
Moneyball: Proactive Auto-Scaling in
Microsoft Azure SQL Database Serverless

Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and Ajay Kalhan
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA

firstname.lastname@microsoft.com

ABSTRACT
Microsoft Azure SQL Database is among the leading relational
database service providers in the cloud. Serverless compute au-
tomatically scales resources based on workload demand. When a
database becomes idle its resources are reclaimed. When activity
returns, resources are resumed. Customers pay only for resources
they used. However, scaling is currently merely reactive, not proac-
tive, according to customers’ workloads. Therefore, resources may
not be immediately available when a customer comes back online
after a prolonged idle period. In this work, we focus on reducing
this delay in resource availability by predicting the pause/resume
patterns and proactively resuming resources for each database. Fur-
thermore, we avoid taking away resources for short idle periods
to relieve the back-end from ineffective pause/resume workflows.
Results of this study are currently being used worldwide to find the
middle ground between quality of service and cost of operation.

PVLDB Reference Format:
Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu,
and Ajay Kalhan. Moneyball: Proactive Auto-Scaling in Microsoft Azure
SQL Database Serverless. PVLDB, 15(6): 1279-1287, 2022.
doi:10.14778/3514061.3514073

1 INTRODUCTION
Microsoft Azure SQL Databases [5], Google Cloud SQL Databases
[13], and Amazon RDS for SQL Server [3] are the leading relational
database service providers in the cloud. They deploy automatic,
fully managed databases to guarantee high Quality of Service (QoS)
to their customers, while controlling Cost of Goods Sold (COGS).

Azure SQL Database serverless automatically scales resources
based on demand and bills for the amount of resources used per
second [7]. However, resumes and pauses are currently merely reac-
tive, meaning that they do not take typical resource usage patterns
into account. Therefore, serverless compute can introduce delays
in resource availability after idle periods. Consequently, serverless
compute may be less suitable for time-critical applications than
provisioned compute that allocates a fixed amount of resources [6].

In this work, we aim to overcome the reactive nature of serverless
compute by proactively resuming resources based on historical
resume patterns. Furthermore, if pauses are short, the availability
time of resources is too fragmented for effective reuse. Thus, we
aim to relieve the back-end from short pauses.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514073

Challenges. Optimizing Azure SQL Database serverless tier is
a challenging endeavour for the following reasons.

(1) Large search space of tunable parameters. Proactive auto-scale
of resources depends onmany tunable parameters. The search space
is prohibitively expensive to be explored exhaustively. Therefore,
we identify trends of how these parameters influence the results
and choose a reasonable set of parameters. The choice of parame-
ters usually involves a trade-off between QoS and COGS [46]. For
example, resuming resources in advance will guarantee high QoS,
but waste COGS until these resources are used. We will discuss the
trade-offs, while exploring the search space of parameters.

(2) Opposing optimization objectives. We aim to enable proactive
resumes and avoid short pauses. However, these are opposing goals.
Indeed, increasing the number of proactive resumes will also in-
crease the number of wrong resumes, i.e., the customer did not
come online as expected. Wrong resumes will in turn increase the
number of pauses, some of which will be short. Also, reducing the
number of short pauses will reduce the number of resumes, mak-
ing the task of correct proactive resume harder because of fewer
historical resumes. Solving this catch-22 is the goal of this work.

(3) Changed resource usage patterns. Resource usage patterns on
serverless compute changed compared to provisioned compute. For
example, provisioned databases are typically short-lived and often
underutilized [33, 36, 39, 46]. In contrast to that, half of serverless
databases existed over three weeks and half of idle periods are
within a few hours (Figures 6 and 10(a)). At the same time, we ob-
serve certain similarities. For example, only a negligible percentage
of provisioned or serverless databases follow a strict daily or weekly
pattern. Therefore, we need to determine which lessons learned on
provisioned compute can be transferred to serverless compute.

State-of-the-Art Techniques. While there are approaches to
demand-driven auto-scale of resources in the cloud [27–30, 32, 37,
43–45], to the best of our knowledge, none of them addresses all
challenges described above. In particular, they do not focus on
achieving the contradictory goals of enabling proactive resume to
guarantee high QoS, while reducing the number of short pauses
to keep the operational costs low. Some of the existing approaches
studied resource allocation on provisioned compute [26, 33, 36,
39, 40, 46] and we will transfer lessons learned from provisioned
compute to serverless compute, when possible.

Our Proposed Solution. To address the challenges above, we
propose the Moneyball approach that finds the middle ground be-
tween the contradictory goals of enabling proactive resume, while
reducing the number of short pauses.1

1Similarly to the book and the movie “Moneyball” [1, 34], we apply statistical methods
to achieve good results, while minimizing costs. However, we do not borrow statistical
methods from this book.

1279

https://doi.org/10.14778/3514061.3514073
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3514061.3514073

To guarantee high QoS, we reduce delays in resource availability
on login. To this end, we predict the pause/resume patterns and
make recommendations when to proactively resume resources for
each database. We compare probabilistic and predictive approaches
to proactive resume and tune the key parameters to increase the
number of correct proactive resumes, while reducing the opera-
tional costs due to wrong proactive resumes and the wait time
intervals until the proactively resumed resources are used.

To reduce the back-end workload, we avoid short pauses. We
compare two alternative solutions. One, we restrict the number of
pauses per database and day (called a budget-based solution). Two,
we introduce a wait time interval (called logical pause) before we
scale resources down (called physical pause). We consider greedy
and predictive approaches and compare their results to the optimal
result. We tune the main parameters to reduce the number of short
pauses and the costs due to idle resources during avoided pauses.

Contributions. Cloud service providers have recently evolved
from provisioned to serverless compute [2, 7–9, 11, 14, 15, 17, 22, 23].
All of them face the challenge of provisioning resources only when
needed. We believe that Moneyball generalizes to the cloud model
in any company. Its key contributions are the following.

(1) We define the two-dimensional Moneyball problem space.
We propose a visual way to compare our proposed solutions to the
optimum and their impact on QoS and COGS.

(2) We summarize the main lessons learned during a decade of
analysis of provisioned SQL databases. We transfer this learning
to serverless compute, while solving the Moneyball problem. In
particular, we select features and compare ML models to heuristics
with respect to accuracy and maintenance overhead.

(3) We analyze production telemetry of serverless SQL databases
with respect to their lifespan and typical resource usage patterns
during half a year in tens of Azure regions where tens of thou-
sands of serverless databases are currently deployed. Given the size
and scope of this analysis, we believe that the usage patterns we
observed represent the behaviors of any serverless databases.

(4) We enable proactive resume based on historical resume pat-
terns per database. Up to 80% of resumes are proactive and correct
within several hours for long-lived databases that existed at least 3
weeks. 99% of long-lived databases benefit from proactive resumes.

