
Query Driven-Graph Neural Networks for Community Search:
From Non-Attributed, Attributed, to Interactive Attributed

Yuli Jiang
∗1
, Yu Rong

†2
, Hong Cheng

∗3
, Xin Huang

‡4
, Kangfei Zhao

†5
, Junzhou Huang

†6 ∗

∗
The Chinese University of Hong Kong,

†
Tencent AI Lab,

‡
Hong Kong Baptist University, China

{
1
yljiang,

3
hcheng,

5
kfzhao}@se.cuhk.edu.hk,

2
yu.rong@hotmail.com,

4
xinhuang@comp.hkbu.edu.hk,

5
zkf1105@gmail.com,

6
jzhuang@uta.edu

ABSTRACT
Given one or more query vertices, Community Search (CS) aims

to find densely intra-connected and loosely inter-connected struc-

tures containing query vertices. Attributed Community Search

(ACS), a related problem, is more challenging since it finds com-

munities with both cohesive structures and homogeneous vertex

attributes. However, most methods for the CS task rely on inflexible

pre-defined structures and studies for ACS treat each attribute inde-

pendently. Moreover, the most popular ACS strategies decompose

ACS into two separate sub-problems, i.e., the CS task and subse-

quent attribute filtering task. However, in real-world graphs, the

community structure and the vertex attributes are closely corre-

lated to each other. This correlation is vital for the ACS problem. In

this vein, we argue that the separation strategy cannot fully capture

the correlation between structure and attributes simultaneously

and it would compromise the final performance.

In this paper, we propose Graph Neural Network (GNN) models

for both CS and ACS problems, i.e., Query Driven-GNN (QD-GNN)
and Attributed Query Driven-GNN (AQD-GNN). In QD-GNN, we
combine the local query-dependent structure and global graph

embedding. In order to extend QD-GNN to handle attributes, we

model vertex attributes as a bipartite graph and capture the relation

between attributes by constructing GNNs on this bipartite graph.

With a Feature Fusion operator, AQD-GNN processes the structure

and attribute simultaneously and predicts communities according

to each attributed query. Experiments on real-world graphs with

ground-truth communities demonstrate that the proposed mod-

els outperform existing CS and ACS algorithms in terms of both

efficiency and effectiveness. More recently, an interactive setting

for CS is proposed that allows users to adjust the predicted com-

munities. We further verify our approaches under the interactive

setting and extend to the attributed context. Our method achieves

2.37% and 6.29% improvements in F1-score than the state-of-the-art

model without attributes and with attributes respectively.

PVLDB Reference Format:
Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, Junzhou

Huang. Query Driven-Graph Neural Networks for Community Search:

From Non-Attributed, Attributed, to Interactive Attributed. PVLDB, 15(6):

1243 - 1255, 2022.

doi:10.14778/3514061.3514070

∗
This work is done during Yuli’s internship at Tencent AI Lab. Yu Rong and Hong

Cheng are the corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.

doi:10.14778/3514061.3514070

1 INTRODUCTION
Graph is an essential data structure to represent entities and their

relationships, e.g., social networks, protein-protein interaction net-

works, web graphs, and knowledge graphs, to name a few. Com-

munity, a subgraph of densely intra-connected and loosely inter-

connected structure, naturally exists as a functional module in real-

world graphs. Community Search (CS) [7, 11, 19, 21, 25, 37] is a vital

application in graph analytics. Concretely, given any query vertices,

CS aims to find a vertex set with cohesive structure according to the

query, i.e., query-dependent communities. Attributed Community

Search (ACS), a related but more challenging problem, has attracted

a lot of attention recently [10, 11, 22, 23, 25]. Given any query vertex

and attribute set, ACS aims at finding query-dependent commu-

nities with homogeneous attributes, which means the community

members share similar attributes with the query attributes.

For the CS and the ACS problems, existing studies suffer from

two serious limitations, that is, structure inflexibility and at-
tribute irrelevance. Structure inflexibility refers to the problem

that most community search models are based on a pre-defined

subgraph pattern, such as 𝑘-core [8, 10, 37], 𝑘-truss [1, 21, 22], 𝑘-

clique [7, 44], and 𝑘-edge connected component (ECC) [6, 19]. The
pre-defined subgraph pattern imposes a very rigid requirement on

the topological structure of communities, which may not perfectly

hold in real-world communities. Attribute irrelevance means exist-

ing models treat each attribute independently [10, 22]. However, in

the real graphs, vertex attributes are not independent of each other.

Ignoring such implicit relations would harm the quality of queried

communities.

Figure 1 depicts a toy example illustrating the limitation of exist-

ing algorithms. The faculty hierarchy is a tree-like structure from

the faculty dean, department chairman to the professors in each

department. Using existing methods based on pre-defined subgraph

patterns, we can only find a 1-core community of vertex 6 in 𝐻1

and a 2-truss community in 𝐻2, which are the entire graph. These

𝑘-core [37] and 𝑘-truss [21] patterns cannot discover the tree-like

department communities owing to the structure inflexibility. For

attributed community search, when querying the community of

vertex 6 and attribute “ML”, current methods [10, 22] find the com-

munity 𝐻3 since they ignore the implicit relations between “ML”,

“DL” and “CV”. Thus, existing studies suffer from these two inade-

quacies on structure and attribute respectively.

Moreover, for the ACS problem, existing studies [10, 22] usually

adopt a two-stage strategy which first finds the candidate com-

munity by considering the topological structure only, and then

performs a filtering on the candidate community by considering

the attribute similarity. The two-stage strategy treats the structure

1243

https://doi.org/10.14778/3514061.3514070
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3514061.3514070

Figure 1: An attributed graph depicting a faculty hierarchy
with two departments: Dept.CS and Dept.IE. Attributes repre-
sent research topics. For vertex 6, there is a ground-truth
Dept.IE community (shown in blue) as vertices 6 − 8 are
close and work on similar topics. On the right, in response
to queries on each arrow, there are three result communities
found by existing algorithms, which are quite different from
the ground-truth community.

cohesiveness and attribute homogeneity separately. But there is usu-
ally a correlation between structure and attribute, for instance, in

protein-protein interaction networks, proteins with similar func-

tions (i.e., attributes) are more likely to interact with each other

[39]. Independently dealing with the structure and attribute would

harm the quality of queried communities.

Inspired by the success of Graph Neural Network (GNN) [27]

on combining attribute and structure in many graph problems,

Gao et al. [14] proposed a GNN-based framework, ICS-GNN, to

solve the community search problem in an interactive fashion (i.e.,

users can adjust predicted communities during the query process).

Specifically, it enhances the non-attributed queries by the GNN

model [27] which exploits the information from the existing vertex

attributes in graphs. However, for every query, ICS-GNN re-trains

the whole model. This re-training process is time-consuming and

hinders its applications in real-world scenarios, especially for the

online query case. On the other hand, even though ICS-GNN makes

use of the attributes to enhance the community search performance,

its model architecture cannot accept the query attributes as input.

Therefore, ICS-GNN cannot be extended to support interactive

attributed community search easily.

To address the above limitations, in this paper, we propose GNN-

based models for both CS and ACS problems. For the CS problem,

to address the structure inflexibility issue, we design a two-branch

model: Query Driven-GNN (QD-GNN) to encode the information

from both the query and graph. Concretely, QD-GNN contains

two encoders, Query Encoder and Graph Encoder. Query Encoder
encodes the structural information from query vertices and focuses

on modeling the local topology around the queries. Graph Encoder
combines the global structure and attributes to learn the query-

independent node embeddings. As a learning-based model, QD-
GNN can search communities without imposing any restriction on

the community structure. Furthermore, we design an additional

Attribute Encoder to extendQD-GNN to support the attributed com-

munity search. Attribute Encoder exploits a node-attribute bipartite
graph to model the attribute relations and can encode more mean-

ingful information from the attribute space. To process structure

and attribute simultaneously, we employ a Feature Fusion compo-

nent to fuse the information from different encoders and make the

final output. Furthermore, we design a new query framework which

detaches the model training from the online query stage. There-

fore, our framework does not need the time-consuming re-training

phase for online query applications.

To summarize, we make the following contributions.

• We propose a Query Driven-GNN model (QD-GNN) for commu-

nity search, which combines the local query-dependent structure

and global node embeddings. Given any query, QD-GNN only

needs a model inference step and avoids the time-consuming

re-training.

• To the best of our knowledge, this is the first work that proposes a

GNN model for the attributed community search problem, called

Attributed Query Driven-GNN (AQD-GNN). Our novel learning
framework extends GNN into ACS through a node-attribute

bipartite graph, and learns the community information from

both the local structure and similar attributes of queries.

• We conduct extensive experiments on real-world data sets with

ground-truth communities for performance evaluation. Exper-

iments demonstrate that our model significantly outperforms

state-of-the-art methods in terms of community quality with

only 4.31 milliseconds average response time.

• We apply AQD-GNN to the interactive community search prob-

lem and extend it into the attributed context. Experiments show

that our models can improve the performance of ICS-GNN [14]

in both non-attributed and attributed manner with 2.37% and

6.29% improvements in F1-score respectively.

Roadmap. The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 gives some preliminaries. Section

4 presents the common framework of the proposed models. Section

5 introduces the QD-GNN model for community search problem,

and Section 6 describes the AQD-GNN model for attributed com-

munity search. We present the experimental results in Section 7

and conclude the paper in Section 8.

2 RELATEDWORK
Our study is closely related to community search (CS) and graph

neural network (GNN).

Community Search. The problem of CS [37] is to find densely

connected communities containing the query vertices. A compre-

hensive survey of CS models and existing approaches can be found

in [11, 25]. Various communitymodels have been proposed based on

different cohesive graph patterns, including 𝑘-core [8, 37], 𝑘-truss

[1, 21, 24], 𝑘-clique [7, 44], and 𝑘-edge connected component (ECC)
[6, 19]. These pre-defined cohesive metrics are inflexible and can

be too loose (e.g., 𝑘-core) or too tight (e.g., 𝑘-clique) to capture the

topology structure of communities. If the real-world communities

do not follow any of the above graph patterns, these models would

fail to discover the true communities. A learning-based model ICS-

GNN [14] has recently been proposed for interactive community

search. ICS-GNN first finds a candidate subgraph starting from

query vertices, then learns the node embeddings through applying

GNN model on subgraph, and finally employs a BFS based algo-

rithm to select the 𝑘-sized community with maximum GNN scores.

