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ABSTRACT
Although product graphs (PGs) have gained increasing attentions
in recent years for their successful applications in product search
and recommendations, the extensive power of PGs can be limited
by the inevitable involvement of various kinds of errors. Thus, it is
critical to validate the correctness of triples in PGs to improve their
reliability. Knowledge graph (KG) embedding methods have strong
error detection abilities. Yet, existing KG embedding methods may
not be directly applicable to a PG due to its distinct characteris-
tics: (1) PG contains rich textual signals, which necessitates a joint
exploration of both text information and graph structure; (2) PG
contains a large number of attribute triples, in which attribute val-
ues are represented by free texts. Since free texts are too flexible
to define entities in KGs, traditional way to map entities to their
embeddings using ids is no longer appropriate for attribute value
representation; (3) Noisy triples in a PG mislead the embedding
learning and significantly hurt the performance of error detection.
To address the aforementioned challenges, we propose an end-to-
end noise-tolerant embedding learning framework, PGE, to jointly
leverage both text information and graph structure in PG to learn
embeddings for error detection. Experimental results on real-world
product graph demonstrate the effectiveness of the proposed frame-
work comparing with the state-of-the-art approaches.
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1 INTRODUCTION
With the rapid growth of the internet, e-commerce websites such as
Amazon, eBay, andWalmart provide important channels to facilitate
online shopping and business transactions. As an effective way to
organize product-related information, product knowledge graphs
(PGs) [14] have attracted increasing attentions in recent years by
empowering many real-world applications, such as product search
and recommendations [2].
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Title Category Flavor Ingredient

Brand A Tortilla Chips
Spicy Queso,
6 - 2 oz bags

† chips-and
-crisps Spicy Queso

Ground Corn, Chipotle
Pepper Powder,

Paprika Extract, Spices

Brand B Bean Chips
Spicy Queso,

High Protein and Fiber,
Gluten Free, Vegan Snack,

5.5 Ounce (Pack of 6)

† chips-and
-crisps Cheddar

Navy Beans,
Cayenne Pepper,
Paprika Extract,

Dehydrated Spices

Carolina Reaper Spicy
Peanut Brittle

candy
-brittle

Carolina
Reaper Spicy

Peanuts, Sugar,
Carolina Reaper

† We mask the brand of the products to avoid revealing sensitive information.
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Cheddar Peanuts

flavor

Brand B Bean 
Chips …

Brand A Tortilla 
Chips… Carolina Reaper 

Spicy Peanut Brittle

Figure 1:An example PG and its corresponding product catalog data.
We underline the incorrect attribute value in the table whose ground
truth value is given in its product title. Attribute values with similar
semantic meanings are filled with the same pattern and gathering
together with a dotted frame.

A PG is a knowledge graph (KG) that describes product attribute
values. It is constructed based on product catalog data (Fig. 1 shows
an example). In a PG, each product is associated with multiple
attributes such as product brand, product category, and other infor-
mation related to product properties such as flavor and ingredient.
Different from traditional KGs, where most triples are in the form
of (head entity, relation, tail entity), the majority of the triples in a
PG have the form of (product, attribute, attribute value), where the
attribute value is a short text, e.g., (“Brand A Tortilla Chips Spicy
Queso, 6 - 2 oz bags”, flavor, “Spicy Queso”). We call such triples
attribute triples.

A vast majority of the product catalog data are provided by indi-
vidual retailers. These self-reported data inevitably contain many
kinds of errors, including conflicting, erroneous, and ambiguous
values. When such errors are ingested by a PG, they lead to unsatis-
fying performance of its downstream applications. Due to the huge
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Figure 2: PGE improves over KG embeddingmethodRotatE by 24.7%
and transformer by 4% on PR AUC in transductive setting. It also
shows significant improvement on R@P metric. R@P = 0.7 shows
the recall when the precision is 0.7, etc.

volume of products in a PG, manual validation is not feasible. An
automatic validation method is in urgent need.

Knowledge graph embedding (KGE) methods currently hold
the state-of-the-art in learning effective representations for multi-
relational graph data. It aims to learn the network structure which
triples should comply. KG embedding methods have shown promis-
ing performances in error detection (i.e., determine whether a triple
is correct or not) in KGs [1, 40]. For example, the PG structure in
Fig. 1 indicates a strong correlation between the ingredient “pep-
per” and flavor “spicy” because they are connected through multi-
ple products. By verifying its consistency with the network struc-
ture, the errors like (“Brand B Bean Chips Spicy Queso, High Protein
and Fiber, Gluten Free, Vegan Snack, 5.5 Ounce (Pack of 6)”, flavor,
“Cheddar”) can be easily identified. Unfortunately, the existing KG
embedding methods cannot be directly used to detect errors in a
PG because of the following challenges.

C1: PG contains rich textual information. Products in a PG
are often described by short texts like their titles and descriptions
that contain rich information about their attributes. For example,
the product title “Brand A Tortilla Chips Spicy Queso, 6 - 2 oz bags”
covers multiple attributes, including brand, product category, flavor,
and size. We can easily verify the correctness of these attributes
against the product title. In addition, the attribute values in PG are
free texts. Thus the traditional way of mapping entity ids to their
embeddings is no longer appropriate. As shown in Fig. 1, when the
attribute values “Chipotle Pepper Powder” and “Carolina Reaper”
(a kind of pepper) are modeled as two independent entities using
their ids, the strong conceptual correlation between the ingredi-
ent “pepper“ and the flavor “spicy“ is lost. Although several recent
publications [37, 38] tried to exploit the rich textual information in
KGs, the network structure and text information were not jointly
encoded into a unified representation. For example, text-based rep-
resentation and structure-based representation were learned by
separate loss functions and integrated into one joint representation
by a linear combination [1, 38].