(5) We avoid short pauses by logically pausing a database that
becomes idle before scaling its resources down. Logical pause is a
simple, effective, and flexible technique that avoids up to half of
pauses. 49% of databases benefit from this workload reduction.

2 MONEYBALL PROBLEM
Provisioned vs Serverless Compute. Resources of Azure SQL
Databases are currently allocated in two ways.

Provisioned compute allocates a fixed amount of resources that
does not change over time unless the customer explicitly requests
a different amount [6]. Resources of a database 𝑠 are resumed dur-
ing the entire life time of 𝑠 (Figure 1(a) and Table 1). However,
rigorous telemetry analysis reveals that these resources are often
underutilized [25, 26, 33, 36, 40, 46]. There are extensive idle periods
during which resources are wasted unless customers manually scale
resources down. This manual resource scaling is labor-intensive,
time-consuming, error-prone, neither scalable, nor durable.

Table 1: Table of notations

Notation Description
𝑆 Set of databases, 𝑠 ∈ 𝑆
𝑑 Weekday (e.g., Wednesday)
𝑊 Set of time windows within a day,𝑤 ∈𝑊
𝜃 Threshold
𝑘 Budget
𝑙 Duration of logical pause in hours
𝐻 (𝑠) Historical data of 𝑠
ℎ(𝑠, 𝑑) Number of 𝑑’s in 𝐻 (𝑠)

𝑟 (𝑠, 𝑑,𝑤) Number of 𝑑’s on which 𝑠 was resumed during
𝑤 in 𝐻 (𝑠)

𝑝 (𝑠, 𝑑,𝑤) Probability of resume of 𝑠 on 𝑑 during𝑤
𝐻 (𝑠, 𝑑,𝑤) Historical data of 𝑠 on 𝑑 during𝑤
𝑃 (𝑠, 𝑑) Predicted pause/resume pattern of 𝑠 on 𝑑

Predict (𝑠, 𝑑) Time complexity of predicting the pause/resume
pattern of 𝑠 on 𝑑

cost COGS per vCore per hour in dollars
vcores(𝑠) Maximum vCores of 𝑠

pauses(𝑠) Total duration of all pauses of 𝑠 in hours without
proactive resume

wait (𝑠) Total wait time in hours until proactively re-
sumed resources of 𝑠 are used

avoided (𝑠) Total duration of avoided pauses of 𝑠 in hours
allowed (𝑠) Number of pauses of 𝑠 that are longer than 𝑙
idle(𝑠, 𝑙) 𝑠 is idle during 𝑙
create(𝑠) 𝑠 is created
delete(𝑠) 𝑠 is deleted
login(𝑠) Customer logs in to 𝑠
logout (𝑠) Customer logs out of 𝑠
login(𝑠).time Time stamp of login(𝑠)
𝑝.start Start time stamp of a pause 𝑝

To overcome these limitations, serverless compute was recently
introduced [7]. The resources of a database 𝑠 are automatically
scaled based on demand. If the serverless database is online, then
scaling generally occurs with low latency since some resources
remain allocated which helps mitigate the performance impact from
compute warmup. However, if the serverless database is paused,
then more or even all compute resources may be deallocated which
elongates the latency to subsequently resume the database when
workload activity returns. This paper focuses on minimizing the
latency to resume a database since that has the greater performance
impact between these two auto-scaling scenarios.

When the customer logs in, resources are resumed (❶ in Fig-
ure 1(b)). When the customer logs out, resources are paused for this
database, reclaimed, and possibly assigned to other active databases
(❷). Customers are billed per second only when resources are re-
sumed for their databases. Thus, serverless compute minimizes both
the waste of resources and the costs for the customers. However,
serverless compute can be further optimized as described below.

Reactive vs Proactive Resume. Transitions between paused
and resumed states are not instantaneous (Figure 1(b)). A resume
workflow assigns resources to a database that becomes active, while

1280

(a) Provisioned compute (b) Reactive auto-scale on serverless compute

Figure 1: Life cycle of a database

a pause workflow takes resources away from a database that be-
comes idle (Figure 2). Currently, resumes are merely reactive, not
proactive. Delays in resource availability may occur after long idle
periods. These delays make serverless compute less suitable for
time-critical applications than provisioned compute [6].

In this work, we aim to reduce these delays by proactively re-
suming resources based on historical resume patterns per database.
For example, if a database is usually resumed during a window𝑤 ,
we can proactively resume resources at the beginning of𝑤 .

Definition 2.1. (Correct ProactiveResume) A proactive resume
of a database 𝑠 within a window 𝑤 is correct if the resources of 𝑠
are used within𝑤 . Otherwise, a proactive resume is wrong.

However, if we proactively resume too far in advance, resources
will stay idle until the customer logs in and uses them. COGS are
wasted during these idle intervals. COGS are also wasted due to
wrong proactive resumes. We aim to enable proactive resume, while
keeping its operational cost low (Definition 4.6).

Figure 2: Reactive vs proactive resume

Effective vs Ineffective Pause. A pause is ineffective for short
idle periods because the availability time of resources is too frag-
mented for effective reuse (Figure 3). We aim to relieve the back-end
from frequent pause/resume workflows.

Definition 2.2. (Ineffective Pause) Given a threshold 𝑙 , a pause
is called ineffective if its duration is within 𝑙 .

However, if we do not pause for long idle intervals, resources
and COGS will be wasted. We aim to avoid up to half of pauses,
while reducing the operational costs (Definitions 5.2 and 5.4).

Figure 3: Effective vs ineffective pause

Moneyball ProblemStatement. In this work, we aim to achieve
the following three goals: (1) Maximize the number of correct proac-
tive resumes, (2) Minimize the number of short pauses, and (3) Min-
imize the operational costs of these two optimization techniques.

3 TRANSFER LEARNING FROM PROVISIONED
TO SERVERLESS COMPUTE

The resource usage patterns of provisioned Azure SQL Databases
have been rigorously studied for over a decade [26, 33, 36, 39, 40, 46].
In this section, we briefly summarize the main lessons learned that
can be helpful to solve the Moneyball problem and transfer this
learning to serverless compute, when possible.

3.1 Features
Provisioned Compute. Historical load is an indicator of the fu-
ture load per database. Some databases have stable load. Others
follow a business pattern. At least three weeks of historical data are
required to make a reliable load prediction [36, 40, 46]. Resource
usage patterns may be different for databases with different editions
(e.g., premium, standard), performance levels (i.e., number of Data-
base Transaction Units (DTU) [6]), and Azure regions [33, 36, 39].
Furthermore, resource usage patterns may change over time.