ICS-GNN does not support attributed community search as the

query only involves vertices but no attributes. It also needs to re-

train the entire model for each query, which is costly for this online

query problem.

1244

For attributed community search, ACQ [10] and ATC [22] have

been proposed, which aim to discover communities that contain

query vertices and have similar attributes to the query attributes.

ACQ is based on 𝑘-core and finds communities with the maximum

number of common query attributes shared by community mem-

bers.ATC finds𝑘-truss communities with themaximum pre-defined

attribute score. Both adopt a two-stage process. They first impose

a pre-defined structural constraint to find candidate communities,

then optimize functions of attribute score to select the most related

communities. However, the attribute score functions ignore the

similarities between attributes, and these two-stage methods fail to

capture the correlation between structure and attribute. In this pa-

per, we propose QD-GNN, which considers the cohesive structure

and homogeneous attributes in an integrated way.

Graph Neural Network. Inspired by the huge success of neu-

ral networks in natural language processing and computer vision,

many graph analytic problems have been solved via graph neural

networks [27], such as node classification[4, 18, 35], graph clas-

sification [20, 29], drug discovery [31, 34, 43], adversarial attacks

[2, 3, 5, 47] and graph algorithmic tasks [45, 46]. To build good mod-

els, the advanced techniques of pooling [13, 28, 32] and attention

[12, 28, 40] have been developed. However, most learning models

are designed for specific tasks based on graph embedding [30, 42] or

end-to-end solutions [15, 36]. Existing GNN models cannot extend

to attributed community search straightforwardly. To the best of

our knowledge, we are the first to propose a GNN-based model for

attributed community search and extend ICS-GNN to the attributed

context as well.

3 PRELIMINARIES
In this section, we first introduce the notations and define the

problems of CS and ACS formally, and then describe a general GNN

as the foundation of our proposed models.

3.1 Definitions
Let𝐺 (V, E) be a graphwith a setV of vertices and a set E ⊆ V×V
of edges. Let 𝑛 = |V| and𝑚 = |E | be the number of vertices and

edges respectively. We denote N(v) = {u | (u, v) ∈ E} as the

neighborhood set of vertex v. Moreover, let N+ (v) = {v} ∪ N (v)
be the vertex set containing v’s neighbors and v itself.

Community Search (CS). For a graph 𝐺 (V, E), given a vertex

query set V𝑞 ⊆ V , the problem of Community Search (CS) is to
find the query-dependent community C𝑞 ⊆ V . Vertices in commu-

nity C𝑞 need to be densely intra-connected, i.e., having cohesive

structure.

Let 𝐺 (V, E, F) be an attributed graph where F = {F1, . . . , F𝑛}
is the set of vertex attributes and F𝑖 is the attribute set of vertex
v𝑖 . Define

ˆF as the union of all the vertex attribute sets, i.e.,
ˆF =

F1 ∪ ...∪F𝑛 . Let 𝑑 be the number of unique attributes 𝑑 = | ˆF |. The
attribute set of each vertex, e.g., F𝑖 , is encoded to a 𝑑-dimensional

vector 𝒇𝑖 . For a keyword attribute f𝑘 , if vertex v𝑖 has this keyword,

i.e., f𝑘 ∈ F𝑖 , then 𝒇𝑖𝑘 = 1; otherwise, 𝒇𝑖𝑘 = 0. For a numerical

attribute f𝑗 , 𝒇𝑖 𝑗 is the value of vertex v𝑖 on this attribute. Then the

set of vertex attributes F = {F1, . . . , F𝑛} is encoded to an attribute

matrix 𝑭 = [𝒇1, . . . ,𝒇𝑛]𝑇 ∈ R𝑛×𝑑 .
Attributed Community Search (ACS). For an attributed graph

𝐺 (V, E, F), given a query ⟨V𝑞, F𝑞⟩ where V𝑞 ⊆ V is a set of

query vertices, and F𝑞 ⊆ ˆF is a set of query attributes, the prob-

lem of Attributed Community Search (ACS) is to find the query-

dependent community C𝑞 ⊆ V . Vertices in community C𝑞 need

to be both structure cohesive and attribute homogeneous, i.e., ver-

tices in a community are densely intra-connected in structure and

attributes of these vertices are similar.

In this paper, we formulate the above two problems as a binary

classification task. Given a query 𝑞 = ⟨V𝑞⟩ or 𝑞 = ⟨V𝑞, F𝑞⟩, we
classify the graph vertices into two classes (belonging to a commu-

nity C𝑞 of query 𝑞 or not). We use the one-hot vector 𝒄𝑞 ∈ {0, 1}𝑛
to represent the output community C𝑞 by a modelM. If the out-

put value 𝒄𝑞𝑘 = 1, vertex v𝑘 belongs to the result community C𝑞
predicted byM.

3.2 A General GNN Model
We introduce a general framework of Graph Neural Network (GNN)

as the cornerstone of our models.

A GNN layer is known as a message passing procedure from

neighborhoods. After the linear transformation of neighbors’ hid-

den features, there aremany alternative techniques within one layer,

e.g., batch normalization technique [26]. We list one of the possible

intra-layer processes in the layer-wise propagation function as:

𝒉(𝑙+1)𝑣 = Dr

{
𝜙

(
BN[AGG(𝒉(𝑙)𝑢 𝑾 (𝑙+1) + 𝒃 (𝑙+1) , u ∈ N+ (v))]

)}
,

(1)

where 𝒉(𝑙+1)𝑣 ∈ R𝑑 (𝑙+1) is the learned new features of vertex v in the

(𝑙 + 1)-th layer, 𝒉(𝑙)𝑢 ∈ R𝑑
(𝑙)

is the hidden features of vertex u from

the 𝑙-th layer, and the input feature 𝒉(0)𝑣 ∈ R𝑑 is the normalized

form of attribute vector 𝒇𝑣 . 𝑾 (𝑙+1) ∈ R𝑑
(𝑙)×𝑑 (𝑙+1)

and 𝒃 (𝑙+1) ∈
R𝑑
(𝑙+1)

are trainable weights. AGG(·) is an aggregation function

such as SUM, MAX, or MIN. BN(·) is batch normalization [26] that

reduces internal covariate shift. 𝜙 (·) is the non-linear activation
function, such as ReLU(·). Last, Dr(·) is the dropout method [38]

to dilute the data and reduce the overfitting in neural networks.

For example, one of the most classical GNN models, Vanilla

Graph Convolutional Network (Vanilla GCN) [27], is defined as:

𝒉(𝑙+1)𝑣 = Dr

{
ReLU

(
SUM({ 𝒉(𝑙)𝑢√︁

𝑑 ′
u
𝑑 ′
v

𝑾 (𝑙+1) : u ∈ N+ (v)})
)}
, (2)

which applies SUM as the aggregation operation, and ReLU(·) as
the activation function 𝜙 (·) with the dropout method. In this GNN

model, batch normalization is not adopted and Laplacian smoothing

is employed where 𝑑 ′
u
= 𝑑u + 1 and 𝑑u is the degree of vertex u.

In the following, we will focus on the way of aggregation in

our proposed GNN models. The dropout, activation function, batch

normalization and the trainable bias 𝒃 described above are adopted

in our models, and will be omitted in our following presentation.

4 THE QUERY FRAMEWORK
Before describing the detailed design of the proposed models, we

introduce the common framework of our models for both CS and

ACS problems. As Figure 2a shows, the proposed models consist

of two main stages: the model training stage and the online query
stage. Firstly, we train the embedding modelM offline with the

loss function in the model training stage as shown in Figure 2a

(left). After that, in the online query stage, whenever the query

comes, we apply the model from the training stage to predict the

1245

(a) Framework of our proposed models. (b) Intermediate design of modelM with four components.

Figure 2: The architecture of proposed models.

community without re-training, as Figure 2a (right) presents. This

framework is highly flexible. In the following, we first introduce

how to construct the inputs from the graph and queries in both

stages. Then, we describe the two main stages respectively.

4.1 Input Construction
Since the GNN modelM needs vectorized inputs, we introduce the

vectorization scheme for the vertex set and attribute set.

Construct query vertices. We encode each query vertex set

V𝑞 ⊆ V to a one-hot vector 𝒗𝑞 ∈ {0, 1}𝑛 . For a queryV𝑞 , if vertex
v𝑖 ⊆ V𝑞 , 𝒗𝑞𝑖 = 1; otherwise, 𝒗𝑞𝑖 = 0. For example, when querying

the community of vertex v6 in Figure 1, the encoded vector is

𝒗𝑞 = [0, 0, 0, 0, 0, 1, 0, 0]𝑇 .
Construct query attributes. Similar to query vertices, we encode

each query attribute set F𝑞 ⊆ ˆF to a one-hot vector 𝒇𝑞 ∈ {0, 1}𝑑 ,
where 𝑑 = | ˆF | is the number of unique attributes.

The encoded query vertex set and query attribute set are then

submitted to our proposed GNN models as input features.

4.2 Model Training Stage
In the model training stage, with a set of training queries as input,

we iteratively train the embedding modelM offline through the

Binary Cross Entropy (BCE) loss function and obtain a trained

model for the online query stage.

Given a set of training queries Qtrain = {𝑞1, 𝑞2, ...} and corre-

sponding ground-truth communities Ctrain = {C𝐺𝑇 1
, C𝐺𝑇 2

, ...},
we train a GNN modelM to minimize the loss function to fit the

training data. Given a validation query set Q
val

and corresponding

ground-truth communities C
val

, we select the parameters of model

M and threshold 𝛾 ∈ [0, 1] which achieve the best performance in

the validation set. The queries in Qtrain and Q
val

can be attributed

𝑞 = {V𝑞, F𝑞} for ACS or non-attributed 𝑞 = {V𝑞} for CS.
First, we construct all query inputs as one-hot vectors. Then we

repeatedly input queries into the modelM, i.e., Simple QD-GNN,
QD-GNN or AQD-GNN, which will be introduced in Section 5

and Section 6. With the modelM’s output 𝒉𝑞 for each query 𝑞

in an iteration, we compute BCE loss function and gradients of

the model parameters. The gradients are propagated backward to

updateM at the end of this iteration. With the updated parameters,

M moves to the next iteration, outputs 𝒉𝑞 , calculates loss and back
propagates gradients until convergence. The loss function of the

three proposed models is the same and we describe it formally in

the following.

