
Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale

Yang Li†‡, Yu Shen†‡, Huaijun Jiang†‡, Wentao Zhang†, Jixiang Li‡, Ji Liu‡, Ce Zhang§, Bin Cui†∇
†Key Laboratory of High Confidence Software Technologies (MOE), School of CS, Peking University

§Department of Computer Science, ETH Zürich ‡AI Platform, Kuaishou Technology
∇Institute of Computational Social Science, Peking University (Qingdao)
†{liyang.cs, shenyu, jianghuaijun, wentao.zhang, bin.cui}@pku.edu.cn

‡lijixiang@kuaishou.com ‡jiliu@kwai.com §ce.zhang@inf.ethz.ch

ABSTRACT

The ever-growing demand and complexity of machine learning
are putting pressure on hyper-parameter tuning systems: while
the evaluation cost of models continues to increase, the scalability of
state-of-the-arts starts to become a crucial bottleneck. In this paper,
inspired by our experience when deploying hyper-parameter tun-
ing in a real-world application in production and the limitations
of existing systems, we propose Hyper-Tune, an efficient and ro-
bust distributed hyper-parameter tuning framework. Compared
with existing systems, Hyper-Tune highlights multiple system
optimizations, including (1) automatic resource allocation, (2) asyn-
chronous scheduling, and (3) multi-fidelity optimizer. We conduct
extensive evaluations on benchmark datasets and a large-scale real-
world dataset in production. Empirically, with the aid of these opti-
mizations, Hyper-Tune outperforms competitive hyper-parameter
tuning systems on a wide range of scenarios, including XGBoost,
CNN, RNN, and some architectural hyper-parameters for neural
networks. Compared with the state-of-the-art BOHB and A-BOHB,
Hyper-Tune achieves up to 11.2× and 5.1× speedups, respectively.

PVLDB Reference Format:

Yang Li, Yu Shen, Huaijun Jiang, Wentao Zhang, Jixiang Li, Ji Liu, Ce
Zhang, and Bin Cui. Hyper-Tune: Towards Efficient Hyper-parameter
Tuning at Scale. PVLDB, 15(6): 1256 - 1265, 2022.
doi:10.14778/3514061.3514071

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/PKU-DAIR/HyperTune.

1 INTRODUCTION

Recently, researchers in the database community have been work-
ing on integrating machine learning functionality into data manage-
ment systems, e.g., SystemML [18], SystemDS [8], Snorkel [54], Ze-
roER [71], TFX [5, 9], “Query 2.0” [72], Krypton [50], Cerebro [51],
ModelDB [66], MLFlow [75], HoloClean [56], NorthStar [37] and
EaseML [49]. AutoML systems [25, 52, 74], an emerging type of
data system, significantly raise the level of abstractions of building
ML applications [11, 45]. While hyper-parameters drive both the
efficiency and quality of machine learning applications, automatic

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514071

1

2

3

4

5

8

9

10

7

6

11

12

Figure 1: Synchronous mechanism in hyper-parameter tun-

ing, where each row represents a worker. The deep-blue areas

correspond to the evaluation process of configurations; the

striped areas refer to idle time.

hyper-parameter tuning attracts intensive interests from both prac-
titioners and researchers [16, 27, 38, 40, 47, 55, 76, 77], and becomes
an indispensable component in many data systems [44, 59, 67].

An efficient tuning system, which usually involves sampling
and evaluating configurations iteratively, needs to support a di-
verse range of hyper-parameters, from learning rate, regularization,
to those closely related to neural network architectures such as
operation types, # hidden units, etc. Automatic tuning methods
(e.g., Hyperband [39] and BOHB [16]) have been studied to tune
a wide range of models, including XGBoost [12], recurrent neu-
ral networks [22], convolutional neural networks [21], etc. In this
paper, we focus on building efficient and scalable tuning systems.

Current Landscape. Existing automatic hyper-parameter tun-
ing methods include: Bayesian optimization [7, 24, 62], rule-based
search, genetic algorithm [27, 52], random search [6, 15], etc. Many
of them have two flavors – complete evaluation based search and
partial evaluation based search. To obtain the performance for each
configuration, the complete evaluation based approaches [6, 7, 24]
require complete evaluations that are usually computationally ex-
pensive. Instead, partial evaluation basedmethods [16, 34, 36, 39, 42]
assign each configuration with incomplete training resources to
obtain the evaluation result, thus saving the evaluation resources.

An Emerging Challenge in Scalability. This paper is inspired by
our efforts applying these latest methods to applications running at
a large Internet company. One critical challenge arises from the gap
between the scalability of existing automatic tuningmethods

and the ever-growing complexity of industrial-scale models.

In recent years, we have witnessed that evaluating ML models are
getting increasingly expensive as the size of datasets and models
grows larger. For example, it takes days to train NASNet [78] to
convergence on ImageNet, not to mention models like GPT-3 [10]
with hundreds of billions of parameters. Unfortunately, it is diffi-
cult for existing tuning methods to scale well to such tasks with
ever-increasing evaluation costs, thus leading to a sub-optimal con-
figuration for deployment. When deploying existing approaches in

1

1256

https://doi.org/10.14778/3514061.3514071
https://github.com/PKU-DAIR/HyperTune
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3514061.3514071
https://www.acm.org/publications/policies/artifact-review-and-badging-current

large-scale applications, we realize some limitations in the following
three aspects:

(1) Design of Partial Evaluations. Since the complete eval-
uation of a configuration is usually expensive (e.g., training deep
learning models or training ML models on large-scale datasets),
recent studies propose to evaluate configurations using partial re-
sources (e.g., training models using a few epochs or a subset of
the training set) [28, 39, 53]. However, how many training resources
should be allocated to each partial evaluation? This question is non-
trivial: (1) evaluations with small training resources could decrease
evaluation cost, however, may be inaccurate to guide the search
process; whereas (2) over-allocating resources could have the risk
of high evaluation costs but diminishing returns from precision
improvements. How can we automatically decide on the right level
of resource allocation to balance the “precision vs. cost” trade-off in
partial evaluations? This question remains open in state-of-the-
arts [16, 42, 64].

(2) Utilization of Parallel Resources. Along with the rapid
increase of evaluation cost, it comes with the rise of computa-
tion resources made available by industrial-scale clusters. However,
state-of-the-arts, such as BOHB [16] and MFES-HB [42], often use
a synchronous architecture, which often cannot fully utilize all com-
putation resources due to the synchronization barrier and are often
sensitive to stragglers (See Figure 1). ASHA [40] is able to remove
these issues associated with synchronous promotions by incur-
ring a number of inaccurate promotions, while this asynchronous
promotion could hamper the sample efficiency when utilizing the
parallel and distributed resources. Thus, we need to explore an effi-
cient asynchronous mechanism which pursues both sample efficiency
and high utilization of parallel resources simultaneously.

(3) Support of Advanced Multi-fidelity Optimizers.While
there are recent advancements in the design of Bayesian optimiza-
tion methods, most, if not all, distributed tuning systems [16, 19, 40]
have not fully utilized these advanced algorithms. For example,
while there are algorithms that can more effectively exploit the
low-fidelity measurements generated by partial evaluations [42],
many existing systems [16, 17] still depend on vanilla Bayesian
optimization methods that only use the high-fidelity measurements
from the complete evaluations. Can we design a flexible system
architecture to conveniently support drop-in replacement of differ-
ent optimizers under the async/synchronous parallel settings? This
question is especially important from a system perspective.