Serverless Compute. To capture result variation between dif-
ferent regions and weeks, we analyzed half a year of production
telemetry from tens of Azure regions where tens of thousands
serverless databases are currently deployed. We included all fea-
tures that can be useful for the prediction of pause/resume behavior
in our analysis. They are: timestamp in seconds, database identifier,
database state (1 means resumed, -1 means paused), duration of
time intervals during which this database was resumed or paused,
database compute capacity in maximum vCores, database creation
and deletion timestamps, and Azure region.

3.2 ML Models
Provisioned Compute. In our prior research [40, 41], we predicted
the load of provisioned databases using ARIMA [4], Prophet [21],
NimbusML [18], Neural Network [12], Exponential Smoothing [10]
and the Persistent Forecast heuristic that uses the load on a given
day as the prediction of the load on next day per database. ARIMA
and Prophet do not scale to tens of thousands of databases in large
Azure regions. While NimbusML is the most accurate model, the
gain in accuracy is not significant compared to Persistent Forecast
because provisioned databases fall into one of the following ex-
tremes: (1) Most databases are easily predictable even by Persistent
Forecast because their load is stable or follows a pattern (Defini-
tions 3.1 and 3.2). (2) Remaining databases are hard to predict even
by advanced ML models because their load tends to be random.

Serverless Compute. To verify that this conclusion holds for
serverless databases, we classified them by their typical pause/re-
sume patterns into the following groups.

Definition 3.1. (Stable Database) Given historical data𝐻 (𝑠) of a
database 𝑠 and a threshold 𝜃 , 𝑠 is called stable if 𝑠 is either resumed
or paused at least 𝜃% of the time in 𝐻 (𝑠). Otherwise, 𝑠 is unstable.

Definition 3.2. (Pattern) Let 𝑠 be an unstable database, 𝐻 (𝑠) be
the historical data of 𝑠 , 𝑑 be a weekday,𝑤 be a window, and 𝜃 be a
threshold. 𝑠 follows a pattern if at least 𝜃% of its resumes and pauses
happen within the window𝑤 on each weekday 𝑑 in 𝐻 (𝑠).

Definition 3.3. (Predictable Database) A database 𝑠 is called
predictable if 𝑠 is stable or follows a pattern. Otherwise, 𝑠 is called
unpredictable.

1281

(a) Accuracy of ML models (b) Pause duration

Figure 4: Results of ML models

We randomly sampled several thousands of serverless databases
in oneAzure region. Similarly to provisioned databases, most server-
less databases are predictable even under strict constraints. Indeed,
74% of serverless databases are stable at least 90% of the time. 3% fol-
low a pattern within 15 minutes at least 90% of the time. Remaining
23% of databases are unpredictable.

We trained ML models on three weeks of historical data and
predicted the load on the following day per database. Given that
our input data is binary (Section 3.1), we measure hinge loss of
NimbusML [18], Neural Network [12], Exponential Smoothing [10],
ML.NET Binary Classifier [16], and Persistent Forecast for each
class of databases in Figure 4(a). As expected, all models are more
accurate for predictable databases than for unpredictable databases.
Similarly to provisioned compute, NimbusML is the most accurate
among these models for both classes of databases. Thus, we include
NimbusML in our detailed analysis below.

4 PROACTIVE RESUME
In this section, we analyze resume patterns per database over time,
make recommendations when to proactively resume a database,
and evaluate the effectiveness of these recommendations.

4.1 Proactive Resume Algorithms
Example 4.1. The database in Figure 5 is unpredictable by Defini-

tion 3.3. However, a closer look reveals that this database is usually
resumed between 5:40AM and 9:20AM on Wednesdays. These re-
sumes are highlighted by red arrows. Only one expected resume is
missing on 2/17. Next, we describe how to detect such recurring
resumes and make them proactive.

Definition 4.2. (Probability of Resume) Let 𝐻 (𝑠) be the histor-
ical data of a database 𝑠 , ℎ(𝑠, 𝑑) be the number of weekdays 𝑑 in
𝐻 (𝑠), and 𝑟 (𝑠, 𝑑,𝑤) be the number of 𝑑’s on which 𝑠 was resumed
during a window𝑤 in 𝐻 (𝑠) (Table 1). The probability of resume of
𝑠 on 𝑑 during𝑤 is computed as 𝑝 (𝑠, 𝑑,𝑤) = 𝑟 (𝑠,𝑑,𝑤)

ℎ (𝑠,𝑑) [20].

Example 4.3. Given eight weeks of history in Figure 5, the proba-
bility of resume of this database 𝑠 on Wednesday between 5:40 and
9:20 is 𝑝 (𝑠,Wednesday, [5:40, 9:20]) = 7

8 = 0.875.

Definition 4.4. (Probabilistic Resume Recommendation) Gi-
ven a threshold 𝜃 , we recommend to proactively resume a database
𝑠 on a weekday 𝑑 at the beginning of a window𝑤 if 𝑝 (𝑠, 𝑑,𝑤) ≥ 𝜃 .

Figure 5: Recurring resumes

Probabilistic Resume computes resume recommendations 𝑅
on a weekday 𝑑 based on historical data of databases 𝑆 . For each
database 𝑠 ∈ 𝑆 and window𝑤 ∈𝑊 , Algorithm 1 adds a recommen-
dation [𝑠, 𝑑,𝑤] to proactively resume a database 𝑠 on a weekday
𝑑 at the beginning of a window 𝑤 to the set of results 𝑅 if the
probability of resume 𝑝 (𝑠, 𝑑,𝑤) satisfies the threshold 𝜃 .

Complexity. Let |𝑆 | be the number of databases in 𝑆 , |𝑊 | be
the number of windows in𝑊 , and |𝐻 (𝑠, 𝑑,𝑤) | be the number of
tuples in historical data per database, weekday, and window. The
time complexity of Algorithm 1 is 𝑂 (|𝑆 | × |𝑊 | × |𝐻 (𝑠, 𝑑,𝑤) |). Its
space complexity is determined by the number of databases |𝑆 |,
the number of tuples in historical data per database |𝐻 (𝑠) |, and
the number of recommendations per database in 𝑅. The number of
results per database is in tern determined by the number of windows
|𝑊 |. In summary, the space complexity is 𝑂 (|𝑆 | × (|𝐻 (𝑠) | + |𝑊 |)).

