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ABSTRACT
This paper presents Scalar DL, a Byzantine fault detection (BFD)

middleware for transactional database systems. Scalar DL manages

two separately administered database replicas in a database system

and can detect Byzantine faults in the database system as long as

either replica is honest (not faulty). Unlike previous BFD works,

Scalar DL executes non-conflicting transactions in parallel while

preserving a correctness guarantee. Moreover, Scalar DL is database-

agnostic middleware so that it achieves the detection capability in

a database system without either modifying the databases or using

database-specific mechanisms. Experimental results with YCSB and

TPC-C show that Scalar DL outperforms a state-of-the-art BFD

system by 3.5 to 10.6 times in throughput and works effectively on

multiple database implementations. We also show that Scalar DL

achieves near-linear (91%) scalability when the number of nodes

composing each replica increases.
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1 INTRODUCTION
Dealing with malicious attacks such as tampering with data in

database systems is becoming increasingly important. The reliance

of industry and government on internet services based on database

systems makes such attacks more attractive and the consequences

of successful attacks more critical.

Byzantine fault tolerance (BFT) techniques [8, 14, 40, 54, 70, 71]

have been widely explored to tolerate such attacks. There are sev-

eral extensions [28, 63, 66] of the BFT techniques to handle database

transactions where multiple operations are executed in an atomic

and isolated manner while exploiting the parallelism of the trans-

actions. The BFT techniques are designed for masking Byzantine

faults, and the number of replicas to mask 𝑓 faulty replicas needs

to be at least 3𝑓 + 1.
Although the BFT techniques are elegant, there may be an admin-

istrative burden in practice. Specifically, when we assume malicious
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attacks including internal attacks, replicas need to be placed in dif-

ferent administrative domains
1
(ADs) [19, 44, 67] because malicious

attacks are likely to be dependent, i.e., if there is one Byzantine-

faulty replica in an AD, the other replicas in the same AD are also

Byzantine-faulty because one fully-privileged administrator of the

AD could make any malicious attacks. We could diversify replica

implementations [3, 23, 27] to avoid dependent software errors

or bugs, but it is not necessarily effective for malicious attacks.

Therefore, a BFT system requires at least four different ADs to guar-

antee correctness. Managing a database system with this constraint

may impose too much administrative burden or may be impractical

for some organizations because most organizations have managed

database systems in a single AD.

The burden can be mitigated by applying Byzantine fault de-

tection (BFD) techniques introduced in PeerReview [32, 33]. Peer-

Review can only detect Byzantine faults; however, it can detect 𝑓

faulty replicas with only 𝑓 +1 replicas, i.e., it requires only two repli-
cas (ADs) to detect one faulty replica. It could be a more practical

approach for database systems when detection is acceptable.

PeerReview is a general protocol but not designed to work for

databases efficiently, i.e., it cannot execute transactions in paral-

lel while preserving a correctness guarantee (strict serializability).

PeerReview could be extended to run transactions in parallel by

applying concurrency control in a primary replica
2
, but a secondary

replica (called witness) still needs to replay the hash-chained log

of the primary sequentially to guarantee correctness, which would

limit the overall parallelism of transaction execution.

This paper presents Scalar DL, a Byzantine fault detectionmiddle-

ware that executes non-conflicting database transactions in parallel

while preserving a correctness guarantee. Scalar DL is specifically

designed for managing two database replicas that are separately

administered in two ADs in a database system. We focus on using

two database replicas for the following reasons: (1) Two is the lower

bound for the number of replicas to deal with Byzantine faults; thus,

it is the most practical setting from an administrative perspective.

(2) It could be a natural extension of the current enterprise database

systems with an auditor server [50] where the auditor server is

securely (and separately) managed in a remote location.

Scalar DL provides a view of a single-instance database system to

users and internally runs two types of database servers in separate

ADs: primary database servers that manage a primary database

replica holding an application’s data and make all the commit de-

cisions and secondary database servers that manage a secondary

database replica holding the same data as the primary database

1
An administrative domain (AD) is a collection of nodes and networks operated by a

single organization or administrative authority.

2
PeerReview works in a peer-to-peer manner, but we call a node that creates a record

first a primary.
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replica for auditing purposes. Both servers separately manage the

same set of deterministic functions to derive states and results on

the basis of given inputs.

The key of the Byzantine-fault detection protocol of Scalar DL is

that the primary and the secondary servers make an agreement on

the partial ordering of transactions in a decentralized and concurrent
way. The secondary first pre-orders a transaction given from a

client partially on the basis of conflicts (ordering phase), and the

primary executes and commits the transaction that is ordered by the

secondary (execution phase), and then the secondary validates the

ordering result given from the primary and executes the transaction

(validation phase). The three-phase protocol makes both databases

derive the same correct (strict serializable) states and results as long

as both ADs are honest, i.e., if either is Byzantine-faulty, their states

or results would be diverged, which makes it possible for clients to

observe the divergence and detect the fault in the database system.

Scalar DL is database-agnostic middleware so that it achieves the

detection capability in a database system without either modifying

the databases or using database-specific mechanisms. Scalar DL can

currently run on PostgreSQL [31], MySQL [49], Oracle Database

[53], Microsoft SQL Server [47], Apache Cassandra [24], Apache

HBase [25], Amazon DynamoDB [59], Amazon Aurora [58], Azure

Cosmos DB [46], and their compatible databases.
3

Scalar DL has been used for real-world applications. The primary

use case is making database records tamper-evident for digital ev-

idence [13]. We provide solutions for regulations and laws that

require tamper evidence of data. For example, regulations on data

protection and privacy (e.g., GDPR and CCPA), laws of digital docu-

ments around finance and tax affairs, prior user right for intellectual

property, and vehicle regulations around software updates with

over-the-air (OTA) in WP.29 [22].

To the best of our knowledge, Scalar DL is the first scalable

and practical approach that detects Byzantine faults in a database

system that manages two database replicas separately in different

ADs. This paper’s contributions are as follows:

• It describes a new Byzantine fault detection protocol for a data-

base system that manages two database replicas in different

administrative domains. The detection protocol executes non-

conflicting transactions in parallel (thus, achieving good scalabil-

ity) while guaranteeing correctness.

• It describes the design and implementation of Scalar DL that

applies the detection protocol efficiently using a middleware

approach. Scalar DL is general-purpose and database-agnostic

middleware so that it can be used with a wide variety of applica-

tions and database implementations.

• It provides experimental results with YCSB and TPC-Cworkloads

to show that Scalar DL outperforms the state-of-the-art approach

that extends PeerReview for database transactions when trans-

action concurrency can be exploited. It also presents that Scalar

DL works effectively on multiple database implementations and

achieves near-linear scalability when the number of nodes com-

posing each replica increases.

The remainder of the paper is organized as follows. Section 2

describes the background and challenges. Section 3 introduces the

3
Scalar DL is built on a universal transaction manager [57] so that it can also work

with non-ACID databases such as Cassandra, HBase, DynamoDB, and Cosmos DB.

design of Scalar DL. Section 4 describes the implementation of

Scalar DL. Section 5 presents the results of our evaluation. Section

6 presents the related work. Finally, Section 7 concludes the paper.

2 BACKGROUND AND CHALLENGES
2.1 Background
We first describe the existing approaches that deal with Byzantine

faults and discuss why they are not ideal for detecting Byzantine

faults in a database system deployed to two administrative domains

(ADs) environments. Note that Byzantine faults are arbitrary faults

including malicious internal attacks such as tampering with data

by a fully privileged administrator; thus, replicas are supposed

to fail dependently in an AD [19, 44, 67], i.e., if one replica in an

AD is Byzantine-faulty, the other replicas in the same AD are also

Byzantine-faulty. We follow the assumption throughout the paper.