C2: PG contains a large number of unseen attribute val-
ues. The flexibility of textual attribute values also makes handling
“unseen attribute values” challenging. In the example as shown in
Fig. 1, we can learn the representation of “Chipotle Pepper Powder”
during training, but an unobserved attribute value with similar

Table 1: Capabilities of different methods.

Methods Modeling
graph structure

Modeling
textual data Noise-aware

Structure based
KG embedding [9, 31, 32, 41] ✓

Text and KG
joint embedding [1, 37, 38] ✓ ✓

Noise-aware
KG embedding [39] ✓ ✓

PGE ✓ ✓ ✓

semantic meaning, such as “Chipotle Pepper” might be given for
validation. Conventional KG embedding models cannot deal with
this inductive setting because they have no representations for the
entities outside of KGs.

C3: Existing noisy data in PG make it hard to learn a reli-
able embedding model. Getting a reliable embedding model for
error detection in a PG requires clean data for training. However,
noise widely existing in a PG can mislead the embedding model to
learn the wrong structure information, which may severely down-
grade its performance in error detection.

No existing approach is capable of tackling all aforementioned
challenges, as shown in Table 1. Therefore, in this paper, we aim
to answer this challenging research question: how to generate em-
beddings for a text-rich, error-prone knowledge graph to facilitate
error detection? We present a novel embedding learning framework,
robust Product Graph Embedding (PGE), to learn effective embed-
dings for such knowledge graphs. There are two key underlying
ideas for our framework. First, our embeddings seamlessly com-
bine the signals from the textual information of attribute triples,
and the structural information in the knowledge graph. We do this
by applying a CNN encoder to learn text-based representations
for product titles and attribute values, and then integrating these
text-based representations into the triplet structure to capture the
underlying patterns in the knowledge graph. Second, we present a
noise-aware loss function to prevent noisy triples in the PG from
misguiding the embeddings during training. For each positive in-
stance in the training data, our model predicts the correctness of
the triple according to its consistency with the rest of the triples in
the KG, and downweights an instance when the confidence of its
correctness is low. As shown in Table 1, PGE is able to model both
textual evidence and graph structure, and is robust to noise.

Our proposed model is generic and scalable. First, it applies
not only on the product domain, but also excel in other domains
such as on Freebase KG, as we show in our experiments. Second,
through careful choices of the deep learning models, our model
can be trained on KGs with millions of nodes within a few hours,
and are robust to noises and unseen values that are inherent in real
data. In summary, this paper makes the following contributions.

• We propose an end-to-end noise-tolerant embedding learn-
ing framework, PGE, to jointly leverage both text informa-
tion and graph structure in PG to learn embeddings for
error detection.

• We propose a novel noise-aware mechanism to incorporate
triple confidence into PGE model to detect noise while
learning knowledge representations simultaneously.
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• We evaluate PGE on a real-world PG w. millions of nodes
generated from public Amazon website and show that we
are able to improve over state-of-the-art methods on aver-
age by 18% on PR AUC in transductive setting as summa-
rized in Figure 2.

2 PRELIMINARIES AND PROBLEM
DEFINITION

We first formally define two important concepts: attribute triples
and product graph.

Definition 1. Attribute triples

An attribute triple can be represented as (𝑡, 𝑎, 𝑣), where its subject
entity 𝑡 is a product sold onAmazon (e.g., a product with title “Brand
A Tortilla Chips Spicy Queso, 6 - 2 oz bags”), its object entity 𝑣 is an
attribute value (e.g., “spicy queso”), and 𝑎 is an attribute to connect
𝑡 and 𝑣 (e.g., flavor). Both 𝑡 and 𝑣 are represented as unstructured
short texts. An attribute triple (𝑡, 𝑎, 𝑣) is incorrect if its attribute
value 𝑣 does not correctly describe the product 𝑡 . For example,
(“Brand B Bean Chips Spicy Queso, High Protein and Fiber, Gluten
Free, Vegan Snack, 5.5 Ounce (Pack of 6)”, flavor, “Cheddar”) in Fig. 1
is an incorrect attribute triple.

Definition 2. Product Graph

A Product graph (PG) is a KG that describes product attribute
values. Formally, we represent a product graph as G = {𝑇,𝐴,𝑉 ,𝑂},
where 𝑇 is a set of product titles, 𝐴 is a set of attributes, 𝑉 is a set
of product attribute values, and 𝑂 is a set of observed triples in the
PG. Note that we have open-world assumption and thus cannot
predetermine the possible values of 𝑉 . Triples in PG are attribute
triples defined in Definition 1. Fig. 1 illustrates an example PG.

We can now formally define the problem of error detection in PG
as follows:

Given: a product graph G = {𝑇,𝑉 ,𝐴,𝑂}.
Identify: incorrect triples {(𝑡, 𝑎, 𝑣)} ⊂ 𝑂 .

