
In-Network Leaderless Replication for Distributed Data Stores

Gyuyeong Kim
Korea University

Seoul, South Korea

gykim08@korea.ac.kr

Wonjun Lee
Korea University

Seoul, South Korea

wlee@korea.ac.kr

ABSTRACT

Leaderless replication allows any replica to handle any type of

request to achieve read scalability and high availability for dis-

tributed data stores. However, this entails burdensome coordina-

tion overhead of replication protocols, degrading write through-

put. In addition, the data store still requires coordination for mem-

bership changes, making it hard to resolve server failures quickly.

To this end, we present NetLR, a replicated data store architecture

that supports high performance, fault tolerance, and linearizability

simultaneously. The key idea of NetLR is moving the entire replica-

tion functions into the network by leveraging the switch as an on-

path in-network replication orchestrator. Specifically, NetLR per-

forms consistency-aware read scheduling, high-performancewrite

coordination, and active fault adaptation in the network switch.

Our in-network replication eliminates inter-replica coordination

for writes and membership changes, providing high write perfor-

mance and fast failure handling. NetLR can be implemented us-

ing programmable switches at a line rate with only 5.68% of ad-

ditional memory usage. We implement a prototype of NetLR on

an Intel Tofino switch and conduct extensive testbed experiments.

Our evaluation results show that NetLR is the only solution that

achieves high throughput and low latency and is robust to server

failures.

PVLDB Reference Format:

Gyuyeong Kim and Wonjun Lee. In-Network Leaderless Replication for

Distributed Data Stores . PVLDB, 15(7): 1337 - 1349, 2022.

doi:10.14778/3523210.3523213

1 INTRODUCTION

Data-intensive applications like recommender systems [33] and

web search [35] rely on distributed data stores [15], which are sup-

ported by non-relational key-value databases like Redis [12], Mem-

cached [25, 29], and RocksDB [5]. The applications often require

hundreds of thousands of data store accesses to process sequential

user requests.Workloads are typically read-heavy, but write-heavy

or mixed ones are also common [11, 38]. To achieve good user ex-

perience, data stores should provide high performance for reads

and writes, fault tolerance, and strong consistency (i.e., lineariz-

ability [16]).

Replication is a common technique in distributed data stores to

mask failures and improve availability [8]. Data stores typically

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 7 ISSN 2150-8097.
doi:10.14778/3523210.3523213

employ leader-based protocols, which consist of a leader for han-

dling requests and multiple followers for availability [9, 20, 32].

Handling requests through a leader makes it easy to ensure lin-

earizability, but the leader becomes the performance bottleneck of

the data store. It also causes downtime until server failures are re-

solved because of consensus issues like leader election and group

membership changes [17, 22, 30, 37].

Leaderless replication [1, 13, 21, 28] is an approach that allows

any replica to process reads and writes for scalable read perfor-

mance and high availability. Unfortunately, this degrades write

performance by increasing the coordination overhead of replica-

tion protocols. For example, Chain Replication (CR) [32], a typi-

cal leader-based protocol, requires only two messages for a write

at the bottleneck replica. However, in Hermes [21], the state-of-

the-art leaderless protocol, write coordinator replicas process 3=−
1 messages for a write where = is the number of replicas. Fur-

thermore, although leaderless replication requires no consensus

for leadership, it still needs coordination for membership changes.

Therefore, when a server fails, request processing stalls until group

membership reconfiguration and the corresponding coordination

are finished. The aforementioned limitations of leaderless replica-

tion motivate us to ask the following question: can we build a repli-

cated data store that supports high performance, fault tolerance, and

linearizability simultaneously?

To answer the above question affirmatively, this paper presents

in-Network Leaderless Replication (NetLR), a replicated data store

architecture that leverages switches as an in-network replication

orchestrator. Harmonia [40] is a recent effort that utilizes switches

for replication, but it is limited to read-write conflict detection for

leader-based replication. NetLR goes further than Harmonia by

moving the entire replication functions into the network for leaderless

replication. The key insight behind NetLR is that the switch is an at-

tractive vantage point to perform replication functions, including

consistency-aware read scheduling, write coordination, and active

fault adaptation. This is because 1) the network switch is a cen-

tralized point that provides a global view for replication messages;

2) programmable switch ASICs like Intel Tofino [6] have enough

flexibility and computational capability to process replication mes-

sages with custom metadata. Compared to replication protocols,

our network-level approach enables the data store to enjoy scalable

reads, high availability, and linearizability without write perfor-

mance degradation caused by inter-replica coordination. Further-

more, since the switch directly coordinates writes without write

coordinator replicas, latency is also improved. Lastly, the data store

does not have to coordinate for membership changes, enabling

seamless fault adaptation.

InNetLR, the switch data plane consists of the consistency-aware

read scheduling module and the write coordination module. The

1337

https://doi.org/10.14778/3523210.3523213
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3523210.3523213


consistency-aware read scheduling module can preserve lineariz-

ability in a leaderless manner even if read-write conflicts occur.

Concretely, the module tracks the latest known consistent replica

for temporarily inconsistent objects duringwrite operations. Based

on this, the switch can forward the read request to the consistent

replica even with ongoing writes. The write coordination module

initiates and commits write operations. To provide a strict order-

ing for writes, the module serializes writes by assigning a global

sequence number for every write. For high performance, the mod-

ule makes copies of a write request inside the switch, not receiv-

ing from clients. The switch broadcasts writes to every replica, and

commits the write only if every reply is aggregated to the switch.

Our switch control plane handles server failures quickly with

the active fault adaptation module. Specifically, the switch con-

trol plane actively manages the liveness of servers in a centralized

manner. When failures occur, the module immediately excludes

the faulty replica from the replica list and updates the switch data

plane. Since membership reconfiguration is performedwithout the

coordination of servers, requests can be forwarded to live replicas

seamlessly. This also implies that clients and storage servers do not

have to maintain the liveness state of each other.

NetLR is a practical solution, which can be deployed with com-

modity switches. We have implemented a prototype of NetLR with

Intel Tofino switch ASICs [6] in P4 [10]. NetLR uses only 5.68%

of the switch memory because our data plane stores only object

metadata. Our solution does not harm packet forwarding function-

ality and preserves the line rate because the modules can be imple-

mented using a few match-action tables and stateful registers.

To evaluate NetLR, we built a testbed consisting of 7 servers

connected to the Edgecore Wedge100BF-32X switch and conduct

a series of experiments. The key results are as follows. First, NetLR

provides higher throughput and lower latency than existing repli-

cation protocols. Furthermore, NetLR supports near-linear scalabil-

ity. NetLR also maintains high throughput even in the presence of

server failures. Lastly, NetLR is robust to workload dynamics like

write ratios and object access patterns.

In summary, we make the following contributions.

• We present NetLR, a replicated data store architecture that

provides high performance, fault tolerance, and lineariz-

ability by performing the entire replication functions in the

network switch, eliminating the coordination overhead of

replication protocols.

• Wedesign the switch data plane and control planemodules

that perform on-path in-network replicationwhile consum-

ing only a small portion of switch hardware resources, in-

cluding memory and stateful registers.

• We implement a prototype of NetLR and conduct exper-

iments to show that NetLR provides better performance

than existing works and is robust to workload dynamics.

The remainder of the paper is organized as follows. In Section 2,

we describe the motivation of this work. Section 3, Section 4, and

Section 5 provides the design rationale, the architecture, and de-

sign of NetLR, respectively. We present implementation and eval-

uation results in Section 6 and Section 7, respectively. We discuss

related work in Section 8. Lastly, we conclude our work in Sec-

tion 9.

��������	

���
�	

�����


���
��

���������

��������� ����

���
��	

���
��	�

�����


��
�
��

������
�
���

����
�
���

����

Figure 1: Request processing with Hermes [21], the state-of-

the-art leaderless replication protocol. While reads are pro-

cessed locally, writes require inter-replica coordination.