Loss Function. We formulate community search as a binary classi-

fication problem. Assume that 𝒉𝑞 ∈ R𝑛 is the output ofM for query

Algorithm 1 Constrained BFS for Community Identification

Input: Graph:𝐺 = (V, E) , a query vertex set: V𝑞 ,

a model output vector: 𝒉𝑞 , a threshold: 𝛾 .
Output: a vertex set of community : C𝑞 .
1: Initialize set Q = V𝑞 , C𝑞 = V𝑞

2: while Q is not empty do
3: select a vertex v from Q
4: for u ∈ N(v) and 𝒉𝑞𝑢 ≥ 𝛾 do
5: Q ← Q ∪ {u}
6: C𝑞 ← C𝑞 ∪ {u}
7: return C𝑞 ;

𝑞 after the Sigmoid function 𝜎 (𝑥) = 1

1+𝑒−𝑥 , where 𝒉𝑞𝑣 ∈ [0, 1] rep-
resents the output for vertex v. 𝒚𝑞 ∈ {0, 1}𝑛 represents the ground-

truth vector for query 𝑞. 𝒚𝑞𝑣 = 1 if and only if vertex v ∈ C𝐺𝑇𝑞 ;
otherwise, 𝒚𝑞𝑣 = 0. Then we utilize Binary Cross Entropy (BCE)

function as the loss function to minimize the BCE between the

model output 𝒉𝑞 and the ground-truth label 𝒚𝑞 for 𝑞. The optimiza-

tion loss function can be formulated as:

minL =
∑︁

𝑞∈Qtrain

1

𝑛

𝑛∑︁
𝑖=1

−(𝒚𝑞𝑖 log(𝒉𝑞𝑖) + (1 −𝒚𝑞𝑖) log(1 − 𝒉𝑞𝑖)).

(3)

4.3 Online Query Stage
In the online query stage, we utilize the well-trained modelM and

threshold 𝛾 from the model training stage to process the online

query𝑞 and produce the communityC𝑞 without re-training.We first

construct query inputs as one-hot vectors. Then the constructed

vectors are fed into modelM, which only runs once and outputs

the vector 𝒉𝑞 . To ensure the connectivity between query vertices

and community members, we employ a constrained Breadth-First

Search (BFS) starting from the query vertices in Algorithm 1. When

visiting vertex u, if 𝒉𝑞𝑢 ≥ 𝛾 (line 4), we add vertex u to the output

community C𝑞 (line 6).

Please note that the connectivity of the output community also

depends on the user-specified query vertices. If the induced sub-

graph of the query vertices is connected, then our models are guar-

anteed to find a connected community. If the induced subgraph

of the query vertices is not connected, our models may still find a

connected community through some bridging vertices. But there

is possibility that the discovered community is not connected as

one component, especially when the query vertices are distant or

disconnected in the graph. In this case, our models can still find

some connected components, each of which contains part of the

query vertices, as the answer community.

1246

Figure 3: Query propagation paths in Query Encoder.

5 QD-GNN MODEL FOR CS
In this section, we introduce the construction of the embedding

modelM in the proposed framework for community search. We

first propose a Simple task-oriented Query Driven-Graph Neural

Network (Simple QD-GNN) and then design useful functional en-

coders to improve it as QD-GNN model. As Figure 2a shows, with

query vectors as input, the Simple QD-GNN orQD-GNNmodelM
outputs 𝒉𝑞 into the BCE loss function during the training process.

In the online query stage, the model output 𝒉𝑞 is translated into

community members as described in Section 4.

5.1 Simple QD-GNN
The Simple QD-GNNmodel is designed based on the general GNN

introduced in Section 3.2 and uses query vector 𝒗𝑞 as the input

features of the model. This model input enables query-centered

structural propagation, i.e., propagating from the query vertices

to its neighborhood, to better capture the local query structure

information.

We name this query driven propagation as Graph Encoder. In
order to fully make use of vertex features in each layer, Query

Encoder is designed to equip with a self feature modeling [12]. The

inter-layer propagation function for vertex v is formally defined as:

𝒉(𝑙+1)
𝑄𝑣

= 𝒉(𝑙)
𝑄𝑣

𝑾 (𝑙+1)
𝑄self

+ SUM({𝒉(𝑙)
𝑄𝑢

𝑾 (𝑙+1)
𝑄

: u ∈ N+ (v)}), (4)

where the first component emphasizes the self features (hidden

features of the vertex v) with learnable weight parameter matrices

𝑊
(𝑙+1)
𝑄self

∈ R𝑑 (𝑙)×𝑑 (𝑙+1) . The second component is similar to Eq. (1)

with a subscript 𝑄 , and chooses SUM as the aggregation function

as Vanilla GCN [27] does. Similarly, 𝑾 (𝑙+1)
𝑄

∈ R𝑑 (𝑙)×𝑑 (𝑙+1) is the

trainable weight matrix ,𝒉(𝑙+1)
𝑄𝑣

∈ R𝑑 (𝑙+1) is the learned new features

of vertex v in the (𝑙 + 1)-th layer of Query Encoder. Different from

Eq. (1), the input feature of the first layer 𝒉(0)
𝑄𝑣

is the one-hot query

vector 𝒗𝑞𝑣 .

Example. We follow the example in Figure 1 and show the propa-
gation paths in Figure 3. For queryV𝑞 = {v8} highlighted in Figure 3a,
the query vector 𝒗𝑞 is [0, 0, 0, 0, 0, 0, 0, 1]𝑇 . According to Eq. (4), in
the first layer, the query information propagates to the neighbor of
v8, i.e., v6 as depicted in Figure 3b. Then, the 2-hop neighbors of the
query vertex, v1 and v7, acquire the knowledge from v6 in the second
layer as depicted in Figure 3c.

5.2 QD-GNN
Recent studies [9, 14, 41] have found that attributes on graph ver-

tices can be leveraged for structural learning problems, for example,

link prediction [9] and community search [14]. Inspired by their

findings, we design an improved QD-GNN model based on Simple
QD-GNN and Vanilla GCN [27]. Similar to ICS-GNN [14],QD-GNN
combines the network structure and vertex attributes to solve the

community search problem.

5.2.1 Overview. Figure 2b presents the architecture overview of

QD-GNNmodel, which consists of two convolution branches (Graph
Encoder and Query Encoder) and a Feature Fusion operator. Graph
Encoder provides the query-independent information with both

graph structure and vertex attributes as input, i.e., the edge set

E and vertex attribute set F . Query Encoder (the same as that in

Simple QD-GNN) provides the interface for query vertices and

learns the query-specific local topology features. It takes the input

of graph structure and query vertices, i.e., the edge set E and query

vertices V𝑞 . The Feature Fusion operator combines the above en-

coder embedding results and obtains the final query-specific output

vectors. This fusion makes use of both global graph knowledge and

local query information which can achieve a good balance, and

finally obtains the model output 𝒉𝑞 for each query 𝑞.

5.2.2 Graph Encoder. Graph Encoder focuses on global graph struc-
ture and vertex attributes, both of which are independent of queries.

We apply the layer-wise forward propagation of the general GNN to

construct Graph Encoder, which has been introduced in Section 3.2.

Similar to Simple QD-GNN, the forward layer of Graph Encoder is

defined with a self feature modeling [12] as:

𝒉(𝑙+1)
𝐺𝑣

= 𝒉(𝑙)
𝐺𝑣

𝑾 (𝑙+1)
𝐺self

+ SUM({𝒉(𝑙)
𝐺𝑢

𝑾 (𝑙+1)
𝐺

: u ∈ N+ (v)}), (5)

where the notations are the same as Eq. (1) with a subscript𝐺 , and

𝑊
(𝑙+1)
𝐺self

∈ R𝑑 (𝑙)×𝑑 (𝑙+1) are the weight parameter matrices. The input

feature of vertex v in the first layer 𝒉(0)
𝐺𝑣
∈ R𝑑 is the normalized

attribute vector 𝒇𝑣 encoded in Section 3.1. Graph Encoder propa-

gates the attribute information through graph structure and learns

query-independent knowledge.

Example. We follow the example in Figure 1 to illustrate how
Graph Encoder works. For vertex v8, in the first layer, its attributes
(“DL” and “CV”) are propagated to its neighbor, vertex v6, with a
learnable weight. At the same time, the attribute of vertex v6 (“ML”)
is also propagated to vertex v8. In the next layer, those attributes are
propagated to their neighbors respectively as well. By this propagation,
the attributes of vertices v6, v7 and v8 become more similar. This
information is used by the Feature Fusion operator to identify the
community members more accurately.

5.2.3 Query Encoder. Query Encoder is the same as that of Simple
QD-GNN and provides an interface for query vertices and obtains

the local structure knowledge. Inputs of the Query Encoder are

based on the graph topology (graph edges E) and structural query

(query verticesV𝑞). The inter-layer propagation function of Query

Encoder is the same as that in Eq. (4).

5.2.4 Feature Fusion. The Feature Fusion operator combines out-

put features learned by the above two encoders, and balances the

global and local information to get the final output of QD-GNN.
The inputs of Feature Fusion are based on the output of the two

encoders, i.e., 𝒉𝐺 and 𝒉𝑄 . It fuses them and transmits the fusion

result to Query Encoder as shown in Figure 2b.

Based on the output of the two encoders, the forward layer of

Feature Fusion is formulated as:

𝒉(𝑙+1)
𝐹𝐹 𝑣

= AGG(𝒉(𝑙+1)
𝐺𝑣

,𝒉(𝑙+1)
𝑄𝑣
), (6)

where 𝒉(𝑙+1)
𝐹𝐹 𝑣

is the output of Feature Fusion for vertex v and also

the final output of the entire QD-GNNmodel in the (𝑙 + 1)-th layer,

AGG(·) is the aggregation function (e.g., Concatenation, SUM, etc.),

1247

Algorithm 2 The 𝑘-Layer QD-GNN Propagation

Input: Graph:𝐺 = (V, E, F) ,
a set of queries: Q = {V𝑞

1
,V𝑞

2
, . . . },

QD-GNN model:M = {𝒉𝑄 ,𝒉𝐺 ,𝒉𝐹𝐹 }.
Output: a set of output vectors: H = {𝒉𝑞

1
,𝒉𝑞

2
, . . . }.