Algorithm 1 Probabilistic proactive resume

Input: Historical data of databases 𝑆 , set of windows𝑊 within
one day, probability threshold 𝜃

Output: Set of resume recommendations 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do
2: for each𝑤 ∈𝑊 do
3: if 𝑝 (𝑠, 𝑑,𝑤) ≥ 𝜃 then 𝑅 ← 𝑅 ∪ [𝑠, 𝑑,𝑤]
4: return 𝑅

Definition 4.5. (Predictive Resume Recommendation) Given
the predicted pause/resume pattern 𝑃 (𝑠, 𝑑,𝑤) for a database 𝑠 on
a weekday 𝑑 during a window 𝑤 , we recommend to proactively
resume 𝑠 on 𝑑 at the beginning of𝑤 if ∃resume ∈ 𝑃 (𝑠, 𝑑,𝑤).

Predictive Resume algorithm is analogous to Algorithm 1 ex-
cept that it consumes predicted pause/resume patterns and detects
predicted resumes per Definition 4.5. While any ML model can be
plugged into this algorithm to predict pause/resume patterns, we
chose NimbusML since it is the most accurate model in Figure 4(a).

Complexity. Predictive resume introduces the overhead of pre-
dicting the pause/resume pattern per database and day, denoted
Predict (𝑠, 𝑑). Thus, the time complexity is 𝑂 (|S | × (Predict (𝑠, 𝑑)+
|𝑊 | × |𝑃 (𝑠, 𝑑,𝑤) |)). Predictive resume also stores the predicted
pause/resume pattern per database and day, denoted 𝑃 (𝑠, 𝑑). The
space complexity is 𝑂 (|𝑆 | × (|𝐻 (𝑠) | + |𝑃 (𝑠, 𝑑) | + |𝑊 |)).

4.2 Middle Ground between QoS and COGS
While proactive resumes improve QoS, they also shorten pauses
during which resources can be reused and COGS can be saved.
Also, some proactive resumes will be wrong unavoidably. COGS
are wasted due to wrong resumes as well. Definition 4.6 quantifies
the operational cost of proactive resume.

1282

Figure 6: Lifespan

(a) Proactive resumes: Probabilistic re-
sume (P) vs predictive resume (N)

(b) Benefited databases (c) Resume cost index

Figure 7: Varying size of time window

Definition 4.6. (Resume Cost Index) Let pauses(𝑠) be the total
duration of all pauses of a database 𝑠 in hours without proactive
resume. Let vcores(𝑠) be the maximum vCores of 𝑠 and cost be COGS
per vCore per hour in dollars. The total cost savings are:

Total cost savings =
∑︁
𝑠∈𝑆

pauses(𝑠) × vcores(𝑠) × cost (1)

Let wait (𝑠) be the total wait time in hours until proactively
resumed resources of a database 𝑠 are used. The wasted cost is:

Wasted cost =
∑︁
𝑠∈𝑆

wait (𝑠) × vcores(𝑠) × cost (2)

Resume cost index corresponds to the ratio of the wasted cost to
the total cost savings.

The cost index depends on several tunable parameters such as
the size of the window and the length of historical data. We now
experimentally find the middle ground between QoS and COGS,
while enabling proactive resume.

In Figure 6, we measure the percentage of databases per their
lifetime in weeks. Half of databases existed at least 3 weeks and
thus have enough history to make a reliable prediction (Section 3).

Definition 4.7. (Long-Lived Database) A database is long-lived
if it exists at least three weeks. Otherwise, it is short-lived.

Setup. In Figures 7–10 and 12, results are shown for several
thousands of randomly sampled serverless long-lived databases in
one Azure region. Unless stated otherwise, the length of historical
(training) data is 3 weeks. The length of validation time interval
is 1 day. Default size of the window is 5 hours. The window slides
every 10 minutes. Default probability threshold is 0.9.

Size of the Window. In Figure 7, we vary the size of the win-
dow from 1 to 9 hours and measure the percentage of correct and
wrong proactive resumes among all resumes (Definition 2.1), the
percentage of database that have correct proactive resumes, and
the resume cost index (Definition 4.6)

The percentages of correct resumes increase from 22 to 56 for
probabilistic resume as the window grows in Figure 7(a). These per-
centages increase from 63 to 80 for predictive resume. Probabilistic
resume benefits 25 to 62% of databases as the window grows in
Figure 7(b). Independently from the size of the window, predictive
resume benefits 99% of databases. The percentages of correct re-
sumes and benefited databases is up to 3X higher for predictive
resume than for probabilistic resume.

Unfortunately, the cost index also grows with the window since
proactively resumed resources stay idle longer. Probabilistic resume
has up to 5X fewer wrong resumes. Therefore, its cost index is up
to 5X lower than the cost index of predictive resume in Figure 7(c).

Length of Historical Data. In Figure 8, we vary the length of
historical data from 3 to 7 weeks. Given 3 weeks of history, 36% of
resumes are proactive and correct, 43% of databases have correct
proactive resumes, 12% of resumes are proactive and wrong, and
the cost index is 4% for probabilistic resume. These percentages
decrease as the length of historical data grows.

There is are no clear trends for the results of predictive resume
across weeks. 70 to 80% of resumes are proactive and correct. 99%
of databases have correct resumes. 18 to 29% of resumes are wrong.
The cost index ranges from 7 to 12%. Similarly to Figure 7, predictive
resume has up to 3X more correct resumes and benefited databases
than probabilistic resume. Predictive resume also has up to 18X
more wrong resumes. Thus, its cost index is up to 10X higher than
the cost index of probabilistic resume.

(a) Proactive resumes: Probabilistic re-
sume (P) vs predictive resume (N)

(b) Resume cost index

Figure 8: Varying length of historical data

Summary. Most resumes are proactive and correct within a few
hours for long-lived databases. Most long-lived databases benefit
from this QoS optimization. Cost index is low for short windows.

5 AVOIDING INEFFECTIVE PAUSES
Pauses are ineffective for short idle periods. Indeed, no COGS are
saved and unnecessary pause/resume workloads are introduced. To
alleviate these workloads from the back-end, we avoid ineffective
pauses by restricting the number of pauses (called budget) and
delaying pauses (called logical pause).

1283

5.1 Budgeting Algorithms
One straightforward idea that comes to mind is to restrict the
number of pauses per database and day and prioritize long pauses.

Definition 5.1. (Budget) Budget 𝑘 is the number of allowed
pauses per database 𝑠 and window𝑤 .

A given budget can be spent in different ways as defined below.
Greedy Budget allows the first 𝑘 pauses and avoids all following

pauses per database and day. Let logout𝑖 (𝑠).time and login𝑖+1 (𝑠).time
be the time stamps of two consecutive logout and login events for
a database 𝑠 . For each database 𝑠 , Algorithm 2 stores the beginning
logout𝑖 (𝑠).time and the end login𝑖+1 (𝑠).time of each avoided pause
in the set of results 𝑅.

