets. Table 2 reports the effectiveness and ef-

ficiency results of different algorithms on all datasets. Our algo-

rithm FastCM+ outperforms all competitors EKC [44], VEK [45],

and FastCM on all datasets by achieving the largest number of

followers. This reflects the effectiveness of (𝑘 − 1)-shell partition
and our edge insertion strategies. Our developed complete/partial

conversion allows to consider multiple new edge insertions simul-

taneously at each time of budget consumption. Note that both VEK
and FastCM successfully convert the whole set of (𝑘 − 1)-shell into
𝑘-core followers on the datasets Facebook, Email and Brightkite.

Our FastCM+ + can achieve even more followers, thanks to the

(𝑘−𝜆)-shell conversion that convert other (𝑘−𝜆)-shells into follow-
ers for 𝜆 ≥ 2. On the other hand, FastCM uses the shortest running

time. Although FastCM+ takes a little more time than FastCM, it

achieves much more 𝑘-core followers. EKC cannot finish within 48

hours on several large datasets, which performs the worst among

all methods. Our proposed methods FastCM+ and FastCM run 1-

2 orders of magnitude faster than state-of-the-art VEK. FastCM+
runs at least 34,000x faster than EKC and 391x faster than VEK on

the Baidubaike dataset.

Exp-2: Effectiveness evaluation by varying budget 𝑏. Figure 5

reports the number of followers with the increased budget 𝑏 on

four graphs. All methods obtain more followers with an increased

budget 𝑏. FastCM+ achieves the best performance significantly.

FastCM+ can efficiently insert edges to fully convert all the vertices

in a component to followers with a sufficient budget. EKC and

VEK perform worse than FastCM+ on different parameters 𝑏. The

comparison between FastCM+ and FastCM in Figures 5(a) and 5(c)

shows that our partial conversion strategy greatly improves the

quality performance when the budget 𝑏 is small.

Exp-3: Efficiency evaluation by varying budget 𝑏. We evaluate

the efficiency of all algorithms in Figure 6. The running time of

FastCM+ is stable without significant changes by different parame-

ter 𝑏. Our algorithms FastCM and FastCM+ run much faster than

EKC and VEK, validating the tighter time complexities of our pro-

posed algorithms. The running time of FastCM+ costs more than

FastCM when the budget 𝑏 is small on Youtube, due to the cost of

invoking the partial 𝑘-core conversion in Algorithm 3. Note that

the running time of FastCM+ decreases on Youtube as 𝑏 increases.

This is because those partial 𝑘-core conversions can be changed
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Figure 5: The number of followers varied by budget 𝑏.
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Figure 6: The running time of different algorithms varied by budget 𝑏.

as the complete conversions for a larger budget 𝑏 in a faster way.

FastCM takes the smallest time cost but may bring fewer followers

when the budget 𝑏 is smaller as shown in Figure 5.

Exp-4: Effectiveness evaluation by varying parameter 𝑘 . This

experiment evaluates the effectiveness impact of parameter 𝑘 by

all the methods on four datasets. Figure 7 shows the results of

followers by varying 𝑘 from 10 to 30. EKC fails to complete the core

maximization task with 𝑁 /𝐴 for 𝑘 = 10 on Figures 7(b) and 7(c).

With the increase of 𝑘 , the number of followers shows a decreasing

trend. This is because the size of (𝑘 − 1)-shell becomes smaller

with a larger 𝑘 . Our FastCM+ can consistently achieve the best

performance, thanks to the extension techniques of handling (𝑘−𝜆)-
shell conversion for various parameters 𝜆 and 𝑘 .

Exp-5: Efficiency evaluation by varying parameter 𝑘 . We eval-

uate the running time of different algorithms on the same setting

and datasets as Exp-4. Figure 8 shows the running times of all

methods by varying 𝑘 . Our proposed FastCM and FastCM+ runs
much faster than two other competing approaches for different 𝑘

on most datasets. EKC is the worst in most cases. EKC performs

bad especially when 𝑘 is small. The size of (𝑘 − 1)-shell is large
with a small 𝑘 . Thus, a large number of candidate edges are needed

to consider by costing more computation. Overall, our algorithms

FastCM and FastCM+ are scalable well with the increased 𝑘 .

Exp-6: Ablation study. We conduct an ablation study of FastCM+
on two important techniques of partial conversion and dynamic
programming based edge selection. We compare three baseline meth-

ods with FastCM+. The first one is FastCM proposed in Section 5.