2 BACKGROUND AND MOTIVATION

2.1 Linearizable Replication Protocols

Distributed data stores with non-relational key-value databases

like Redis [12] and RocksDB [5] are the key building block for mod-

ern data-intensive applications. Object data is generally replicated

over multiple storage servers (i.e., replicas) to improve availabil-

ity. Since the number of replicas and the deployment cost are in

proportion, 3 to 7 replicas are commonly used [17, 21]. To handle

requests, a replicated data store uses replication protocols as fol-

lows.

2.1.1 Leader-based Replication. Replication protocols are gener-

ally leader-based, which consists of a leader replica and multiple

follower replicas. In Primary-Backup (PB) [9], the leader replica

handles both read and write requests. The follower replicas ex-

ist for only backup. The leader in PB initiates a write by broad-

casting write update messages to the followers, and commits the

write only if all acknowledgments are received. One of the fol-

lower replicas is elected as a new leader by consensus protocols

like Paxos [22, 30, 31, 39] when the leader fails.

Chain Replication (CR) [32] is a popular leader-based replication

protocol. CR improves the overall performance of PB by using dif-

ferent dedicated (leader) replicas for reads and writes in a replica

chain. Reads are handled by the tail replica, and writes are initi-

ated by the head replica and forwarded to the tail replica through

the chain. The tail replica sends write reply messages to the client

to commit the operation. The leader in PB should process 2= mes-

sages for a single write where= is the number of replicas. However,

CR needs to process only two messages at the tail replica thanks

to serialized write propagation.

2.1.2 Leaderless Replication. Recently, leaderless replication has

gained popularity [1, 13, 21, 27, 28]. In leaderless replication, there

is no leader and every replica can serve reads and writes. This of-

fers scalable read throughput because reads can be served locally

1338



by multiple replicas1. The data store also becomes highly available

because the system does not rely on a specific replica for handling

requests. Naturally, it requires no consensus for leadership.

Figure 1 shows examples of request processing with Hermes,

which is the state-of-the-art leaderless replication protocol [21].

Client requests can be forwarded to any replica. Upon receiving

a read request, the replica returns the data of the requested object

locally. We can see that Read 1 and Read 2 are processed locally

without coordinationwith the other replicas. Unlike reads, process-

ing writes requires the coordination between the replicas because

every replica should maintain the latest data. Therefore, when a

replica receives a write request, the replica becomes a write coordi-

nator (Replica 1 in the figure), and broadcasts messages to the other

replicas for write updates and object invalidation. After receiving

all the update acknowledgments, the write coordinator sends back

the write completion message to commit the operation. Lastly, the

coordinator propagates object validation messages to enable reads

on the object again.

2.2 Inter-Replica Coordination Overhead

As a trade-off for read scalability and high availability, leaderless

replication increases the coordination overhead of replication pro-

tocols. In addition, the coordination for membership changes is

still required. This makes it hard to adapt to server failures quickly.

2.2.1 Coordination for Writes. A pitfall of leaderless replication is

that it is challenging to guarantee linearizability. To be linearizable,

a read should always get the newest data. This also imposes that

writes should be applied in order. However, since requests are pro-

cessed in a distributed manner, concurrent requests can conflict at

a time. This leads to the violation of linearizability as follows.

Read-write conflicts occur when a read accesses a replica where

an ongoing write for the same object is not applied yet. In this case,

although there exists at least one replica having the latest data in

the data store, the read gets stale data. This is because 1) the client

does not know which replica has the latest data; 2) it takes time

for the write coordinator to update all the replicas by propagating

write update messages (i.e., replication lag). Inter-write conflicts

occur when multiple replicas coordinate different writes for the

same object. Replicas update the object data in the order they re-

ceive messages. Therefore, when the update message of the older

write arrives at a replica later than that of the newer write, the

replica eventually stores the older object data.

Existing leaderless replication protocols sacrifice performance

for linearizability by performing extra coordination. In Hermes,

each replica maintains the object states, which can be either valid

or invalid. As shown in Figure 1, the write coordinator not only

updates the object data but also invalidates the object in the other

replicas. It also sends back additional messages to validate objects

after committing the write. The object invalidation prevents reads

from obtaining the stale data but reads stall until the object state be-

comes valid again. Furthermore, the write coordinator in Hermes

should process 3= − 1 messages for a write coordination, whereas

CR only processes two messages at the tail replica for a write. Note

1Write throughput cannot be scalable because a write should be applied in every
replica. Therefore, the maximum write throughput is limited to the throughput of
the single storage replica.

that = is the number of replicas. Concretely, the write coordina-

tor in Hermes should process 2= messages to initiate and commit

a write and = − 1 messages to validate objects, respectively. This

means that the write throughput in Hermes decreases as the num-

ber of replicas grows, while CR provides a constant throughput.

2.2.2 Coordination for Membership Changes. Not surprisingly, in

leaderless replication, replicas do not have to reach a consensus for

leadership. This is a huge benefit for replicated data store because

reaching consensus is a complex problem [20, 22, 30]. However,

replicas still need to coordinate for membership changes. Clients

and replicas in the data store should maintain the correct liveness

state of the other replicas. If the state is incorrect, reads can be

delivered to the faulty replica. Writes also cannot be committed

due towaiting for the acknowledgment permanently. Furthermore,

ideally, the data store should be able to adapt to failures quickly as

much as possible. However, when server failures occur, throughput

can be degraded until updated membership states are propagated.

3 DESIGN RATIONALE

A case for in-network replication. Our goal is to build a repli-

cated data store that provides high performance, fault tolerance, and

linearizability simultaneously. Specifically, a solution should pro-

vide high throughput and low latency for both reads and writes.

To achieve fault tolerance, the data store should seamlessly adapt

to server failures. For linearizability, reads must always get the

newest data of requested objects and writes must be applied in

order.

To achieve the goal, instead of designing a replication protocol,

we move the entire replication functions into the network by uti-

lizing switches as an in-network replication orchestrator. The ToR

(Top-of-Rack) switch is an attractive vantage point to coordinate

replication because every replication message in the storage rack

passes through. This indicates that the switch can perform on-path

replication with a global view for messages being exchanged be-

tween the replicas. The root cause of the inter-replica coordina-

tion overhead is that object and server states are maintained in a

distributed manner. Therefore, we can eliminate the coordination

overhead by maintaining the states at the switch.

The flexibility and capability of programmable switches are the

key enablers that realize the in-network leaderless replication. Tra-

ditional switches provide only fixed functions like L2/L3 packet

forwarding, and we cannot program switch hardware. However,

emerging programmable switch ASICs like Intel Tofino [6] and

Cavium Xpliant [2] allow us to customize the packet processing

pipeline while providing Tbps-scale throughput. Specifically, 1) we

can program the packet parser to identify custom packet formats;

2) we can utilize the stateful memory to read/write custom data,

and 3) we can define custom match tables and the corresponding

actions. In the context of replication, we can make the switch iden-

tify replication messages, maintain object and server states, and

perform replication functions.

Limited resource capacity of network switches. Conceptu-

ally simple, transforming the switch to the replication orchestra-

tor is not straightforward because switch hardware is basically de-

signed for packet forwarding. Programmable switches have lim-

ited computational and storage capacity that can be utilized for

1339



Table 1: Comparison to existing works. (coordi. = coordina-

tion; mem. = Membership changes; = = number of replicas).

CR [32] Hermes [21] Harmonia [40] NetLR

No leader election × √ × √

Read scalability × √ √ √

No coordi. for writes × × √ √

No coordi. for mem. × × × √

# hops for a write = + 1 4 = + 1 2
# msgs for a write 2 3= − 1 2 2

custom functions. Therefore, when designing NetLR, we carefully

consider these resource limits. NetLR is a light-weight solution that

consumes a little switch hardware resources. Furthermore, NetLR

can finish request processingwithin the available computation bud-

get supported in the switch architecture.

Comparison to Harmonia. Harmonia [40] is the recent effort

that exploits switches for replicated data stores. Specifically, Har-

monia detects read-write conflicts in the switch. We highlight the

distinct features of NetLR as follows.

• Harmonia only supports leader-based replication protocols

(e.g., PB and CR). The switch forwards reads to the leader

replica if the requested object is inconsistent. NetLR per-

forms leaderless replication in the switch, hence no com-

plex replication protocols are needed. If there exist pend-

ing writes for the object, the switch forwards reads to the

latest known consistent replica, which can be any replica,

not a specific one like the leader.