2.1.1 BFT SMR. Byzantine fault tolerance (BFT) techniques [8, 14,
40, 54, 70, 71] have been widely explored in state machine replica-

tion (SMR) to mask Byzantine behaviors. BFT SMR replicates given

requests from clients using several rounds of atomic multicast be-

tween replicas to tolerate faulty replicas. The minimum number

of replicas to tolerate 𝑓 faulty replicas is 3𝑓 + 1. The techniques
originally execute a given input sequence serially to make a set

of replicas have the same states and results. There are several ex-

tensions that make the execution more concurrent by exploiting

pre-defined knowledge [36, 38].

2.1.2 BFT DB. There are several works that have extended BFT

SMR to handle database transactions where multiple operations

are executed in an atomic and isolated manner while exploiting

the parallelism of the transactions. HRDB [66] is the first approach

that applies BFT in database systems. HRDB uses a database’s in-

ternal locking mechanism (strict 2PL) to make a primary replica

partially order transactions and replicates the ordered transactions

to secondary replicas. It requires only 2𝑓 + 1 replicas; however, it
depends on a trusted coordinator to manage which requests the

coordinator can send to the secondaries concurrently. Byzantium

[28] handles BFT in database transactions more generally without a

trusted component using PBFT [14] (that requires 3𝑓 +1 replicas) as
a replication method. Basil [63] broadcasts each transaction to repli-

cas who determine their votes on commit or abort independently

and lets a client collect a quorum of votes. Basil uses 5𝑓 + 1 replicas
to achieve correctness with a single round-trip communication for

commit.

2.1.3 BFD SMR. Byzantine fault detection (BFD) is another way

of dealing with Byzantine faults. BFD only detects Byzantine faults

instead of tolerating such faults; however, it requires only 𝑓 + 1
replicas to detect 𝑓 faulty replicas. PeerReview [32, 33], the state-of-

the-art BFD approach, creates a total-order hash-chained execution

log in a primary node and makes the other nodes (called witnesses)

replay the log sequentially to compute the same states and results

of the primary node and audit the primary correctness.

2.1.4 BFD DB. There are no existing BFD approaches specifically

designed for a database system. Although the existing BFT DB

and BFD SMR approaches could be extended to deal with BFD for

database transactions, those approaches fall short in guaranteeing
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correctness (without a trusted component) or achieving parallel

execution when deployed to a two-AD environment.

The existing BFT database systems that require 3𝑓 + 1 replicas
can be deployed to a two-AD environment by splitting the replicas

into the two ADs. Suppose there are four replicas (i.e., one faulty

replica can be tolerated), and each AD manages two replicas. In

such a case, if one replica in an AD is faulty, the other replica

in the same AD is also faulty because replicas are supposed to

fail dependently in the same AD, which results in exceeding the

predefined threshold for correctness. BFT systems do not give any

guarantees on how they behave if the number of faulty replicas

exceeds the predefined threshold and they usually have to accept the

faults [19], i.e., if one of two ADs is Byzantine-faulty, BFT systems

cannot even detect the fault. Although a few exceptions [16, 44]

guarantee the behavior of a systemwhen one-half replicas are faulty,

they are not ideal. BFT2F [44] guarantees only fork* consistency

that is weaker than linearizability; thus, it still has to accept some

Byzantine faults. A2M-PBFT [16] guarantees linearizability but

requires a trusted component or device, which would limit the

applicability and generality.

PeerReview could be extended to execute database transactions

in parallel by implementing a concurrency control mechanism. For

example, PeerReview could apply two-phase locking when execut-

ing transactions in a primary. However, the witness (secondary) of

the primary is required to process the total-order hash-chained log

of the primary sequentially to guarantee correctness (i.e., strict seri-

alizability), which would limit the overall parallelism of transaction

execution.

2.2 Challenges
The key challenge is to detect Byzantine faults in a database system

deployed to a two-AD environment, with a correctness guarantee

while exploiting the parallelism of the transactions of the database

system. As further discussed in Section 3.2, (the safety side of)

the correctness guarantee in this paper is that a database system

provides strict serializability as long as both ADs are honest (not

faulty) and can detect Byzantine faults if one of the ADs is faulty.

A strict serializability [10, 35] guarantee is required in a data-

base system that deals with Byzantine faults. A system with (one-

copy) serializability [7] only guarantees that transactions will be

scheduled in an equivalent way to some serial order and does not

place any constraints on what the serial order is. Thus, such a sys-

tem could cause critical anomalies, so-called time-travel anomalies

[1, 18], i.e., transaction T1 happens before transaction T2 in real-

time, but T2 is ordered before T1 in a database system. For example,

suppose there is a promotion in a bank, and you can earn bonus

points if you have more than $1,000 in your bank account at the

end of December. Bob originally had $1,200 in his bank account but

just used $300 for some shopping, and Bob only had $900 in the

bank account at the end of December. In a database system with

strict serializability, Bob never earns the bonus points because Bob’s

account balance is not enough for it. However, if a database system

only guarantees serializability, Bob might earn bonus points unex-

pectedly. That is because a transaction (named bonus transaction)

that checks Bob’s account balance and adds some bonus points to

Bob’s point account (that is different from the bank account) could

be scheduled to be executed before Bob’s $300 spending transaction

even though the bonus transaction happened after the spending

transaction in real-time. The time-travel anomaly is a critical issue,

especially in digital evidence [13], because digital evidence is the

evidence of real-time behaviors in many cases.

If PeerReview applies partial-ordering to the hash-chained log,

it only guarantees serializability. That is because a primary can

order conflicting transactions in a non-strict serializable manner

without making the secondary notice it. Thus, PeerReview with a

partially-ordered log has to accept time-travel anomalies whether

they occur by chance or by a malicious activity in the primary,

which means it cannot detect this type of Byzantine fault.

Dealing with Byzantine faults in a two-AD environment is also

essential for a database system. Most organizations or companies

manage a database system in a single AD even if the database

system is a distributed database, and managing several ADs in a

single organization may impose too much administrative burden or

may be impractical from an administrative and operational point

of view. Therefore, exploring a way to use the lowest number of

ADs (i.e., two ADs) to deal with Byzantine faults is a challenge to

address to make databases dealing with Byzantine faults a more

practical solution.

Furthermore, the above challenges should be addressed without

using trusted components from a generality and applicability per-

spective. It is more reasonable to assume that Byzantine faults could

occur anywhere because there are usually no assumptions about

the behavior of Byzantine faults. Moreover, although exploiting a

trusted security device or hardware [5, 16, 42] is one of the promis-

ing ways to deal with Byzantine faults, it might not be feasible in

the current cloud era because such hardware may not be widely

available in the cloud.

3 SCALAR DL DESIGN
This section describes Scalar DL that effectively addresses the chal-

lenges we described in the previous section.

3.1 System Model
Scalar DL inherits the standard assumptions of prior work that

deals with Byzantine faults. We assume a Byzantine fault model,

i.e., Byzantine-faulty nodes behave arbitrarily, and there are no

assumptions about the behavior of a fault. We assume nodes in

the same AD fail dependently, but nodes in different ADs fail inde-

pendently. Finally, we assume that the adversaries (and the faulty

nodes they control) are computationally bound so that they cannot

subvert cryptographic techniques such as a cryptographic hash

function and a digital signature.

3.2 System Properties
Scalar DL provides safety and liveness if there is no fault (i.e., both

ADs are not faulty). In this case, safety means that a database system

provides a strict serializability [10, 35] guarantee.

