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ABSTRACT
Graph neural networks (GNNs) have shown excellent performance
in a wide range of applications such as recommendation, risk con-
trol, and drug discovery. With the increase in the volume of graph
data, distributed GNN systems become essential to support efficient
GNN training. However, existing distributed GNN training systems
suffer from various performance issues including high network
communication cost, low CPU utilization, and poor end-to-end
performance. In this paper, we propose ByteGNN, which addresses
the limitations in existing distributed GNN systems with three key
designs: (1) an abstraction of mini-batch graph sampling to support
high parallelism, (2) a two-level scheduling strategy to improve re-
source utilization and to reduce the end-to-end GNN training time,
and (3) a graph partitioning algorithm tailored for GNN workloads.
Our experiments show that ByteGNN outperforms the state-of-
the-art distributed GNN systems with up to 3.5-23.8 times faster
end-to-end execution, 2-6 times higher CPU utilization, and around
half of the network communication cost.
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1 INTRODUCTION
Existing systems for neural network training, such as TensorFlow [5]
and PyTorch [54], are designed for training euclidean data such as
images, texts and audio data. In recent years, a new type of neural
networks, called graph neural networks (GNNs), become popular
because of the ubiquity of graph data today such as semantic web
graphs, knowledge graphs, social networks, and e-commerce net-
works. GNNs combine the non-euclidean graph structures with tra-
ditional neural networks to extract rich information from graph data
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for machine learning. Recent research results [16, 31, 43, 64, 71, 75]
have shown that GNNs achieve significant performance improve-
ments over traditional methods on many important tasks such as
node classification, link predication, and graph clustering. GNNs
have been applied in a broad range of applications including rec-
ommendation systems [52, 75], computer vision [50, 58], natural
language processing [55, 73], drug discovery [24], and social net-
works [68].

Although many graph computing systems [8, 9, 18, 22, 27, 42, 49,
51, 67, 72, 79, 81] have been proposed, they are designed for batch
graph analytics workloads such as the computation of PageRank,
shortest paths, label propagation and connected components, and
thus they lack of operators for neural network training. Thus, ded-
icated GNN systems have been developed upon neural network
training systems (e.g., TensorFlow, PyTorch) for GNN training.

Among existing GNN systems, most of them are still single-
machine systems, e.g., DGL [66], PyTorch Geometric (PyG) [21],
NeuGraph [48], FeatGraph [33] and Seastar [70], which are opti-
mized for training GNN models on a relatively small graph but
cannot scale to process large graphs generally available in industry
today. Note that for GNNs, a graph not only contains the graph
topology information (which is typically used for computations
such as PageRank, shortest paths, etc.), but each vertex and edge
in the graph also contain a feature vector. Thus, depending on the
dimensions of the feature vectors (typically around 100 to hun-
dreds), the size of a graph for GNNs can be easily many times larger
than the graph topology processed by existing graph computing
systems. For example, for the Ogbn-Papers [32] graph used in our
experiments, a feature vector has 128 dimensions and the size of
the features is 4 times larger than the size of the graph topology.

For GNN training on large graphs, distributed systems such
as Euler [1], GraphLearn (also called AliGraph) [80], AGL [77]
and DistDGL [78] have been proposed. During the training, these
systems collect and aggregate the feature vectors of the 𝐾-hop
neighbors in order to compute the feature vector of each vertex,
where 𝐾 is the number of layers of the GNN model to be trained.
However, the 𝐾-hop neighbors of a vertex can be many, especially
for a power-law graph, and a large portion of them can be located
in remote machines. Thus, fetching all the 𝐾-hop neighbors to a
local machine for each vertex (referred to as full mini-batch train-
ing) incurs high network communication overheads and memory
consumption.

To address the problem of full mini-batch training, mini-batch
sampling training was proposed [13, 31, 34], which works as
follows. Distributed GNN training is conducted in iterations and
for each iteration, a machine processes a mini-batch of vertices in
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Figure 1: Sampling and training time of GraphLearn

its partition in two phases: (1) the sampling phase — for each
vertex 𝑣 in the mini-batch, the sampler samples a limited number of
neighbors of 𝑣 in each hop, fetches the sampled remote neighbors
to the local machine, and constructs the neighborhood subgraph
of 𝑣 from its sampled neighbors locally; (2) the training phase —
the trainer trains the model on the neighborhood subgraphs of the
vertices in the mini-batch locally.

While distributed mini-batch sampling has become the default
method for GNN training on a large graph (for which full-batch
training and full mini-batch training are not practical), existing
distributed GNN training systems suffer from a number of per-
formance problems. One main problem is that sampling can take
significantly longer time to complete than training, due to large
amounts of random data access and remote data fetching involved in
the sampling phase. For example, Figure 1 reports the average sam-
pling time and training time in an epoch of training a 2-layered and
3-layered GraphSAGE model (both supervised and unsupervised)
on four machines by GraphLearn [80] on the Reddit dataset [31]
and Ogbn-Product dataset [32], which shows that the sampling
phase takes an order of magnitude longer time than the training
phase. For example, in the 2-layer supervised GraphSAGE training
on Ogbn-Product, GraphLearn’s training time is only 2.66s while
its sampling time is 24.17s. Under the same setting, the sampling
time of DistDGL [78] is also 4.22x of its training time.