• In Harmonia, the leader replica is in charge of write coordi-

nation. This indicates that Harmonia cannot achieve high

throughput and low latency for writes at the same time.

For example, when Harmonia uses CR, latency increases

as the chain length increases. UnlikeHarmonia, the latency

in NetLR is not affected by the number of replicas because

we coordinate writes using the switch in a broadcasting

manner.

• Harmonia handles membership changes passively based

on replication protocols. NetLR actively deals with group

membership changes. The switch control plane monitors

the liveness of replicas and adapts to server failures quickly

without the intervention of replicas.

Comparison to existing works.We summarize the difference

of NetLR compared to existing works in Table 1. CR and Hermes

are protocol-level approaches, whereas Harmonia and NetLR are

network-level solutions. Hermes and NetLR provide read scalabil-

ity and require no leader election since they are leaderless. Har-

monia provides read scalability as well with in-network read-write

conflict detection. NetLR is the only solution that requires no inter-

replica coordination for writes andmembership changes. There ex-

ist no write coordinator among replicas. Therefore, our solution re-

quires only two messages (i.e., write update and acknowledgment)

to be processed at the bottleneck replica for a write operation. In

the same vein, two hops are enough to handle a write (i.e., 1 Round

Trip Time (RTT)).

���������	
���
���
����

���

��������	�	�
�	�


����	�
��
��
��

���
���

������

�������

�������
������	�
�

�
	�����
������

�����

���� 	��
�

!���
��������	����

������

��������
�	�


�������

"	�	�
 
��

�����
�#	����

��	$�	����

Figure 2: NetLR architecture.

4 NETLR ARCHITECTURE

Figure 2 illustrates the NetLR architecture that consists of the fol-

lowing components.

4.1 Switch Data Plane

The switch data plane is the core component of NetLR that orches-

trates the replication process. The packet processing pipeline in

the switch data plane basically performs L2/L3 packet forwarding

as a general switch. NetLR adds the replication functions to the

processing pipeline, and this does not harm the packet forwarding

functionality. The functionality of NetLR is implemented with the

following two modules.

4.1.1 Consistency-aware Read Scheduling. The consistency-aware

read scheduling module schedules read requests by resolving read-

write conflicts in a leaderless manner. To do this, the module main-

tains the list of objects that become inconsistent due to ongoing

writes. The list is generally small because the object is removed

from the list when the switch commits the write. The module also

tracks the ID of the latest known consistent replica having the lat-

est data of inconsistent objects. When the requested object is in

the inconsistent object list, the switch forwards reads to the latest

known consistent replica. This means that reads always get the lat-

est data for an object, even if a write for the object is not applied to

all the replicas yet. The replica ID is updated to that of the source

replica when a new write reply arrives at the switch. This enables

the switch to balance read requests even when the object is incon-

sistent, unlike Harmonia that forwards reads to the leader replica

only.

4.1.2 High-Performance Write Coordination. The write coordina-

tion module in the switch directly coordinates writes. Therefore,

replicas do not communicate with each other to coordinate writes.

Upon receivingwrites from clients, the switchmodule clones write

messages and broadcasts them to the replicas. When every write

reply is aggregated to the switch, the module commits the write

operation by sending the write reply to the client. This module

greatly reduces the required number of messages for write coordi-

nation. Specifically, since no inter-replica coordination is required,

1340



������ �� ��� 	� �� 
�� ��
����

����� �����	

�
��
�����

�����
����	����

��	���
�������������


 �������!	�����"�

Figure 3: NetLR packet format.

a replica processes only two messages for a single write. Thus, we

can see a constant write throughput regardless of the number of

replicas.

The module also resolves inter-write conflicts by maintaining a

global sequence number that monotonically increases upon receiv-

ing every write. The switch assigns the sequence number to writes,

and this enables the replicas to distinguish the order of write re-

quests, including the concurrent writes for the same object. We

make the storage replicas accept the write only if the sequence

number in the message is larger than or equal to the maintained

sequence number. Therefore, we do not have to invalidate the ob-

ject to avoid out-of-order write updates when different writes for

the same object are processed.

4.2 Switch Control Plane and Servers/Clients

4.2.1 Active Fault Adaptation. The active fault adaptation module

in the switch control plane maintains the liveness state of repli-

cas in addition to relevant information (e.g., IP address, the to-

tal number of replicas, and replica ID). The module periodically

(≈10<B) updates the liveness state by checking the port status con-

nected to the replicas. When a port down (i.e., a server failure) is

detected, the module immediately excludes the faulty replica from

the replica IP and port number lists. The module also updates regis-

ters andmatch-action rules in the switch data plane, which include

the number of live replicas and the translation tables for replica

IDs and IP addresses. No actions are required by replicas to handle

failures. Thanks to the module, the data store can adapt to server

failures quickly without relying on replication protocols.

4.2.2 Storage Servers and Clients. NetLR greatly simplifies repli-

cation protocols because the entire replication functions are per-

formed in the switch.When read requests arrive, the storage server

(i.e., replica) sends read replieswith the data of the requested object.

Upon receiving write requests, the server updates the object data

and sends back write replies only if the sequence number of the

packet is larger than or equal to the maintained sequence number.

Clients just send requests and receive replies. We note that NetLR

does not make local requests go through the switch. The network

stack of a server forwards local requests to the server itself via a

loopback network interface.

5 NETLR DESIGN

5.1 Packet Format

Figure 3 shows the packet format of NetLR. NetLR uses a custom

L7 protocol message. We reserve an UDP port number for NetLR

so that the switch can apply different packet header parser flows

Algorithm 1 Request Processing in Switch

− ?:C : Packet to be processed

− $1 9 : List of inconsistent objects
− �'4?: List of the latest known consistent replicas

− !(4@: List of the last written sequence number

− B4@: Sequence number for writes

1: if ?:C .>? == READ then

2: if ?:C .83 ∈ $1 9 then ⊲ Read for inconsistent object

3: ?:C .3BC ← �'4? [?:C .83]
4: else ⊲ Read for consistent object

5: ?:C .3BC ← choose a replica using schedulers

6: end if

7: Forward(?:C )

8: else if ?:C .>? == WRITE then

9: B4@ ← B4@ + 1 ⊲ Increase sequence number for every write

10: ?:C .B4@ ← B4@ ⊲ Assign sequence number

11: $1 9 .�=B4AC (?:C .83) ⊲ Add object to list

12: CloneForward(?:C ) ⊲ Broadcast writes

13: end if

Algorithm 2 Reply Processing in Switch

− #D<�'4?: List of the number of consistent replicas

− '4?�� : List of replica IDs
1: if ?:C .>? == R-REPLY then

2: Forward(?:C ) ⊲ No specific action for read reply

3: else if ?:C .>? == W-REPLY then

4: if ?:C .B4@ > !(4@ [?:C .83] then
5: !(4@ [?:C .83] ← ?:C .B4@ ⊲ Update the last seq. number

6: #D<�'4? [?:C .83] ← 1 ⊲ Reset for new write

7: �'4? [?:C .83] ← '4?�� [?:C .BA2]
8: else if ?:C .B4@ == !B4@ [?:C .83] then
9: #D<�'4? [?:C .83] ← #D<�'4? [?:C .83] + 1
10: �'4? [?:C .83] ← '4?�� [?:C .BA2]
11: else if ?:C .B4@ < !B4@ [?:C .83] then
12: Drop(?:C ) ⊲ Discard older write

13: end if

14: if #D<�'4? [?:C .83] == #> 5 '4?;820B then

15: $1 9 .Remove(?:C .83) ⊲ Remove object

16: Forward(?:C ) ⊲ Commit the write

17: else

18: Drop(?:C ) ⊲ Not enough to commit

19: end if

20: end if

for NetLR packets and normal packets. The NetLR message has the

header consists of three fields as follows.

• OP: the message operation type, which can be READ, WRITE,

R-REPLY, and W-REPLY.

• ID: the ID of a requested object.

• SEQ: the sequence number for write requests. The switch

generates a value for every write request.