If one AD is faulty, it provides safety, which means correct clients

can detect a Byzantine fault in a database system if and when the

Byzantine fault is observable to the clients. Therefore, if a Byzantine

fault is not observable outside of a database system, even correct

clients cannot detect the fault. Moreover, correct clients detect a
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Byzantine fault only when the clients observe the fault from the

response to a request for a database system; thus, the clients cannot

detect the fault instantly.

Since it provides safety in case one AD is faulty, it cannot pro-

vide liveness in such a case due to FLP impossibility [21] unless

synchrony or partial synchrony [20] is assumed. For example, even

if only one AD is maliciously altered, if the AD ignores all messages

and never responds, clients can never detect the fault. However, in

practice, such an AD would be suspected, and the administrator

of the AD would receive an inquiry; thus, the AD cannot continue

ignoring messages forever.

If both ADs are faulty, Scalar DL cannot guarantee either safety

or liveness. However, since we assume nodes in different ADs fail

independently, it would be rare to see both ADs derive the same

incorrect states and results in practice even if both ADs are faulty.

Thus, correct clients might detect the faults without any guarantees.

Although Scalar DL guarantees safety evenwith Byzantine clients

as long as either AD is honest, Scalar DL cannot prevent Byzantine

clients from writing garbage data to a database system like other

previous work [14, 28, 63, 66]. However, it limits the damage by

providing access control; i.e., Scalar DL authenticates clients and

denies access if clients do not have permissions. Similarly, Scalar

DL cannot prevent Byzantine clients from returning garbage data

to applications like other previous work [14, 28, 63, 66].

3.3 System Overview
3.3.1 Design Goals. The primary goal of Scalar DL is to achieve

Byzantine fault detection capability in a database system while

executing non-conflicting transactions in parallel.

Another important goal is to achieve the primary goal without

modifying the databases or using database-specific mechanisms.We

could implement the detection protocol specifically for a database

implementation for better performance, but it limits the applicabil-

ity. For example, we can take a similar approach to HRDB [66] to

order transactions using MySQL’s internal 2PL mechanism (with-

out writing lock entries to disks); however, the approach can only

work with MySQL and cannot work with PostgreSQL based on

snapshot isolation.

3.3.2 SystemArchitecture. Figure 1 shows the architecture of Scalar
DL. Scalar DL consists of Scalar DL clients and Scalar DL servers.

Scalar DL clients provide a view of a single-instance database sys-

tem to applications. Scalar DL servers manage two database replicas

(databases), a primary database replica and a secondary database

replica, respectively deployed to different ADs. The servers that

manage a primary database are called primary servers, and the

servers that manage a secondary database are called secondary

servers. Each database can be a single-node database or a multi-

node distributed database that uses data partitioning and replication

for high performance and crash fault tolerance.

Both Scalar DL servers maintain the same set of deterministic

functions that are installed before execution. A client issues a trans-

action request that includes a reference to a function to execute

and all the required parameters for the function. We could use SQL

to create a request, but there are several challenges to be addressed.

First, SQL could produce non-deterministic results. For example,

ORDER BY without explicit ordering, timestamp function, and

Primary Secondary
Scalar DL Primary Servers

Primary Database

Administrative Domain 1

Database System

Scalar DL Clients
Applications

Scalar DL Secondary Servers

Secondary Database

Administrative Domain 2

Figure 1: Scalar DL system architecture. Each database in an
ADcanbe a single-node database or amulti-node distributed
database that uses data partitioning and replication for high
performance and crash fault tolerance.

auto-generation of row IDs could derive non-deterministic states or

results. Thus, a system has to properly care for those, for example,

by rewriting a query [66]. Second, it limits the applicability because

some database implementations do not support SQL.

Scalar DL assumes a one-shot request model, which is common in

OLTP systems, to decrease the likelihood of abort due to (potentially

time-consuming) client-server interactions. When a request begins,

it does not interact with its caller until it completes the request.

Scalar DL manages two types of secrets for message authentica-

tion codes (MACs). One is a secret shared between a client and the

servers. The other is a secret shared between the primary and sec-

ondary servers. Scalar DL servers install both types of secrets before

accepting clients’ requests. We could use digital signatures instead

of MACs
4
; however, we chose MACs for better performance.

5

As of the current design, Scalar DL supports read, write, and

delete operations but does not support predicate-based scan opera-

tions. The delete operation is a write-based logical deletion so that

logically deleted records can be physically deleted as necessary at

some later point.

3.3.3 Database Requirements. It is sufficient for both databases to

provide ACID with strict serializability, but it is not necessary. As

for the current detection protocol, it is necessary for the primary

database to provide ACID with read-committed isolation and for

the secondary database to provide linearizability [35] for a single

operation on a single record with durability.

Scalar DL also requires both databases to be composed of a set

of records where a primary key identifies each record.

3.4 The Detection Protocol
The key of the Byzantine-fault detection protocol of Scalar DL is

that the primary and the secondary servers make an agreement

4
We provide an option to use digital signatures for message authentication.

5
We observed that digital signatures can still be three orders of magnitude slower than

MACs and add non-negligible overhead to the performance of the protocol.
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on the partial ordering of transactions in a decentralized and con-
current way. The protocol comprises three phases: ordering phase,

commit phase, and validation phase. The secondary first pre-orders

a transaction given from a client partially on the basis of conflicts

(ordering phase), and the primary executes and commits the trans-

action that is ordered by the secondary (execution phase), and then

the secondary validates the ordering result given from the primary

and executes the transaction (validation phase). The three-phase

protocol makes both databases derive the same correct (strict seri-

alizable) states and results as long as both ADs are honest, i.e., if

either is Byzantine-faulty, their states or results would be diverged,

which makes it possible for clients to observe the divergence and

detect the fault in the database system. We explain each phase in

detail.

3.4.1 Ordering Phase. The ordering phase starts when a client

program accepts a transaction request from an application program

for the execution of a function to the database system. A transaction

request has the form ⟨𝑛, 𝑓 , 𝑎, 𝑠⟩, where 𝑛 is a unique transaction ID

that identifies the request (e.g., UUID), 𝑓 is a reference to a function,

𝑎 is the argument of the function, and 𝑠 is a message authentication

code (MAC) created for 𝑛, 𝑓 , and 𝑎 with a secret shared between

a client and the servers. The client first sends the request to the

secondary. The secondary receives the request, verifies the MAC of

the request, and stores the request in the database. The request is

stored with 𝑛 as a primary key so that it can be used to check if the

request has already been processed. If the request has already been

stored, the secondary aborts the request.

Then, the secondary simulates the execution of the function

to identify what records will be read and written, i.e., a read set

and a write set, by the function. The simulation executes the given

function without writing any records.

After the read and write set is identified, the secondary schedules

the request by exploiting the read and write set using a variant of

two-phase locking (2PL) [68]. Specifically, the secondary tries to

create a read lock entry for the primary key of the record in the read

set and create a write lock entry for the primary key of the record

in the write set. A lock entry has the form ⟨𝑘, 𝑣, 𝑐,𝑚,ℎ, 𝑑⟩, where 𝑘
is the primary key of a record, 𝑣 is the record version number that is

incremented when the record is committed, 𝑐 is a lock count that is

incremented when the lock is acquired and decremented when the

lock is released,𝑚 is a lock mode such as read-lock and write-lock,

ℎ is a set of lock holders (transaction IDs), and 𝑑 , which is used for

only write-lock entries, is a set of input dependencies expressed as

a set of ⟨primary key, version number⟩ pairs that the locked entry

depends on (e.g., if a function derives a record by reading ⟨k1, 2⟩
and ⟨k2, 3⟩, then the input dependencies for the record will be {⟨k1,
2⟩, ⟨k2, 3⟩}). Note that the secondary writes lock information to its

database with linearizable consistency to avoid conflicting locks

from being acquired and to survive crashes.