1: Construct attribute matrix 𝑭 for F
2: H ← ∅
3: for each V𝑞 ∈ Q do
4: Construct one-hot vector 𝒗𝑞 for V𝑞 , initialize 𝒉

(0)
𝑄

with 𝒗𝑞

5: Initialize 𝒉 (0)
𝐺

with 𝑭

6: 𝒉 (1)
𝑄
← Propg(𝒉 (0)

𝑄
, E) in Eq. (4)

7: 𝒉 (1)
𝐺
← Propg(𝒉 (0)

𝐺
, E) in Eq. (5)

8: 𝒉 (1)
𝐹𝐹
← AGG(𝒉 (1)

𝐺
,𝒉 (1)

𝑄
) in Eq. (6)

9: 𝑙 ← 1

10: while(𝑙 < 𝑘) do
11: 𝒉 (𝑙+1)

𝑄
← Propg(𝒉 (𝑙)

𝐹𝐹
, E) in Eq. (8)

12: 𝒉 (𝑙+1)
𝐺

← Propg(𝒉 (𝑙)
𝐺
, E) in Eq. (5)

13: 𝒉 (𝑙+1)
𝐹𝐹

← AGG(𝒉 (𝑙+1)
𝐺

,𝒉 (𝑙+1)
𝑄
) in Eq. (6)

14: 𝑙 ← 𝑙 + 1
15: H ← H ∪ 𝒉 (𝑘)

𝐹𝐹

16: return H;

and 𝒉(𝑙+1)
𝐺𝑣

, 𝒉(𝑙+1)
𝑄𝑣

are the outputs of each encoder for vertex v in

the (𝑙 + 1)-th layer respectively.

For Graph Encoder, we do not use the fusion result and just

use the output of Graph Encoder itself in the 𝑙-th layer 𝒉(𝑙)
𝐺

as

the input of the (𝑙 + 1)-th layer. Thus, we keep Graph Encoder

independent of query information in the intermediate layer. This

query-independent features provide stable “prior” knowledge about

the graph and supply additional information for community search

problem, which makes QD-GNN a stronger model.

For Query Encoder, we replace the feature propagation between

neighbors as the fusion features in the intermediate layers. This

fusion operation transmits the vertex attributes and global structure

features into Query Encoder and delivers these features around

query vertices. We define
ˆ𝒉𝑄 as the input feature of each layer

which can be formally written as:

ˆ𝒉(𝑙)
𝑄𝑖

=

{
𝒗𝑞𝑖 , if 𝑙 = 0;

𝒉(𝑙)
𝐹𝐹 𝑖

, otherwise.
(7)

The propagation function of Query Encoder can be rewritten as:

𝒉(𝑙+1)
𝑄𝑣

= 𝒉(𝑙)
𝑄𝑣

𝑾 (𝑙+1)
𝑄self

+ SUM({ ˆ𝒉(𝑙)
𝑄𝑢

𝑾 (𝑙+1)
𝑄

: u ∈ N+ (v)}). (8)

5.2.5 Algorithm. The QD-GNN model for the community search

problem is presented in Algorithm 2. For easy description, we sim-

plify the propagation function in each encoder as Propg(𝒉, E),
which means propagating feature 𝒉 through edges in E. At the
beginning, we construct the feature matrix for the graph (line 1)

and set the output as empty (line 2). For each query, we also con-

struct the query vector and initialize Query Encoder and Graph

Encoder (line 4-5). In the first layer (line 6-9), Query Encoder and

Graph Encoder propagate their input features through the graph

edges (line 6-7), and Feature Fusion fuses the output of them (line 8).

In the intermediate layers (line 10-14), Query Encoder utilizes the

fused feature from Feature Fusion (line 11), while Graph Encoder

takes its own output 𝒉𝐺 as the input feature to remain independent

of the query (line 12). The final output of QD-GNN is the fused

feature 𝒉𝐹𝐹 and we add it into the output setH (line 15).

6 AQD-GNN MODEL FOR ACS
In this section, we extend QD-GNN by incorporating the query

attributes and propose the GNN model for attributed community

search, named Attributed Query Driven-Graph Neural Network

(AQD-GNN). We first identify the challenges of attributed com-

munity search when using GNN models. Then, we describe the

components of AQD-GNN one by one in detail.

6.1 Challenges
Different from community search [1, 8, 14, 21, 37], the attributed

community search task [10, 22] needs to integrate the query at-

tributes into models. However, the meaning of query attributes 𝐹𝑞
and the dimension of query attributes vector 𝑓𝑞 are different from

those of query vertices. It is not feasible to input query attribute

information as we handle query vertices in Section 5.

The ICS-GNN model [14] utilizes the query vertex information

as the labels of vertices, and aligns the output embedding and

the labels through a loss function. Since previous studies always

focus on tasks at the level of vertices and edges, such as node

classification and link prediction, but not at the attribute level for

attributed queries, the design of their loss functions also centers on

the vertices. The BCE loss function in Eq. (3) is an example, which

focuses on the class of each vertex. Therefore, ICS-GNN cannot

incorporate the query attributes in the loss function directly and

thus is not able to extend to the ACS problem.

The similar phenomenon can be observed from the QD-GNN
model, which considers query vertices as the input features and

propagates the query information via edges to find local structures

surrounding the query vertices. But the query attributes cannot be

easily incorporated as model input due to the different dimensional-

ity. Even if we have a mechanism to take query attributes as input

features, this attribute information can only propagate to adjacent

vertices via graph topology by QD-GNN, but cannot reach vertices

having similar attributes to the query attributes, as ACS aims to do.

The above discussions reveal that incorporating query attributes
into the learning model and identifying the vertices with similar
attributes automatically are two key issues to be addressed in ap-

plying GNN models into the ACS problem. In AQD-GNN, we de-
sign a bipartite graph to represent the relations between vertices

and attributes. Leveraging this bipartite graph, AQD-GNN can ac-

cept an input of query attributes and translate this query attribute

knowledge into vertex knowledge. Finally, AQD-GNN can find the

vertices which have similar attributes with the query attributes.

6.2 Overview
AQD-GNN takes an attributed graph 𝐺 = (V, E, F) and a group

of attributed queries 𝑞 = ⟨𝒗𝑞, 𝒇𝑞⟩ vectorized as inputs, and pre-

dicts the community vector 𝒉𝑞 as outputs for each query 𝑞. Figure

2b illustrates the inter-layer design of AQD-GNN, which consists

of a Feature Fusion operator and three GNN components: Graph

Encoder, Query Encoder and Attribute Encoder. Note that Graph

Encoder and Query Encoder are the same as those of QD-GNN
in Section 5.2. Attribute Encoder is a new component specifically

designed for ACS. Accordingly, Feature Fusion needs to be revised

due to the new Attribute Encoder. In the following, we describe

Attribute Encoder and the revised Feature Fusion operator.

Attribute Encoder. Attribute Encoder serves as the interface

of query attributes and provides attribute information related to

1248

Figure 4: An example of node-attribute bipartite graph.

queries. It views each attribute as an individual vertex and models

vertex attributes as a bipartite graph between vertex set V and

attribute set
ˆF . With this bipartite graph, query attributes can be

inputted into the attribute side directly and propagated between

the vertex side and attribute side. Through this propagation, At-

tribute Encoder learns query-specific attribute node embeddings

and identifies the vertices with attributes similar to queries.

Feature Fusion. The Feature Fusion component combines all the

above embeddings and obtains the final query-specific output of the

ACS problem. It takes the outputs of the three encoders as inputs,

mixes global graph features and local query features, fuses structure

and attribute information, and balances them to get an accurate

community. Note that the final output of the entire model is the

fused result in the last layer.

In the following sections, we will illustrate the detailed working

mechanism of Attribute Encoder and Feature Fusion.

6.3 Attribute Encoder
The Attribute Encoder provides the interface for query attributes F𝑞
and produces the vertex embeddings based on the related attributes

of queries. Attribute Encoder aims to figure out the underlying

relationship among different attributes and find the related attribute

of queries. In addition, as analyzed in Section 6.1, Attribute Encoder

needs to represent such attribute information in the form of vertices

since the final output community is represented by a set of vertices.

To achieve the above goals, we model a bipartite graph called

node-attribute bipartite graph 𝐵𝐺 (V, ˆF , E𝐵). For clarity, we call
the vertices in the structure graph as nodes here. This bipartite

graph is formed by two vertex sets: graph nodes V and graph

attributes
ˆF . An edge between node v𝑖 and attribute f𝑗 is added to

the edge set E𝐵 , if and only if node v𝑖 has attribute f𝑗 , i.e., f𝑗 ∈ F𝑖 .
Example. Figure 4 illustrates the node-attribute bipartite graph

for the example in Figure 1. Based on the structure graph with node
attributes on the left, we construct a node-attribute bipartite graph
shown in Figure 4 (right), where the node setV = {1, . . . , 8} is on the
top and the attribute set ˆF = {𝐴, . . . , 𝐹 } is at the bottom. Since node
4 has two attributes “DM” and “GM” in the structure graph, node 4 is
adjacent to attribute 𝐵 (“DM”) and attribute 𝐶 (“GM”) as connected
by red lines in Figure 4 (right).

We apply Bipartite Graph Neural Network (BGNN) [17] on the

constructed bipartite graph. BGNN consists of propagations in two

directions between two vertex sets. In our node-attribute bipartite

graph, the propagations are from the attribute side to the node side

(denoted as A→N), and also from the node side to the attribute side

(denoted as N→A).

Propagation A→N. We encode each query attribute set F𝑞 ⊆ ˆF
to a one-hot vector 𝒇𝑞 ∈ {0, 1}𝑑 as described in Section 4.1, where

𝑑 = | ˆF |. Benefiting from the node-attribute bipartite graph, we are

able to take the query attribute vector 𝒇𝑞 as input features in the

attribute side, and propagate this attribute information from the

attribute side to the node side.

Example. When the attribute query is F𝑞 = {“DL”}, the one-
hot vector is 𝒇𝑞 = [0, 0, 0, 0, 1, 0]𝑇 according to the order of attribute
vertices A to F in Figure 4. The query attribute information of “DL”
will propagate to node 7 and node 8, the neighbors of “DL” vertex,
through the blue edges in the bipartite graph of Figure 4.