3 OUR PROPOSED FRAMEWORK: PGE
In this section, we present PGE that learns the embeddings of PG
entities by incorporating both the text information and the network
structure of a PG to detect erroneous triples. As shown in Fig. 3, the
framework includes three key components: (1) Learn text-based
representations of entities from their raw text values; (2) Leverage
network structure of a PG to guide the final embedding learning for
error detection; (3) Introduce a noise-aware mechanism to diminish
the impact of noisy triples to the representation learning.

3.1 Text-based Representation Learning for
Entities

In a typical KG embedding learning procedure, each entity is given
a unique id which is thenmapped to a learnable embedding. This ap-
proach is not optimal for PG embedding learning, because product
titles (𝑇 ) and attribute values (𝑉 ) in a PG are mostly unstructured
text containing rich semantic information, thus learning entity em-
beddings from only their ids not only creates unnecessary degrees
of freedom, but also discards their underlying semantic connections.
For instance, the embeddings of product titles “Brand A Tortilla

Chips Spicy Queso, 6 - 2 oz bags” and “Brand B Bean Chips Spicy
Queso, High Protein and Fiber, Gluten Free, Vegan Snack, 5.5 Ounce
(Pack of 6)” should be close to each other because they are semanti-
cally similar. There are several methods, such as convolutional neu-
ral network (CNN)-based methods and Transformer-based methods
(e.g., BERT), that could be leveraged to learn the representations
of product titles (𝑇 ) and attribute values (𝑉 ) in order to capture
their semantic similarities. We present scalability analysis of both
text encoders in Section 4.6. Due to the huge number of products
contained in PGs, we pick the CNN architecture for its good scala-
bility as well as effectiveness on many natural language processing
tasks [28]. As shown in Figure 4, the CNN encoder takes the raw
text of a product title or an attribute value as the input and output
its text-based representation. The first layer in the encoder trans-
forms every word in the sequence into its respective embedding
(initialized with word2vec [25]). The word embeddings then pass
through three 1-d shallow CNNs with different filter sizes, which
create three feature maps. Here we use different filter sizes to cap-
ture local semantic information from different text spans. The final
text-based representation of an entity is the concatenated feature
maps learned by all CNNs.

3.2 Leverage Graph Structure to Guide
Embedding Learning

Manually labeled data are costly to obtain given the huge number
of products in a PG. Fortunately, the rich structure information of a
PG bridges the gap between the difficulties in obtaining labeled data
and the necessity of supervision to detect errors. Although several
recent papers have proposed to combine the text and structure
information for KG representation learning, most of them [1, 38]
learn two independent representations with separate loss functions
and then integrate them with a linear combination. Such solution
cannot generate a desired unified representation. To address this
issue, we propose to learn the embeddings of entities and relations
end to end, encoding the network structure that triples should obey
on top of their text-based representations.

As shown in Fig. 3, we introduce a fully-connected neural net-
work layer to transform a text-based representation into its final
representation to encode the network structure of a PG. Boldfaced
t, a, v denote the final embedding vector of product title 𝑡 , attribute
𝑎, attribute value 𝑣 , respectively. Since the number of attributes in
a PG is small and well-defined comparing to titles and attribute
values, we use randomly initialized learnable vectors to represent
relations instead of CNN encoders. To capture the network struc-
ture of PG, we define the objective function by maximizing the
joint probability of the observed triples given the embeddings of
both entities and relations. In particular, we assume all triples are
conditionally independent given the corresponding embeddings.
Then the joint distribution of all the triples is defined as:

𝑃 (𝑂) =
∏

(𝑡,𝑎,𝑣) ∈𝑂
𝑃

(
(𝑡, 𝑎, 𝑣) |{t}, {a}, {v}

)
. (1)

Since our goal is to detect the incorrect attribute value 𝑣 in a triple
(𝑡, 𝑎, 𝑣), we optimize 𝑃 (𝑣 |𝑡, 𝑎, {t}, {a}, {v}) instead of 𝑃 (𝑡, 𝑎, 𝑣) |{t},
{a}, {v}), which can be formalized as follows:
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Text Encoder 

FC LayerText Encoder

Attribute ID

Modeling Structure Information

FC Layer

𝑳

Attribute

Attribute 
Value

Product Title

Noise Aware 
Triple Loss

Confidence Score
Comply with the global structure?

𝑪 𝒕, 𝒂, 𝒗

Product Graph

Remove noise!

Figure 3: Illustration of the end-to-end PGE framework. The embedding vectors in green are text-based entities representations learned from
text descriptions, while the embedding vectors in blue are the final entity embeddings learned under the guidance of the PG network structure.
The arrows in red illustrate how the noise-aware mechanism removes noises in PG.

Description of entity 𝑥1 𝑥2 𝑥3 𝑥𝑛……
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[ ]
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Figure 4: CNN-based text encoder.