Once the secondary can take all the locks for the request, it re-

sponds to the client with a MAC created for 𝑛 with the secret shared

between the secondary and the primary. Otherwise, it aborts the

request and releases the locks. The reason for aborting the request

instead of waiting for locks to be released is that the secondary

needs to re-execute the simulation to get the latest versions of

records to order transactions in a strict serializable manner. How-

ever, it is not the case for read conflicts; thus, acquiring a read lock

can be retried without a full restart, as discussed in Section 3.7.

The important point of the ordering phase is that it pre-orders

given transaction requests on the basis of conflicts, i.e., order-

ing transactions partially, to exploit the parallelism of transac-

tions while keeping the primary and the secondary always consis-

tent. Without the ordering, conflicting requests could cause non-

deterministic results, which makes the states of the primary and

secondary databases diverge. We also use a variant of 2PL for trans-

action ordering to guarantee strict serializability in a database sys-

tem [6, 10, 35]. We could use multi-version concurrency control

(MVCC) for the ordering; however, it is challenging to guarantee

consistent ordering between the primary and the secondary, as

we discuss later in Section 3.4.4. Moreover, the 2PL-based order-

ing is achieved without depending on particular database-specific

mechanisms.

3.4.2 Commit Phase. The commit phase starts when the client

receives the acknowledgment from the secondary. The client first

adds the MAC from the secondary to the transaction request and

sends the updated request to the primary. The primary receives

the request and verifies both MACs from the client and the sec-

ondary. If the verification fails, the primary aborts the request with

a validation error.

Once the verification succeeds, the primary executes the func-

tion in the request. It uses the underlying database transaction to

atomically read and write database records as specified in the func-

tion and write a transaction status (committed or aborted) with 𝑛

as a key. Note that the database records are internally versioned

for ordering validation described in Section 3.4.3, i.e., if a function

writes a record, the function reads the latest version and creates a

new version of the record.
6
Note also that the primary can schedule

given requests in an arbitrary order because the requests have been

already ordered in a strict serializable manner by the secondary.

Then, the primary creates a proof for each record that is written

or read. Each proof has the form ⟨𝑘, 𝑣, 𝑛, 𝑑, 𝑠⟩, where 𝑘 is the primary

key of a record, 𝑣 is the record version number, 𝑛 is a transaction

ID, 𝑑 is a set of input dependencies expressed as a set of ⟨primary

key, version number⟩ pairs that the record depends on, and 𝑠 is a

MAC for the entries (𝑘 , 𝑣 , 𝑛, and 𝑑) created with the secret shared

between the primary and the secondary. The proofs show that the

records have been written or read for the request and have the

input dependencies (𝑑). The primary returns the proofs and the

execution result to the client.

If an error occurs during the execution, the primary aborts the

transaction and returns the error with a failure status to the client.

In such a case, aborted status is written as a transaction status.

3.4.3 Validation Phase. The validation phase starts when the client
accepts the proofs from the primary. The client sends the proofs to

the secondary before responding to the application program. The

secondary receives the proofs and first verifies the MACs to see if

the primary has created the proofs.

6
Scalar DL creates a new record instead of updating the existing record to achieve

traceability, but it is not necessary for the protocol to work correctly.
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Once the verification succeeds, the secondary validates the proofs

by comparing with the corresponding lock entries to make sure

that the primary and the secondary see the same partial ordering

as shown in Algorithm 1. For each proof, the secondary compares

the version numbers (Line 7-18) and the input dependencies (Line

19-21) between the proof and the corresponding lock entry to check

if they match. Some errors such as missing a lock entry (Line 5) or

version mismatch (Line 9 and 14) could happen due to conflicting

transaction recovery described in Section 3.5. Thus, it throws a po-

tential validation error in such a case, indicating that the error could

happen by a Byzantine fault or conflicting transaction recovery.

This validation is pre-checking, and the final validation is always

delegated to the client because the secondary could be malicious

and skip the validation step.

If the validation succeeds, the secondary re-executes the speci-

fied function and creates database records and a result. Since each

database record can be recovered lazily, as further discussed in

Section 3.5, the records are not written in an atomic manner for

performance reasons.
7
Once it writes all the records successfully, it

increments the version number of each write lock entry acquired

by the function and releases all the locks acquired by the function.

Incrementing the version number of a lock and releasing the lock

are done atomically. Then, it creates a set of proofs in the same way

as the primary and returns the proofs and the result to the client.

The client accepts the proofs and results from both the primary

and the secondary. Then the client does the final validation by

comparing the values. If they are different or a validation error

is thrown during the process, the client reports that there is a

Byzantine fault in either the primary or the secondary AD.

3.4.4 Discussion. We discuss several design choices to derive the

current protocol.

Why 2PL-based ordering? As we briefly discussed, we use a vari-
ant of 2PL for transaction ordering to guarantee strict serializability

in a database system. Using multi-version concurrency control

(MVCC) could schedule more transactions in parallel; however, it

is challenging to guarantee consistent ordering between the sec-

ondary and the primary. Assume that conflicting transactions T1

and T2 come to the database system almost simultaneously and are

scheduled together with MVCC (but cannot be scheduled together

with 2PL). And assume both transactions pass the ordering phase

with a serialization order T1→T2. However, the current protocol

does not guarantee the same serialization order in the primary be-

cause the secondary does not pass explicit order dependencies such

as conflict graph, which is not supposed to be feasible to manage

[68], to the primary. Thus, the primary could order transactions

in a different serialization order (e.g., T2→T1) from the secondary,

which could diverge their states without the existence of Byzantine

faults. In future work, we will explore another concurrency control

scheme for the ordering phase to achieve better concurrency while

preserving the correctness guarantee.

Why three phases? Scalar DL uses the three-phase protocol (or-

dering→ commit→ validation) to achieve parallel execution while

guaranteeing strict serializability. On the other hand, PeerReview

applies a two-phase protocol (which can be seen as commit →

7
We observed some performance benefits when the database is a distributed database

because the cost of distributed ACID transactions is usually pretty high.

Algorithm 1 Ordering Validation

1: function validate(𝑝𝑟𝑜𝑜 𝑓 𝑠)

2: for all 𝑝 ← 𝑝𝑟𝑜𝑜 𝑓 𝑠 do
3: 𝑙𝑜𝑐𝑘 ← lockManager.get(𝑝.𝑘𝑒𝑦)

4: if 𝑙𝑜𝑐𝑘 does not exist then
5: throw a potential validation error

6: end if
7: if 𝑙𝑜𝑐𝑘.𝑡𝑦𝑝𝑒 = READ then
8: if 𝑙𝑜𝑐𝑘.𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ≠ 𝑝.𝑣𝑒𝑟𝑠𝑖𝑜𝑛 then
9: throw a potential validation error

10: end if
11: else if 𝑙𝑜𝑐𝑘.𝑡𝑦𝑝𝑒 = WRITE then
12: // the record version has been incremented

13: if 𝑙𝑜𝑐𝑘.𝑣𝑒𝑟𝑠𝑖𝑜𝑛 + 1 ≠ 𝑝.𝑣𝑒𝑟𝑠𝑖𝑜𝑛 then
14: throw a potential validation error

15: end if
16: else ⊲ invalid lock type

17: throw a potential validation error

18: end if
19: if 𝑙𝑜𝑐𝑘.𝑡𝑦𝑝𝑒 = WRITE & 𝑙𝑜𝑐𝑘.𝑖𝑛𝑝𝑢𝑡𝑠 ≠ 𝑝.𝑖𝑛𝑝𝑢𝑡𝑠 then
20: throw a validation error

21: end if
22: end for
23: end function

validation); however, it only guarantees serializability if it applies a

parallel execution (see Section 2) since a primary can order trans-

actions in a non-strict serializable manner. This motivates adding

the ordering phase and extending the validation phase to make

an agreement on strict serializable partial-ordering of transactions

between the primary and the secondary in a decentralized manner.