Contributions. Inspired by our experience and observations de-
ploying these state-of-the-art methods in our scenarios, in this
paper, (C.1) we propose Hyper-Tune, an efficient distributed
automatic hyper-parameter tuning framework. Hyper-Tune has
three core components: resource allocator, evaluation scheduler, and
generic optimizer, each of which corresponds to one aforementioned
question: (1) To accommodate the first issue, we design a simple
yet novel resource allocation method that could search for a good
allocation via trial-and-error, and this method can automatically bal-
ance the trade-off between the precision and cost of evaluations. (2)
To mitigate the second issue, we propose an efficient asynchronous
mechanism – D-ASHA, a novel variant of ASHA [40]. D-ASHA pur-
sues the following two aspects simultaneously: (i) synchronization
efficiency: the overhead of synchronization in wall-clock time, and
(ii) sample efficiency: the number of runs that the algorithm needs

to converge. (3) To tackle the third issue, we provide a modular
design that allows us to plug in different hyper-parameter tuning
optimizers. This flexible design allows us to plug in MFES-HB [42],
a recently proposed multi-fidelity optimizer. In addition, we also
adopt an algorithm-agnostic sampling framework, which enables
each optimizer algorithm to adapt to the sync/asynchronous parallel
scenarios easily. (C.2) We conduct extensive empirical evaluations
on both publicly available benchmark datasets and a large-scale
real-world dataset in production. Hyper-Tune achieves strong any-
time and converged performance and outperforms state-of-the-art
methods/systems on a wide range of hyper-parameter tuning sce-
narios: (1) XGBoost with nine hyper-parameters, (2) ResNet with
six hyper-parameters, (3) LSTM with nine hyper-parameters, and
(4) neural architectures with six hyper-parameters. Compared with
the state-of-the-art BOHB [16] and A-BOHB [64], Hyper-Tune
achieves up to 11.2× and 5.1× speedups, respectively. In addition,
it improves the AUC by 0.87% in an industrial recommendation
application with a billion instances.

2 RELATEDWORK

Bayesian optimization (BO) has been successfully applied to hyper-
parameter tuning [7, 24, 26, 62, 74]. Instead of using complete eval-
uations, Hyperband [39] (HB) dynamically allocates resources to
a set of random configurations, and uses the successive halving
algorithm [28] to stop badly-performing configurations in advance.
BOHB [16] improves HB by replacing random sampling with BO.
Two methods [14, 36] propose to guide early-stopping via learning
curve extrapolation. Vizier [19], Ray Tune [46] and OpenBox [43]
also include a median stopping rule to stop the evaluations early.
In addition, multi-fidelity methods [4, 13, 23, 34, 42, 64] also exploit
the low-fidelity measurements from partial evaluations to guide
the search for the optimum of objective function 𝑓 . MFES-HB [42]
combines HB with multi-fidelity surrogate based BO.

Many methods [3, 20, 31] can evaluate several configurations in
parallel instead of sequentially. However, most of them [20], includ-
ing BOHB [16], focus on designing batches of configurations to eval-
uate at once, and few support asynchronous scheduling. ASHA [40]
introduces an asynchronous evaluation paradigm based on succes-
sive halving algorithm [28]. In addition, Many approaches [1, 32]
with asynchronous parallelization cannot exploit multiple fidelities
of the objective; A-BOHB [64] supports asynchronous multi-fidelity
hyper-parameter tuning. Searching architecture hyper-parameters
for neural networks is a popular tuning application. Recent em-
pirical studies [15, 61] show that sequential Bayesian optimization
methods [33, 48, 57, 69] achieve competitive performance among
a number of NAS methods [2, 47, 55, 60, 73, 78], which highlights
the essence of parallelizing these BO related methods.

A-BOHB [64] is the most related method compared with Hyper-
Tune, while it suffers from the first issue. BOHB [16] lacks design
to tackle the aforementioned three problems, and MFES-HB [42]
also faces these first and second issues. Instead, Hyper-Tune is
designed to accommodate the three issues simultaneously.

3 PRELIMINARY

We define the hyper-parameter tuning as a black-box optimiza-
tion problem, where the objective value 𝑓 (𝒙) (e.g., validation error)

1257

20 40 60 80

0.1

0.2

200

Training resource (epochs)

V
a
lid

a
ti
o
n
er
ro
r

Figure 2: One iteration of successive halving algorithm (SHA)

when tuning a CNN on MNIST, where 𝑛1 = 27, 𝑟1 = 1, 𝑅 = 27,
𝜂 = 3, and one unit of resource corresponds to 8 epochs. First,

27 configurations are evaluated with 1 unit of resource, i.e.,

8 epochs (𝑛1 = 27 and 𝑟1 = 1). Then the top 𝜂−1 configurations
continue their evaluations with 𝜂 times units of resources

(i.e., 𝑛2 = 27 ∗ 𝜂−1 = 9 and 𝑟2 = 𝑟1 ∗ 𝜂 = 3). Finally, only one

configuration is evaluated with the maximum resource 𝑅.

reflects the performance of an ML algorithm with given hyper-
parameter configuration 𝒙 ∈ X. The goal is to find the opti-
mal configuration that minimizes the objective function 𝒙∗ =

argmin𝒙∈X 𝑓 (𝒙), and the only mode of interaction with 𝑓 is to
evaluate the given configuration 𝒙 . In the following, we introduce
existing methods for solving this black-box optimization problem,
and these methods are the basic ingredients in Hyper-Tune.

3.1 Bayesian Optimization

The main idea of Bayesian optimization (BO) is as follows. Since
evaluating the objective function 𝑓 for configuration 𝒙 is very ex-
pensive, it approximates 𝑓 using a probabilistic surrogate model
𝑀 : 𝑝 (𝑓 |𝐷) that is much cheaper to evaluate. In the 𝑛𝑡ℎ itera-
tion, BO methods iterate the following three steps: (1) use the
surrogate model 𝑀 to select a configuration that maximizes the
acquisition function 𝒙𝑛 = argmax𝒙∈X 𝑎(𝒙;𝑀), where the acqui-
sition function is used to balance the exploration and exploita-
tion; (2) evaluate the configuration 𝒙𝑛 to get its performance 𝑦𝑛 ;
(3) add this measurement (𝒙𝑛, 𝑦𝑛) to the observed measurements
𝐷 = {(𝒙1, 𝑦1), ..., (𝒙𝑛−1, 𝑦𝑛−1)}, and refit the surrogate 𝑀 on the
augmented 𝐷 . Popular acquisition functions include EI [29], PI [62],
UCB [63], etc. Due to the ever-increasing evaluation cost, several
researches [16, 68] reveal that vanilla BO methods with complete
evaluations fail to converge to the optimal configuration quickly.

3.2 Hyperband

To address the issue in vanilla BO methods, Hyperband (HB) [39]
proposes to speed up configuration evaluations by early stopping
the badly-performing configurations. It has the following two loops:

(1) Inner loop: successive halving. HB extends the original succes-
sive halving algorithm (SHA) [28], which serves as a subroutine in
HB, and here we also refer to it as SHA. SHA is designed to identify
and terminate poor-performing hyper-parameter configurations
early, instead of evaluating each configuration with complete train-
ing resources, thus accelerating configuration evaluation. Given a
kind of training resource (e.g., the number of iterations, the size
of training subset, etc.), SHA first evaluates 𝑛1 hyper-parameter
configurations with the initial 𝑟1 units of resources each, and ranks
them by the evaluation performance. Then it promotes the top 1/𝜂
configurations to continue its training with 𝜂 times larger resources

Table 1: The values of 𝑛𝑖 and 𝑟𝑖 in the HB evaluations, where

𝑅 = 27 and 𝜂 = 3. Each column shows an inner loop (SHA

process). The pair (𝑛𝑖 , 𝑟𝑖) in each cell indicates 𝑛𝑖 configura-

tion evaluations with 𝑟𝑖 units of training resources. Taking

the first column “Bracket-1” as an example, the evaluation

process corresponds to the iteration of SHA in Figure 2.

Bracket-1 Bracket-2 Bracket-3 Bracket-4
𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖 𝑛𝑖 𝑟𝑖

1 27 1 12 3 6 9 4 27
2 9 3 4 9 2 27
3 3 9 1 27
4 1 27

(usually 𝜂 = 3), that’s, 𝑛2 = 𝑛1 ∗ 𝜂−1 and 𝑟2 = 𝑟1 ∗ 𝜂, and stops the
evaluations of the other configurations in advance. This process
repeats until the maximum training resource 𝑅 is reached. Figure 2
gives a concrete example of SHA.