𝑃 (𝑣 |𝑡, 𝑎, {t}, {a}, {v}) =
exp

(
𝑓𝑎 (𝑡, 𝑣)

)
∑

𝑣′∈𝑉 exp
(
𝑓𝑎 (𝑡, 𝑣 ′)

) (2)

where 𝑓𝑎 (𝑡, 𝑣) can be defined by any KG embedding scoring func-
tions. For example, in TransE, 𝑓𝑎 (𝑡, 𝑣) = 𝛾 − ∥t + a − v∥21, where
t, a, v ∈ R𝑑 and 𝛾 is a fixed margin. In particular, a higher 𝑓𝑎 (𝑡, 𝑣)
usually indicates that the triple (𝑡, 𝑎, 𝑣) is more plausible. Due to the
large number of attribute values |𝑉 | involved in a PG, it is impracti-
cal to directly compute the softmax functions. Therefore, we adopt
negative sampling [26] as computationally efficient approximation
instead and reformulate the objective function as follows:∑︁

(𝑡,𝑎,𝑣) ∈𝑂

[
− log𝜎

(
𝑓𝑎 (𝑡, 𝑣)

)
− 1
|N (𝑡, 𝑎, 𝑣) |

∑︁
(𝑡,𝑎,𝑣′) ∈N(𝑡,𝑎,𝑣)

log𝜎
(
− 𝑓𝑎 (𝑡, 𝑣 ′)

)] (3)

where 𝜎 is the standard sigmoid function,𝑂 represents the observed
facts in PG, N(𝑡, 𝑎, 𝑣) is a set of negative samples for an attribute
triple (𝑡, 𝑎, 𝑣). More specifically, for each observed triple (𝑡, 𝑎, 𝑣) we
sample a set of negative samples N(𝑡, 𝑎, 𝑣) ⊂ {(𝑡, 𝑎, 𝑣 ′) |𝑣 ′ ∈ 𝑉 } by
replacing the attribute value 𝑣 with a random value from 𝑉 .

3.3 Noise-aware Mechanism
The objective function in Eq. (3) indiscriminately minimizes the
scores of all facts in PG without taking their trustworthiness into
consideration. As a result, noisy facts can mislead the embedding
model to learn wrong structure information, thus harm the perfor-
mance of embeddings in error detection.

To address this issue, we propose a novel noise-awaremechanism
to reduce the impact of noisy triples on the representation learning
process. Knowledge representations are learned to ensure global
consistency with all triples in PG. Correct triples are inherently
consistent, which can jointly represent the global network structure
of PG; noisy triples usually conflict with these global network
structures. Consequently, by forcing consistency between correct
triples and noises, performance is unnecessarily sacrificed. The
main idea of the noise-aware mechanism is to explicitly allow the
model to identify and “markdown” a small set of incorrect triples
during training and reduce their impact on the loss function.

More specifically, we introduce a binary learnable confidence
score,𝐶 (𝑡, 𝑎, 𝑣), for every triple (𝑡, 𝑎, 𝑣) in a PG to indicate whether
the fact is true or false. 𝐶 (𝑡, 𝑎, 𝑣) = 1 indicates the triple is correct
and 0 otherwise. Associating confidence scores with triples in a
PG actively downweight potential noises in the PG. The objective
function of the noise-aware PGE model is defined as follows.

L =
∑︁

(𝑡,𝑎,𝑣) ∈𝑂
𝐶 (𝑡, 𝑎, 𝑣)

[
− log𝜎

(
𝑓𝑎 (𝑡, 𝑣)

)
− 1

|N (𝑡, 𝑎, 𝑣) |
∑︁

(𝑡,𝑎,𝑣′) ∈N(𝑡,𝑎,𝑣)
log𝜎

(
− 𝑓𝑎 (𝑡, 𝑣 ′)

)]
+ 𝛼

∑︁
(𝑡,𝑎,𝑣) ∈𝑂

(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)
𝑠 .𝑡 .,𝐶 (𝑡, 𝑎, 𝑣) ∈ {0, 1}

(4)

where 𝐶 (𝑡, 𝑎, 𝑣) is the binary confidence score assigned to a triple
(𝑡, 𝑎, 𝑣) in a PG, and 𝛼

∑
(𝑡,𝑎,𝑣) ∈𝑂

(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)
is a regularization

term imposed on confidence scores to control their sparsity. The
problem in Eq.( 4) is difficult to solve due to the boolean constraint
on 𝐶 (𝑡, 𝑎, 𝑣). Following the common relaxation technique in [34],
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the boolean constraint on 𝐶 (𝑡, 𝑎, 𝑣) can be relaxed as:

𝐶 (𝑡, 𝑎, 𝑣)2 +
(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)2
= 1, (5)

since minimizing 1−𝐶 (𝑡, 𝑎, 𝑣)2−
(
1−𝐶 (𝑡, 𝑎, 𝑣)

)2
polarizes𝐶 (𝑡, 𝑎, 𝑣).

Therefore, we rewrite the Eq. (4) as:

L =
∑︁

(𝑡,𝑎,𝑣) ∈𝑂
𝐶 (𝑡, 𝑎, 𝑣)

[
− log𝜎

(
𝑓𝑎 (𝑡, 𝑣)

)
− 1

|N (𝑡, 𝑎, 𝑣) |
∑︁

(𝑡,𝑎,𝑣′) ∈N(𝑡,𝑎,𝑣)
log𝜎

(
− 𝑓𝑎 (𝑡, 𝑣 ′)

)]
+ 𝛼

∑︁
(𝑡,𝑎,𝑣) ∈𝑂

(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)
+ 𝛽

∑︁
(𝑡,𝑎,𝑣) ∈𝑂

(
1 −𝐶 (𝑡, 𝑎, 𝑣)2 −

(
1 −𝐶 (𝑡, 𝑎, 𝑣)

)2)
.

(6)

4 EXPERIMENTS
4.1 Dataset
We evaluate our PGE on two datasets: one real-world e-commerce
dataset collected from publicly available Amazon webpages, and
one widely used benchmark dataset FB15K-237. Table 2 summarizes
the statistics of both datasets.