Why starting from the secondary? The protocol could still guar-
antee correctness even if it starts with the primary (i.e., primary→
secondary→ primary); however, we chose the current flow to let

the primary decide on a transaction commit.

3.5 Transaction Recovery
In the previous section, we explained the detection protocol in

normal cases. However, the servers could face non-Byzantine faults

such as node crashes and network failures during processing, and

some locks could be left behind depending on the timing the servers

face such faults.

Scalar DL recovers such left-behind locks when it reads or writes

the corresponding records, as shown in Algorithm 2. When the

secondary tries to acquire a lock on a record and the record is

already locked, it first checks if the lock is expired (Line 2-3).
8
If the

lock is not expired, it returns without recovery, and the transaction

is aborted (Line 4). If it is expired, the secondary asks the primary

for the statuses of the transactions by which the lock is acquired

(Line 7-8). Note that the secondary not only retrieves the status of

each transaction but also tries to abort the transaction to prevent the

transaction from being left uncommitted or unaborted forever. If the

transaction is neither committed nor aborted for some reason (e.g.,

the primary is too busy), it skips the recovery for the transaction

8
We use 15 seconds for the expiration time and it is configurable.
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Algorithm 2 Transaction Recovery

1: function recover(𝑘𝑒𝑦)

2: 𝑙𝑜𝑐𝑘 ← lockManager.get(𝑘𝑒𝑦)

3: if 𝑙𝑜𝑐𝑘 is not expired then
4: return ⊲ aborted and retried later

5: end if
6: // for a write lock, the number of holders is always one

7: for all 𝑡𝑖𝑑 ← 𝑙𝑜𝑐𝑘.ℎ𝑜𝑙𝑑𝑒𝑟𝑠 do
8: 𝑠𝑡𝑎𝑡𝑒 ← primary.tryAbort(𝑡𝑖𝑑)

9: if 𝑠𝑡𝑎𝑡𝑒 ≠ COMMITTED & 𝑠𝑡𝑎𝑡𝑒 ≠ ABORTED then
10: continue ⊲ continue to recover other transactions

11: end if
12: if 𝑙𝑜𝑐𝑘.𝑡𝑦𝑝𝑒 = READ then
13: lockManager.unlock(𝑙𝑜𝑐𝑘 , 𝑡𝑖𝑑)

14: else if 𝑙𝑜𝑐𝑘.𝑡𝑦𝑝𝑒 = WRITE then
15: if 𝑠𝑡𝑎𝑡𝑒 = COMMITTED then
16: 𝑝𝑟𝑜𝑜 𝑓 ← primary.getProof(𝑙𝑜𝑐𝑘)

17: validate(𝑝𝑟𝑜𝑜 𝑓 ) ⊲ see Algorithm 1

18: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑠 ← deriveStates(𝑝𝑟𝑜𝑜 𝑓 )

19: writeDatabase(𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑠 , 𝑝𝑟𝑜𝑜 𝑓 .𝑘𝑒𝑦)

20: lockManager.unlockAndInc(𝑙𝑜𝑐𝑘 , 𝑡𝑖𝑑)

21: else
22: lockManager.unlock(𝑙𝑜𝑐𝑘 , 𝑡𝑖𝑑)

23: end if
24: end if
25: end for
26: end function
27: function deriveStates(𝑝𝑟𝑜𝑜 𝑓 )

28: 𝑠𝑡𝑎𝑡𝑒𝑠 ← ∅
29: for all 𝑖𝑛𝑝𝑢𝑡 ← 𝑝𝑟𝑜𝑜 𝑓 .𝑖𝑛𝑝𝑢𝑡𝑠 do
30: 𝑟𝑒𝑐𝑜𝑟𝑑 ← getRecord(𝑖𝑛𝑝𝑢𝑡 ) ⊲ by key and version

31: push(𝑠𝑡𝑎𝑡𝑒𝑠 , 𝑟𝑒𝑐𝑜𝑟𝑑)

32: end for
33: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ← getReqest(𝑝𝑟𝑜𝑜 𝑓 .𝑡𝑖𝑑)

34: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ← getFunction(𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑓 𝑢𝑛𝑐𝑅𝑒 𝑓 )

35: 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑠 ← 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑠𝑡𝑎𝑡𝑒𝑠 , 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 .𝑎𝑟𝑔𝑠)

36: return 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑠

37: end function

and checks the other transactions (Line 9-10). Skipping the recovery

causes no issues because it will check (abort) the transaction when

the record is accessed again. If the transaction is either committed

or aborted, it recovers the lock for the transaction (Line 12-24).

If the lock is read-lock, it releases the lock for the transaction

(Line 12-13), i.e., removing the transaction from the lock holders

and decrementing the lock count. If the lock is write-lock and the

transaction is committed, the secondary asks for the corresponding

proof of the lock to the primary, validates the proof as described in

Algorithm 1, derives the new state of the corresponding record (Line

27-37), writes the state to the database, and releases the lock (Line

14-20). Since the new state is written for the record, it increments

the version of the lock entry when unlocking it. If the transaction

is aborted, it releases the lock without version increment (Line 22).

The recovery processing for each record is idempotent so that it

can be retried. Even if multiple processes do the recovery simulta-

neously, only one process can successfully release a lock by using

linearizable conditional update, i.e., a lock is released only if the

lock status and the lock holders have not been changed.

3.6 Byzantine Clients
We discuss how Scalar DL handles Byzantine-faulty clients.

3.6.1 Not Following the Protocol. We first discuss a case where a

Byzantine client does not follow the protocol.

First, if a Byzantine client does not send a request to the sec-

ondary before sending the request to the primary, the primary

fails in verifying the request’s MAC that is supposed to be created

with the secret shared between the primary and the secondary.

Therefore, nothing happens in the database system.

Second, if a Byzantine client does not send a request to the

primary after the ordering phase, the primary never commit the

request; thus, the request is treated as not executed in the database

system. The secondary recovers left-behind locks eventually, as

explained in Section 3.5.

Third, if a Byzantine client does not send the proofs of records

created in the primary to the secondary, the secondary also recovers

the situation eventually, as explained in Section 3.5.

Lastly, if a Byzantine client retransmits an old request to the

servers (i.e., replay attack) after the request has already been exe-

cuted, the request will not be processed in the servers because both

check if the transaction ID of a request has been processed or not

before writing any data. Similarly, if the proofs of created records

from the primary are maliciously retransmitted to the secondary,

the secondary can detect it in the validation phase, as described in

Section 3.4.3. The secondary will throw an error and write no data

in such a case.

In summary, even if a client does not follow the protocol, Scalar

DL does not write inconsistent data in the database system.

3.6.2 Returning Tampered Results. Next, we discuss a case where
a Byzantine client returns tampered data to an application. For

example, a Byzantine client receives consistent results, such as

Bob’s account balance is $1,000 from both the primary and the

secondary, but the client returns $500 to an application.

As discussed in Section 3.2, Scalar DL cannot avoid this like

other previous work [14, 28, 63, 66] that deals with Byzantine faults

because a client can return anything whether or not it receives

consistent results. Even if a client is correct or can verify the results,

an application can tamper with the results after it receives them.

Although Scalar DL cannot avoid this by itself, we could make

applications (or even end-users) verify results if both servers add

digital signatures to the results. However, it might not be feasible

for some applications because it requires the whole system to keep

signatures and understand how to verify results with the signatures.