(2) Outer loop: the choice of 𝑟1 and 𝑛1. Given some finite budget
𝐵 for each bracket, the values of 𝑟1 and 𝑛1 = 𝐵

𝑟1
should be carefully

chosen because a small initial training resource 𝑟1 with a large 𝑛1
may lead to the elimination of good configurations in SHA iterations
bymistake. There is no prior whether we should use a smaller initial
training resource 𝑟1 with a larger 𝑛1, or a larger 𝑟1 with a smaller 𝑛1.
HB addresses this problem by enumerating several feasible values
of 𝑟1 in the outer loop, where the inner loop corresponds to the
execution of SHA. Table 1 shows a concrete example about the
number of evaluations and their corresponding training resources
in an iteration of HB, where each column corresponds to the results
of inner loop (i.e., one iteration of SHA with different 𝑟1s). For
example, the first column “Bracket-1” of Table 1 corresponds to the
execution process of SHA in Figure 2. Note that, the HB iteration
will be called multiple times until the tuning budget exhausts.

Definitions. We refer to SHA with different initial training
resources – 𝑟1s as brackets (See Table 1), and the evaluations with
certain units of training resources as resource level.

Partial Evaluation Design Issue in HB. Since HB-style meth-
ods [16, 39, 42] own excellent features, such as flexibility, scalability,
and ease of parallelization, we build our framework based on HB.
HB consists of multiple brackets (i.e., SHA procedures), and each
of them requires an 𝑟1 as input. HB enumerates several feasible
values of 𝑟1, and executes each corresponding bracket sequentially
and repeatedly. Bracket-𝑖 is equipped with 𝑟1 = 𝜂𝑖−1 units of ini-
tial training resources, so each bracket corresponds to a kind of
partial evaluation design. When digging deeper into the HB frame-
work, we observe the “precision vs. cost” tradeoff caused by the
selection of bracket (i.e., each kind of partial evaluation design)
as follows: (1) The partial evaluation with a small 𝑟1 implies that
few training resources are allocated, and this may incur a larger
number of inaccurate promotions in SHA, i.e., poor configurations
are promoted to the next resource level, and good configurations
are terminated by mistake due to the low fidelity. (2) As 𝑟1 becomes
large, the partial evaluation design has the risk of high evaluation
cost but diminishing returns from precision improvements. While
HB tries each bracket sequentially and repeatedly, it is inevitable
that it wastes evaluation cost when applying a large number of
inappropriate brackets during optimization. To develop an efficient
tuning system, we need to revisit the HB pipeline and answer the

1258

following question: Can we automatically learn the right level of re-
source allocation (i.e., proper partial evaluation design) that balances
the “precision vs. cost” tradeoff well? In Section 4.1 we describe our
bracket selection based solution to this problem.

4 PROPOSED FRAMEWORK

In this section, we first give the overview of the proposed frame-
work, and then describe three core components that are designed
to accommodate the aforementioned three issues in Section 1.

Framework Overview. The proposed framework – Hyper-Tune
takes the tuning task and time budget as inputs, and outputs the best
configuration found in the search process. Hyper-Tune has three
components: resource allocator (Section 4.1), evaluation scheduler
(Section 4.2), and multi-fidelity optimizer (Section 4.3). It is an iter-
ative framework that will repeat until the given budget exhausts.
Figure 3 illustrates an iteration of Hyper-Tune, with four concrete
steps. The resource allocator selects the initial training resources 𝑟1
when evaluating configurations (Step 1), which directly determines
partial evaluation design. Then the multi-fidelity optimizer will
sample a configuration from the search space for each idle worker
(Step 2). The evaluation scheduler then evaluates these configura-
tions with the corresponding training resources in parallel (Step
3). Finally, based on the multi-fidelity results from parallel evalu-
ations, Hyper-Tune updates the parameters in resource allocator
and multi-fidelity optimizer (Step 4), respectively.

Basic Setting: Measurements and Base Surrogates.Due to the flex-
ibility and scalability of HyperBand (HB) [16, 39, 40, 64], we build
our framework on HB. Then we collect the results from evaluations
with different resource levels, and we refer to them as “measure-
ments”. According to the number of training resources used by the
evaluations, we can categorize the measurements into 𝐾 groups:
𝐷1, ..., 𝐷𝐾 , where 𝐾 = ⌊log𝜂 (𝑅)⌋ + 1, 𝜂 is the discard proportion
in HB, 𝑅 is the maximum training resources for evaluation, and
typically 𝐾 is less than 7. The measurement (𝒙 , 𝑦) in each group
𝐷𝑖 with 𝑖 ∈ [1 : 𝐾] is obtained by evaluating configuration 𝒙
with 𝑟𝑖 = 𝜂𝑖−1 units of training resources. Thus 𝐷𝐾 denotes the
high-fidelity measurements from the complete evaluations with the
maximum training resources 𝑟𝐾 = 𝑅, and 𝐷1:𝐾−1 denote the low-
fidelity measurements from the partial evaluations. In Hyper-Tune,
we build 𝐾 base surrogates: 𝑀1:𝐾 , where surrogate 𝑀𝑖 is trained
on the group of measurements 𝐷𝑖 . In the following sections, we
introduce the design of each component.

4.1 Resource Allocation with Bracket Selection

The resource allocator aims to design the proper partial evaluations
automatically. As stated in Section 3.2, the optimal bracket (i.e.,
the optimal initial training resources that balance the “precision vs.
cost” trade-off well) minimizes the evaluation cost while keeping
a high precision of partial evaluations. We need to automatically
deal with this trade-off. The resource allocator needs to identify the
optimal bracket in HB, where each bracket corresponds to a type
of initial resource design for partial evaluation.
Solution Overview. We adopt the “trial-and-error” paradigm to
identify the optimal bracket in an iterative manner. In each iteration,
it iterates the following three steps: (1) we first select a bracket (i.e.,
partial evaluation design involving 𝑛1 configurations with 𝑟1 initial

Resource Allocator

design initial training resource: 𝑟!

Multi-fidelity Optimizer

D!

multi-fidelity measurements

D" D# D$

sample

Evaluation Scheduler with D-ASHA

workers:

update 𝑤

update 𝜃

1

2

3 generate 4

4

Figure 3: The framework of Hyper-Tune.

training resources) based on parameters𝒘 ; (2) once the 𝑖𝑡ℎ bracket
is chosen, we execute this bracket; (3) based on the measurements
from these evaluations, we could update the parameters𝒘 . For Step 1,
in the beginning, we select brackets by round-robin with three times (as
initialization); then we sample a bracket using parameters𝒘 , where
each 𝑤𝑖 with 𝑖 ∈ [1 : 𝐾] indicates the probability of this bracket
being the optimal one. For Step 3, we propose a two-stage technique
to calculate𝒘 that balances the above trade-off. In the first stage, we
learn a parameter 𝜃𝑖 for each bracket, where 𝜃𝑖 is proportional to the
precision of evaluations with the training resources 𝑟𝑖 . In the second
stage, we multiply each 𝜃𝑖 with a coefficient 𝑐𝑖 to obtain the final𝑤𝑖 .
This coefficient is inversely proportional to the training resources
in the partial evaluation; in this way, the strategy tends to choose
the bracket with small training resources. By the multiplication
between 𝑐𝑖 and 𝜃𝑖 (𝑤𝑖 = 𝑐𝑖 · 𝜃𝑖), we could balance the “precision vs.
cost” trade-off in partial evaluations.