Complexity. Given the number of logouts |logout (𝑠, 𝑑) | for a data-
base 𝑠 on a weekday 𝑑 , the time complexity of Algorithm 2 is
𝑂 (|𝑆 | × |logout (𝑠, 𝑑) |). Since avoided pauses are stored in the set of
results 𝑅, the space complexity is 𝑂 (|𝑆 | × (|logout (𝑠, 𝑑) | − 𝑘)).

Algorithm 2 Greedy budget

Input: Login/logout events of databases 𝑆 on weekday 𝑑 , budget 𝑘
Output: Set of avoided pauses 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do 𝑛 ← 1
2: for each logout𝑖 (𝑠) do
3: if 𝑛 > 𝑘 then
4: 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, login𝑖+1 (𝑠) .time]
5: else 𝑛 ← 𝑛 + 1
6: return 𝑅

Algorithm 2 disregards the duration of avoided pauses. In the
worst case, it spends the budget on early short pauses and avoids
later long pauses which makes greedy budget expensive.

Definition 5.2. (Pause Cost Index) Let avoided (𝑠) be the dura-
tion of avoided pauses in hours for a database 𝑠 . Other notations
are summarized in Table 1. Then, the wasted cost is computed as:

Wasted cost =
∑︁
𝑠∈𝑆

avoided (𝑠) × vcores(𝑠) × cost (3)

The pause cost index is defined as the ratio of the wasted cost
(Equation 3) to the total cost savings (Equation 1).

Predictive Budget prioritizes predicted long pauses over pre-
dicted short pauses, while spending the budget. For each database
𝑠 ∈ 𝑆 , Algorithm 3 consumes the predicted pause/resume pattern
𝑃 (𝑠, 𝑑), extracts the longest 𝑘 predicted pauses, and avoids all ac-
tual pauses that do not start within a given time delta 𝛿 of a long
predicted pause.

Complexity. Predictive budget introduces the overhead of pre-
dicting the pause/resume pattern per database and day Predict (𝑠, 𝑑),
sorting the predicted pauses by duration in𝑂 (|𝑃 (𝑠, 𝑑) | log |𝑃 (𝑠, 𝑑) |)
time, and comparing the beginnings of 𝑘 longest predicted pauses
to the timestamps of actual logouts in 𝑂 (|logout (𝑠, 𝑑) | × 𝑘) time.
The time complexity is𝑂 (|𝑆 |× (Predict (𝑠, 𝑑)+ |𝑃 (𝑠, 𝑑) | log |𝑃 (𝑠, 𝑑) |+
|logout (𝑠, 𝑑) | × 𝑘)). Algorithm 3 stores the historical data, the pre-
dicted pause/resume pattern, and the avoided pauses per database.
Its time complexity is𝑂 (|𝑆 | × (|𝐻 (𝑠) | + |𝑃 (𝑠, 𝑑) | + |logout (𝑠, 𝑑) | −𝑘)).

Algorithm 3 Predictive budget

Input: Login/logout events of databases 𝑆 on weekday 𝑑 , predicted
pause/resume patterns of 𝑆 on 𝑑 , budget 𝑘 , window𝑤 = 2 × 𝛿

Output: Set of avoided pauses 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do pauses← getLongPauses(𝑃 (𝑠, 𝑑), 𝑘), 𝑛 ← 1
2: for each logout𝑖 (𝑠) do
3: if 𝑛 > 𝑘 or �𝑝 ∈ 𝑝𝑎𝑢𝑠𝑒𝑠 such that
4: logout𝑖 (𝑠) .time−𝛿 ≤ 𝑝.start ≤ logout𝑖 (𝑠) .time+𝛿 then
5: 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, login𝑖+1 (𝑠) .time]
6: else 𝑛 ← 𝑛 + 1
7: return 𝑅

Optimal Budget. To evaluate the effectiveness of the greedy
and predictive budgets, we compare them to the optimal budget
that avoids the top 𝑘 shortest pauses per database.

Value of Budget. The percentages of avoided pauses and the
cost index depend on the value of 𝑘 which we vary in Figure 9.
Greedy and optimal budget avoid 56 to 4% of pauses as budget grows
from 1 to 5 in Figure 9(a). 56 to 2% of databases have avoided pauses
for budget 1 to 5. While greedy budget disregards the duration of
avoided pauses, optimal budget avoids the shortest 𝑘 pauses per
database and day. Thus, the cost of optimal budget is one order of
magnitude lower than the cost of greedy budget in Figure 9(b).

Predictive budget delays pausing a database until long predicted
pauses to reduce the time intervals during which resources are
idle and COGS are wasted. However, if the start or duration of
the longest 𝑘 pauses per database and day are predicted wrong,
then the predictive algorithm does not spend the available budget
and avoids up to 5X more pauses than the greedy algorithm in
Figure 9(a). Nevertheless, the cost of the predictive algorithm is up
to 3X lower than the cost of the greedy algorithm for budget 2 to
4 because the predictive algorithm prioritizes long pauses while
spending the budget (Figure 9(b)). Unfortunately, predictive budget
does not guarantee lower cost compared to greedy budget. In fact,
the cost of the predictive algorithm is 55% higher than the cost of
the greedy algorithm for budget 1 in Figure 9(b).

(a) Avoided pauses (b) Pause cost index

Figure 9: Budget

Budget can be defined at different system granularities (e.g., per
database, per tenant ring, per cluster) and for different windows
(e.g., daily, weekly, monthly). However, we observed similar results
to Figure 9. We do not consider global budget because resources
are not shared across clusters in Azure.

Summary. Greedy budget disregards the duration of avoided
pauses. Thus, its cost index is one order of magnitude higher than

1284

the cost index of optimal budget. Predictive budget does not always
spend the available budget and thus does not guarantee lower cost
compared to greedy budget.

5.2 Logical Pause-Based Algorithms
Another simple idea is to wait for the customer to come back online
before taking resources away from her database.

Definition 5.3. (Logical Pause, Physical Pause) Let logout𝑖 (𝑠) .
time and login𝑖+1 (𝑠) .time be the time stamps of two consecutive
logout and login events for 𝑠 . Let 𝑡 be the time stampwhen resources
are taken away from 𝑠 such that logout𝑖 (𝑠).time < 𝑡 < login𝑖+1 (𝑠) .
time. The time interval (logout𝑖 (𝑠) .time, 𝑡) is called logical pause.
The time interval [𝑡, login𝑖+1 (𝑠) .time) is called physical pause.

Greedy Logical Pause logically pauses a database 𝑠 for the time
interval 𝑙 when the customer logs out.

Complexity. The time complexity of Algorithm 4 is the same as
for Algorithm 2. Its space complexity is 𝑂 (|𝑆 | × |logout (𝑠, 𝑑) |).