Therefore, as is the case with other work, what Scalar DL guaran-

tees is to make correct clients detect Byzantine faults in a database

system. The guarantee is still acceptable for our use cases that re-

quire data to be digital evidence since a correct external auditor

can obtain correct data.

3.6.3 Tampering with Data. Lastly, we discuss a case where a

Byzantine client tampers with data. A Byzantine client could tam-

per with the requests sent from an application and the messages
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exchanged between the primary and the secondary through the

client.

For the request sent from an application to the database system,

Scalar DL cannot prevent Byzantine clients from tampering with

the request like other previous work [14, 28, 63, 66] as we discussed

in Section 3.2 because Scalar DL cannot identify if the request is

correct or not.

For the messages (e.g., proofs) exchanged between the primary

and the secondary through a client, Byzantine clients cannot suc-

cessfully tamper with them because they include MACs created

with the secret shared between the primary and the secondary.

3.7 Optimization
3.7.1 Spinlock for read-locking. As described in Section 3.4.1, Scalar
DL aborts a transaction when it cannot acquire all required locks.

However, aborting a transaction and retrying it might waste a lot of

work (i.e., transaction simulation and lock acquisition) that has been

done. As an optimization, Scalar DL applies spinlock for acquiring a

read-lock, i.e., reading a read-lock and updating the lock are retried

in a busy-loop.

This optimization cannot be naturally applied to write-locking.

That is because a write-lock holder will update the holding lock

entry with a new version number if it commits successfully, and a

conflicting transaction that tries to acquire the write-lock will no

longer see the latest lock entry without restarting the transaction.

This optimization is effective in lowering latencies, especially in

a high read contention workload.

3.7.2 Parallel locking and unlocking. Since Scalar DL identifies

a read set and a write set by the transaction simulation before

acquiring locks, it can acquire locks in parallel. Similarly, releasing

locks can also be done in parallel. Parallel locking and unlocking

for a transaction do not cause deadlocks because Scalar DL aborts

the transaction to re-execute the simulation if there is a conflict.

This optimization is effective in lowering latencies, especially in

a low contention workload.

3.8 Correctness
In this section, we sketch a proof that our design meets the safety

and liveness conditions described in Section 3.2.

3.8.1 Safety. If there is no faulty AD, it is safe because both the

primary and the secondary execute the same set of transactions in

the same partial order with strict serializability and always derive

the same states.

If the secondary is faulty, it could arbitrarily order transactions

in the ordering phase before responding to a client program, but

it is still correct from a strict serializability perspective. Once the

secondary partially orders a transaction and the correct primary

commits the ordering in the commit phase, the secondary cannot

change the ordering afterward without diverging the states from

the primary. If the states diverge, correct clients can detect it. The

secondary could write arbitrary states to the database or return

arbitrary results to a client, but correct clients can also detect it by

comparing the states and results with the ones from the primary.

If the primary is faulty, the primary could also arbitrarily order

transactions. However, to proceed with the protocol successfully,

the primary has to return correct ordering results to the secondary;

otherwise, the correct secondary notices incorrect ordering results.

The primary could buffer transactions without committing and

return correct results to the secondary to deceive the secondary as

if the primary successfully commits, and then the primary could

reorder conflicting transactions or write arbitrary states afterward.

However, it makes the primary diverge its states from the secondary,

which will be detected by correct clients.

Therefore, even if one AD is faulty, it guarantees safety.

3.8.2 Liveness. If there is no faulty AD, it is live because both the

primary and the secondary receive the same set of transactions in

the same partial order and execute the transactions eventually.

If either the primary or the secondary is faulty, it cannot guar-

antee liveness because of FLP impossibility [21]; thus, it requires

synchrony or partial synchrony to guarantee liveness.

4 IMPLEMENTATION
Scalar DL is mainly written in Java. Scalar DL is not a prototype and

has been used in real-world applications that require data stored

in a database system tamper-evident. In the current version, the

primary and the secondary servers are called Ledger and Auditor,

and the client program is called Client SDK. Scalar DL uses HMAC-

SHA256 for message authentication codes (MACs) and ECDSAwith

SHA-256 hashing for digital signatures.

4.1 Ledger
Ledger implements the logic of the commit phase described in

Section 3.4. Ledger also manages programmable deterministic func-

tions called Contracts for users to create one-shot transactions. In a

Contract, users can write arbitrary business logic and call database

operations through the interface defined by the Contract. Nested

invocation, i.e., a Contract calling another Contract, is supported

so that users can implement an application’s business logic with

multiple Contracts modularly. Ledger executes multiple Contracts

in an ACID manner by exploiting the underlying database trans-

action. Each Contract is stored in the database in a Java bytecode

format with a digital signature attached for later verification.

Ledger abstracts the underlying database as a multi-dimensional

map based on the key-value data model, which is similar to the data

model of Bigtable [15]. We chose the abstraction to achieve broad

applicability for various databases and data models. A record is

composed of a record key (application-level primary key), a version,

and a set of values, including a Contract argument used to derive

the record, and a cryptographic hash of all the record values. A

record key and a version form a primary key, and the primary key

uniquely maps a set of values. Ledger manages the versions of

records for achieving traceability. Ledger also constructs a hash-

chain [39] for the records that have the same record key to make

the records difficult to be maliciously altered partially, but Scalar

DL does not need the hash-chain structure to provide Byzantine

fault detection capability.

Ledger implements the detection protocol using the database ab-

straction to achieve database-agnostic property. We use Scalar DB

[57], a universal transaction manager, to implement the database

abstraction efficiently. The database abstraction currently supports

PostgreSQL [31], MySQL [49], Oracle Database [53], Microsoft SQL
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Server [47], Apache Cassandra [24], Apache HBase [25], Amazon

DynamoDB [59], Amazon Aurora [58], Azure Cosmos DB [46], and

their compatible databases. For those non-ACID databases such as

Cassandra, HBase, DynamoDB, and Cosmos DB, Scalar DB takes

care of transactions with its database-agnostic ACID transaction

capability that supports snapshot isolation and strict serializability.

For those ACID databases, Scalar DB provides two options: delegat-

ing transaction management to the underlying databases or doing

transaction management by itself.

Ledger by only itself can provide the service to users. In such a

case, Scalar DL works similarly to Oracle Blockchain Table [51] or

Amazon QLDB [60] except for the database-agnostic transaction

capability, i.e., it manages a database in a single AD, so it only

detects some limited class of Byzantine faults.

4.2 Auditor
Auditor implements the logic of the ordering and validation phases

described in Section 3.4. Auditor also manages the same Contracts

as Ledger and uses the same database abstraction as Ledger so that

Auditor can use various databases as the underlying database.

Auditor has to be placed in a different AD from the one where

Ledger is placed to guarantee the correctness we discussed in Sec-

tion 3.2.

4.3 Client SDK
Client SDK interacts with Ledger and Auditor on the basis of the

protocol. An application program integrated with Client SDK man-

ages a secret for each user and registers the secret to the databases

through Ledger and Auditor respectively to be authenticated to

execute Contracts. Client SDKs are written in several languages:

Java, Node.js, in-browser Javascript, and Go.

Client SDK can optionally add a digital signature to a request.

In such a case, the signature is stored in the record that the request

creates. A record containing a digital signature can identify who

has created the record, which adds extra security and traceability

to the system.

5 EVALUATION
We evaluate Scalar DL to answer the following questions:

• How does Scalar DL perform compared to the state-of-the-art

BFD approach (extended PeerReview)?

• How effective are Scalar DL’s optimizations?

• How does Scalar DL scale as the number of database nodes in-

creases?

• Does Scalar DL work effectively on multiple database implemen-

tations?