1341



��������	

��������


���������

����
�

������

������������	�
���������

����������
	 


��

�������

���� 


	����
�����

���

�����

���

����������

���

! " 
 


� # � 	

(a) Read for consistent objects

��������	

��������


���������

����
�

������

������������	�
���������

����������
	

�



�


	����
�����

���

�����

���

����������

���

� � 
 


� � � 	

(b) Read for inconsistent objects

��������	

��������


���������

����
�

������

������������	�
����
������

����������
	




�




�




�

�	����
�����

���

�����

���

����������

���

� � 
 


� � � 	

� 	 
 	

(c) Write propagation

��������	

��������


���������

����
�

������

������������	�
����
������

����������

�

�

�

�	����
�����

���

�����

���

����������

���

� � 
 


�  � 	

(d) Write completion

Figure 4: Request and reply processing in NetLR. The switch can forward reads to any replica for consistent objects. If inconsis-

tent, reads are forwarded to the latest known consistent replica only. The switch coordinates writes by tracking inconsistent

object states in the data plane. (Last Seq = last written sequence number; Last Rep = latest known consistent replica ID; # of

Const Rep = number of consistent replicas).

5.2 Request and Reply Processing

NetLR has a different packet processing logic depending on the

type of message as follows. Algorithm 1 is the pseudocode of re-

quest processing in the switch.

5.2.1 Read Requests. The switch in NetLR always forwards reads

to replicas having the latest data, ensuring linearizability. When

a read request is received, the switch first checks whether the re-

quested object is in the inconsistent object list (lines 1-2). If the

object is included in the list, the switch updates the destination of

the packet to the latest known consistent replica (lines 2-3). Oth-

erwise, the switch can select any replica as the destination using

request schedulers (e.g., round-robin in our work), since the object

is fully consistent (lines 4-5). After that, the switch forwards the

read to the destination replica (line 7).

5.2.2 Write Requests. The NetLR switch provides in-order writes

and high performance through in-switch write serialization and

write coordination. Upon receiving a write, the switch increases

the global sequence number and assigns the number to the write

(lines 8-10). Next, the switch inserts the object into the inconsistent

object list (line 11). After that, the switch propagates writes using

packet cloning (line 12). Specifically, the request is copied as many

as the number of replicas, and each request is sent to each replica.

5.2.3 Read andWrite Replies. Algorithm 2 is the pseudocode of re-

ply processing in the switch. Since reads can be performed locally

using a single replica, the switch just forwards read replies to the

client (lines 1-2). However, for write replies, the switch performs

additional actions.

If the sequence number of the packet is larger than the last writ-

ten sequence number, this reply is of the newer write (lines 3-4).

The switch updates the last written sequence number for the ob-

ject to the sequence number of the packet (line 5). Next, the switch

resets the number of consistent replicas to 1 because a new write

coordination begins (line 6). Lastly, the latest known consistent

replica is updated to the ID of the source replica that sent the reply

(line 7). If the reply is for the current write, the switch first in-

creases the number of consistent replica for the object by 1 (lines

8-9). As the same as the newer write, the latest known consistent

replica is also updated (line 10). Upon receiving a reply of older

writes, the switch simply drops the packet since we do not need

the message anymore (lines 11-12).

If the number of consistent replica is equal to the number of

replicas, this means that all the replicas successfully updated the

object data (line 14). The switch now removes the object from the

inconsistent object list, since the object is consistent (line 15). The

switch finally commits the write operation by forwarding the reply

to the client (line 16). Otherwise, the packet is dropped because we

need more consistent replicas to commit the write (lines 17-18).

5.2.4 Operational Examples. We now show examples of request

and reply processing in NetLR. Figure 4 (a) illustrates the process-

ing of a read for consistent object B. The switch can choose any

replica as the destination since all the replicas contain the newest

data for the object. In this example, the switch forwards the re-

quest to replica 2. The replica simply returns the reply with the

object data to the client. Figure 4 (b) is the example of a read for in-

consistent object C. Unlike the example in Figure 4 (a), the switch

can forward the request to the latest known consistent replica only

1342



(replica 3 in the example). The replica finishes the operation by re-

turning the reply to the client.

Figure 4 (c) shows the example of a write for object G. Upon re-

ceiving the write request, the switch increases the global sequence

number by 1 and assigns the number to the request. Therefore, the

sequence number is updated to 10. A write should be applied in all

the replicas, hence the switch clones the write and broadcasts the

messages. At the same time, the object G is inserted in the incon-

sistent object list. Each replica returns the reply after updating the

data of object G. In the example, between the replicas, the reply

of replica 2 arrives at the switch first. The switch updates the last

written sequence number, the latest known consistent replica, and

the number of consistent replicas, to 10, replica 2, and 1, respec-

tively. Figure 4 (d) shows how a write for object G is committed.

The write replies from replica 1 and replica 3 finally arrive at the

switch. The switch also updates the object states for each reply.

Since every replica is acknowledged, the switch removes object G

from the list. In addition, the switch forwards the reply of the latest

replica (i.e., replica 3) to the client to commit the write.

5.3 Handling Failures

5.3.1 DroppedMessages. Since the network is unreliable, messages

can be dropped. If a write request sent from the switch or a write

reply is dropped, an object remains in the inconsistent object list

permanently. In this case, reads are forwarded to the latest known

consistent replica until a newer write is performed for the object.

This may degrade performance for a while but does not harm con-

sistency. We can also use application-level retransmission mech-

anisms like a timeout to prevent the client from waiting for the

write commit message excessively when a write reply is dropped.

The timeout can be adjusted dynamically by considering the la-

tency trends to avoid early or long timeouts.

5.3.2 Server Failures. In NetLR, server failures are handled by the

active fault adaptation module in the switch control plane as de-

scribed in Section 4.2.1. The addition or recovery of replicas can

be handled by relaunching the switch control plane again after fin-

ishing reconfiguration and copying data. Specifically, we first copy

object data of an up-to-date replica to the recovered replica. We

also make the up-to-date replica forwards copied write requests

to the added replica until the serving request of the added replica

is resumed. Lastly, we update the membership information in the

control plane and resume serving requests of the recovered replica.

5.3.3 Switch Failures. Switches have the lowest failure rates across

all data center hardware. For switches that experience at least one

failure, the mean number of failures for a year is only 1.1 [14].

When switch failures occur, we can reboot the switch or replace

it with a backup switch. This can affect availability, performance,

and consistency. Specifically, during downtime, the data store be-

comes unavailable, and the performance is also degraded. The time

to restart the switch depends on switch hardware. In our experi-

ence, it takes tens of seconds to boot and run the switch process.

The availability and performance issues are not specific toNetLR

because the switch failure impacts any type of distributed system.

The key issue related to NetLR is consistency, since the switch

loses the maintained object states. For example, replicas may drop

�������

�	
 � �	
 � �	
 
 �	
 �

���������	���

��������
�
���������	���

Figure 5: The aggregation switch as the in-network replica-

tion orchestrator for multi-rack deployment.

write requests until the sequence number of the switch reaches

to that of the replica because the switch failure resets the global

sequence number. To avoid this, as in existing works [23, 40] we

can use the switch’s unique ID that is monotonically increased

when the switch starts. By comparing the switch’s ID in addition

to the sequence number, the server can accept the writes of the

new switch. The switch ID also can be used to prevent inconsis-

tent reads, which are caused by lost object states. Specifically, we

can insert the switch ID into the read requests. Storage replicas

accept reads only if the carried switch ID is the same as the latest

known switch ID. This makes read requests being dropped until

a new write is performed for the object, but linearizability can be

preserved. To mitigate the performance degradation caused by the

switch ID-based solution, we may use a snapshot of the data store

instead of the switch ID. This can preserve consistency and does

not harm performance, although the object state turns back to the

time when the snapshot is created.

5.4 Discussion

5.4.1 Multi-Rack Deployment. As illustrated in Figure 2, we basi-

cally consider a storage rack for deployment where all replicas are

co-located in the same rack. This single-rack deployment model

can be applied to many practical use cases, such as on-premise

data stores for enterprises and specialized data stores for the cloud

data center [40].