Algorithm 4 Greedy logical pause

Input: Login/logout events of databases 𝑆 on weekday 𝑑 , duration
of logical pause 𝑙

Output: Set of avoided pauses 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do
2: for each logout𝑖 (𝑠) do
3: if logout𝑖 (𝑠) .time + 𝑙 ≤ login𝑖+1 (𝑠).time then
4: 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, logout𝑖 (𝑠).time + 𝑙]
5: else 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, login𝑖+1 (𝑠).time]
6: return 𝑅

During logical pause, resources are still available in case the cus-
tomer comes back online. In this way, we reduce delays in resource
availability, while avoiding short pauses. However, resources are
idle during avoided pauses (Line 5). In addition, pauses that are
longer than 𝑙 are shortened by greedy logical pauses (Line 4). This
makes greedy pause expensive.

Definition 5.4. (Greedy Pause Cost Index) Let 𝑙 be the duration
of logical pause in hours, avoided (𝑠) be the duration of avoided
pauses in hours for a database 𝑠 , and allowed (𝑠) be the number of
pauses of 𝑠 that are longer than 𝑙 . Other notations are summarized
in Table 1. Then, the wasted cost is computed as follows:

Wasted cost =
∑︁
𝑠∈𝑆
(avoided (𝑠) + 𝑙 × allowed (𝑠)) × vcores(𝑠) × cost

The greedy pause cost index is defined as the ratio of the wasted
cost to the total cost savings (Equation 1).

Predictive Logical Pause avoids predicted short pauses without
reducing the duration of predicted long pauses. For each database
𝑠 ∈ 𝑆 , Algorithm 5 consumes the predicted pause/resume pattern
𝑃 (𝑠, 𝑑) and computes the maximal duration of predicted pauses
within the time delta 𝛿 of each logout. If this maximal duration is
shorter than logical pause 𝑙 , then this pause is avoided.

Complexity. Algorithm 5 predicts the pause/resume pattern per
database and day and computes the maximal duration of predicted

pauses that start within the time delta 𝛿 of each logout. Its time
complexity is𝑂 (|𝑆 | × (Predict (𝑠, 𝑑) + |logout (𝑠, 𝑑) | × |𝑃 (𝑠, 𝑑) |)). Al-
gorithm 5 stores the historical data, the predicted pause/resume
pattern, and the avoided pauses per database. Its space complexity
is 𝑂 (|𝑆 | × (|𝐻 (𝑠) | + |𝑃 (𝑠, 𝑑) | + |𝑙𝑜𝑔𝑜𝑢𝑡 (𝑠, 𝑑) |)).

Algorithm 5 Predictive logical pause

Input: Login/logout events of databases 𝑆 on weekday 𝑑 , predicted
pause/resume patterns of 𝑆 on 𝑑 , duration of logical pause 𝑙 ,
window𝑤 = 2 × 𝛿

Output: Set of avoided pauses 𝑅 on a weekday 𝑑
1: for each 𝑠 ∈ 𝑆 do
2: for each logout𝑖 (𝑠) do
3: 𝑤𝑖 ← [logout𝑖 (𝑠).time − 𝛿, logout𝑖 (𝑠) .time + 𝛿]
4: maxDuraiton← getMaxPauseDuration(𝑃 (𝑠, 𝑑),𝑤𝑖)
5: if maxDuration < 𝑙 then
6: 𝑅 ← 𝑅 ∪ [𝑠, logout𝑖 (𝑠) .time, login𝑖+1 (𝑠).time]
7: return 𝑅

Optimal Logical Pause. To evaluate the effectiveness of the
greedy and predictive logical pause, we compare them to the optimal
logical pause that avoids all pauses that are shorter than 𝑙 .

Duration of Logical Pause. The number of avoided pauses and
the cost index depend on the duration of logical pause 𝑙 that we
vary in Figure 10. The greedy and optimal algorithms avoid 26 to
70% of pauses in Figure 10(a) and benefit 33 to 58% of databases
as the duration of logical pause increases from 1 to 11 hours. The
cost index of the greedy algorithm is up to 6X higher than the cost
index of the optimal algorithm in Figure 10(b).

Since predicted pauses tend to be shorter than the actual pauses
(Figure 4(b)), the predictive algorithm avoids up to 19% more pauses
than the greedy algorithm in Figure 10(a). Thus, the cost index of
the predictive algorithm up to 4X higher than the cost index of the
greedy algorithm in Figure 10(b).

(a) Avoided pauses (b) Pause cost index

Figure 10: Logical pause

Summary. Greedy logical pause is a simple, flexible, and effec-
tive technique to avoid short pauses. Most databases benefit from
this optimization technique at relatively low cost.

6 PUTTING IT ALL TOGETHER
In this section, we summarize how proactive resume and logical
pause work together to proactively scale serverless databases. We
also evaluate the impact of these optimization techniques.

1285

Figure 11: Proactive auto-scale on serverless compute

Proactive Auto-Scale on Serverless Compute. Figure 11 for-
malizes the life cycle of a serverless proactively scaled database
(compare to Figure 1). Let 𝑑 be the current weekday and𝑤 be the
current window. Other notations are summarized in Table 1.

The database 𝑠 stays resumed as long as 𝑠 is active or there is
a recommendation to keep 𝑠 proactively resumed on 𝑑 during 𝑤 ,
denoted ∃[𝑠, 𝑑,𝑤] ∈ 𝑅. If there is no such recommendation, then
𝑠 is logically paused once the customer logs out (❶ in Figure 11).
𝑠 stays logically paused for at most the time interval 𝑙 . During
logical pause, if the customer logs in or there is a recommendation
to proactively resume 𝑠 on 𝑑 during𝑤 , then 𝑠 is resumed (❷). If 𝑠
stays idle during logical pause 𝑙 and no resume is expected during
on 𝑑 during𝑤 , then 𝑠 is physically paused (❸). 𝑠 stays physically
paused until 𝑠 is resumed once the customer logs in or there is a
recommendation to proactively resume 𝑠 on 𝑑 during𝑤 (❹).

Impact ofMoneyball. Figure 12 illustrates the two-dimensional
problem space where each dimension corresponds to the optimiza-
tion technique enabled by Moneyball. X-axis represents the percent-
age of correct proactive resumes, while Y-axis depicts the percent-
age of avoided pauses. Rectangles represent alternative solutions
and numbers correspond to their respective cost indexes.

In reactive approach, no resumes are proactive, no pauses are
avoided, and thus no COGS are wasted (i.e., the cost index is 0).
This case is shown as a white rectangle in Figure 12.