This propagation from the attribute side to the node side (A→N)

collects attribute features for each node and translates the attribute

features to node features. The layer-wise propagation function of

A→N in BGNN is formally defined as:

𝒉(𝑙+1)
𝑁𝑢

= SUM({𝒉(𝑙)
𝐴
f

𝑾 (𝑙+1)
𝐴→𝑁 , f ∈ N𝐵 (u)}), (9)

where node 𝑢 ∈ V , attribute f ∈ ˆF , and N𝐵 (u) is the neighbor
set of node u in the bipartite graph. 𝒉(𝑙+1)

𝑁𝑢
∈ R𝑑 (𝑙+1) is the hidden

feature of node 𝑢 in the (𝑙 + 1)-th layer, 𝒉(𝑙)
𝐴
f

∈ R𝑑 (𝑙) is the input
feature of attribute f in the 𝑙-th layer, and𝑾 (𝑙+1)

𝐴→𝑁 ∈ R
𝑑 (𝑙)×𝑑 (𝑙+1)

is

a learnable parameter matrix in propagation from the attribute side

to the node side. The input feature of attribute f in the first layer

is equal to the value of attribute f in the one-hot query attribute

vector, i.e., 𝒉(0)
𝐴
f

= 𝒇𝑞
f
.

Propagation N→A. After the propagation from the attribute side

to the node side in the (𝑙 + 1)-th layer, the learned features also

need to be transmitted back to form an iterative propagation in

the bipartite graph. Here, we also emphasize the attribute in the

last layer and add a self feature modeling [12]. Similarly, the layer-

wise propagation function from the node side to the attribute side

(N→A) in BGNN is defined as:

𝒉(𝑙+1)
𝐴
f

= 𝒉(𝑙)
𝐴
f

𝑾 (𝑙+1)
self

+ SUM({𝒉(𝑙+1)
𝑁𝑢

𝑾 (𝑙+1)
𝑁→𝐴 : u ∈ N𝐵 (𝑓)}), (10)

where the notations are the same as Eq. (9). 𝒉(𝑙+1)
𝑁𝑢

is the input fea-

tures of node 𝑢 in propagation N→A, which is learned in Eq. (9).

N𝐵 (f) is the neighbor set of attribute f in the bipartite graph.

𝑾 (𝑙+1)
𝑁→𝐴 ∈ R

𝑑 (𝑙)×𝑑 (𝑙+1)
is a learnable parameter matrix in the prop-

agation from the node side to the attribute side, and 𝑾 (𝑙+1)
self

∈
R𝑑
(𝑙)×𝑑 (𝑙+1)

is the self feature parameter matrix in the (𝑙 + 1)-th
layer.

With these two propagations, Attribute Encoder can employ

the query attribute as input features and transmit this attribute

information through the node-attribute bipartite graph. Propaga-

tion A→N transforms the attribute features 𝒉𝐴 into node features

𝒉𝑁 . Propagation N→A translates the node features 𝒉𝑁 back to at-

tribute features 𝒉𝐴 and provides the input of propagation A→N in

the next layer. With these bidirectional propagations, the features

can spread in the bipartite graph and BGNN can be superimposed

to multiple layers. Note that the node features 𝒉𝑁 are the output of

Attribute Encoder to Feature Fusion, since the community search

problem focuses on the node and other encoders also provide node

embeddings rather than attribute embeddings.

6.4 Feature Fusion
The Feature Fusion operator combines the output features of the

three encoders, balances the global graph and local query knowl-

edge, and mixes the structure and attribute information to obtain

the final output of the AQD-GNN model.

1249

The forward layer of Feature Fusion is formulated as:

𝒉(𝑙+1)
𝐹𝐹 𝑣

= AGG(𝒉(𝑙+1)
𝐺𝑣

,𝒉(𝑙+1)
𝑄𝑣

,𝒉(𝑙+1)
𝑁𝑣
), (11)

where 𝒉(𝑙+1)
𝐹𝐹 𝑣

is the fused feature of node 𝑣 and also the final output

of the AQD-GNNmodel in the (𝑙 + 1)-th layer, AGG(·) is the aggre-
gation function (e.g., Concatenation, SUM, etc.), and 𝒉(𝑙+1)

𝐺𝑣
, 𝒉(𝑙+1)
𝑄𝑣

,

𝒉(𝑙+1)
𝑁𝑣

are the outputs of the three encoders in the (𝑙 + 1)-th layer

respectively. Note that 𝒉(𝑙+1)
𝑁𝑣

is the hidden features of the node side

in Attribute Encoder.

In Eq. (11), we aggregate the three encoders to fuse all types

of node embeddings. In order to consider the correlation between

structure and attribute and process these two types of information

simultaneously, we replace the input node features in the inter-

mediate layers with the fused feature 𝒉𝐹𝐹 in Query Encoder and

Attribute Encoder as shown in Figure 2b. Graph Encoder just uses

the output of itself in the 𝑙-th layer 𝒉(𝑙)
𝐺

as the input of the (𝑙 + 1)-th
layer to capture the global query-independent node embeddings, as

Feature Fusion does in QD-GNN. For Query Encoder, this fusion

operation transmits the query-specific attribute features and global

graph features into Query Encoder and delivers these features be-

tween vertices. Similar to Feature Fusion in QD-GNN, we employ

ˆ𝒉𝑄 in Eq. (7) as the input features for Query Encoder, and rewrite

the propagation function in Eq. (8). For Attribute Encoder, Feature

Fusion enriches the features passed on the bipartite graph with

local query structure and global graph features. Similar to Query

Encoder, we replace the input node features in Eq. (10) with fused

features when propagating from the node side to the attribute side.

We define
ˆ𝒉𝑁 as the input node features:

ˆ𝒉(𝑙)
𝑁𝑢

= 𝒉(𝑙)
𝐹𝐹𝑢

. (12)

In this way, the structure features and attribute features learned

by AQD-GNN can influence each other and these two encoders

are correlated. Thus AQD-GNN is able to learn local structure and

related attribute information of queries simultaneously. AQD-GNN
provides an end-to-end attributed community search model, which

takes queries as input and produces community vectors as answers.

6.5 Algorithm
Algorithm 3 describes the 𝑘-layer propagation of AQD-GNN. AQD-
GNN first constructs the attribute matrix from F , and builds an

empty output set H (line 1-2). For each query, AQD-GNN con-

structs the one-hot vectors for both query vertex set and query

attribute set, and initializes three encoders with them (line 3-6). In

the first layer (line 7-11), Query Encoder propagates query vertices

in the structure graph (line 7), Graph Encoder propagates vertex

attributes in the graph (line 8), and Attribute Encoder propagates

the query attributes from the attribute side to the node side in the

bipartite graph (line 9). Feature Fusion fuses the output features of

the three encoders (line 10). In the intermediate layers (line 12-18),

Query Encoder propagates the fused features in graph (line 13),

Graph Encoder still propagates the query-independent features

from itself 𝒉𝑮 (line 14), and Attribute Encoder utilizes the fused

features 𝒉𝐹𝐹 as node side features and transmits node features back

to attribute features (line 15). Then, Attribute Encoder is able to

acquire the node hidden features in the next layer through prop-

agating attribute features to the node side in the bipartite graph

(line 16). Feature Fusion fuses the three encoders (line 17). The final

Algorithm 3 The 𝑘-Layer AQD-GNN Propagation

Input: Graph:𝐺 = (V, E, F) ,
a set of attributed queries: Q = {{V𝑞

1
, F𝑞

1
}, {V𝑞

2
, F𝑞

2
}, . . . , },

AQD-GNN model:M = {𝒉𝑄 ,𝒉𝐺 , {𝒉𝑁 ,𝒉𝐴 },𝒉𝐹𝐹 }.
Output: a set of output vectors: H = {𝒉𝑞

1
,𝒉𝑞

2
. . . , }.

1: Construct attribute matrix 𝑭 for F
2: H ← ∅
3: for each {V𝑞 , F𝑞 } ∈ Q do
4: Construct one-hot vector 𝒗𝑞 for V𝑞 , initialize 𝒉

(0)
𝑄

with 𝒗𝑞

5: Initialize 𝒉 (0)
𝐺

with 𝑭

6: Construct one-hot vector 𝒇𝑞 for F𝑞 , Initialize 𝒉 (0)𝐴
with 𝒇𝑞

7: 𝒉 (1)
𝑄
← Propg(𝒉 (0)

𝑄
, E) in Eq. (4)

8: 𝒉 (1)
𝐺
← Propg(𝒉 (0)

𝐺
, E) in Eq. (5)

9: 𝒉 (1)
𝑁
← Propg(𝒉 (0)

𝐴
, E𝐵) in Eq. (9)

10: 𝒉 (1)
𝐹𝐹
← AGG(𝒉 (1)

𝐺
,𝒉 (1)

𝑄
,𝒉 (1)

𝑁
) in Eq. (11)

11: 𝑙 ← 1

12: while(𝑙 < 𝑘) do
13: 𝒉 (𝑙+1)

𝑄
← Propg(𝒉 (𝑙)

𝐹𝐹
, E) in Eq. (8)

14: 𝒉 (𝑙+1)
𝐺

← Propg(𝒉 (𝑙)
𝐺
, E) in Eq. (5)

15: 𝒉 (𝑙)
𝐴
← Propg(𝒉 (𝑙)

𝐹𝐹
, E𝐵) in Eq. (10)

16: 𝒉 (𝑙+1)
𝑁

← Propg(𝒉 (𝑙)
𝐴
, E𝐵) in Eq. (9)

17: 𝒉 (𝑙+1)
𝐹𝐹

← AGG(𝒉 (𝑙+1)
𝐺

,𝒉 (𝑙+1)
𝑄

,𝒉 (𝑙+1)
𝑁
) in Eq. (11)

18: 𝑙 ← 𝑙 + 1
19: H ← H ∪ 𝒉 (𝑘)

𝐹𝐹

20: return H;

Figure 5: An example of fusion graph.

output of AQD-GNN is the fused result in the last layer, which is

added into the output setH (line 19).

As described in Section 4, in the training stage, the output set

H is used in the loss function to optimize the model learning. In

the online query stage, the output is translated to the predicted

communities through the Community Identification process as

described below.

6.6 Community Identification
For the attributed community search problem, we need to find ver-

tices having both dense structure and similar attributes to the query.

Thus on top of the online query stage described in Section 4.3 which

ensures connectivity with the query vertices, we also enhance the

connectivity between graph vertices sharing identical attributes by

a fusion graph 𝐺𝐹 = {V, E𝐹 } which combines the information of

structure graph 𝐺 = {V, E} and bipartite graph 𝐺𝐵 = {V, ˆF , E𝐵}.
To build the fusion graph, we link vertices with the same at-

tributes in the structure graph. The connectivity in the fusion graph

represents both the structure connectivity and attribute similarity.

Then the fusion graph 𝐺𝐹 is fed to Algorithm 1 for a constrained

BFS with the model output 𝒉𝑞 for community identification.