However, some data stores may use replicas in different stor-

age racks for replication. In this case, since the object states are

distributed in multiple ToR switches, the functionality of NetLR

may work incorrectly. To address this, we can utilize the aggrega-

tion switch that interconnects multiple storage racks as shown in

Figure 5. In the figure, we can see that the aggregation 1 switch

coordinates replicas under ToR 1 and ToR 2 switches. By forward-

ing requests of a replica group to the same aggregation switch, we

can monitor every replication message from multiple racks. This

does not increase the latency unnecessarily unless the client was

in the same storage rack of the destination replica because every

packet from the client passes through the aggregation switch to

be forwarded to the destination replica. The control plane of the

aggregation switch also can monitor the port status of connected

ToR switches because the switch control planes also can commu-

nicate with each other. However, it may increase the time to adapt

1343



server failures due to increased network hops. The correct design

and evaluation for multi-rack deployment are our future work.

5.4.2 Supporting Large Object Data. NetLR uses UDP because the

protocol supports low latency for key-value databases [8, 12, 36].

Most requests and replies are delivered with a single packet be-

cause most object values are tens of bytes [29]. This is less than

the Maximum Transmission Unit (MTU) size that is typically 1500-

byte. However, some workloads may have larger values, which

are fragmented into multiple packets. In this case, the switch can

perceive the packets of a single write as the packets of multiple

writes for different objects. To avoid this, like Harmonia [40], we

can differentiate the processing of the first packet from the follow-

ing packets using different operation types. Specifically, the switch

forwards the following packets without accessing the hash table,

avoiding duplicate packet processing.

5.4.3 Replication to A Subset of Replicas. The current NetLR de-

sign targets replicated data stores where objects are replicated over

all replicas connected to the switch. However, data stores may de-

sire to replicate objects in only a subset of the replicas. NetLR can

support this by adding the replica group ID to message metadata.

In particular, for write coordination, the switch can use a differ-

ent multicast group matched to the replica group ID in the request

message. For reads, we can leverage a register value that expresses

the replicas belonging to the replica group as a bitmap.

6 IMPLEMENTATION

6.1 Switch Control Plane and Servers/Clients

6.1.1 Control Plane. The switch control plane application is writ-

ten in Python 2.7 using Barefoot Runtime APIs. When we run the

application, the switch control plane first updates the switch data

plane with pre-configured table rules and register values. After

that, the application refers the port status periodically for active

fault adaptation.

6.1.2 Client-Server Application. We also make a single-threaded

client-server application in Python 3.7.10 with the Redis [12] API

for Python. Our application is based on pypacker library [4] be-

cause it allows us to define and manipulate custom packet headers

easily. We also use pypy3 [3] to maximize packet processing per-

formance of servers. The client measures throughput and latency

by communicating with replicas. The server handles requests with

replication protocols.

6.2 Data Plane Implementation

It is not straightforward to implement the NetLR design because

switch hardware has limited resources and strict timing constraints.

Therefore, we use several techniques that translate the design to

a working system. Our switch data plane is written in P416 [10]

and is compiled with Intel P4 Studio SDE 9.2.0 for Intel Tofino

switch ASICs [6]. Overall, NetLR consumes 5 pipeline stages and

only 5.68% of the switch memory.

6.2.1 Packet Processing Pipeline. The packet processing pipeline

consists of the ingress pipeline and the egress pipeline. Between

the two pipelines, the packet buffer exists. Our modules reside in

������ ��	
���


���

	��������

��
�	
�������

���	
	
��
�����
��

��������	
	
��
�

����
��	

� � � �

�  ! �

" � #

ℎ�C�

$�%
	
�� � $�%
	
�� � $�%
	
�� � $�%
	
�� #

��	��

��

& '����(

ℎ�E� ����

��

Figure 6: Insertion, search, and deletion in the hash table

that tracks the state of inconsistent objects. The index for

the registers is the hash of object ID. For deletion, we only

remove the object ID tomeet the switch computation budget.

the ingress pipeline since NetLR performs custom packet forward-

ing for replication messages. The ingress pipeline consists of mul-

tiple Match-Action (M-A) stages. In each stage, the switch can per-

form the corresponding action defined by an M-A table. Normal

packets are directly processed by the L2/L3 routing table for packet

forwarding. If the packet is of NetLR, the switch applies additional

M-A stages to the packet in accordance with the message type. The

NetLR pipeline consists of 4 stages, and this does not exceed the

budget provided by the switch architecture.

6.2.2 Hash Table with Register Arrays. To maintain inconsistent

object states, we use multiple register arrays. We use four arrays

to store object IDs, the last written sequence numbers, the latest

known consistent replica IDs, and the number of consistent repli-

cas. Ideally, we should provide a dedicated register slot for each

object. However, the register array size is statically determined at

compile time and the available memory space is limited. Therefore,

to reduce the memory usage, we utilize the register arrays as the

hash table. Specifically, the index of the arrays is the hash of the ob-

ject ID, which is stored in the ID field at the NetLR header. Since the

hash can be duplicated due to hash collisions, we store the original

object ID in a register array. Note that the original object ID can be

carried in the packet payload and can be parsed by the switch. The

hash can be computed in the switch data plane, but we generate

the hash from the client to simplify the processing pipeline.

Figure 6 shows the hash table design and how the switch per-

forms operations. For insertion, the switch first reads the matched

slot in the object ID array. If the slot is empty, the switch records

the object ID in the slot to avoid overwrite of collided objects. For

search, the switch simply returns the stored value in the matched

slot. To delete the object from the hash table when committing

writes, the switch removes the store object ID from the matched

slot. One notable point is that we do not remove the values of the

other register arrays. This is because the removal of the values

from all the register arrays consumes a lot of M-A units, which

may exceed the computation budget. To avoid accesses that lead

to misbehavior, the other register arrays can be accessed only if

the stored object ID is equal to the object ID in the packet.

6.2.3 Handling Hash Collisions. The hash of different objects can

collide due to the nature of hash functions. As we have described

1344



above, we prevent the access of collided objects by storing the orig-

inal object ID in hash slots. The switch simply drops the packet

of collided objects. This may be retransmitted by the client with

an application-level loss recovery mechanism. The performance

degradation caused by hash collisions is not heavy because the

object state is maintained only until committing the write oper-

ation. This also means that there exist a few inconsistent objects

at a time. In addition, a typical production workload is read-heavy

with 5% of write ratio [21, 26, 40]. We show that 128K hash slots

are enough to serve the write-only workload in the performance

evaluation, which is the most challenging workload. If necessary,

we can also utilize the well-known open addressing technique and

double-hash as Harmonia [40] does.

6.2.4 Group Membership States. The switch data plane also main-

tains the group membership states including the replica ID, the IP

address, and the port number. To translate the replica ID to the cor-

responding IP address and vice versa, we use two translation M-A

tables. The table rules are updated by the control plane. The client

does not have to know the exact IP address of replicas because the

switch determines the destination replica using request schedulers

for reads and packet cloning for writes. This enables the switch to

handle failures without the intervention of storage servers.

6.2.5 Limitations of Switch Hardware. Our data plane implemen-

tation shows that we need careful approaches and techniques to

meet the limitations of programmable switch ASICs. However, we

clarify that this is a data plane design for a specific switch archi-

tecture. Note that each switch architecture may have different ad-

vantages and limitations. The design of NetLR may be fully imple-

mented in another switch architecture. The programmable switch

ASICs have been improved rapidly, and new features have become

available with emerging ASICs. For example, Intel Tofino does not

provide the port queue length information in the ingress pipeline,

which is critical for congestion-aware packet forwarding. How-

ever, the queue length information becomes available in the ingress

pipeline with emerging Intel Tofino2 [7].