To measure precision, we focus on the partial orderings of mea-
surements among different resource levels. If configuration 𝒙1 per-
forms better than 𝒙2 when the training resource is 𝑟 , given the
complete training resource 𝒙1 still outperforms 𝒙2, indicating that
the partial evaluations with 𝑟 units of training resources are accu-
rate, so we can utilize this to measure the precision of evaluations.
To implement this, we utilize the predictions of base surrogate𝑀𝑖
built on 𝐷𝑖 , and compare the predictive rankings of configurations
with the rankings in 𝐷𝐾 . For base surrogates𝑀1:𝐾−1, we define the
ranking loss as the number of miss-ranked pairs as follows:

L(𝑀𝑖) =
𝑁𝐾∑︁
𝑗=1

𝑁𝐾∑︁
𝑘=1

1((𝑀𝑖 (𝒙 𝑗) < 𝑀𝑖 (𝒙𝑘) ⊗ (𝑦 𝑗 < 𝑦𝑘)), (1)

where ⊗ is the exclusive-or operator, 𝑁𝐾 = |𝐷𝐾 |, and (𝒙 𝒊, 𝑦𝑖) is
the measurement in 𝐷𝐾 . For the base surrogate𝑀𝐾 trained on 𝐷𝐾
directly, we adopt 5-fold cross-validation to calculate its L(𝑀𝐾).
Further we define each 𝜃𝑖 as the probability that base surrogate𝑀𝑖
has the least ranking loss. Concretely, we use Markov chain Monte
Carlo (MCMC) to learn 𝜽 by drawing 𝑆 samples: 𝑙𝑖,𝑠 ∼ L(𝑀𝑖) for
𝑠 = 1, ..., 𝑆 and each surrogate 𝑖 = 1, ..., 𝐾 , and calculating

𝜃𝑖 =
1
𝑆

𝑆∑︁
𝑠=1

1

(
𝑖 = argmin

𝑖′
𝑙𝑖′,𝑠

)
. (2)

To obtain 𝒄 , in Hyper-Tune we simply apply the inverse of the cor-
responding training resources, i.e., 𝑐𝑖 = 1/𝑟𝑖 . Finally, we normalize
the raw𝒘 = 𝒄 ◦ 𝜽 to obtain the final𝒘 , where

∑
𝑖 𝑤𝑖 = 1.

1259

SHA

ASHA

D-ASHA

1

2

3

4

5

6

8

7

9

9’’

9’

7’

6’

1

2

3

4

5

6

7

4’

5’

6’

7’

8

9

6’’

7’’

9’

1

2

3

4

5

6

7

4’

6’

9

8

9’

9’’

…

…

…

…

…

…

…

…

…

…

…

…9’’

Figure 4: Three scheduling mechanisms on a real-world case,

where each row corresponds to a worker, and the ranking of

configurations are 𝒙3, 𝒙8, 𝒙2, 𝒙1, 𝒙4, 𝒙5, 𝒙6, 𝒙7, 𝒙9 (latter is the
better). 𝑖’ refers to promoted evaluation of configuration 𝒙𝑖 .
Each deep-blue block with 𝑖 corresponds to the evaluation

process of 𝒙𝑖 ; the light-blue blocks represent the evaluations
for other iterations of SHA procedures; the striped areas in

SHA refer to no evaluations for workers.

4.2 Asynchronous Evaluation Scheduling

In this section, we introduce the distributed scheduling mechanism
in the evaluation scheduler. SHA [28] promotes the top 1/𝜂 config-
urations to the next resource level until all configurations in the
current level have been evaluated (synchronization barrier). Due to
the synchronous design, which often leads to the straggler issue,
the ineffective use of computing resources in SHA is inevitable.
ASHA [40] is able to remove these issues associated with synchro-
nous promotions by incurring a number of inaccurate promotions
(See Figure 4), i.e., configurations that fall into the top 1/𝜂 early
but are not in the actual top 1/𝜂 of all configurations. However,
this frequent and inaccurate promotion could hamper the sample
efficiency when utilizing the parallel and distributed resources, i.e.,
ASHA may spend lots of training resources on evaluating the less
promising configurations. Therefore, we need an efficient schedul-
ing method which pursues high sample efficiency while keeping the
advantage of asynchronous mechanism.

Delayed ASHA. To alleviate this issue, we propose a variant
of ASHA — delayed ASHA (abbr. D-ASHA), which uses a delay
strategy to decrease inaccurate promotions and still preserves the
asynchronous scheduling mechanism. Instead of promoting each
configuration that is in the top 1/𝜂 of all previously-evaluated con-
figurations, D-ASHA promotes configurations to the next level if
(1) the configuration is in the top 1/𝜂 of configurations, and (2) the
number of collected measurements |𝐷𝑘 | with current resource level
should be 𝜂 times larger than the number of the next level’s |𝐷𝑘+1 |
if promoted (Lines 9-10 in Algorithm 1). The inaccurate promotions
(in Cond.1) arise from a small number of observed measurements in
𝐷𝑘 with current resource level. The condition 2 ensures that |𝐷𝑘 |
should be larger than a threshold 𝜂 |𝐷𝑘+1 |, i.e., |𝐷𝑘 |/(|𝐷𝑘+1 |+1) ≥ 𝜂.
In this way, the delay strategy could prevent the frequent promo-
tion issue in ASHA, and further improve the sample efficiency.
Figure 4 gives a concrete real-world example to explain this design.
Algorithm 1 provides the formulated description about D-ASHA.
Additionally, if no promotions are possible, D-ASHA requests a
new configuration from the multi-fidelity optimizer (provided in

Algorithm 1: Pseudo Code for D-ASHA.
Input: initial training resource 𝑟1, maximum resource 𝑅, discard

proportion 𝜂.
1 Function D-ASHA() :
2 𝒙, 𝑟𝑥 = get_job() ;
3 Assign a job with configuration 𝒙 and resource 𝑟𝑥 to a free

worker.
4 Function get_job() :
5 // Check if we need to promote configurations.
6 for 𝑘 = ⌊𝑙𝑜𝑔𝜂 (𝑅) ⌋, ..., 2, 1, do
7 // 𝐷𝑘 refers to measurements of resource level 𝑘 .
8 Configuration candidates C = {𝒙 for 𝒙 ∈ top 1/𝜂

configurations in 𝐷𝑘 if 𝒙 has not been promoted}
9 if |𝐷𝑘 |/(|𝐷𝑘+1 | + 1) ≥ 𝜂 and |C | > 0, then

10 return C [0], 𝜂𝑘
11 end if

12 end for

13 Sample a configuration 𝒙 based on the multi-fidelity optimizer.
14 return 𝒙, 𝑟1

Algorithm 2) and adds it to the base level (Lines 13-14), so that more
configurations can be promoted to the upper levels.

4.3 Multi-fidelity Configuration Sampling

There are various advancements in the design of Bayesian optimiza-
tion (BO) methods. While those algorithms differ in the execution
process, a flexible tuning system should contain an optimizer module
that allows us to plug in different hyper-parameter tuning optimizers
easily. In addition, since most BO based methods are intrinsically
sequential, it is impractical to modify each possible algorithm to
support parallel scenarios case by case. Thus, we need an algorithm-
agnostic framework to extend different sequential optimizers to
support parallel evaluations in both sync/asynchronous settings.
Optimizer Design. To tackle the first challenge, we provide a
generic optimizer abstraction for configuration sampling in Hyper-
Tune. It includes 1) the data structure to store multi-fidelity mea-
surements: 𝐷1, ..., 𝐷𝐾 , and 2) the fit and predict APIs for surro-
gate model. This abstraction enables convenient support/implemen-
tation of different configuration sampling algorithms (e.g., random
search, Bayesian optimization, multi-fidelity optimization, etc.). For
the second challenge, we further propose an algorithm-agnostic
sampling framework to support asynchronous and synchronous
parallel evaluations conveniently without any ad-hoc modifications.
(Multi-fidelity Optimizer.) Multi-fidelity methods [23, 30, 35, 41, 53,
58, 70] have achieved success in hyper-parameter tuning. Mean-
while, it produces multi-fidelity measurements which can help
determine the optimal bracket for evaluation. In Hyper-Tune, we
implement a multi-fidelity optimizer by default based on MFES-
HB [41] to utilize multi-fidelity measurements, and build a multi-
fidelity ensemble surrogate by combining all base surrogates:

𝑀MF = agg({𝑀1, ..., 𝑀𝐾 };𝜽);

The surrogate𝑀MF is used to guide the configuration search, instead
of the high-fidelity surrogate 𝑀𝐾 only, in the framework of BO.
Concretely, we combine the base surrogates with weighted bagging,
and the weights 𝜽 are exactly the parameters obtained in Section 4.1.
Each 𝜃𝑖 also reflects the reliability when applying the corresponding

1260

Algorithm 2: Sampling procedure.
Input: the hyper-parameter space X, measurements 𝐷1 , 𝐷2 , ..., 𝐷𝐾 , pending

configurations𝐶pending being evaluated on workers, the multi-fidelity surrogate
𝑀𝑀𝐹 , and acquisition function 𝛼 (·) .