Amazon Dataset: To evaluate PGE on real-world e-commerce
dataset, we construct a product graph with the product data ob-
tained from public Amazon website. Each product in the Amazon
dataset is associated with multiple attributes, such as product ti-
tle, brand and flavor, whose values are short texts. As shown in
Table 2, the Amazon dataset contains 750,000 products associated
with 27 structured attributes and 5 million triples. To avoid bias,
we sampled products from 325 product categories across different
domains, such as food, beauty and drug. To prepare labeled test
data, we asked Amazon Mechanical Turk (MTurk) workers to man-
ually label the correctness of two attributes, including flavor and
scent, based on corresponding product profiles. Each data point is
annotated by three Amazon Mechanical Turk workers and the final
label is decided by majority voting. Among 5,782 test triples, 2,930
are labeled as incorrect and 3,304 are labeled as correct.

FB15K-237: The FB15K dataset is the most commonly used
benchmark knowledge graph dataset [9]. It contains knowledge
graph relation triples and textual mentions of Freebase entity pairs.
FB15K-237 is a variant of FB15K dataset where inverse relations
are removed to avoid information leakage problem in test dataset.
The FB15K-237 datasets benefit from human curation that results
in highly reliable facts. We add 10% noisy triples to the data set by
randomly sample 10% triples and substituting the original head or
tail entity with a randomly selected entity.

4.2 Experimental Setting
Our goal is to identify incorrect attribute values of a product, which
can be formally defined as a triple classification problem in PG.
We choose a threshold 𝜃 based on the best classification accuracies
on the validation dataset, then classify a triple (𝑡, 𝑎, 𝑣) as correct
if its score 𝑓𝑎 (𝑡, 𝑣) > 𝜃 , otherwise incorrect. We apply the same
settings to all baseline methods to ensure a fair comparison. We

evaluate two versions of our model by incorporating TransE [9]
and RotatE [31] as the score function, respectively.

Evaluation Metric. We adopt the area under the Precision-
Recall curve (PR AUC) and Recall at Precision=X (R@P=X) to eval-
uate the performance of the models. To be more specific, PR AUC
is defined as the area under the precision-recall curve, which is
widely used to evaluate the ranked retrieval results. R@P is defined
as the recall value at a given precision, which aims to evaluate the
model performance when a specific precision requirement needs
to be satisfied. For example, R@R = 0.7 shows the recall when the
precision is 0.7.

Compared Methods. We evaluate PGE against state-of-the-
art (SOTA) algorithms, including (1) NLP-based method (LSTM,
Transformer [33]); (2) structure based KG embedding (TransE [9],
DistMult [41], ComplEx [32], RotatE [31]); (3) text and KG joint
embedding (e.g., DKRL [38], SSP [37]); and (4) noise-aware KG
embedding (CKRL [39]). We choose CNN and BERT as the text
encoders of PGE. Since BERT cannot handle Amazon dataset due
to scalability issues, only the results of CNN is reported in Sec-
tion 4.3 and Section 4.4. We present scalability analysis of both
text encoders in Section 4.6. We also include the approach “Union
of Transformer and PGE” to show how PGE complement Trans-
former. To combine Transformer and PGE for error detection, the
approach “Union of Transformer and PGE” re-ranks the test triples
by jointly considering the ranking given by the Transformer and
PGE. For example, given a test triple (ℎ, 𝑟, 𝑡), suppose Transformer
rank it as i while PGE rank it as j. Then the average ranking of
triple (ℎ, 𝑟, 𝑡) is 𝑅 (ℎ,𝑟,𝑡 )

𝑎𝑣𝑔 = (1/𝑖 + 1/ 𝑗)/2. Based on 𝑅
(ℎ,𝑟,𝑡 )
𝑎𝑣𝑔 , “Union

of Transformer and PGE” re-ranks the test triples. Smaller 𝑅 (ℎ,𝑟,𝑡 )
𝑎𝑣𝑔

results in higher ranking assigned by “Union of Transformer and
PGE”. In addition to “Union of Transformer and PGE”, we also in-
clude a strong ensemble method - RotatE+ to enrich knowledge
graph with information extraction technique. In particular, RotatE+
first applies OpenTag [20, 43], the SOTA information extraction
toolkit developed by Amazon Product Graph Team, to extract all
relevant attributes from product title and product description to
enrich the PG, then applies KG embedding method RotatE on the
enriched KG to detect the error.

Setup Details. In data preprocessing, we remove all stop words
from raw texts and map words to 300-dimensional word2vec vec-
tors trained with GoogleNews. We adopt the Adam [23] optimizer
with learning rate among {0.0001, 0.0002, 0.0005} following [31],
and margin 𝛾 among {12.0, 24.0}. For the CNN encoder, we try
different filter sizes among {1, 2, 3, 4} for different CNNs. To fairly
compare with different baseline methods, we set the parameters
for all baseline methods by a grid search strategy. The best results
of baseline methods are used to compare with PGE.