7 EVALUATION

7.1 Experiment Methodology

7.1.1 Testbed. Our testbed consists of 7 servers connected to an

Edgecore Wedge100BF-32X with a 3.2 Tbps Intel Tofino switch

ASIC [6]. 6 of the servers are storage replicas with an Intel 6-core

CPU and 16GB of memory. The maximum throughput of each stor-

age replica is roughly 18.4KRPS (Requests Per Second) for reads

and 17.8KRPS for writes. One of the servers acts as the client with

an Intel 6-core CPU and 32GB ofmemory. The servers are equipped

with aMellanoxConnectX-5 Ethernet NIC. Unlike the other servers,

the client server is with a dual-port NIC. To use two clients with

a single server, we run two client applications and assign a sepa-

rate CPU core and NIC port. The maximum throughput of a single

client is approximately 54KRPS. Therefore, with two clients, the

maximum throughput is roughly 108KRPS. We set the link speed

to 40Gbps. The servers run Ubuntu 18.04.3 LTS with Linux kernel

5.4.0-77-generic.

0 20 40 60 80

Throughput (KRPS)

0

5

10

15

L
a

te
n

c
y
 (

m
s
)

CR
Hermes
NetLR

(a) Median

0 20 40 60

Throughput (KRPS)

0

20

40

60

L
a

te
n

c
y
 (

m
s
)

(b) 99th Percentile

Figure 7: Latency vs. throughput.

7.1.2 Workloads. Unless specified, we basically use four replicas

and a typical read-heavy workload of 5% write ratio with uniform

distribution like existing works. We use 1M objects with 32-bit IDs

and 128-bit values as the same as Harmonia [40].

7.1.3 Compared Schemes. We compare NetLR with CR [32] and

Hermes [21], which are typical leader-based and leaderless repli-

cation protocols, respectively. Comparison with the protocols lets

us know how much in-network replication brings performance

gains. Hermes is an RDMA-based protocol using Infiniband NICs.

In our experiments, Hermes communicates with replicas using the

OS network stack and Ethernet NICs for fair comparison.

We also compare NetLR against Harmonia [40], the state-of-

the-art in-switch solution. Since the code of Harmonia is not pub-

licly available, we have implemented the Harmonia mechanism de-

scribed in the original paper by doing our best. One difference is

that our implementation provides 128K hash slots with a single

stage while the original implementation has 192K hash slots with

3 stages. This does not mislead us to incorrect conclusions because

128K slots are enough to handle temporarily inconsistent objects.

The other difference is that our Harmonia implementation does

not compare the sequence number to remove the object from the

dirty set when processing write completion messages. This may

cause the weak consistency for corner cases. In detail, this can

cause forwarding of reads to inconsistent replicas if there exist con-

current writes for the same object, because the object is removed

from the dirty set by the earlier write completion before the ar-

rival of the newest write completion. To avoid the read stall in the

inconsistent replica, we make replicas accept reads without refer-

ring to the last committed sequence number. This enables us to

see the correct performance by trading consistency. We gracefully

note that we compare the performance, not the consistency cor-

rectness. Note that NetLR, CR, and Hermes preserve linearizability

in our experiments.

7.2 Experimental Results

7.2.1 Latency vs. Throughput. We first evaluate the latency as a

function of the achieved throughput. The clients generate requests

to the replicas, and we measure the median latency and the 99th

percentile latency (i.e., tail latency) by varying throughput.

We plot the results in Figure 7. It is easy to see that CR achieves

the lowest throughput between the compared solutions. This is be-

cause CR handles requests with a single replica for each request

type. Hermes shows lower throughput compared to NetLR. This is

1345



1 2 3 4 5 6

Number of Replicas

0

50

100

T
h

ro
u

g
h

p
u

t 
(K

R
P

S
)

CR
Hermes
NetLR

(a) Impact of number of replicas

1M 5M 10M 100M

Dataset Size (Number of Objects)

0

20

40

60

80

T
h

ro
u

g
h

p
u

t 
(K

R
P

S
) CR

Hermes
NetLR

(b) Impact of dataset size

Figure 8: Scalability experiments.

0 2 4 6 8 10

Time (second)

0

5

10

15

20

T
h
ro

u
g
h
p
u
t 
(K

R
P

S
)

w/o Fault Adaptation

w/ Fault Adaptation

Figure 9: Throughput under server failures.

because Hermes uses replicas for write coordination and performs

additional coordination to validate objects in replicas.

Figure 7 (a) shows the median latency as a function of through-

put. Since the throughput of CR is bounded to the single replica

performance, the latency of CR rapidly increases as the throughput

reaches the throughput limit of the single replica. The median la-

tency of Hermes also soars when exceeding the saturated through-

put. Between the compared schemes, NetLR shows the lowest me-

dian latency across the throughput. This implies that NetLR is the

solution that provides high throughput and low latency simulta-

neously for typical workloads. Meanwhile, Figure 7 (b) shows the

results for the 99th percentile latency. As the same as the result in

the median latency, NetLR offers the lowest tail latency between

the schemes. The gap between Hermes and NetLR stems from the

fact that Hermes increases the latency of writes by coordinating

write operations in replicas, which means each replica should pro-

cess more messages than NetLR with more RTTs.

7.2.2 Scalability. We evaluate the scalability of NetLR in the num-

ber of replicas and the dataset size. For the impact of number of

replicas, the clients generate requests with a sending rate of the

limit of the client. After that, we measure the throughput by vary-

ing the number of replicas. For the impact of dataset size, we vary

the dataset size from 1M to 100M with four replicas.

Figure 8 (a) shows the results in the number of replicas. As

expected, the throughput of CR is bounded to the single replica

throughput. NetLR and Hermes show the increased throughput

as the number of replicas increases. However, the throughput of

NetLR is higher than Hermes by 1.18× on average. This is because

Hermes sacrifices write throughput for inter-replica coordination.

Unlike CR and Hermes, we can see that NetLR offers near-linear

0 4 8 12 16 20 24 28 32 36 40

Time (second)

0

10

20

30

40

50

60

70

T
h
ro

u
g
h
p
u
t 
(K

R
P

S
) Stop switch

Reactivate switch

Figure 10: Throughput under switch failures.

0 20 40 60 80 100

Write Ratio (%)

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t 
(K

R
P

S
)

CR

Hermes

NetLR

Figure 11: Throughput with different write ratios.

scalability. Figure 8 (b) shows that the impact of dataset size is triv-

ial. This is because the dataset size itself does not change the re-

quired computing resources for read/write operations.

7.2.3 Performance with Failures. In this experiment, we inspect

the performance of NetLR under switch and server failures.

For server failures, the clients generate only read requests to

four replicas with a sending rate of 18KRPS, which can be fully

served by one replica. Every 2 seconds, we cause a failure of one

replica by disabling the port. We measure the throughput for 10

seconds with and without the active fault adaptation module. Fig-

ure 9 shows the throughput as a function of time. We can see that

NetLR maintains the throughput close to the sending rate even

with the server failure. This is because our fault adaptation module

immediately excludes the faulty replica from the replica list and up-

dates the data plane states. Therefore, the requests are forwarded

to the live replicas seamlessly. However, without the fault adapta-

tion module, the switch still forwards reads to the faulty replica,

making the read fail.

For switch failures, we manually stop and reactivate the switch.

Figure 10 shows the throughput for the period of failure and recov-

ery.We can see that the throughput rapidly decreases as the switch

fails. After the switch is reactivated, the throughput is recovered to

the same as before the failure. It takes roughly 13 seconds to reacti-

vate switches. We note that this time depends on switch hardware,

not the NetLR mechanism.

7.3 Deep Dive

7.3.1 Impact of Write Ratios. We now inspect the impact of write

ratios on the system throughput to evaluate the performance for

dynamic workloads, including write-heavy and mixed ones. The

1346



0 20 40 60 80

Throughput (KRPS)

0

5

10

L
a

te
n

c
y
 (

m
s
)

CR
Hermes
NetLR

(a) Read-only workload

0 5 10 15 20

Throughput (KRPS)

0

5

10

15

20

L
a

te
n

c
y
 (

m
s
)

(b) Write-only workload

Figure 12: Median latency for extreme workloads.

0 20 40 60 80

Throughput (KRPS)

0

10

20

30

40

L
a

te
n

c
y
 (

m
s
)

CR
Hermes
NetLR

(a) Read-only workload

0 5 10 15 20

Throughput (KRPS)

0

20

40

60

L
a

te
n

c
y
 (

m
s
)

(b) Write-only workload

Figure 13: 99th percentile latency for extreme workloads.

client measures the saturated throughput by varying the write ra-

tio for the three compared schemes.