1 calculate 𝑦̂, the median of {𝑦𝑖 }𝑛𝑖=1 in 𝐷𝐾 ;
2 impute new measurements 𝐷new = {(𝒙pending, 𝑦̂) : 𝒙pending ∈ 𝐶pending };
3 refit the surrogate𝑀𝐾 in𝑀𝑀𝐹 on 𝐷aug , where 𝐷aug = 𝐷𝐾 ∪𝐷new , and build the

acquisition function 𝛼 (𝒙, 𝑀) using𝑀𝑀𝐹 ;
4 return the configuration 𝒙∗ = argmax𝒙∈X 𝛼 (𝒙, 𝑀𝑀𝐹) .

low-fidelity information from partial evaluations with 𝑟𝑖 units of
training resources to the target problem. Finally, the predictive
mean and variance of𝑀𝑀𝐹 at configuration 𝒙 are given by:

𝜇𝑀𝐹 (𝒙) =
∑︁
𝑖

𝜃𝑖 𝜇𝑖 (𝒙), 𝜎2
𝑀𝐹

(𝒙) =
∑︁
𝑖

𝜃2𝑖 𝜎
2
𝑖 (𝒙), (3)

where 𝜇𝑖 (𝒙) and 𝜎2𝑖 (𝒙) are the mean and variance predicted by the
base surrogate 𝑀𝑖 at configuration 𝒙 . Based on the multi-fidelity
measurements, this multi-fidelity surrogate could learn the objec-
tive function well, and can be used to speed up the search process.
Algorithm-agnostic Sampling. As mentioned previously, we
need an algorithm-agnostic framework to extend the sequential
method to the sync/asynchronous parallel settings seamlessly. To
this end, we adopt an algorithm-agnostic sampling framework,
which leverages the local penalization-based strategy [20, 43],
where each pending evaluation is imputed with the median of
performance in 𝐷𝐾 . This framework enables that each algorithm
could adapt to the parallel scenarios easily. Algorithm 2 gives the
algorithm-agnostic sampling procedure of optimizers.

5 EXPERIMENTS AND RESULTS

We now present empirical evaluations of Hyper-Tune. We first
focus on the end-to-end efficiency between Hyper-Tune and other
state-of-the-art systems. We then study two more specific aspects:
scalability and robustness.

5.1 Experimental Settings

Compared Methods. We compare Hyper-Tune with the man-
ual setting given by our enterprise partner and the following ten
baselines. (1) A-Random: Asynchronous Random Search [6] that
selects random configurations to evaluate asynchronously, (2) BO:
Batch-BO [20] that samples a batch of configurations to evaluate
synchronously, (3) A-BO: Async Batch-BO [43] that samples a batch
of configurations to evaluate asynchronously, (4) SHA: Successive
Halving Algorithm [28] that adaptively allocates training resources
to configurations with multi-stage early-stopping, (5) ASHA [40]
that improves SHA asynchronously via configuration promotion, (6)
Hyperband [39] that applies a bandit strategy to allocate resources
dynamically based on SHA, (7) A-Hyperband [40] that extends
Hyperband to asynchronous settings via ASHA, (8) BOHB [16]
that combines the benefits of both Hyperband and Bayesian op-
timization, (9) A-BOHB [64] that improves BOHB with asynchro-
nous multi-fidelity optimizations, (10) MFES-HB [42] that combines
Hyperband and multi-fidelity Bayesian optimization. Note that
Batch-BO, SHA, Hyperband, BOHB, and MFES-HB are synchro-
nous methods, and the others are asynchronous ones.
Tasks. We run experiments on the following tuning tasks:
(1) Neural Architecture Search. We use the NAS-Bench-201 [15]
which includes offline evaluations of neural network architectures.

The search space consists of 6 hyper-parameters. The minimum and
maximum number of epochs in NAS-Bench-201 are 1 and 200. HB-
based methods use 4 brackets, and the default number of workers
is 8. We evaluate Hyper-Tune on three built-in datasets – CIFAR-
10-Valid, CIFAR-100, and ImageNet16-120, where the total budgets
are 24, 48, and 120 hours, respectively. We finish each method once
the simulated training time reaches the given budget.
(2) Tabular Classification. We tune XGBoost [12] on four large
datasets from OpenML [65] – Pokerhand, Covertype, Hepmass, and
Higgs. The hyper-parameter space of XGBoost includes 9 hyperpa-
rameters. For partial evaluations, we use the subset of the training
set instead of using the entire set. The minimum and maximum
size of subset are 1/27 and 1. HB-based methods use 4 brackets, and
the default number of workers is 8. The time budgets for the above
four datasets are 2, 3, 6, and 6 hours, respectively. Each worker is
equipped with 8 CPU cores during evaluation.
(3) Image Classification.We tune ResNet [21] on the image classifica-
tion dataset – CIFAR-10. The search space includes batch size, SGD
learning rate, SGD momentum, learning rate decay, and weight de-
cay. Cropping and horizontal flips are used as default augmentation
operations. The minimum and maximum number of epochs are 1
and 200. HB-based methods use 4 brackets, and the default number
of workers is 4. The time budget is 48 hours. Each worker has 8
CPU cores and 1 GPU during evaluation.
(4) Language Modelling.We tune a 3-layer LSTM [22] on the dataset
Penn Treebank. The search space includes batch size, hidden size,
learning rate, weight decay and five hyper-parameters related to
dropout. The embedding size is 400. The minimum and maximum
number of epochs are 1 and 200. HB-based methods use 4 brackets,
and the time budget is 48 hours; the default number of workers is
4, and each worker uses 8 CPU cores and 1 GPU during evaluation.
Implementation Details. Two metrics are used in our experi-
ments, including (1) the classification error for XGBoost tuning,
ResNet tuning, and neural architecture search, and (2) the perplex-
ity when tuning LSTM. We use the validation and test performance
stored in NAS-Bench-201 directly for neural architecture search. In
the XGBoost tuning experiment, we randomly divide 60% of the
total dataset as the training set, 20% as the validation set, and the
left as the test set. In the other experiments, we split 20% of the
training dataset as the validation set. Then, we track the wall clock
time (including optimization overhead and evaluation cost), and
store the lowest validation performance after each evaluation. The
best configurations are then applied to the test dataset to report the
test performance. All methods are repeated ten times with different
random seeds, and the mean validation performance across runs
is plotted. We include more experimental setups and reproduction
details about Hyper-Tune in the supplementary material.

5.2 Architecture Search on NAS-Bench-201

Figure 5 shows the results on NAS-Bench-201 datasets. Due to
the utilization of parallel resources issue in Hyperband, asynchro-
nous random search (A-Random) outperforms synchronous Hyper-
band. Hyper-Tune obtains the best anytime and converged per-
formance among all methods. Concretely, it achieves 8.2×, 11.2×
and 6.3× speedups against BOHB, and obtains 3.3×, 2.9×, and 2.0×
speedups compared with A-BOHB on CIFAR-10-valid, CIFAR-100,

1261

10800 21600 32400 43200 54000 64800 75600 86400

Wall Clock Time (s)

8.4

8.6

8.8

9.0

9.2
A

ve
ra

g
e

V
a

lid
E

rr
o

r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-REA

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(a) CIFAR-10-valid

21600 43200 64800 86400 108000 129600 151200 172800

Wall Clock Time (s)

26.5

27.0

27.5

28.0

28.5

29.0

A
ve

ra
g

e
V

a
lid

E
rr

o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-REA

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(b) CIFAR-100

54000 108000 162000 216000 270000 324000 378000 432000

Wall Clock Time (s)

53.0

53.5

54.0

54.5

55.0

A
ve

ra
g

e
V

a
lid

E
rr

o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-REA

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(c) ImageNet16-120

Figure 5: Validation error (%) of tuning architectures on three datasets based on NAS-Bench-201.