4.3 Transductive Setting
Transductive setting focuses on the situation where all attribute
values in the test triples have been observed in the training stage.
To compare different algorithms on the triple classification task,
we require each method to predict the correctness of triples in the
test dataset. Table 3 shows the comparison results. Here are sev-
eral interesting observations: (1) PGE consistently outperforms KG
embedding models as well as CKRL in all cases with significant
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Table 2: Data statistics

Dataset #Relations #Entities #Products #Attributed values #Train #Valid #Test
Amazon Dataset 27 1,017,374 750,000 267,374 4,989,375 6,924 5,782

FB15K-237 234 13,714 - - 67,894 2,750 3,042

performance gain (improving by 24% - 30% on PR AUC), which
ascribes to the utilization of textual information associated with
entities; (2) PGE also obtains better performance than NLP-based
approaches as they cannot leverage graph structure information
in KGs. In particular, NLP-based methods show the worst perfor-
mance on the FB15k-237 dataset while the second best performance
on Amazon dataset. The major reason is that FB15k-237 contains
much richer graph information compared to the Amazon dataset
(i.e., there are 27 attributes in Amazon dataset while 234 relations
in FB15k-237). Therefore, graph structure plays a more critical role
in error detection task in FB15k-237; (3) PGE shows better per-
formance compared to DKRL and SSP. The major reason is that
DKRL and SSP learn the structural representations and the textual
representations by separate functions.

4.4 Inductive Setting
Inductive setting focuses on the situation where attribute values
in the test triples are not presented in a PG, which is a common
scenario for PG error detection. Existing KG embedding models
are not effective in dealing with this situation because they cannot
generate representations for the entities outside of KGs due to
missing ids. Therefore, we do not include them as baselines in this
subsection. Unlike the KG embedding methods, which map entities
to their embeddings using ids, our proposed PGE learns embeddings
of entities based on their text-based representations and thus can
naturally handle the inductive setting.

To prepare an inductive setting, we filter the training set by ex-
cluding any triples that share entities with the selected test triples,
so that the training and the testing use disjoint sets of entities. We
report the results on R@P=0.6, R@P=0.7, R@P=0.8 in Table 4. We
observe that: (1) All methods perform worse in the inductive setting
without exception, which indicates that inductive setting is indeed
more challenging; (2) NLP-based methods perform the best among
all methods. The major reason is that language naturally has strong
transferring ability while PGE still relies on the graph structure to
make the prediction. Although text encode can transferring infor-
mation among entities, it doesn’t help to predict a never seen graph
structure; (3) Although NLP-based methods perform better than
PGE on the Amazon dataset, the best results are given by the union
of Transformer and PGE (improving by 9% on R@P=0.9 compared
with Transformer), showing that PGE can learn the undetected
error by Transformer ; (4) Although PGE cannot leverage textual
information as well as Transformer (because CNN is less powerful
compared with Transformer in capturing the semantic information.
Not to mention we employ shallow CNN as text encode due to
scalability issues), it still achieves comparable result on the Amazon
dataset. Moreover, they achieve the SOTA on FB15k-237, which fur-
ther validates the strong ability of PGE in detecting errors in a KG
with rich textual information; (5) DKRL and SSP perform the worst
among all methods, which again demonstrates their weakness.

4.5 Validity of Noise-aware Mechanism
Validity of Confidence Scores with Different Injected Noises.
To evaluate the benefit of including confidence scores 𝐶 (𝑡, 𝑎, 𝑣)
in the noise-aware mechanism, shown in Eq. (6) , we evaluate
PGE(CNN)-RotatE on the Amazon dataset with two different kinds
of injected noises. First, we inject human-labeled correct triples
and incorrect triples into the training data. Confidence scores are
learned to determine the correctness of these injected labeled triples.
The distribution of confidence scores are shown in Fig. 5 (a). Sec-
ond, we inject artificial noises into the training data. We substitute
attribute values of existing triples in the Amazon dataset with a
random value to generate these artificial noises. Confidence scores
are learned to distinguish artificial noises from the original triples.
Fig. 5 (b) shows the distribution of confidence scores. The red bars
represent the distribution of confidence scores for human-labeled
incorrect triples (or injected artificial noises) while the blue bars
represent the distribution of confidence scores for human-labeled
correct triples (or triples in the original Amazon dataset). We ob-
serve that real-world noises are more difficult to identify compared
to artificial noises. Despite the difficulty in detecting the real-world
error, confidence scores of human-labeled correct triples are mainly
over 0.5, validating the promising capability of the confidence scores
to distinguish noises in PG. In addition, we observe that 1% triples
in the original Amazon dataset have also been identified as noises
in Fig. 5 (b). We have verified that most of these triples are indeed
noisy triples in the original Amazon dataset.

Overall Impact of Noise-aware Mechanism. To further vali-
date the overall benefits brought by noise-aware mechanism, we
also evaluate PGE(CNN)-RotatE without noise-aware mechanism
on Amazon dataset used in Section 4.3. Figure 6 presents the com-
parison results. We observe that the noise-aware mechanism brings
significant performance gain: PGE(CNN)-RotatE with noise-aware
mechanism increases the PR AUC of PGE(CNN)-RotatE without
noise-aware mechanism from 0.734 to 0.747 and increases R@P=0.9
from 0.289 to 0.325.

4.6 Scalability Analysis
To demonstrate the scalability of PGE, we present the training time
of PGE on Amazon dataset of different sizes in Table 5. We vary
the sample ratio among {0.1, 0.3, 0.5, 0.7, 1} to select only a portion
of triples in Amazon dataset to construct PG of different sizes.
Two text encoders, CNN-based text encoder and BERT-based text
encoder, are leveraged to learn entity representations. In particular,
BERT-based text encoder takes the raw text of product titles or
attribute values as input. The first token of input is always a special
classification token ([CLS]). The final hidden state corresponding
to this token is used as the text-based representation of entities.
We observe that PGE(BERT)-RotatE cannot be applied to Amazon
dataset due to the scalability issue. It takes near 2 days for 10% data
and over 3 days for 30% data. Therefore, we focus on CNN in this
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Table 3: Results of error detection under the transductive setting. The numbers in bold represent the best performance among all methods
while the numbers underlined represent the second best. Evaluation of PGE on the Amazon dataset shows that PGE is able to improve over the
SOTA methods on average by 18% on PR AUC.