Figure 11 shows the throughput with different write ratios. We

can see that CR offers a constant performance regardless of write

ratios. The throughput ofHermes decreases as thewrite ratio grows.

This is not surprising, sinceHermes performs expensive inter-replica

coordination to handle writes. For NetLR, with higher write ra-

tios, the throughput goes close to the performance of CR since the

write throughput is bounded to the single replica performance. The

throughput of NetLR is slightly lower than CR when the write ra-

tio is 100% due to hash collisions. The result in Figure 11 indicates

that NetLR can provide the best throughput for most ratios.

7.3.2 Performance for Extreme Workloads. We conduct a through-

put and latency experiment with extreme workloads, which are

read-only and write-only. These workloads do not represent typi-

cal workloads in production data stores. However, this lets us know

the definite performance for each request type.

Figure 12 shows the median latency at different throughput lev-

els for read-only and write-only workloads. The result with the

read-only workload is similar to the result in Figure 7 (a) because

the gap of write ratio is only 5%. As expected, for the write-only

workload, we can see that Hermes results in the lowest throughput

due to the inter-replica coordination overhead. The throughput of

NetLR is bounded to the single replica performance like CR since

a write must be applied in all replicas. Figure 13 shows the 99th

percentile latency with different throughput levels for the extreme

workloads. We can see that NetLR offers the lowest tail latency

between the compared schemes across the workloads thanks to

in-network replication. In the write-only workload, the through-

put of CR is better than NetLR by 1.08× as already shown in Fig-

ure 11. This is because of request drops due to hash collisions in

Uniform Skewed

Access Pattern

0

20

40

60

80

T
h
ro

u
g
h
p
u
t 
(K

R
P

S
) CR

Hermes

NetLR

Figure 14: Throughput with different access patterns.

2048 4096 8192 16384 32768 65536 131072

Hash Table Size (Log)

8

10

12

14

16

18

T
h
ro

u
g
h
p
u
t 
(K

R
P

S
) 1 Client

2 Clients

Figure 15: Impact of switch memory size.

the switch data plane. Although throughput degradation occurs,

we gracefully argue that this is not critical since the write-only

workload is far from production workloads.

7.3.3 Impact of Access Pa�erns. Wenow evaluate the performance

of NetLR in skewed workloads. Since we want to see the perfor-

mance in the worst case, we use the most skewed request distribu-

tion. This means that all generated requests are for the same object.

This is more challenging than the distributionwith zipf-0.9 [21, 40].

Figure 14 plots the throughput of the three schemes with differ-

ent access patterns. Overall, NetLR provides the best performance

in the two workloads. The throughput of NetLR with the uniform

distribution is higher than that with the skewed distribution by

1.16×. However, for Hermes, the gap between the distributions is

5.52×. This is because reads frequently stall because of object inval-
idation bymany concurrent writes for the same object. Unlike Her-

mes, NetLR forwards reads to the latest known consistent replica

without request stall. Since requests are serialized through chains,

CR shows a constant performance with the both distributions.

7.3.4 Impact of Hash Table Size. We inspect the impact of the

switch memory on the performance by varying the hash table size.

We use the write-only workload for this experiment. This is be-

cause the write performance highly depends on the hash table size

because of concurrent writes for the same object. The write-only

workload is the most challenging workload that generates many

concurrent inconsistent objects. Recall that the write ratio of the

typical workload is only 5%.

Figure 15 shows the saturated throughput with different hash

table sizes for 1 client and 2 clients cases. Regardless the number

of clients, we can see that the throughput grows as the switch

provides more hash slots. With 128K hash slots, the throughput

1347



15 20 25 30 35 40 45 50 55 60 65

Throughput (KRPS)

0

5

10

15

L
a

te
n

c
y
 (

m
s
)

Harmonia
NetLR

(a) Median

15 20 25 30 35 40 45 50 55 60 65

Throughput (KRPS)

0

10

20

30

40

L
a

te
n

c
y
 (

m
s
)

(b) 99th percentile

Figure 16: Throughput and latency (vs. Harmonia).

reaches the maximum throughput of the write-only workload. We

also note that a smaller hash table size is enough to serve the typi-

cal workload since theworkload contains only 5% of write requests.

When using 128K hash slots, NetLR requires only 5.68% of the

switch memory. By considering that the switch generally provides

tens of megabytes of memory, we can say that NetLR requires a

small portion of switch resources to track inconsistent objects.

7.3.5 Comparison to Harmonia. We now compare NetLR against

Harmonia [40] with the typical workload described in Section 7.1.2.

Figure 16 shows themedian latency and the 99th percentile latency

at different throughput levels. We can see that the two schemes of-

fer the almost same throughput. However, we can see that there

are gaps in latency between NetLR and Harmonia. In Figure 17,

we find that the latency gap is highly impacted by the write ra-

tio. These results also indicate that NetLR is generally better than

Harmonia in tail latency for dynamic workloads.

This is because Harmonia relies on replication protocols (CR in

this case) to coordinate writes, whereas NetLR coordinates writes

in the switch. In both NetLR and Harmonia, each replica processes

twomessages to handle awrite. However, Harmonia requires longer

latency because of write propagation through chaining. One may

wonder what if Harmonia uses PB, which is a broadcast-based pro-

tocol, instead of CR. However, since PB uses only the single leader

replica to coordinate writes, the performance is worse than NetLR

because of imbalanced write loads.

8 RELATED WORK

Replication protocols. Replication protocols can be categorized

into leader-based and leaderless protocols [8, 21]. PB [9] is the ba-

sic protocol that uses the stable leader to handle reads and writes.

The other replicas exist for availability only. CR [32] improves the

performance of PB using different replicas for reads and writes.

CRAQ [34] allows local reads for CR.Mencius [27] and EPaxos [28]

are leaderless replication protocols that change the leader replica

for different requests opportunistically. Hermes [21] is the state-

of-the-art leaderless replication protocol that allows local reads

and concurrent write coordination by multiple write coordinators.

The major difference of NetLR from the replication protocols is

that NetLR is a network-level solution, whereas the others are the

protocol-level solutions. Our approach has the advantage over the

protocols that enables leaderless replication without performance

degradation caused by the inter-replica coordination.

20 40 60 80 100

Write Ratio (%)

10

20

30

40

L
a

te
n

c
y
 (

m
s
)

Harmonia
NetLR

(a) Median

20 40 60 80 100

Write Ratio (%)

20

40

60

80

L
a

te
n

c
y
 (

m
s
)

(b) 99th percentile

Figure 17: Impact of write ratios (vs. Harmonia).

In-network computing. In-network computing is an emerg-

ing paradigm that utilizes the network switch for computing accel-

eration. NetCache [19] offers in-network caching by storing popu-

lar object data in the switch. Pegasus [24] improves NetCache by

storing popular objects in servers selectively with coordination of

the switch. NOPaxos [23] is an early work that utilizes switches

for request serialization. The concept of serialization is also used

in NetLR as well. Harmonia [40] is the state-of-the-art in-switch

replication solution that resolves read-write conflicts without coor-

dination overhead. NetLR goes further than Harmonia by moving

the entire replication functions into the network switch to realize

leaderless replication without coordination overhead. Transaction

Triaging (TT) [18] is a recent work that accelerates transaction

processing using programmable switches. Unlike TT, NetLR does

not support transactions because we target NoSQL databases like

Memcached and Redis.

9 CONCLUSION

We have presented NetLR, a replicated data store architecture that

achieves high performance, fault tolerance, and linearizability by

leveraging the network switch as the in-network leaderless replica-

tion orchestrator. The consistency-aware read scheduling module

enables us to resolve both read-write conflicts without coordina-

tion overhead. The high-performance write coordination module

improves write performance for a single write by eliminatingwrite

coordinator replicas. Our active fault adaptation module enables

the data store to adapt to failures quickly. We have implemented

a NetLR prototype on an Intel Tofino switch and conducted exten-

sive testbed experiments. Our experimental results have demon-

strated that NetLR provides the best performance between the com-

pared schemes including CR, Hermes, and Harmonia. In-network

computing has been received great attention, and we believe that

this work contributes to the database community by inspecting the

potential of the switch as an in-network replication orchestrator.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for providing

insightful comments. This research was partly sponsored by the

National Research Foundation of Korea (NRF) grants funded by

the Ministry of Science and ICT (No. 2020R1C1C1003455) and (No.