Ideally, all resumes are proactive and correct. In addition, up to
half of pauses are avoided and these avoided pauses are the shortest
to reduce resource idleness and wasted COGS. The cost index of
the optimal solution is up to 0.02 (Definition 5.2). The range of
these unrealistic optimal solutions is shown as a black rectangle.
The area between the reactive approach and the optimal solution,
highlighted by blue frame, is the potential room for improvement.

To avoid ineffective pauses, we introduce a wait time interval,
called logical pause, before scaling resources down. Given that
resources are idle during logical pauses, this solution wastes COGS.
The number of avoided pauses and the cost index depend on the
duration of logical pauses (Figure 10). For example, if logical pause
is 4 hours, 53% of pauses are avoided and the cost index is 0.1
(Definition 5.4). The spectrum of logical-pause-based solutions is
shown as a light gray rectangle.

Up to 80% of all resumes are proactive and correct within several
hours for long-lived databases. Due to wrong resumes and wait
time until the proactively resumed resources are used, the cost
index is 0.16 (Definition 4.6). Combining proactive resume with
logical pause makes up to 80% of resumes proactive and correct for
long-lived databases, while still avoiding up to half of pauses. This
combinedMoneyball approach is shown as a dark gray rectangle. Its
cost index is 0.26 which we consider to be reasonable cost for these

Figure 12: Moneyball problem space

optimization techniques. The striped area between the reactive
approach and Moneyball represents the impact of this work.

7 RELATEDWORK
Self-driving databases [19, 38] in general and demand-driven auto-
scale of resources [26–30, 32, 37, 43–45] in particular have become
popular research directions in the recent years. However, some
of these state-of-the-art approaches are merely reactive [26–28].
In contrast, our Moneyball approach is proactive based on typical
resource usage patterns per database (Section 4).

Some approaches avoid andmitigate under-estimation errors [44],
reconfigure databases based on predicted load [45], or benchmark
the efficiency of a cloud service [36]. These mechanisms are orthog-
onal to the Moneyball problem (Section 2).

Other approaches focus on load analysis [25, 32, 35, 42], load
prediction using machine learning and other techniques [24, 29–
31, 33, 36, 39, 40, 43, 46], or learning a relationship between avail-
able resources and performance [37]. We transferred learning from
these approaches to Azure SQL Database serverless to solve the
Moneyball problem (Sections 3–5).

While several state-of-the-art approaches focus on solving the
trade-off between QoS and COGS in the cloud [27, 29, 33, 36, 39, 43,
44, 46], none of them achieves the contradictory goals of enabling
proactive resume to guarantee high QoS and avoiding short pauses
to alleviate this workload, while controlling operational costs at the
same time. This is the key contribution of our Moneyball approach.

8 CONCLUSIONS
The Moneyball approach introduces two optimization techniques
of Microsoft Azure SQL Database serverless. (1) To reduce delays in
resource availability, we predict resume patterns per database over
time and proactively resume resources. (2) To reduce the back-end
workload, we avoid short pauses by logically pausing a database
that becomes idle before scaling its resources down. We compared
several algorithms and tuned their key parameters to keep the
operational cost of these optimization techniques low. Results of
this study are used in production in all Azure regions.

ACKNOWLEDGMENTS
The authors thank Ehi Nosakhare and Karthik Rajendran for their
hard work predicting the load of provisioned SQL databases. Their
findings guided our approach on serverless compute. We also thank
Carlo Curino, Yiwen Zhu, and VLDB reviewers for their feedback.

1286

REFERENCES
[1] 2011. Moneyball (film). Retrieved December 15, 2021 from https://en.wikipedia.

org/wiki/Moneyball_(film)
[2] 2021. Alibaba Cloud Function Compute. Retrieved December 15, 2021 from

https://www.alibabacloud.com/product/function-compute
[3] 2021. Amazon RDS for SQL Server. Retrieved December 15, 2021 from https:

//aws.amazon.com/rds/sqlserver
[4] 2021. ARIMA. Retrieved December 15, 2021 from https://pypi.org/project/

pmdarima
[5] 2021. Azure SQL Database. Retrieved December 15, 2021 from https://azure.

microsoft.com/en-us/products/azure-sql/database
[6] 2021. Azure SQL Database pricing. Retrieved December 15, 2021 from https:

//azure.microsoft.com/en-us/pricing/details/azure-sql-database
[7] 2021. Azure SQL Database serverless. Retrieved December 15, 2021 from https:

//docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
[8] 2021. CockroachDB Serverless. Retrieved December 15, 2021 from https://www.

cockroachlabs.com/lp/serverless/
[9] 2021. Databricks Serverless SQL. Retrieved December 15, 2021 from https:

//databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
[10] 2021. Exponential Smoothing. Retrieved December 15, 2021 from

https://www.statsmodels.org/stable/generated/statsmodels.tsa.holtwinters.
ExponentialSmoothing.html

[11] 2021. Fauna Serverless. Retrieved December 15, 2021 from https://fauna.com/
serverless

[12] 2021. GluonTS. Retrieved December 15, 2021 from https://gluon-ts.mxnet.io/
[13] 2021. Google Cloud SQL. Retrieved December 15, 2021 from https://cloud.google.

com/sql
[14] 2021. Google Serverless Computing. Retrieved December 15, 2021 from https:

//cloud.google.com/serverless
[15] 2021. IBM Cloud Functions. Retrieved December 15, 2021 from https://www.ibm.

com/cloud/functions
[16] 2021. ML.NET Binary Trainer. Retrieved December 15, 2021

from https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.fasttree.
fastforestbinarytrainer

[17] 2021. MongoDB Serverless. Retrieved December 15, 2021 from https://www.
mongodb.com/cloud/atlas/serverless

[18] 2021. NimbusML. Retrieved December 15, 2021 from https://docs.microsoft.com/
en-us/python/api/nimbusml/nimbusml.timeseries.ssaforecaster

[19] 2021. Oracle Autonomous Database. Retrieved December 15, 2021 from https:
//www.oracle.com/autonomous-database/

[20] 2021. Probability theory. Retrieved December 15, 2021 from https://en.wikipedia.
org/wiki/Event_(probability_theory)

[21] 2021. Prophet. Retrieved December 15, 2021 from https://facebook.github.io/
prophet

[22] 2021. Serverless on AWS. Retrieved December 15, 2021 from https://aws.amazon.
com/serverless/

[23] 2021. Snowflake Serverless. Retrieved December 15, 2021 from https://docs.
snowflake.com/en/user-guide/admin-serverless-billing.html

[24] Rodrigo Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar Buyya. 2014.
Workload Prediction Using ARIMA Model and Its Impact on Cloud Applications’
QoS. IEEE Transactions on Cloud Computing 3 (08 2014), 449–458.