5.1 Benchmarked Systems
We compare Scalar DL with the state-of-the-art BFD approach,

our extended version of PeerReview called PeerReviewTx. PeerRe-

viewTx is based on the original protocol [33] and the prototype

implementation [34] but extends the original protocol to work more

concurrently and reasonably for transactional database systems.

PeerReviewTx applies a 2PL-based concurrency control in a pri-

mary server and executes non-conflicting transactions in parallel

in the primary. Since the primary does not know what keys to lock,

we attach keys to a transaction before the transaction is given to the

primary, similar to the previous work that makes SMR run concur-

rently [36, 38]. PeerReviewTx would actually need to identify keys

without such a pre-defined knowledge to make PeerReviewTx run

transactions in a general way as Scalar DL does, but we chose the

more efficient way for PeerReviewTx. Moreover, we implemented

2PL of PeerReviewTx using an in-memory data structure for better

performance. Therefore, PeerReviewTx is a performance-enhanced

version of PeerReview without almost no additional overheads.

Other than the extension in the primary, PeerReviewTxworks in the

same way as PeerReview; the primary creates a linear hash-chained

log, and a secondary server (witness) replays the hash-chained log

sequentially to compute the same states of the primary. We cannot

execute the secondary processing in parallel to guarantee strict

serializability, as discussed in Section 2.

Since PeerReview’s secondary-side auditing is challenge-based

and works lazily after the primary executes a transaction, we also

extended PeerReviewTx to detect faults eagerly to make it work

reasonably for transactional database systems. Specifically, a client

receives a log from the primary, sends the log to a secondary, and

waits for the secondary to replay the log before responding to an

application.

5.2 Workloads
The evaluation uses two standard workloads: YCSB and TPC-C.

YCSB [17] is a benchmark commonly used for key-value store

evaluation and also adopted in transactional database evaluation

by accessing multiple records in a single transaction. We used two

types of workloads: Workload F (read-modify-write workload) and

Workload C (read-only workload), with uniform request distribu-

tion and 100 bytes payload. For Workload F, one transaction is

composed of one read-modify-write operation (one read opera-

tion and one write operation). For Workload C, one transaction

is composed of two read operations. We used YCSB to clarify the

basic performance of the benchmarked systems in a low contention

workload.

TPC-C [64] is a benchmark for online transaction processing

(OLTP) databases. TPC-C has a configurable number of warehouses.

We mixed two types of queries: Payment and NewOrder, with a

50/50 ratio.
9
We used TPC-C to clarify the realistic performance

of the benchmarked systems in a more complex and contended

workload than YCSB.

5.3 Experimental Setup
All experiments were conducted with AWS EC2 instances that run

Amazon Linux 2. For each database instance, we used a c5d.4xlarge

instance (8 CPU cores, 32GB memory, NVMe SSD). For clients, we

used a c5.9xlarge instance (16 CPU cores, 72GB memory). We chose

a big instance for clients not to make it become the bottleneck.

We used two types of database implementations to show the

database-agnostic property of Scalar DL: PostgreSQL andCassandra.

The versions of the databases are 14.1 and 3.11.11, respectively.

9
We chose a simpler but often-used ratio that works similarly to TPC-C full mix

because NewOrder and Payment account for a large percentage (about 90%) of the

full-mixed queries of TPC-C.
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(a) YCSB-F (read-modify-write) throughput
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(b) YCSB-F (read-modify-write) latency
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(c) YCSB-C (read-only) throughput
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Figure 2: YCSB experiments with PostgreSQL. The peak throughput of Scalar DL was about 6.5 times and 4.3 times higher than
the one of PeerReviewTx in YCSB-F and YCSB-C, respectively.
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(a) YCSB-F (read-modify-write) throughput
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(b) YCSB-F (read-modify-write) latency
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Figure 3: YCSB experiments with Cassandra. The peak throughput of Scalar DL was about 10.6 times and 7.4 times higher than
the one of PeerReviewTx in YCSB-F and YCSB-C, respectively.

For PostgreSQL, we configured each instance with 500 max con-

nections, 8GB shared buffers, 30min checkpoint timeout, 8GB max

WAL size, and 512 max locks per transaction. We used a single

instance PostgreSQL (that achieves linearizable single operation)

with READ-COMMITTED isolation level; thus, it meets the Scalar

DL requirements for databases.We configured Scalar DB to delegate

transaction management to PostgreSQL.

For Cassandra, we configured each cluster with batch commitlog

sync, 512 concurrent reads, and 512 concurrent writes. We used

Cassandra’s lightweight transactions (Paxos) to achieve linearizable

operations and Scalar DB [57] to achieve ACID transactions with

snapshot isolation; thus, it also meets the Scalar DL requirements

for databases.

We also created two ADs, a primary AD and a secondary AD, in

different networks that are assumed to be separately managed by

different administrators.

We ran workloads long enough to warm up databases before ex-

periments. We ran each experiment for 60 seconds with 10 seconds

ramp-up time.

5.4 YCSB Experiments
We first evaluate the throughput and latency of Scalar DL and

PeerReviewTx with YCSB on the two database implementations.

We loaded 100 million records before the experiments.

5.4.1 PostgreSQL. Figure 2 shows the results of both systems on

PostgreSQL as we increased the number of client threads. We de-

ployed a single PostgreSQL instance to each AD. We placed a Scalar

DL Ledger and a PeerReviewTx primary server in the primary AD

and a Scalar DL Auditor and a PeerReviewTx secondary server in

the secondary AD.

As can be seen from the results, PeerReviewTx outperformed

Scalar DL when the number of client threads was small. That is

because PeerReviewTx used a two-phase protocol and was more

lightweight. However, when the number of client threads was more

than four, Scalar DL outperformed PeerReviewTx in both through-

put and latency and scaled better because it exploited the parallelism

of multiple transactions. PeerReviewTx exploited some parallelism

of transactions because of the concurrency control extension, but

the performance improvement was saturated as it got several client

concurrencies. The saturation was due to the sequential processing

in the secondary server. The steeper latency increase of PeerRe-

viewTx was also due to the sequential processing because more

transactions were waiting to be processed in the secondary as the

number of client threads increased.

The peak throughput of Scalar DL was about 6.5 times and 4.3

times higher than the one of PeerReviewTx in YCSB-F and YCSB-C,

respectively.

5.4.2 Cassandra. Figure 3 shows the results of both systems on

Cassandra. We deployed a three-node Cassandra cluster to each

AD. Each Cassandra cluster was configured to use three replicas.

We placed a Scalar DL Ledger and a PeerReviewTx primary server

in each node in the primary AD and a Scalar DL Auditor and a

PeerReviewTx secondary server in each node in the secondary AD.
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(a) Throughput with PostgreSQL.
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(b) Average latency with PostgreSQL.
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(c) Throughput with Cassandra
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(d) Average latency with Cassandra

Figure 4: TPC-C (NewOrder and Payment mix) experiments. The peak throughputs of Scalar DL on PostgreSQL and Cassandra
were about 3.5 times and 7.6 times higher than the ones of PeerReviewTx on PostgreSQL and Cassandra, respectively.

It shows similar results to the ones with PostgreSQL, but the

actual performance numbers were lower. That is because Cassan-

dra used Paxos to achieve linearizable operations, and it was a

much heavier operation than a single-instance DBMS operation.

Also, the universal transaction manager (Scalar DB) used to achieve

ACID on Cassandra was based on the linearizable operations; thus,

the Ledger-side ACID transaction was also heavier than a single-

instance DBMS transaction. Since the latency of each transaction re-

quest was higher due to the heavier operations, more client threads

were required until saturation. Note that each Cassandra cluster

was configured with three replicas; thus, each cluster could tolerate

one crash fault.