900 1800 2700 3600 4500 5400 6300 7200

Wall Clock Time (s)

0

1

2

3

4

A
ve

ra
g

e
V

a
lid

E
rr

o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(a) Pokerhand

1350 2700 4050 5400 6750 8100 9450 10800

Wall Clock Time (s)

6

7

8

9

10

11

12

A
ve

ra
g

e
V

a
lid

E
rr

o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(b) Covertype

2700 5400 8100 10800 13500 16200 18900 21600

Wall Clock Time (s)

12.45

12.50

12.55

12.60

12.65

12.70

12.75

A
ve

ra
g

e
V

a
lid

E
rr

o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(c) Hepmass

2700 5400 8100 10800 13500 16200 18900 21600

Wall Clock Time (s)

24.6

24.8

25.0

A
ve

ra
g

e
V

a
lid

E
rr

o
r BO

SHA

Hyperband

BOHB

MFES-HB

A-Random

A-BO

ASHA

A-Hyperband

A-BOHB

OURS

(d) Higgs

Figure 6: Validation error (%) of tuning XGBoost on four large datasets.

21600 43200 64800 86400 108000 129600 151200 172800

Wall Clock Time (s)

66

68

70

72

74

76

A
ve

ra
g

e
V

a
lid

P
er

p
le

xi
ty

SHA

Hyperband

BOHB

MFES-HB

ASHA

A-Hyperband

A-BOHB

OURS

(a) LSTM on Penn Treebank

21600 43200 64800 86400 108000 129600 151200 172800

Wall Clock Time (s)

6.6

6.8

7.0

7.2

7.4

A
ve

ra
g

e
V

a
lid

E
rr

o
r SHA

Hyperband

BOHB

MFES-HB

ASHA

A-Hyperband

A-BOHB

OURS

(b) ResNet on CIFAR-10

Figure 7: Results of tuning LSTM and ResNet.

and ImageNet16-120 respectively, which indicates its superior effi-
ciency over the state-of-the-art methods. In addition, Hyper-Tune
also gets the best test accuracy (See the results in Appendix A.5).

As reported in NAS-Bench-201 [15], the best method is regular-
ized evolutionary algorithm (REA) [55]. For fair comparison, we
also extend REA to an asynchronous version – A-REA. From Fig-
ure 5, we have that Hyper-Tune shows consistent superiority over
A-REA. Remarkably, Hyper-Tune reaches the global optimum on
CIFAR-100 and ImageNet-16-120 across all the ten runs, which also
indicates the efficiency of Hyper-Tune.

5.3 Tuning XGBoost on Large Datasets

In Figure 6, we compare Hyper-Tune with the manual setting and
ten competitive baselines by tuning XGBoost on four large datasets.
The configurations from tuning algorithms outperform the man-
ual settings on test results, which shows the necessity of tuning
hyper-parameters for machine learning models. Different from the
other experiments, the resource type here is the subset of dataset,
i.e., we use different sizes of datasets subset to perform partial eval-
uation if necessary. As BO and A-BO evaluate each configuration
completely, it takes them a long time to converge to a satisfactory
performance due to expensive evaluation cost (15 minutes per trial

on Covertype). In addition, Hyper-Tune and MFES-HB perform
better than HyperBand, BOHB and most asynchronous methods,
which indicates the advantage of leveraging low-fidelity measure-
ments. Among the considered methods, Hyper-Tune achieves very
competitive anytime performance, and obtains the best converged
performance on all of the four datasets.

5.4 Tuning LSTM and ResNet

Figure 7(a) show the results of tuning LSTM on Penn Treebank.
A-BOHB shows the worst converged performance among baselines,
which we attribute to its failure of exploiting multi-fidelity measure-
ments. A-Hyperband, MFES-HB, and Hyper-Tune show similar
results in the early stage (19 hours), but after that, the perplexity of
A-Hyperband stops decreasing as random sampling fails to exploit
history observations efficiently. After 150k secs (about 41 hours),
Hyper-Tune outperforms all baselines.

In Figure 7(b), we display the average error of tuning ResNet
on CIFAR-10. As SHA and ASHA always start evaluating each
configuration from the least resources, they cannot distinguish
noisy low-fidelity results, which may explain their overall worst
performance. Though Hyper-Tune and MFES-HB obtain a similar
result (93.4%), Hyper-Tune shows a better anytime performance
due to its asynchronous scheduling.

5.5 Scalability Analysis

Figure 9 demonstrates the optimization curve with different number
of parallel workers on two tuning tasks. We evaluate Hyper-Tune
by tuning the counting-ones function [16] and XGBoost on Cover-
type. The details about the counting-ones function are provided in
Appendix A.4. To demonstrate the scalablility of Hyper-Tune, we
set the maximum number of workers to 256 and 64. On both tasks,
the anytime performance is better when Hyper-Tune uses more

1262

10800 21600 32400 43200 54000 64800 75600 86400

Wall Clock Time (s)

8.4

8.6

8.8

9.0

9.2

A
ve

ra
g

e
V

a
lid

E
rr

o
r A-HB

A-HB + BS

A-BOHB∗

A-BOHB∗ + BS

OURS

OURS + BS

(a) NAS-Bench-201 on CIFAR-10-valid

54000 108000 162000 216000 270000 324000 378000 432000

Wall Clock Time (s)

53.0

53.5

54.0

54.5

55.0

A
ve

ra
g

e
V

a
lid

E
rr

o
r A-HB

A-HB + BS

A-BOHB∗

A-BOHB∗ + BS

OURS

OURS + BS

(b) NAS-Bench-201 on ImageNet16-120

1350 2700 4050 5400 6750 8100 9450 10800

Wall Clock Time (s)

6

7

8

9

10

11

12

A
ve

ra
g

e
V

a
lid

E
rr

o
r ASHA

D-ASHA

HB + ASHA

HB + D-ASHA

BOHB* + ASHA

BOHB* + D-ASHA

OURS + ASHA

OURS + D-ASHA

(c) XGBoost on Covertype

900 1800 2700 3600 4500 5400 6300 7200

Wall Clock Time (s)

0

1

2

3

4

A
ve

ra
g

e
V

a
lid

E
rr

o
r ASHA

D-ASHA

HB + ASHA

HB + D-ASHA

BOHB* + ASHA

BOHB* + D-ASHA

OURS + ASHA

OURS + D-ASHA

(d) XGBoost on Pokerhand

Figure 8: Ablation studies for different components in Hyper-Tune.

102 103 104 105

Wall Clock Time (s)

0

5

10

15

20

25

30

A
ve

ra
g

e
O

b
je

ct
iv

e
V

a
lu

e

n=1

n=2

n=4

n=8

n=16

n=32

n=64

n=128

n=256

(a) Counting-ones Benchmark

1350 2700 4050 5400 6750 8100 9450 10800

Wall Clock Time (s)

6

7

8

9

10

11

12

A
ve

ra
g

e
V

a
lid

E
rr

o
r n=1

n=2

n=4

n=8

n=16

n=32

n=64

(b) XGBoost on Covertype

Figure 9: Scalability on the number of workers.

workers, which indicates that Hyper-Tune scales to the number of
workers well. Notably, Hyper-Tune with the maximum number of
workers achieves 145.7x and 18.0x speedups compared with sequen-
tial Hyper-Tune on Counting-ones Benchmark and Covertype.