Categories Method Amazon Dataset FB15k-237
PR AUC R@P=0.7 R@P=0.8 R@P=0.9 Time (hours) PR AUC R@P=0.7 R@P=0.8 R@P=0.9 Time (hours)

NLP-based methods LSTM 0.704 0.572 0.416 0.159 16.32 0.626 0.595 0.445 0.239 0.43
Transformer [33] 0.719 0.601 0.427 0.194 79.46 0.648 0.649 0.503 0.245 12.82

Structured based KG embedding

TransE [9] 0.584 0.390 0.308 0.213 20.57 0.772 0.793 0.737 0.685 0.58
DistMult [41] 0.573 0.362 0.291 0.197 32.86 0.819 0.872 0.813 0.751 4.12
ComplEx [32] 0.579 0.373 0.310 0.207 36.31 0.781 0.814 0.759 0.712 5.16
RotatE [31] 0.597 0.405 0.336 0.239 35.11 0.824 0.875 0.823 0.766 5.33
RotatE+‡ 0.611 0.423 0.369 0.221 36.79 - - - - -

Text and KG joint embedding DKRL [38] 0.693 0.552 0.408 0.246 45.38 0.909 0.945 0.901 0.868 7.25
SSP [37]† - - - - - 0.927 0.951 0.915 0.882 -

Noise-aware KG embedding CKRL [39] 0.586 0.392 0.304 0.217 21.16 0.768 0.725 0.672 0.627 0.62

Our Proposed model PGE(CNN)-TransE 0.738 0.690 0.436 0.267 23.12 0.990 0.997 0.995 0.986 0.67
PGE(CNN)-RotatE 0.745 0.729 0.516 0.325 39.41 0.990 0.997 0.993 0.983 5.71

Union of Transformer and PGE(CNN)-RotatE 0.751 0.747 0.509 0.349 - 0.938 0.958 0.911 0.893 -
† Since SSP cannot handle Amazon dataset due to scalability issues, only the results on the FB15K-237 is reported.
‡ RotatE+ first applies OpenTag [20, 43], an information extraction toolkit developed by Amazon Product Graph Team, to extract all relevant attributes from product title and product description to enrich the product graph, then apply
RotatE [31] on the enriched KG to detect the error.

Table 4: Results of error detection under the inductive setting. The bold numbers represent the best performances among all methods while
the underlined numbers represent the second best. We observe that PGE achieves the SOTA on the structure-rich FB15k-237 data set. The best
results on the Amazon dataset are given by the union of the Transformer model and PGE, showing that although PGE does not perform as well
as NLP-based methods on the Amazon dataset, it complements Transformer for its strong ability in capturing graph structure.

Categories Method Amazon Dataset FB15k-237
PR AUC R@P=0.6 R@P=0.7 R@P=0.8 PR AUC R@P=0.6 R@P=0.7 R@P=0.8

NLP-based methods LSTM 0.626 0.756 0.476 0.340 0.581 0.717 0.436 0.204
Transformer [33] 0.643 0.771 0.495 0.354 0.603 0.748 0.453 0.238

Text and KG joint embedding DKRL [38] 0.552 0.593 0.252 0.068 0.698 0.790 0.638 0.415
SSP [37]† - - - - 0.716 0.807 0.654 0.419

Our Proposed model PGE(CNN)-TransE 0.585 0.730 0.412 0.197 0.787 0.871 0.724 0.674
PGE(CNN)-RotatE 0.596 0.741 0.437 0.228 0.836 0.919 0.845 0.753

Union of Transformer and PGE(CNN)-RotatE 0.649 0.779 0.512 0.386 0.833 0.923 0.837 0.743
† Since SSP cannot handle Amazon dataset due to scalability issues, only the results on the FB15K-237 is reported.

Figure 5: Distribution of confidence scores learned by PGE(CNN)-RotatE on the Amazon
dataset with different injected noises.

Figure 6: PGE(CNN)-RotatE with v.s. with-
out noise-awaremechanism on noisy Amazon
dataset.

paper. We observe that PGE(CNN)-RotatE scales up to large datasets
with similar scalability compared to KGE model.

4.7 Case Study
Previous experiments have shown the promising performance of
PGE in both transductive setting and inductive setting. To further
demonstrate the capability of PGE in detecting real-world errors

in PG, we conduct case study to give examples of identified errors
in the Amazon dataset as shown in Table 6. We use PGE(CNN)-
RotatE to evaluate if a triple is a correct fact. Threshold 𝜎 is chosen
based on the best classification accuracies on the validation dataset
in order to classify triples. We observe that most attribute values
of identified errors violate the global graph structure of PG and
thus can be classified as errors. For example, product 2,3, and 4 in
Table 6 are not groceries thus should not have the attribute “flavor”.
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Table 5: Training Time (hours) of different methods on Amazon
dataset.