Example. Figure 5 shows the fusion graph for our running exam-
ple. We add a dashed blue edge between two vertices in the structure

1250

graph if they have the same attribute, e.g., vertices 7 and 8 are con-
nected by a dashed blue edge because they both have attribute “DL”.

6.7 Complexity Analysis
In order to analyze the time complexity of QD-GNN and AQD-
GNN, we first present the complexity of general GNN in Eq.(1).

This GNN aggregates neighbors’ features for every vertex with the

cost of

∑𝑛
𝑖=u 𝑑u, where 𝑑u is the degree of vertex u and 𝑛 is number

of vertices. Thus the complexity of general GNN is 𝑂 (|E |).
ForQD-GNN, Query Encoder and Graph Encoder have the same

time complexity of𝑂 (|E |) as general GNN. ForAQD-GNN, the time

cost of Attribute Encoder is also dependent on the sum of vertices’

degree in the bipartite graph with the complexity of 𝑂 (|E𝐵 |). The
aggregation operation in Feature Fusion, e.g., MAX, Concatena-

tion, etc., is implemented in parallel and the complexity is just

𝑂 (1). Suppose QD-GNN or AQD-GNN is a 𝑘-layer model with 𝑡

iterations, where 𝑘 = 3 and 𝑡 = 300 are typical settings. The com-

plexity of QD-GNN is 𝑂 (𝑘 × 𝑡 × |E|) in the model training stage

and 𝑂 (𝑘 × |E|) in the online query stage. Similarly, the complexity

of AQD-GNN is𝑂 (𝑘 × 𝑡 × (|E| + |E𝐵 |)) in the model training stage

and 𝑂 (𝑘 × (|E| + |E𝐵 |)) in the online query stage.

7 EXPERIMENTS
In this section, we present our experimental studies to validate the

performance of our framework with the three proposed models in

different scenarios. We first introduce the setup of our experiment

in Section 7.1. Then we evaluate the performance in both attributed

and non-attributed community search problem in Section 7.2. To

further verify the effectiveness of our models, we compare our

models with the interactive community search model ICS-GNN in

Section 7.3. Moreover, we evaluate the performance of our model

for ACS on large graphs in Section 7.4. Finally, we conduct the

ablation study in Section 7.5 to demonstrate the effectiveness of

Feature Fusion, the sensitivity test of the parameter 𝛾 , and the data

split ratio.

7.1 Experimental Setup
7.1.1 Data Sets. To thoroughly evaluate the performance of our

framework, we conduct experimental studies on 15 attributed graphs.

Table 1 reports the dataset statistics. The first six networks, Cornell,

Texas, Washington (Washt), Wisconsin (Wiscs), Cora and Citeseer,

are publication citation networks. Each attribute describes the ab-

sence/presence of one word in a publication. All these graphs can

be found at LINQS website
1
. Reddit [16] is an online discussion

website where each vertex is a post and an edge links two posts if

they have comments from the same user. Facebook [33] is a social

network where vertices are users and edges are friend relationships.

It contains 8 ego-networks with different attributes as shown in

Table 1. We consider each ego-network as an independent data set.

All data sets contain ground-truth communities.

7.1.2 Baseline Models. We compare our models with five state-

of-the-art approaches, including two non-attributed community

search algorithms: CTC [24] and 𝑘-ECC [6], two attributed commu-

nity search algorithms: ACQ [10] and ATC [22], and a GNN-based

interactive community search model ICS-GNN [14].

1
https://linqs.soe.ucsc.edu/data

Table 1: Dataset Statistics. |V| and |E | are the number of
vertices and edges. | ˆF | is the number of distinct attributes, 𝐾
is the number of communities and 𝐴𝑆 is the average size of
communities. Here, M= 10

6.

Data set |V | |E | | ˆF | |E𝐵 | 𝐾 𝐴𝑆

Cornell 195 283 1703 18496 5 39

Texas 187 280 1703 15437 5 37.4

Citation Washt 230 366 1703 19953 5 46

Networks Wiscs 265 459 1703 25479 5 53

Cora 2708 5278 1433 49216 7 386.86

Citeseer 3312 4536 3703 105165 6 552

Reddit 232965 114M 602 140M 50 4659.3

FB-0 348 2852 224 3348 24 13.54

FB-107 1046 27783 576 11827 9 55.67

Social FB-1684 793 14810 319 6131 17 45.71

Networks FB-1912 756 30772 480 8066 46 23.15

FB-3437 548 5347 262 4263 32 6

FB-348 228 3416 161 2398 14 40.5

FB-414 160 1843 105 1566 7 25.43

FB-686 171 1824 63 999 14 34.64

7.1.3 Query Setting. For each data set, we generate 𝑛𝑞 = 350 pairs

of input query set Q = {< V𝑞, F𝑞 >}𝑛𝑞
𝑞=1

and the corresponding

ground-truth community Y𝑞 . To generate the query vertex setV𝑞 ,
vertex sets containing 1-3 vertices are randomly selected from the

ground-truth community. To generate the query attribute set F𝑞 , we
design three different types as described below for fair comparison

with different existing CS and ACS methods. The query vertex set

and corresponding ground-truth communities are shared across

the three types of input queries.

• Empty attribute query (EmA). To compare with methods for

non-attributed community search, we set the attribute query set

empty (F𝑞 = ∅) and generate the EmA set QEmA = {< V𝑞, ∅ >}.
• Attribute from community (AFC). As suggested by [10, 22], to

construct the query attribute set (F𝑞 = F c

𝑞), we use 5 most com-

mon attributes in ground-truth communities. Therefore, we have

QAFC = {< V𝑞, F c

𝑞 >}. AFC is used to validate the contribution

of the attributes in the community search.

• Attribute from node (AFN). We simulate real queries provided

by users and select 5 most common attributes from attributes of

query vertices as the query attribute set, i.e, F𝑞 = F n

𝑞 . In other

words, F n

𝑞 may be unrelated to the ground-truth communities.

We construct the AFN set QAFN = {< V𝑞, F n

𝑞 >}. Obviously,
AFN is a more challenging setting and closer to the real scenarios.

7.1.4 Data Splitting. For each data set, we split 350 query-community

pairs into training data, validation data and test data with the ratio

of 150:100:100 by default. We use training data to train our models,

validation data to select the best weights during the training pro-

cess, and test data to measure the performance of all methods. In

the ablation study, we vary the data splitting ratio to evaluate its

influence on the performance.

7.1.5 Evaluation Metrics. Let 𝐷test = {Q, ˆC,Y} be the test data
set, where Q is the query set,

ˆC is the predicted community set by

a method and Y is the ground-truth community set. To measure

the quality of communities found by different methods, we employ

F1-score to evaluate the quality of the predicted set
ˆC. F1-score is

defined as:

𝐹1(ˆC,Y) = 2 · 𝑝𝑟𝑒 (ˆC,Y) · 𝑟𝑒𝑐 (ˆC,Y)
𝑝𝑟𝑒 (ˆC,Y) + 𝑟𝑒𝑐 (ˆC,Y)

1251

Figure 6: Non-attributed community search performance
comparison.

where 𝑝𝑟𝑒 (ˆC,Y) is the precision of predicted community set
ˆC on

the ground-truth community set Y, 𝑟𝑒𝑐 (ˆC,Y) is the recall of the
predicted communities:

𝑝𝑟𝑒 (ˆC,Y) =

∑
𝒄𝑞 ∈ ˆC 𝒄𝑞&𝒚𝑞∑
𝒄𝑞 ∈ ˆC

∑𝑛
𝑖=0 𝒄𝑞𝑖

, 𝑟𝑒𝑐 (ˆC,Y) =

∑
𝒄𝑞 ∈ ˆC 𝒄𝑞&𝒚𝑞∑

𝒚𝑞 ∈Y
∑𝑛
𝑖=0𝒚𝑞𝑖

.

Here, 𝒄𝑞 ∈ {0, 1}𝑛×1 and 𝑦𝑞 ∈ {0, 1}𝑛×1 are the predicted and

ground-truth community vectors for query 𝑞 respectively.

7.1.6 Implementation Details. In our models, we build three layers

with 128 neurons in the hidden layer. We train 300 iterations with a

learning rate of 0.001. In the Feature Fusion component, we choose

concatenate as the aggregation function in Eq. (6) and Eq. (11). In

each layer except the output layer, we employ ReLU as activation

function, batch normalization with batch size 4 and dropout rate

0.5 [38] for each branch.

7.2 Community Search Performance
We present comprehensive experiments to validate the query per-

formance of the three proposed models under two settings: non-

attributed community search, and attributed community search.

7.2.1 Non-attributed community search. In order to compare to

non-attributed community search algorithms, we generate the

multi-vertex queries set without query attributes QEmA, and com-

pare our three models Simple QD-GNN, QD-GNN, AQD-GNN
with CTC and 𝑘-ECC. Figure 6 shows the F1-score. We can ob-

serve that:

• CTC performs reasonably well in Facebook ego networks but

poorly in citation networks, since CTC searches communities

using the𝑘-truss subgraph pattern, whichmay fit the dense social

networks well, but does not fit the sparser citation networks.

• By capturing the local query structure only, Simple QD-GNN
can outperform ECC and CTC in citation networks and achieve

comparable performance in Facebook ego networks. It demon-

strates the learning-based models can apply to different types

of networks and discover communities with different structural

properties.

• QD-GNN can substantially outperform Simple QD-GNN by im-

proving the F1-score by 0.14 on average. It validates the effec-

tiveness of the query-independent graph features learned from

Graph Encoder.

• We also apply AQD-GNN to non-attributed community search,

where we set the query attribute set to empty, F𝑞 = ∅. Interest-
ingly, AQD-GNN can achieve the best performance in almost all

data sets in Figure 6. This is owing to the Feature Fusion operator

and Attribute Encoder design in AQD-GNN. Specifically, Fea-
ture Fusion can transmit graph information and query vertices

information to Attribute Encoder before the second layer. Then

Attribute Encoder can utilize the information from the second

layer and learn hidden relations between attributes.

7.2.2 Attributed community search. We compare AQD-GNN with

two attributed community search algorithms: ACQ and ATC. ACQ
can only handle one query vertex while ATC and our model AQD-
GNN can handle multiple query vertices. Thus we compare ACQ
and AQD-GNN for one-vertex queries in Figure 7a, and compare

ATC and AQD-GNN for multi-vertex queries in Figure 7b. We can

observe that:

• For Cora and Citeseer with large ground-truth communities

(hundreds of vertices in a community), the performances of ATC
and ACQ are quite poor (around 0.1 in F1-score). It is because

their pre-defined community patterns (i.e., 𝑘-core and 𝑘-truss)

are too strict to find large communities in the real-world graphs.