5.6 Industrial-Scale Tuning Application

In addition, we also evaluate Hyper-Tune on an industrial-scale
tuning task for recommendation, which aims at identifying active
users. The dataset provided by our enterprise partner includes more
than one billion instances, and we train the model using the data of
seven days and evaluate it using the data of the following day. The
number of workers is 10 and the time budget is 48 hours. We evalu-
ate ASHA, BOHB, A-BOHB and Hyper-Tune, and they improve
the manual setting by -0.05%, 0.19%, 0.35% and 0.87%, respectively.
Moreover, we conduct an ablation study onHyper-Tune by keeping
out one of the component in Table 2. We observe performance gain
by introducing each component into Hyper-Tune while Bracket
Selection leads to the largest gain. While at least one component is
absent in competitive baselines, Hyper-Tune improves the AUC of
the second-best baseline A-BOHB by 0.54%, which is a wide margin
considering the potential commercial values.

5.7 Ablation Study

Bracket Selection. Figures 8(a) and 8(b) illustrate the effectiveness
of the proposed bracket selection method. We also add bracket
selection (BS) to the asynchronous variant of Hyperband and
BOHB. Note that the asynchronous BOHB here is parallelized via
ASHA, but not A-BOHB mentioned in the experimental setups. We
have that adding bracket selection helps asynchronous Hyperband,
BOHB, andHyper-Tune converge better. In addition, in Figure 8(b),
though the converged performance of Hyper-Tune remains almost
the same when bracket selection is employed, the anytime perfor-
mance improves before 324k secs (90 hours). We owe this gain to
the resource allocation strategy learned during optimization rather
than attempting all the choices via round robin.

Table 2: Ablation study on Hyper-Tune. The improvement

indicates the performance gain upon manual settings.

Methods Improvement (%) Δ (%)

w/o BS 0.54 -0.33
w/o D-ASHA 0.75 -0.12
w/o MFES 0.56 -0.31

Hyper-Tune 0.87 -

D-ASHA. Figures 8(c) and 8(d) show the results of applying D-
ASHA. For ASHA, Hyperband and BOHB, we observe a slight im-
provement on both anytime and converged performance when
applying D-ASHA. For Hyper-Tune, the validation error decreases
by a large margin (0.5%) on Covertype with the aid of D-ASHA.
The delay strategy could prevent the frequent promotion issue in
ASHA, and further improve the sample efficiency. Therefore, D-
ASHA could achieve a higher sample efficiency while keeping the
advantage of asynchronous mechanism.
Multi-fidelity Optimizer. We compare different optimizer for con-
figuration sampling, including random sampling (A-Hyperband
+ BS), high-fidelity optimizer (A-BOHB + BS), and multi-fidelity
optimizer (OURS + BS). As shown in Figure 8(a) and 8(b), we have
that surrogate-based methods outperform random sampling, while
multi-fidelity optimizer outperforms high-fidelity optimizer. The
reason is that it takes the low-fidelity measurements into consid-
eration when selecting the next configuration to evaluate. It also
indicates that when performing hyper-parameter tuning, the low-
fidelity measurements could provide useful information about the
objective function, and can be used to speed up the search process.

6 CONCLUSION

In this paper, we presented Hyper-Tune, an efficient and robust
distributed hyper-parameter tuning framework at scale. Hyper-
Tune introduces three core components targeting at addressing the
challenge in the large-scale hyper-parameter tuning tasks, including
(1) automatic resource allocation, (2) asynchronous scheduling,
and (3) multi-fidelity optimizer. The empirical results demonstrate
that Hyper-Tune shows strong robustness and scalability, and
outperforms state-of-the-art methods, e.g., BOHB and A-BOHB, on
a wide range of tuning tasks.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Founda-
tion of China (No.61832001), Beijing Academy of Artificial Intelli-
gence (BAAI), Kuaishou-PKU joint program, and PKU-Baidu Fund
2019BD006. Bin Cui is the corresponding author.

1263

REFERENCES

[1] Ahsan Alvi, Binxin Ru, Jan-Peter Calliess, Stephen Roberts, and Michael A
Osborne. 2019. Asynchronous Batch Bayesian Optimisation with Improved
Local Penalisation. In International Conference on Machine Learning. PMLR, 253–
262.

[2] Noor Awad, Neeratyoy Mallik, and Frank Hutter. 2020. Differential Evolution
for Neural Architecture Search. arXiv preprint arXiv:2012.06400 (2020).

[3] Javad Azimi, Alan Fern, and Xiaoli Z Fern. 2010. Batch bayesian optimization
via simulation matching. In Advances in Neural Information Processing Systems.
109–117.

[4] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2017. Practi-
cal neural network performance prediction for early stopping. arXiv preprint
arXiv:1705.10823 2, 3 (2017), 6.

[5] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria
Haque, Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, et al. 2017. Tfx: A
tensorflow-based production-scale machine learning platform. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1387–1395.

[6] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[7] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Al-
gorithms for hyper-parameter optimization. In Advances in neural information
processing systems. 2546–2554.

[8] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter,
Robert Erich Ginthoer, Kevin Innerebner, Florijan Klezin, Stefanie Lindstaedt,
Arnab Phani, Benjamin Rath, et al. 2020. SystemDS: A Declarative Machine
Learning System for the End-to-End Data Science Lifecycle. In Conference on
Innovative Data Systems Research.

[9] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin
Zinkevich. 2019. Data Validation for Machine Learning. In 3rd Conference on
Machine Learning and Systems (MLSys).

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[11] Wenming CAO, Canta ZHENG, Zhiyue YAN, and Weixin XIE. 2022. Geometric
deep learning: progress, applications and challenges. Information Sciences 65,
126101 (2022), 1–126101.

[12] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 785–794.

[13] Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, and Patrick Jaillet. 2019.
Bayesian Optimization Meets Bayesian Optimal Stopping. (2019), 1496–1506.

[14] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding Up
Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapo-
lation of Learning Curves.. In IJCAI, Vol. 15. 3460–8.

[15] Xuanyi Dong and Yi Yang. 2019. NAS-Bench-201: Extending the Scope of Re-
producible Neural Architecture Search. In International Conference on Learning
Representations.

[16] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient
hyperparameter optimization at scale. In International Conference on Machine
Learning. PMLR, 1437–1446.

[17] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. 2015. Efficient and robust automated machine
learning. In Advances in neural information processing systems. 2962–2970.

[18] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-
wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar
Vaithyanathan. 2011. SystemML: Declarative machine learning on MapReduce.
In 2011 IEEE 27th International Conference on Data Engineering. IEEE, 231–242.

[19] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. 2017. Google vizier: A service for black-box optimization.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1487–1495.

[20] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. 2016. Batch
bayesian optimization via local penalization. InArtificial Intelligence and Statistics.
648–657.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[22] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[23] Yi-Qi Hu, Yang Yu, Wei-Wei Tu, Qiang Yang, Yuqiang Chen, and Wenyuan
Dai. 2019. Multi-fidelity automatic hyper-parameter tuning via transfer series
expansion. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
3846–3853.

[24] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequential model-
based optimization for general algorithm configuration. In International Confer-
ence on Learning and Intelligent Optimization. Springer, 507–523.

[25] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2018. Automated
Machine Learning: Methods, Systems, Challenges. Springer. In press, available at
http://automl.org/book.

[26] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated machine
learning: methods, systems, challenges. Springer Nature.

[27] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki,
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Si-
monyan, et al. 2017. Population based training of neural networks. arXiv preprint
arXiv:1711.09846 (2017).

[28] Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic best arm identifi-
cation and hyperparameter optimization. In Artificial Intelligence and Statistics.
240–248.

[29] Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global
optimization of expensive black-box functions. Journal of Global optimization
13, 4 (1998), 455–492.

[30] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabas Poczos.
2017. Multi-fidelity bayesian optimisation with continuous approximations.
arXiv preprint arXiv:1703.06240 (2017).

[31] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás
Póczos. 2017. Asynchronous Parallel Bayesian Optimisation via Thompson
Sampling. stat 1050 (2017), 25.