Models Percentage of Sampled Triples
0.1 0.3 0.5 0.7 1

RotatE 3.22 10.77 17.63 24.86 35.11
PGE(CNN)-RotatE 4.07 11.95 19.44 27.62 39.41
PGE(BERT)-RotatE 45.21 > 3 day > 3 day > 3 day > 3 day

Table 6: Identified errors on Amazon dataset.

Product Attribute Attribute Value

Pure Mint Shampoo and
Hair Conditioner for Women

and Men - 10 oz
scent mint shampoo

and conditioner set

Brand A Foot Brush
and Pumice (Pack of 4)

† flavor bamboo

Brand B Sweet BBQ Rub 11.2 oz† flavor sweet

Hassle Free Storage Pop-Up
Mesh Laundry Hamper (Aqua) flavor octopus

Brand C Organics Conditioner,
Tea Tree Oil & Blue Cypress,

12 Ounce (Pack of 3)
† scent

conditioner
tea tree oil

and blue cypress
† We mask the brand of the products to avoid revealing sensitive information.

Although the attribute values of product 1 and 5 include commonly
observed phrases to describe the scent, the word “conditioner” in
the attribute values makes them no longer correct attribute values
of “scent”. This observation shows that PGE not only leverages the
graph structure of PG to detect noise (e.g., example 2,3,4) but also
show sensitivity to subtle differences of language.

5 RELATEDWORK
Error Detection in Knowledge Graph. Most KG noise detection
process is carried out when constructing KGs, such as Freebase,
Google Knowledge Graph, Walmart product graph, YAGO, NELL,
and Wikipedia [3, 8, 19, 27, 30]. Despite the efforts during KG con-
structions, errors are widely observed in existing KGs. A recent
open IE model on the benchmark achieves only 24% precision when
the recall is 67% [29] and the estimated precision of NELL is only
74% [10]. To detect errors for an existing KG, most existing meth-
ods explore additional rules [5–7, 11, 12, 15–18, 22]. Considering all
kinds of errors that could be made in the real world, it is unrealistic
to identify all required rules to cover all possible cases. In contrast,
our proposed method employs KG embedding model to automati-
cally learn the correlation of entities, which could be considered as
fuzzy rules to guide value cleaning in KGs. More recently, detecting
noises while learning knowledge representations simultaneously
becomes a hot topic. A confidence-aware framework CKRL [39]
is proposed to incorporate triple confidence into KG embedding
models to learn noise-aware KG representations. However, the con-
fidence of triples are easily affected by model bias (i.e., improper
order of triples in training sets may even amplify the impact of
noises). In addition, it ignores the rich semantic information in KGs,
which is strong evidence to judge triple quality. In this paper, we
propose a noise-aware KG embedding learning method, which can

utilize rich semantic information to identify noises, which conflict
with the global network structures.

Knowledge Graph Embedding. Knowledge Graph Embedding
(KGE) aims to capture the similarity of entities by projecting entities
and relations into continuous low-dimensional vectors. Scoring
functions, which measure the plausibility of triples in KGs, are
the crux of KGE models. Representative KGE algorithms include
TransE [9], TransH [36], TransR [24], DistMult [41], ComplEx [32],
SimplE [21] and RotatE [31], which differ from each other with
different scoring functions.

Text and Knowledge Graph Joint Embeddings. In recent
years, several attempts have been made to improve the knowledge
representation by exploiting entity descriptions as additional in-
formation [1, 37, 40]. However, the combination of the structural
and textual representations is not well studied in these methods,
in which two representations are learned by separate loss function
or aligned only on the word-level. As one of the most representa-
tive works, DKRL [38] separates the objective function into two
energy functions (i.e. one for structure and one for description)
and integrates these two representations into a joint one by a lin-
ear combination. Works proposed in [36] and [44] align the entity
name with its Wikipedia anchor on word level, which may lose
some semantic information on the phrase or sentence level. SSP [37]
requires the topic model to learn pre-trained semantic vector of
entities separately. Due to the rapid growth of pre-trained language
representation models (PLM), several works are proposed to encode
textual entity descriptions with a PLM as their embeddings. For ex-
ample, KEPLER [35] proposes to encode textual entity descriptions
with BERT as their embeddings, and then jointly optimize the KGE
and language modeling objectives. BLP [13] trains PLM and KG
in an end-to-end manner. Since the language modeling objective
of PLM suffer from high computational cost and require a large
corpus for training, it is time consuming to apply these methods to
large scale KGs. In this paper, we propose an end-to-end method to
jointly leverage both text information and graph structure for KG
embedding learning in an efficient way.

6 CONCLUSION
In this paper, we propose a novel end-to-end noise-aware embed-
ding learning framework, PGE, to learn embeddings on top of
text-based representations of entities for error detection in PG.
Experiment results on a real-world product graph show that PGE
improves over state-of-the-art methods on average by 18% on PR
AUC in transductive setting. Although this paper focuses on the
product domain, we also show in our experiments that, the same
techniques excel in other domains with textual information and
noises. As the next step, we would investigate more efficient Trans-
former architecture to improve text encoder strength and efficiency
of PGE. BERT-based text encoder is difficult to scale to large KG
due to its full attention mechanism. To reduce the computation
complexity of BERT-based text encoder, we can to extend the ideas
of [4, 42] to allow sparse self-attention to tokens. In addition, we
can leverage additional information to improve the learned entity
representations. For example, we could better capture the similarity
among products by leveraging the hierarchical structure of product
data or by leveraging the user behavior data.
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