• AQD-GNN consistently performs the best on all data sets. As

a data-driven approach, AQD-GNN is capable of learning com-

munities with varied sizes and shapes. It performs stably on all

graphs benefiting from learning adaptive weight matrices for

different data sets.

• Compared to AFC, all methods suffer from performance degra-

dation under the AFN setting in most data sets, since AFC is a

more favorable setting where the query attribute set is directly ex-

tracted from themost common attributes of the ground-truth. For

example, in the Washington data set in Figure 7b, ATC achieves

0.275 F1-score under AFC, but only 0.033 under AFN.

• Under the more realistic but challenging AFN setting, we can

observe AQD-GNN achieves a significant performance improve-

ment over the baselines, with 0.46 and 0.53 improvements on

F1-score for one-vertex queries and multi-vertex queries respec-

tively. This is because AQD-GNN exploits the node-attribute

bipartite graph to find similar attributes, while the baselines sim-

ply require vertices in a community have identical attributes

with query attributes.

7.2.3 Query Efficiency. We evaluate the query efficiency of AQD-
GNN in the test set. Table 2 shows the average query time (in

milliseconds) of 100 test queries by AQD-GNN and baselines. The

last column reports the average query time among all data sets.

Overall, the query time AQD-GNN is much faster than that of all

baselines except ACQ . ACQ is a simple baseline which only allows

one query vertex and considers vertices’ degrees and common

attributes. Its query performance in terms of F1-score is very poor

as shown in Figure 7. It is worth noting that AQD-GNN achieves a

stable query time of around 5 milliseconds on all data sets, while the

query time of CTC, ECC and ATC increases significantly when the

graph is large. In particular,CTC takes almost 5, 000milliseconds for

a query on FB-1912, while AQD-GNN only costs 4.96 milliseconds.

This experiment shows that AQD-GNN is more suitable for online

search in real-world applications.

7.3 Interactive Community Search
ICS-GNN [14] is a recent GNN-based model for interactive commu-

nity search. Given a query, ICS-GNN returns an answer community.

If the user is not satisfied with the answer, he/she can give a feed-

back (e.g., adding some additional vertices), and then ICS-GNN will

respond with a revised answer. This interaction continues until

1252

(a) Compared with methods supporting one-vertex queries. (b) Compared with methods supporting multi-vertex queries.

Figure 7: Attributed community search performance compared with other approaches.

Table 2: Average query time (in milliseconds) of different community search methods.
Methods FB-414 FB-686 FB-348 FB-0 FB-3437 FB-1912 FB-1684 FB-107 Cornell Texas Washt Wiscs Cora Citeseer Average

Non- CTC 34.78 41.41 120.92 49.25 131.67 4903.38 604.67 2498.82 0.45 0.40 0.42 0.63 1.96 1.28 599.00

Attributed ECC 3.52 2.29 5.20 2.57 6.60 154.23 26.85 93.62 0.24 0.28 0.23 0.33 2.67 1.76 21.50

ACQ <0.01 <0.01 1.45 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.10

Attributed ATC 4.40 5.10 7.70 5.90 10.30 43.60 22.70 40.10 7.90 14.02 2.11 18.60 11.49 3.68 9.80

AQD-GNN 3.31 3.32 3.41 3.63 4.32 4.96 4.56 5.46 4.15 4.10 4.16 4.41 5.54 5.32 4.31

Table 3: F1-score (in %) and time cost (in seconds) of interactive community search methods on different networks.
Method FB-414 FB-686 FB-348 FB-0 FB-3437 FB-1912 FB-1684 FB-107 Cora Citeseer Reddit Average

F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time F1 Time

ICS-GNN 56.63 0.14 43.53 0.15 33.88 0.26 24.94 0.26 26.49 0.51 20.23 2.36 20.76 1.28 36.46 2.40 30.52 0.14 30.29 0.14 19.41 1.84 31.19 0.86

QD-GNN 62.02 0.14 44.28 0.14 34.74 0.26 31.07 0.27 27.38 0.52 21.10 2.45 24.79 1.31 38.39 2.49 32.56 0.12 31.53 0.12 21.29 1.68 33.56+2.37 0.87+0.01
AQD (AFN) 61.25 0.14 43.05 0.14 35.80 0.25 31.27 0.26 29.03 0.50 20.44 2.29 36.51 1.23 41.07 2.41 31.81 0.14 33.09 0.12 20.71 1.85 34.91+3.72 0.85−0.01
AQD (AFC) 57.34 0.14 38.87 0.14 35.35 0.25 35.63 0.26 30.22 0.50 37.52 2.29 37.91 1.23 49.67 2.41 33.19 0.14 31.77 0.12 24.86 1.85 37.48+6.29 0.85−0.01

the user is satisfied. In each interaction, ICS-GNN first finds a can-

didate subgraph, learns the vertex embedding through a Vanilla

GCN model [27] and finally employs a BFS based algorithm to

select 𝑘-sized community with the maximum GNN scores. Note

that ICS-GNN does not use any training queries with ground-truth

communities to train the model; for each user query, it re-trains the

GNNmodel to obtain the vertices’ embeddings only from the knowl-

edge of the given query. ICS-GNN only supports non-attributed

community search.

In this experiment, we replace the Vanilla GCN model [27] in the

ICS-GNN [14] with our community search models QD-GNN and

AQD-GNN to compare the performance of interactive community

search problem.

7.3.1 Performance in Effectiveness. We first use QD-GNN to re-

place the GNN model in ICS-GNN framework for non-attributed

community search. As shown in Table 3, QD-GNN outperforms

the original ICS-GNN in all data sets with 2.37% improvement in

F1-score. We also use AQD-GNN to replace the GNN model in ICS-

GNN so it supports interactive attributed community search. As

shown in Table 3, AQD-GNN further improves the F1-score of the

original ICS-GNN for all data sets by 3.72% (AFN) and 6.29% (AFC)

on average. This experiment proves that our QD-GNN and AQD-
GNN models are more effective than Vanilla GCN in the ICS-GNN

framework.

7.3.2 Performance in Efficiency. We report the average time of

community search per interaction by ICS-GNN,QD-GNN andAQD-
GNN in Table 3. The running time of the threemodels are very close.

Without increasing the time cost, we improve the performance of

ICS-GNN and extend it to support attributed interactive community

search problem.

Table 4: The performances of ACSmethods on large data sets.

Reddit Enlarged_Reddit

Methods Index/Train Query F1- Index/Train Query F1-

Time Time score Time Time score

ACQ 42.4 s 32.2 ms 0.53 852.7 s 5726.6 ms* 0.38

ATC #
- - - - - -

AQD-GNN 4993.6 s 6.7 ms 0.91 3898.5 s 5.3 ms 0.91
*
25 out of 100 queries are out of memory when processing. The query time

are the average of the rest 75 queries.

#
ATC did not finish building its index in 7 days on both two data sets.

7.4 ACS on Large Graphs
In this experiment, we evaluate the performance of our model for

ACS on large graphs. We design a subgraph training mechanism

to train our models on large graphs. We first select neighbors of

query vertices as the candidate subgraph for each query. According

to the number of neighbors, we select 1 or 2-hop neighbors in the

fusion graph described in Section 6.6. Then we train our model on

these small subgraphs and predict communities.

We compare AQD-GNN with ACQ and ATC for attributed com-

munity search on Reddit and an enlarged version of Reddit, denoted

as Enlarged_Reddit. To enlarge Reddit and preserve the ground-

truth communities at the same time, we add some new vertices for

edges within a community. A new vertex is linked to the two ends

of an edge, and the attributes of the new vertex are the average

attribute values of the two ends. The Enlarged_Reddit has 3.12M

vertices and 126M edges.

Table 4 reports the index/training time, query time and F1-score

of the discovered communities. ACQ takes only 42.4 seconds and

852.7 seconds to build index on Reddit and Enlarge_Reddit. But

in terms of the query time, it costs 32.2 milliseconds and 5726.6

milliseconds, while AQD-GNN only costs 6.7 milliseconds and 5.3

1253

(a) F1-score w/wo Feature Fusion.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
1
-s

c
o

r
e

Threshold Value

FB-107 Cora Citeseer FB-1912

(b) F1-score by varying 𝛾 .
Figure 8: Ablation studies for Feature Fusion and 𝛾 .

milliseconds respectively. It is worth noting that ACQ runs out

of memory for 25 out of 100 queries on a 300GB memory server.

This is because ACQ finds a 𝑘-core community with the largest 𝑘

containing the query vertices. The 𝑘-core community can be quite

large, for example, for a query vertex, ACQ first finds a 2-core

community with more than 800 thousand candidate vertices. The

average F1-score of ACQ is much lower than that of our method

in both data sets. ATC did not finish building its index in 7 days

and we treat it as timed out. From this experiment, we can see

that AQD-GNN achieves a good balance between training time and

query time in large graphs, and its F1-score is the best.

7.5 Ablation Study
In this section, we report the ablation studies of our models, includ-

ing the effectiveness of Feature Fusion, the sensitivity test of the

parameter 𝛾 , and the data split ratio in the attributed community

search task.

7.5.1 Ablation Study for Feature Fusion. In our model, we use the

aggregation result 𝒉𝐹𝐹 in Eq. (6) in QD-GNN and Eq. (11) in AQD-
GNN to fuse all information, and assign fused features to Query

Encoder and Attribute Encoder in Eq. (7) and Eq. (12). To verify the

effectiveness of Feature Fusion, we compare the originalAQD-GNN
and QD-GNN models with AQD-GNN-noFu and QD-GNN-noFu
where the encoders do not aggregate in the hidden layer. They only

aggregate after the last layer to output the final results.

The comparison results are shown in Figure 8a. For the non-

attributed community search problem, the effect of Feature Fusion

is more significant in citation networks than that in Facebook ego

networks. InQD-GNN, Feature Fusion aims to mix the global graph

information and local query knowledge. The Facebook ego net-

works themselves are local graphs. Therefore, Feature Fusion in

QD-GNN can only improve the model slightly on Facebook ego

networks. For ACS problem, AQD-GNN outperforms AQD-GNN-
noFu substantially in both Facebook ego networks and citation

networks. This is because Feature Fusion in AQD-GNN not only

fuses the global graph feature, local query structure and similar

attribute information at the same time, but also processes query

vertices and query attributes simultaneously through the updating

of Query Encoder and Attribute Encoder by fused features. This

fusion and updating operations significantly improve the results.