[32] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás
Póczos. 2018. Parallelised Bayesian Optimisation via Thompson Sampling. In
International Conference on Artificial Intelligence and Statistics. 133–142.

[33] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos,
and Eric P Xing. 2018. Neural Architecture Search with Bayesian Optimisation
and Optimal Transport. Advances in Neural Information Processing Systems 31
(2018).

[34] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
2017. Fast bayesian optimization of machine learning hyperparameters on large
datasets. In Artificial Intelligence and Statistics. PMLR, 528–536.

[35] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
2017. Fast Bayesian Optimization of Machine Learning Hyperparameters on
Large Datasets. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics. 528–536.

[36] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2017.
Learning curve prediction with Bayesian neural networks. Proceedings of the
International Conference on Learning Representations (2017).

[37] Tim Kraska. 2018. Northstar: An Interactive Data Science System. Proceedings of
the VLDB Endowment 11, 12 (2018).

[38] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. 2019. Qtune: A query-aware
database tuning system with deep reinforcement learning. Proceedings of the
VLDB Endowment 12, 12 (2019), 2118–2130.

[39] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. 2018. Hyperband: A novel bandit-based approach to hyperparameter
optimization. Proceedings of the International Conference on Learning Representa-
tions (2018), 1–48.

[40] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan
Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2020. A System
for Massively Parallel Hyperparameter Tuning. Proceedings of Machine Learning
and Systems 2 (2020), 230–246.

[41] Yang Li, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. 2020. Ef-
ficient Automatic CASH via Rising Bandits. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 4763–4771.

[42] Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. 2021. MFES-
HB: Efficient Hyperband with Multi-Fidelity Quality Measurements. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, Vol. 35. 8491–8500.

[43] Yang Li, Yu Shen, Wentao Zhang, Yuanwei Chen, Huaijun Jiang, Mingchao Liu,
Jiawei Jiang, Jinyang Gao, Wentao Wu, Zhi Yang, Ce Zhang, and Bin Cui. 2021.
OpenBox: A Generalized Black-box Optimization Service. Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021).

[44] Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang, Bolin Ding, Yaliang Li, Jingren
Zhou, Zhi Yang, Wentao Wu, Ce Zhang, and Bin Cui. 2021. VolcanoML: Speeding
up End-to-End AutoML via Scalable Search Space Decomposition. Proceedings
of VLDB Endowment 14 (2021), 2167–2176.

[45] Zechao Li and Jinhui Tang. 2021. Semi-supervised local feature selection for
data classification. Science China Information Sciences 64, 9 (2021), 1–12.

[46] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv preprint arXiv:1807.05118 (2018).

[47] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. In International Conference on Learning Representations.

[48] Lizheng Ma, Jiaxu Cui, and Bo Yang. 2019. Deep neural architecture search
with deep graph bayesian optimization. In 2019 IEEE/WIC/ACM International
Conference on Web Intelligence (WI). IEEE, 500–507.

[49] Leonel Aguilar Melgar, David Dao, Shaoduo Gan, Nezihe Merve Gürel, Nora
Hollenstein, Jiawei Jiang, Bojan Karlas, Thomas Lemmin, Tian Li, Yang Li, Xi Rao,

1264

Johannes Rausch, Cédric Renggli, Luka Rimanic, Maurice Weber, Shuai Zhang,
Zhikuan Zhao, Kevin Schawinski, Wentao Wu, and Ce Zhang. 2021. Ease.ML: A
Lifecycle Management System for Machine Learning. In CIDR.

[50] Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou. 2019. Incremental
and approximate inference for faster occlusion-based deep cnn explanations. In
Proceedings of the 2019 International Conference on Management of Data. 1589–
1606.

[51] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A data system
for optimized deep learning model selection. Proceedings of the VLDB Endowment
13, 12 (2020), 2159–2173.

[52] Randal S Olson and Jason H Moore. 2019. TPOT: A tree-based pipeline opti-
mization tool for automating machine learning. In Automated Machine Learning.
Springer, 151–160.

[53] Matthias Poloczek, Jialei Wang, and Peter Frazier. 2017. Multi-information source
optimization. In Advances in Neural Information Processing Systems. 4288–4298.

[54] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2020. Snorkel: Rapid training data creation with weak
supervision. The VLDB Journal 29, 2 (2020), 709–730.

[55] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 33. 4780–4789.

[56] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. Proceedings of the VLDB
Endowment 10, 11 (2017).

[57] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. 2020. Neural
architecture search using bayesian optimisation with weisfeiler-lehman kernel.
arXiv preprint arXiv:2006.07556 3 (2020).

[58] Rajat Sen, Kirthevasan Kandasamy, and Sanjay Shakkottai. 2018. Noisy Blackbox
Optimization with Multi-Fidelity Queries: A Tree Search Approach. arXiv:
Machine Learning (2018).

[59] Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann,
Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska.
2019. Democratizing data science through interactive curation of ml pipelines.
In Proceedings of the 2019 International Conference on Management of Data. 1171–
1188.

[60] Yu Shen, Yang Li, Jian Zheng, Wentao Zhang, Peng Yao, Jixiang Li, Sen Yang, Ji
Liu, and Cui Bin. 2021. ProxyBO: Accelerating Neural Architecture Search via
Bayesian Optimization with Zero-cost Proxies. arXiv preprint arXiv:2110.10423
(2021).

[61] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. 2020. NAS-Bench-301 and the case for surrogate benchmarks for
neural architecture search. arXiv preprint arXiv:2008.09777 (2020).

[62] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian
optimization of machine learning algorithms. In Advances in neural information
processing systems.

[63] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. 2010.
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental
Design. In Proceedings of the 27th International Conference on Machine Learning.
Omnipress.

[64] Louis C. Tiao, Aaron Klein, C. Archambeau, and Matthias W. Seeger. 2020.
Model-based Asynchronous Hyperparameter Optimization. arXiv preprint

arXiv:2003.10865 (2020).
[65] Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:

networked science in machine learning. ACM SIGKDD Explorations Newsletter
15, 2 (2014), 49–60.

[66] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: a system
for machine learning model management. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. 1–3.

[67] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck Khim
Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Rafiki: machine learning as
an analytics service system. Proceedings of the VLDB Endowment 12, 2 (2018),
128–140.

[68] ZiyuWang, Masrour Zoghi, Frank Hutter, DavidMatheson, and Nando De Freitas.
2013. Bayesian optimization in high dimensions via random embeddings. In
Twenty-Third International Joint Conference on Artificial Intelligence.

[69] Colin White, Willie Neiswanger, and Yash Savani. 2019. Bananas: Bayesian
optimization with neural architectures for neural architecture search. arXiv
preprint arXiv:1910.11858 (2019).

[70] Jian Wu, Saul Toscanopalmerin, Peter I Frazier, and Andrew Gordon Wilson.
2019. Practical multi-fidelity Bayesian optimization for hyperparameter tuning.
(2019), 284.

[71] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. Zeroer: Entity resolution using zero labeled examples. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1149–1164.

[72] Weiyuan Wu, Lampros Flokas, Eugene Wu, and Jiannan Wang. 2020. Complaint-
driven training data debugging for query 2.0. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 1317–1334.

[73] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2019. PC-DARTS: Partial Channel Connections for Memory-
Efficient Architecture Search. In International Conference on Learning Represen-
tations.

[74] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li,
Wei-Wei Tu, Qiang Yang, and Yang Yu. 2018. Taking human out of learning appli-
cations: A survey on automatedmachine learning. arXiv preprint arXiv:1810.13306
(2018).

[75] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. 2018. Accelerating the machine learning lifecycle with MLflow. IEEE Data
Eng. Bull. 41, 4 (2018), 39–45.

[76] Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin
Cui. 2021. Facilitating Database Tuning with Hyper-Parameter Optimization: A
Comprehensive Experimental Evaluation. arXiv preprint arXiv:2110.12654 (2021).

[77] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by Meta-
Learning for Cloud Databases. In Proceedings of the 2021 International Conference
on Management of Data. 2102–2114.

[78] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition. 8697–8710.

1265