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
SOSP. 153–167.

[26] Sudipto Das, Feng Li, Vivek R. Narasayya, and Arnd Christian König. 2016.
Automated Demand-driven Resource Scaling in Relational Database-as-a-Service.
In SIGMOD. 1923–1924.

[27] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-Efficient
and QoS-Aware Cluster Management. SIGPLAN Not. 49, 4 (2014), 127–144.

[28] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-
masamy. 2017. Dhalion: Self-Regulating Stream Processing in Heron. In Proc.
VLDB Endow. 1825–1836.

[29] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. PRESS: PRedictive Elastic
ReSource Scaling for cloud systems. In TNSM. 9–16.

[30] Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. 2012. Empirical Prediction
Models for Adaptive Resource Provisioning in the Cloud. Future Generation
Comp. Syst. 28 (01 2012), 155–162.

[31] Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. 2012. Workload Char-
acterization and Prediction in the Cloud: A Multiple Time Series Approach. In
IEEE Network Operations and Management Symposium. 1287–1294.

[32] Cinar Kilcioglu, Justin M. Rao, Aadharsh Kannan, and R. Preston McAfee. 2017.
Usage Patterns and the Economics of the Public Cloud. InWWW. 83–91.

[33] Willis Lang, Karthik Ramachandra, David J. DeWitt, Shize Xu, Qun Guo, Ajay
Kalhan, and Peter Carlin. 2016. Not for the Timid: On the Impact of Aggressive
over-Booking in the Cloud. Proc. VLDB Endow. 9, 13 (2016), 1245–1256.

[34] Michael Lewis. 2003. Moneyball: The Art of Winning an Unfair Game. W.W.
Norton and Company.

[35] Asit K. Mishra, Joseph L. Hellerstein, Walfredo Cirne, and Chita R. Das. 2010. To-
wards Characterizing Cloud Backend Workloads: Insights from Google Compute
Clusters. SIGMETRICS Perform. Eval. Rev. 37, 4 (March 2010), 34–41.

[36] Justin Moeller, Zi Ye, Katherine Lin, and Willis Lang. 2021. Toto - Benchmarking
the Efficiency of a Cloud Service. In SIGMOD. 2543–2556.

[37] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal,
Zhikui Wang, Sharad Singhal, and Arif Merchant. 2009. Automated Control of
Multiple Virtualized Resources. In EuroSys. 13–26.

[38] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems.
In CIDR.

[39] Jose Picado, Willis Lang, and Edward C. Thayer. 2018. Survivability of Cloud
Databases - Factors and Prediction. In SIGMOD. 811–823.

[40] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon
Knoertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina
Wang, Alan Au, Carlo Curino, Qun Guo, Alekh Jindal, Ajay Kalhan, Morgan
Oslake, Sonia Parchani, Vijay Ramani, Raj Sellappan, Saikat Sen, Sheetal Shrotri,
Soundararajan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, and Yiwen Zhu.
2020. Seagull: An Infrastructure for Load Prediction and Optimized Resource
Allocation. Proc. VLDB Endow. 14, 2 (2020), 154–162.

[41] Olga Poppe, Alan Au, Aritra De, Raj Sellappan, Saikat Sen, Deepak Shankargouda,
Meina Wang, Tayo Amuneke, Dalitso Banda, Ari Green, Manon Knoertzer, Ehi
Nosakhare, Karthik Rajendran, Vijay Ramani, Soundararajan Srinivasan, Carlo
Curino, Alekh Jindal, Yiwen Zhu, Qun Guo, Ajay Kalhan, Morgan Oslake, Shize
Xu, Sonia Parchani, Sheetal Shrotri, and Ping Xia. 2020. Seagull: An Infrastructure
for Load Prediction and Optimized Resource Allocation. Extended version.

[42] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In SOCC. 1–13.

[43] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient Autoscal-
ing in the Cloud Using Predictive Models for Workload Forecasting. In CLOUD.
500–507.

[44] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
Scale: Elastic Resource Scaling for Multi-tenant Cloud Systems. In SOCC. 1–14.

[45] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-
Store: An Elastic Database System with Predictive Provisioning. In SIGMOD.
205–219.

[46] Lalitha Viswanathan, Bikash Chandra, Willis Lang, Karthik Ramachandra, Jig-
neshM. Patel, Ajay Kalhan, David J. DeWitt, and Alan Halverson. 2017. Predictive
Provisioning: Efficiently Anticipating Usage in Azure SQL Database. In ICDE.
1111–1116.

1287

https://en.wikipedia.org/wiki/Moneyball_(film)
https://en.wikipedia.org/wiki/Moneyball_(film)
https://www.alibabacloud.com/product/function-compute
https://aws.amazon.com/rds/sqlserver
https://aws.amazon.com/rds/sqlserver
https://pypi.org/project/pmdarima
https://pypi.org/project/pmdarima
https://azure.microsoft.com/en-us/products/azure-sql/database
https://azure.microsoft.com/en-us/products/azure-sql/database
https://azure.microsoft.com/en-us/pricing/details/azure-sql-database
https://azure.microsoft.com/en-us/pricing/details/azure-sql-database
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://docs.microsoft.com/en-us/azure/azure-sql/database/serverless-tier-overview
https://www.cockroachlabs.com/lp/serverless/
https://www.cockroachlabs.com/lp/serverless/
https://databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://databricks.com/blog/2021/08/30/announcing-databricks-serverless-sql.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html
https://www.statsmodels.org/stable/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html
https://fauna.com/serverless
https://fauna.com/serverless
https://gluon-ts.mxnet.io/
https://cloud.google.com/sql
https://cloud.google.com/sql
https://cloud.google.com/serverless
https://cloud.google.com/serverless
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.fasttree.fastforestbinarytrainer
https://docs.microsoft.com/en-us/dotnet/api/microsoft.ml.trainers.fasttree.fastforestbinarytrainer
https://www.mongodb.com/cloud/atlas/serverless
https://www.mongodb.com/cloud/atlas/serverless
https://docs.microsoft.com/en-us/python/api/nimbusml/nimbusml.timeseries.ssaforecaster
https://docs.microsoft.com/en-us/python/api/nimbusml/nimbusml.timeseries.ssaforecaster
https://www.oracle.com/autonomous-database/
https://www.oracle.com/autonomous-database/
https://en.wikipedia.org/wiki/Event_(probability_theory)
https://en.wikipedia.org/wiki/Event_(probability_theory)
https://facebook.github.io/prophet
https://facebook.github.io/prophet
https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/
https://docs.snowflake.com/en/user-guide/admin-serverless-billing.html
https://docs.snowflake.com/en/user-guide/admin-serverless-billing.html