7.5.2 Ablation Study for the threshold 𝛾 . When translating the

model output vector ℎ𝑞 from R𝑛 to the community vertex set
ˆC𝑞

in Section 4.3, we use a threshold 𝛾 ∈ [0, 1] in the constrained

BFS in Algorithm 1: if ℎ𝑞𝑖 ≥ 𝛾 , then vertex v𝑖 ∈ ˆC, otherwise
v𝑖 ∉ ˆC. In above experiments, we choose 𝛾 which achieves the

best performance in the validation set. To analyze the impact of

the threshold, we vary 𝛾 from 0.05 to 0.95 and report the F1-score

in Figure 8b. When 𝛾 is between 0.3 and 0.7, there is very little

0.85

0.90

0.95

1.00

0 100 200 300 400

F
1
-s

c
o

r
e

Train

Cora FB-107 FB-414 Reddit

(a) Vary training set size.

0.85

0.90

0.95

1.00

0 100 200 300 400

F
1
-s

c
o

r
e

Validation

Cora FB-107 FB-414 Reddit

(b) Vary validation set size.
Figure 9: Ablation study for data split ratio.

fluctuation in the performance. Therefore, AQD-GNN is not very

sensitive to the selecting of this threshold 𝛾 .

7.5.3 Ablation Study for the data split ratio. In all the experiments

above, we fix the training/validation/test size ratio as 150:100:100.

To test the sensitiveness of data split ratio, we vary the training set

size from 50 to 350, and fix both the validation and test set size as

100. The results are plotted in Figure 9a. We also vary the validation

set size and fix the training set size as 150 and the test set size as

100. The results are plotted in Figure 9b.

When the training set size increases from 50 to 100, the F1-score

of all data sets has a notable increase, but when the training set

size further increases from 100 to 350, the F1-score remains quite

stable. When varying the validation set size, for Cora and FB-107

the F1-score remains stable; for FB-414 and Reddit, the F1-score

increases when the validation set size increases from 50 to 100, and

then remains stable afterwards.

This experiment shows that when the training/validation set is

very small, increasing the size can improve the performance; but

when the size is above 100, the performance remains stable.

8 CONCLUSIONS
In this paper, we propose the QD-GNN and AQD-GNN for non-

attributed community search and attributed community search

respectively. In QD-GNN, we first propose a query-driven compo-

nent to acquire queries directly and avoid the re-training process in

the existing GNN-based community search model ICS-GNN. Then

we combine the local query-dependent structure and global query-

independent vertex embedding. For attributed community search,

we model vertex attributes as a bipartite graph and further propose

the AQD-GNN model. To the best of our knowledge, AQD-GNN is

the first GNNmodel for attributed community search. Moreover, we

apply QD-GNN and AQD-GNN in the framework of ICS-GNN for

interactive attributed community search. Experiments demonstrate

that the proposed models outperform previous approaches signifi-

cantly. The proposed models are trained through historical queries

(training queries), then applied for online query. In the future, more

research on training query selection can be carried out to train the

model with limited training queries for large graphs. In addition,

as time goes by, more historical queries can be collected and the

model can be updated with them as training queries to improve its

performance. The model update mechanism is worth further study.

ACKNOWLEDGMENTS
The work was supported by grants from NSFC Grant No. U1936205,

the Research Grant Council of the Hong Kong Special Administra-

tive Region, China [Project No.: CUHK 14205618], Tencent AI Lab

RhinoBird Focused Research Program GF202101, and CUHK Direct

Grant No. 4055159. Additional funding was provided by the HK

RGC Grant Nos. 22200320 and 12200021.

1254

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-based community search: a truss-

equivalence based indexing approach. PVLDB 10, 11 (2017), 1298–1309.

[2] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial Attacks on

Node Embeddings via Graph Poisoning. In ICML. 695–704.
[3] Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou

Huang, and Wenwu Zhu. 2021. Not All Low-Pass Filters are Robust in Graph

Convolutional Networks. NeurIPS 34 (2021).
[4] Heng Chang, Yu Rong, Tingyang Xu,WenbingHuang, Somayeh Sojoudi, Junzhou

Huang, and Wenwu Zhu. 2021. Spectral graph attention network with fast eigen-

approximation. In CIKM. 2905–2909.

[5] Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng

Cui, Wenwu Zhu, and Junzhou Huang. 2020. A restricted black-box adversarial

framework towards attacking graph embedding models. In AAAI, Vol. 34. 3389–
3396.

[6] Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. 2015. Index-

based optimal algorithms for computing Steiner components with maximum

connectivity. In SIGMOD. 459–474.
[7] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

search of overlapping communities. In SIGMOD. 277–288.
[8] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search

of communities in large graphs. In SIGMOD. 991–1002.
[9] Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng.

2020. GraphZoom: A multi-level spectral approach for accurate and scalable

graph embedding. ICLR (2020).

[10] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective

community search for large attributed graphs. PVLDB 9, 12 (2016), 1233–1244.

[11] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. VLDBJ
29, 1 (2020), 353–392.

[12] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface

prediction using graph convolutional networks. In NeurIPS. 6530–6539.
[13] Hongyang Gao and Shuiwang Ji. 2019. Graph U-Nets. In ICML. 2083–2092.
[14] Jun Gao, Jiazun Chen, Zhao Li, and Ji Zhang. 2021. ICS-GNN: lightweight

interactive community search via graph neural network. PVLDB 14, 6 (2021),

1006–1018.

[15] Arushi Goel, Keng Teck Ma, and Cheston Tan. 2019. An End-to-End Network

for Generating Social Relationship Graphs. In CVPR. 11186–11195.
[16] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1025–1035.
[17] Chaoyang He, Tian Xie, Yu Rong, Wenbing Huang, Junzhou Huang, Xiang Ren,

and Cyrus Shahabi. 2019. Cascade-bgnn: Toward efficient self-supervised repre-

sentation learning on large-scale bipartite graphs. arXiv preprint arXiv:1906.11994
(2019).

[18] Chaoyang He, Tian Xie, Yu Rong, Wenbing Huang, Yanfang Li, Junzhou Huang,

Xiang Ren, and Cyrus Shahabi. [n.d.]. Bipartite graph neural networks for

efficient node representation learning. arXiv preprint arXiv:1906.11994 ([n. d.]).
[19] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2016.

Querying minimal steiner maximum-connected subgraphs in large graphs. In

CIKM. 1241–1250.

[20] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive

Sampling Towards Fast Graph Representation Learning. In NeurIPS. 4558–4567.
[21] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.
[22] Xin Huang and Laks VS Lakshmanan. 2017. Attribute-driven community search.

PVLDB 10, 9 (2017), 949–960.

[23] Xin Huang, Laks VS Lakshmanan, and Jianliang Xu. 2017. Community search

over big graphs: Models, algorithms, and opportunities. In ICDE. 1451–1454.

[24] Xin Huang, Laks VS Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Ap-

proximate closest community search in networks. PVLDB 9, 4 (2015), 276–287.

[25] Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. 2019. Community Search
over Big Graphs. Morgan & Claypool Publishers.

[26] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In ICML. PMLR, 448–456.

[27] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[28] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-Attention Graph Pooling.

In ICML. 3734–3743.
[29] Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wen-bing Huang, and Junzhou Huang.

2019. Semi-Supervised Graph Classification: A Hierarchical Graph Perspective.

InWWW. 972–982.

[30] Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. 2018. Community Detec-

tion in Attributed Graphs: An Embedding Approach. In AAAI. 338–345.
[31] Hehuan Ma, Yatao Bian, Yu Rong, Wenbing Huang, Tingyang Xu, Weiyang Xie,

Geyan Ye, and Junzhou Huang. 2022. Cross-Dependent Graph Neural Networks

for Molecular Property Prediction. Bioinformatics (2022).
[32] Yao Ma, Suhang Wang, Charu C. Aggarwal, and Jiliang Tang. 2019. Graph

Convolutional Networks with EigenPooling. In KDD. 723–731.
[33] Julian J. McAuley and Jure Leskovec. 2012. Learning to Discover Social Circles

in Ego Networks. In NeurIPS. 548–556.
[34] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,

and Junzhou Huang. 2020. Self-supervised graph transformer on large-scale

molecular data. NeurIPS 33 (2020), 12559–12571.
[35] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:

Towards Deep Graph Convolutional Networks on Node Classification. In ICLR.
[36] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.

2019. End-to-End Structure-Aware Convolutional Networks for Knowledge Base

Completion. In AAAI. 3060–3067.
[37] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In KDD. 939–948.
[38] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. JMLR 15, 1 (2014), 1929–1958.

[39] Damian Szklarczyk, Andrea Franceschini, Stefan Wyder, Kristoffer Forslund,

Davide Heller, Jaime Huerta-Cepas, Milan Simonovic, Alexander Roth, Alberto

Santos, Kalliopi P Tsafou, et al. 2015. STRING v10: protein–protein interaction

networks, integrated over the tree of life. Nucleic acids research 43, D1 (2015),

D447–D452.

[40] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019.

KGAT: Knowledge Graph Attention Network for Recommendation. In KDD.
950–958.

[41] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. 2020. AM-

GCN: Adaptive Multi-channel Graph Convolutional Networks. In SIGKDD. 1243–
1253.

[42] Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. 2019. A Vec-

torized Relational Graph Convolutional Network for Multi-Relational Network

Alignment. In IJCAI. 4135–4141.
[43] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. 2021.

Graph Information Bottleneck for Subgraph Recognition. In ICLR.
[44] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2017. Index-

based densest clique percolation community search in networks. TKDE 30, 5

(2017), 922–935.

[45] Kangfei Zhao, Jeffrey Xu Yu, Hao Zhang, Qiyan Li, and Yu Rong. 2021. A Learned

Sketch for Subgraph Counting. In SIGMOD. 2142–2155.
[46] Kangfei Zhao, Zhiwei Zhang, Yu Rong, Jeffrey Xu Yu, and Junzhou Huang. 2021.

Finding critical users in social communities via graph convolutions. TKDE (2021).
[47] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust Graph

Convolutional Networks Against Adversarial Attacks. In KDD. 1399–1407.

1255