The peak throughput of Scalar DL was about 10.6 times and 7.4

times higher than the one of PeerReviewTx in YCSB-F and YCSB-C,

respectively.

5.5 TPC-C Experiments
In this section, we show evaluation results with TPC-C. We loaded

100warehouses. Figure 5 shows the throughput (TmpC) of Scalar DL

and PeerReviewTx on PostgreSQL and Cassandra. We configured

the systems in the same way as the previous experiments.

We can see that Scalar DL still showed performance benefits

when there were more than several client threads, even with TPC-

C workload. However, since TPC-C was a lot contention-heavier

than the YCSB workloads, the performance improvement was less

than the YCSB benchmark results. The peak throughputs of Scalar

DL on PostgreSQL and Cassandra were about 3.5 times and 7.6

times higher than the ones of PeerReviewTx on PostgreSQL and

Cassandra, respectively.

5.6 Effectiveness of Optimizations
This section evaluates the effectiveness of the two optimizations:

spinlock for read-locking and parallel locking and unlocking de-

scribed in Section 3.7.

Figure 5(a) shows the effectiveness of spinlock optimization in

TPC-C workload. It shows that the performance improvement was

greater when the number of client threads was higher. That is

because spinlock for read-locking reduced the number of retries

more when the concurrency was higher. We observed that the

optimization improved the performance by up to 20%.
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Figure 5: The effectiveness of the optimizations. Spinlock
and parallel locking/unlocking optimizations improved the
performance by up to 20% and 15%, respectively.
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Figure 6: Scalability of Scalar DL with TPC-C. Scalar DL
achieved near-linear (91%) scalability.

Figure 5(b) shows the effectiveness of parallel locking and un-

locking in YCSB-F workload. We used four read-modify-write oper-

ations in a transaction. It shows that the performance improvement

was greater when the number of client threads was in the middle

range (around 4 to 64). That is because there were more concurren-

cies to exploit when there were more client threads. But, when the

number of client threads was high (e.g., 96 client threads), the per-

formance was already saturated, so increasing the parallelism did

not improve the performance. We observed that the optimization

improved the performance by up to 15%.
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5.7 Scalability
In this section, we evaluate the scalability of Scalar DL on Cassandra

with TPC-Cworkload.We increased the number of Cassandra nodes

(instances) from 3 to 30 in each AD while keeping the number of

replicas to three. We also increased the number of warehouses

proportionally from 100 to 1,000.

Figure 6 shows that the throughput of Scalar DL increased near-

linearly as the number of database nodes increased. Specifically,

Scalar DL achieved 54,201 TpmC in a 30-node environment. Its

throughput was 9.1 times higher than the one in a 3-node envi-

ronment; thus, it achieved 91% scalability compared with the ideal

performance (59,620 TpmC).

6 RELATEDWORK
Dealing with malicious attacks for accountability in distributed

systems was first introduced by Lampson [41]. SUNDR [43] is an ac-

countable network file system for un-trusted storage servers. While

it helps clients detect malicious behaviors, it is not guaranteed to

detect Byzantine faults in the server-side programs. CATS [72] is

another accountable network storage. It offers stronger account-

ability by using a trusted external publishing medium. However, it

is still vulnerable to Byzantine faults, such as program tampering.

PeerReview [33] is a general system providing accountability in a

distributed system that consists of a collection of deterministic state

machines. PeerReview detects Byzantine faults by replaying a lin-

ear hash-chained execution log using a reference implementation.

However, it relies on sequential processing to guarantee correctness

(i.e., strict serializability); thus, it cannot run transactions fully in

parallel even if it uses a database as a state machine. Scalar DL

provides a Byzantine fault detection protocol for a database sys-

tem and can execute non-conflicting transactions in parallel while

guaranteeing correctness.

Detecting faults in database systems has been widely explored,

but most work focuses on crash faults [4, 7, 9, 29, 30, 37]. Amazon

QLDB [60] and Oracle Blockchain Table [52] detect malicious be-

haviors in a database system using cryptography and a hash-chain

data structure. However, those databases run in a single adminis-

trative domain (AD); thus, they are vulnerable to Byzantine faults.

LedgerDB [69] uses a timestamp authority (TSA) as another trusted

AD and puts a TSA journal on a ledger database to detect tampering

after data is committed. Snodgrass [62] proposes a similar approach

to LedgerDB using a trusted notarization service instead of TSA.

However, they can be vulnerable to Byzantine faults such as pro-

gram tampering; therefore, if a database program is maliciously

altered, they cannot detect it. By contrast, Scalar DL can detect

Byzantine faults in a database system without fault assumptions

and trusted components as long as the faults are observable.

Byzantine fault tolerance (BFT) techniques [8, 14, 40, 54, 70, 71]

have been mainly discussed in state machine replication (SMR).

The techniques originally execute a given input sequence serially

to make a set of replicas have the same states and results. Several

works have extended BFT SMR to handle database transactions

where multiple operations are executed in an atomic and isolated

manner while exploiting the parallelism of the transactions. HRDB

[66] is the first approach that applies BFT in database systems.

HRDB uses a database’s internal locking mechanism (strict 2PL)

to make a primary replica partially order transactions and repli-

cates the ordered transactions to secondary replicas. It requires

only 2𝑓 +1 replicas; however, it depends on a trusted coordinator to

manage which requests the coordinator can send to the secondaries

concurrently. Byzantium [28] handles BFT in database transactions

more generally without a trusted component using PBFT [14] (that

requires 3𝑓 + 1 replicas) as a replication method. Basil [63] broad-

casts each transaction to 5𝑓 + 1 replicas who determine their votes

on commit or abort independently and lets a client collect a quorum

of votes. Scalar DL also executes non-conflicting transactions in

parallel; however, it is designed to detect Byzantine faults in a data-

base system that manages two separately administered database

replicas.

Blockchain has appeared recently as another way of dealing with

Byzantine faults. Permissionless blockchains [12, 45, 48] can be seen

as extreme cases where tens of thousands of peers (e.g., personal

computers and personal mobile devices that are separately admin-

istered by persons) in different ADs manage the same data to check

for discrepancies between their data. The state transition of permis-

sionless blockchains is probabilistic [56] unless a designated valida-

tor enforces transaction finality [45] because the number of ADs is

unknown. Therefore, their focus is rather a special-purpose con-

sensus based on incentive models [65]. Permissioned blockchains

[2, 11, 26] have been attracting much attention, especially in fi-

nancial industries. Hyperledger Fabric [2] extends BFT SMR and

applies a new architecture to avoid non-deterministic operations

and run transactions partially in parallel. Although permissioned

blockchains have applied traditional database technologies such

as transaction reordering [55, 61], they essentially share the same

properties as BFT SMR and BFT databases. Thus, Scalar DL is dif-

ferent from those as described previously.

7 CONCLUSION
We have presented Scalar DL, a Byzantine fault detection (BFD)

middleware for transactional database systems. Scalar DL executes

non-conflicting transactions in parallel while preserving a correct-

ness guarantee in a database system that manages two separately

administered database replicas. Through evaluation, we have shown

that Scalar DL outperformed the state-of-the-art BFD approach by

3.5 to 10.6 times in throughput and worked effectively on multi-

ple database implementations. We have also shown that Scalar DL

achieved near-linear (91%) scalability when the number of nodes

composing each replica increased.

We are exploring several areas for future work: yet another

concurrency control scheme for better performance and scalabil-

ity, further performance optimizations without breaking database-

agnostic property, SQL integration for better usability, and extend-

ing the protocol to work in separately administered three (or more)

replicas environment for better availability.
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