2019R1A2C2088812). Wonjun Lee is the corresponding author.

1348



REFERENCES
[1] [n.d.]. Apache Cassandra. https://cassandra.apache.org/, Last accessed date:

March 25, 2022.
[2] [n.d.]. Cavium XPliant Ethernet switch. https://www.openswitch.net/cavium/,

Last accessed date: March 25, 2022.
[3] [n.d.]. A fast, compliant alternative implementation of Python. https://www.

pypy.org/, Last accessed date: March 25, 2022.
[4] [n.d.]. pypacker: The fastest and simplest packet manipulation lib for Python.

https://gitlab.com/mike01/pypacker, Last accessed date: March 25, 2022.
[5] [n.d.]. RocksDB: A Persistent Key-Value Store for Flash and RAM Storage.

https://rocksdb.org/, Last accessed date: March 25, 2022.
[6] [n.d.]. Tofino Programmable Switch. https://www.intel.com/content/www/

us/en/products/network-io/programmable-ethernet-switch/tofino-series.html,
Last accessed date: March 25, 2022.

[7] 2020. Advanced Congestion & Flow Control with Programmable Switches.
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.
pdf, Last accessed date: March 25, 2022.

[8] Ailidani Ailijiang, Aleksey Charapko, andMurat Demirbas. 2019. Dissecting the
Performance of Strongly-Consistent Replication Protocols. In Proc. of ACM SIG-
MOD. Association for Computing Machinery, New York, NY, USA, 1696–1710.

[9] Peter A. Alsberg and John D. Day. 1976. A Principle for Resilient Sharing of
Distributed Resources. In Proc. of ICSE (San Francisco, California, USA). IEEE
Computer Society Press, Washington, DC, USA, 562–570.

[10] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David
Walker. 2014. P4: Programming Protocol-independent Packet Processors. SIG-
COMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[11] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characteriz-
ing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In Proc. of USENIX FAST. USENIX Association, Santa Clara, CA.

[12] Josiah L. Carlson. 2013. Redis in Action. Manning Publications Co., USA.
[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-

pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-
Value Store. In Proc. of ACM SOSP (Stevenson, Washington, USA). Association
for Computing Machinery, New York, NY, USA, 205–220.

[14] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implications. In
Proc. of ACM SIGCOMM (Toronto, Ontario, Canada). 350–361.

[15] Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan, Kevin Lai,
Shuo Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal,
Sanjay Bhansali, Mingsheng Hong, Jamie Cameron, Masood Siddiqi, David
Jones, Jeff Shute, Andrey Gubarev, Shivakumar Venkataraman, and Divyakant
Agrawal. 2014. Mesa: Geo-Replicated, near Real-Time, Scalable Data Warehous-
ing. Proc. VLDB Endow. 7, 12 (Aug. 2014), 1259–1270.

[16] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492.

[17] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-Free Coordination for Internet-Scale Systems. In Proc. of
USENIX ATC (Boston, MA). USENIX Association, USA, 11.

[18] Theo Jepsen, Alberto Lerner, Fernando Pedone, Robert Soulé, and Philippe
Cudré-Mauroux. 2021. In-Network Support for Transaction Triaging. Proc.
VLDB Endow. 14, 9 (may 2021), 1626–1639.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proc. of ACM SOSP (Shanghai, China). 121–
136.

[20] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab: High-
Performance Broadcast for Primary-Backup Systems. In Proc. of the 2011
IEEE/IFIP 41st International Conference on Dependable Systems&Networks (DSN
’11). IEEE Computer Society, USA, 245–256.

[21] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit Joshi,
Aleksandar Dragojevic, Boris Grot, and Vijay Nagarajan. 2020. Hermes: A Fast,
Fault-Tolerant and Linearizable Replication Protocol. In Proc. of ASPLOS (Lau-
sanne, Switzerland). Association for ComputingMachinery, NewYork, NY, USA,

201–217.
[22] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16,

2 (May 1998), 133–169.
[23] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.

Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering. In Proc. of USENIX OSDI (Savannah, GA, USA). USENIX Association,
USA, 467–483.

[24] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan R. K. Ports. 2020. Pe-
gasus: Tolerating Skewed Workloads in Distributed Storage with In-Network
Coherence Directories. In Proc. of USENIX OSDI. USENIX Association, 387–406.

[25] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and
Thomas F. Wenisch. 2013. Thin Servers with Smart Pipes: Designing SoC Ac-
celerators for Memcached. In Proc. of ISCA (Tel-Aviv, Israel). Association for
Computing Machinery, New York, NY, USA, 36–47.

[26] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and
Kishore Atreya. 2017. IncBricks: Toward In-Network Computation with an In-
Network Cache. In Proc. of ASPLOS (Xian, China). Association for Computing
Machinery, New York, NY, USA, 795–809.

[27] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated State Machines for WANs. In Proc. of USENIX OSDI (San
Diego, California). USENIX Association, USA, 369–384.

[28] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More
Consensus in Egalitarian Parliaments. In Proc. of ACM SOSP (Farminton, Penn-
sylvania). Association for ComputingMachinery, New York, NY, USA, 358–372.

[29] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David
Stafford, Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Mem-
cache at Facebook. In Proc. of USENIX NSDI (Lombard, IL). USENIX Association,
Berkeley, CA, USA, 385–398.

[30] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Con-
sensus Algorithm. In Proc. of USENIX ATC (Philadelphia, PA). USENIX Associa-
tion, USA, 305–320.

[31] Jun Rao, Eugene J. Shekita, and Sandeep Tata. 2011. Using Paxos to Build a
Scalable, Consistent, and Highly Available Datastore. Proc. VLDB Endow. 4, 4
(Jan. 2011), 243–254.

[32] Robbert Van Renesse and Fred B. Schneider. 2004. Chain Replication for Sup-
porting High Throughput and Availability. In Proc. of USENIX OSDI. USENIX
Association, San Francisco, CA, 91–104.

[33] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy
Lin. 2016. GraphJet: Real-Time Content Recommendations at Twitter. Proc.
VLDB Endow. 9, 13 (Sept. 2016), 1281–1292.

[34] Jeff Terrace and Michael J. Freedman. 2009. Object Storage on CRAQ: High-
Throughput Chain Replication for Read-Mostly Workloads. In Proc. of USENIX
ATC (San Diego, California). 11.

[35] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen, Fei
Wu, Gengxin Miao, and Chung Wu. 2011. Recovering Semantics of Tables on
the Web. Proc. VLDB Endow. 4, 9 (June 2011), 528–538.

[36] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabr-
era III, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,
Jeremy Hoon, Sachin Kulkarni, Nathan Lawrence, Mark Marchukov, Dmitri
Petrov, and Lovro Puzar. 2012. TAO: How Facebook Serves the Social Graph.
In Proc. of ACM SIGMOD (Scottsdale, Arizona, USA). Association for Comput-
ing Machinery, New York, NY, USA, 791–792.

[37] Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, Neil
Giridharan, Joseph M. Hellerstein, Heidi Howard, Ion Stoica, and Adriana Szek-
eres. 2021. Scaling Replicated State Machines with Compartmentalization. Proc.
VLDB Endow. 14, 11 (July 2021), 2203 –2215.

[38] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis of hun-
dreds of in-memory cache clusters at Twitter. In Proc. of USENIX OSDI. USENIX
Association, 191–208.

[39] Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei Zeng, Pingan Yang,
and Yunfan Zhang. 2017. PaxosStore: High-Availability Storage Made Practical
in WeChat. Proc. VLDB Endow. 10, 12 (Aug. 2017), 1730–1741.

[40] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow. 13, 3 (Nov. 2019), 376–389.

1349

https://cassandra.apache.org/
https://www.openswitch.net/cavium/
https://www.pypy.org/
https://www.pypy.org/
https://gitlab.com/mike01/pypacker
https://rocksdb.org/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2020/04/JK-Lee-Slide-Deck.pdf