The second method noAnchor-FastCM+ is a variant of FastCM+
equipped with the partial conversion but without anchoring any

low-layered vertices. The third method noDP-FastCM+ is a variant
of FastCM+ using a greedy strategy for edge selection as FastCM.

Table 3: Ablation study of FastCM+ on Brightkite.

Method #Followers |F | |Ψ𝑘 |
|F|
|Ψ𝑘 |

Time (s)

FastCM 283

5391

5.25% 0.11

noAnchor-FastCM+ 337 6.25% 0.23

noDP-FastCM+ 534 9.91% 0.24

FastCM+ 539 10% 0.24

Table 3 reports the number of followers, the incremental follower ra-

tio
|F |
|Ψ𝑘 | , and the running times on Brightkite. Both noDP-FastCM+

and FastCM use the same strategy of greedy edge selection, but

noDP-FastCM+ achieves 251 more followers than FastCM, demon-

strating the significant effectiveness of partial conversion tech-

niques. noAnchor-FastCM+ and noDP-FastCM+ clearly obtain less
followers than FastCM+, reflecting the usefulness of anchoring low-
layered vertices in Section 6.2 and dynamic programming based

edge selection in Section 6.3. Overall, FastCM+ achieves the largest
incremental follower ratio

|F |
|Ψ𝑘 | of 10.0%.

Exp-7: Comparison of different core maximization models.

We compare the anchored node model RCM [21] and our edge

insertion model FastCM+. We use the same parameter 𝑏 to anchor

𝑏 nodes and insert 𝑏 edges for two models, respectively. Figure 9

reports the number of followers and the running times for 𝑘 = 20

and 𝑏 = 200. The results show that FastCM+ significantly outper-

forms the RCM algorithm on all datasets, in terms of both quality

and efficiency.

Exp-8: Case study on flight networks. We apply core maximiza-

tion on a flight network 𝐺 in Russia.
1
Each vertex represents an

airport. An edge (𝑣,𝑢) from airport 𝑣 to airport 𝑢 indicates an air-

line between them. The rationale of adding new airlines to enlarge

1
https://openflights.org/data.html
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Figure 7: The number of followers varied by the coreness parameter 𝑘 .
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Figure 8: The running time of different algorithms varied by the coreness parameter 𝑘 .
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Figure 9: Comparison of RCM [21] and FastCM+.

𝑘-core is as follows. It is well known that connectivity plays an

important role in an airport’s strategic planning [6]. An airport

module is a group of airports with strong internal links, but weak

connections to the rest of the flight network. The airport module is

suitable to be modeled as a connected 𝑘-core, where each airport

is highly interconnected with at least 𝑘 other airports but has less

than 𝑘 airlines to another module. Adding new airlines to enlarge

𝑘-core certainly improves airports’ accessibility and also the flight

connectivity of module in a region, which is of interest to carrier

operators, airports, and regional governments [30]. Our core maxi-

mization aims at providing guidelines for airports to identify which

new routes would enhance the connectivity. We apply FastCM+
on 𝐺 for 𝑘 = 7 and 𝑏 = 2. Figure 10(a) depicts the 7-core of flight

network 𝐺 , where every airport has at least seven airlines with

other airports. Here, the abbreviations denote the 3-letter (IATA)

code of the airport. Figure 10(b) presents the enlarged 7-core, after

inserting two dark black airlines 𝐸 = {(HMA, ROV), (VVO, HTA)}

into𝐺 . Indeed, FastCM+ brings 13 𝑘-core followers in blue, indicat-

ing that 13 new airports join the highly-connected flight network

of 7-core by just adding two new airlines.
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Figure 10: Case study of core maximization on flight net-

works. Here, 𝑘 = 7 and 𝑏 = 2. Two inserted edges 𝐸 ={(HMA,

ROV), (VVO, HTA)} brings 13 𝑘-core followers in blue.

8 CONCLUSION

In this paper, we study the problem of core maximization, which

adds 𝑏 new edges into a graph to enlarge the 𝑘-core. We propose

a novel fast algorithm FastCM+ based on several well-designed

heuristic strategies including the 𝑘-shell partition, the complete and

partial (𝑘 − 𝜆)-shell conversions, and also the dynamic program-

ming optimizations. Extensive experiments on eleven large graph

datasets validate the efficiency and effectiveness of our proposed

algorithm FastCM+ against the state-of-the-art methods of core

maximization.
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