The imbalance between the sampling and training phases also
leads to the under-utilization of computing resources and the prob-
lem is worsen if GPUs are used for training (which further widens
the gap between the sampling and training time) [59]. To address
this imbalanced computing pattern in mini-batch GNN training, ex-
isting systems have attempted to apply neighborhood caching [46]
and fixed size prefetching [78] to shorten the sampling time. How-
ever, it is difficult to set the right hyper-parameters (i.e., cache ratio
and prefetching number) for training different GNN models on
different graphs. Nextdoor [36] proposed to sample neighborhood
using GPUs, but the GPU memory capacity limits the size of the
graph it can handle. Graph partitioning has also been applied to
reduce the cost of remote data fetching [80]. However, existing
graph partitioning algorithms are designed for traditional graph
workloads (e.g., distributed PageRank) and they do not consider the
data access pattern and load balancing in GNN training.

In this paper, we propose ByteGNN, a distributed GNN training
framework to support fast end-to-end GNN training in large graphs.
To improve the efficiency of sampling, we abstract the sampling
phase of a mini-batch as a directed acyclic graph (DAG) of small
tasks, so that we can run DAGs and tasks within each DAG in
parallel. The fine-grained task abstraction in DAG modeling also
leads to the design of a two-level scheduling. First, coarse-grained
scheduling determines howmuch resources should be used for mini-
batch sampling, in order to dynamically adjust the computation
loads between the sampling and training phases to avoid resource
contention and maximize CPU utilization. Then, fine-grained sched-
uling decides the execution order of tasks in the DAGs in order
to pipeline the sampling outputs to be consumed by the training
phase at the right pace. The two scheduling strategies work together
to minimize the end-to-end GNN training time. We also propose
an effective graph partitioning algorithm tailored for mini-batch
graph sampling, which maintains the data locality according to
the data access pattern of mini-batch sampling and balances the
computation loads in the training, validation and testing stages.

We implemented ByteGNN based on GraphLearn [4]. Our per-
formance evaluation shows that ByteGNN achieves significantly
higher training throughput and is more scalable than the state-of-
the-art distributed GNN systems. Experimental results show that
ByteGNN achieves up to 23.8x speedup over GraphLearn and 3.5x
over DistDGL. The results verify that our system designs lead to
efficient GNN training.

2 BACKGROUND AND MOTIVATION
We first introduce the necessary background of GNN and briefly
discuss sampling-based GNN training. Then, we motivate our work
by presenting the limitations of existing systems for large-scale
GNN training.

2.1 Graph Neural Networks
GNN models are designed to capture the information contained in
both the relationship among vertices in a graph and the vertex/edge
attributes. The core idea of GNNs is recursively aggregating the
neighbor information, including the features of the neighbors and
the features of the connecting edges, and then applying feature
transformation functions.

Take the GraphSAGE model [31] as an example. The training
process for one layer of the model can be expressed as follows:

ℎ𝑘N(𝑣) ← 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸𝑘 ( {ℎ𝑘−1𝑢 , ∀𝑢 ∈ N(𝑣) }), (1)

ℎ𝑘𝑣 ← 𝜎 (𝑊 𝑘 ·𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘−1𝑣 , ℎ𝑘N(𝑣) )), (2)

where N(𝑣) is the set of neighbors of vertex 𝑣 . In this 𝑘-th con-
volution layer, each vertex 𝑣 first uses the AGGREGATE function
to collect the feature vectors of 𝑣 ’s neighbors from the (𝑘 − 1)-th
layer. The aggregation result is then concatenated with 𝑣 ’s feature
vector from the (𝑘−1)-th layer, followed by a dot-product operation
with a learnable weight matrixW. The dot-product result is further
transformed by a nonlinearity activation function 𝜎 such as the
sigmoid function, which gives the feature vector of 𝑣 for the 𝑘-th
layer.

As the number of layers increases, the vertices are required to
gather and aggregate more and more information from neighbors
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that are farther away (i.e., expanding from the 𝑖-hop neighbors to
the 𝑗-hop neighbors for 𝑗 > 𝑖). When the training for all the 𝐾
layers completes (for a user-specified 𝐾), the final feature vector
ℎ𝐾𝑣 for each vertex 𝑣 is fed into a mapping function for a specific
downstream task (e.g., node classification, link prediction).

2.2 Distributed Mini-Batch Graph Sampling
Existing distributed GNN systems adopt data parallelism and sam-
pling is commonly applied in order to train a GNN model on a large
graph efficiently. However, the sampling process in distributed GNN
training is quite different from that in training DNN models for
computer vision and natural language processing, for which each
sample is independent and small. For GNNs, the distributed training
may access the entire neighborhood of a sampled vertex, including
both vertices and edges along with their feature vectors. Due to the
structural connection among vertices in different partitions, the
data access pattern usually leads to high network communication
cost.

In a 𝐾-layered GNN model, for each sampled seed vertex 𝑣 , we
need to obtain the 𝐾-hop neighborhood of 𝑣 to construct a neigh-
borhood subgraph to update 𝑣 ’s feature vector. As most real-world
graphs have a power-law degree distribution, the size of the 𝐾-hop
neighborhood subgraph of a vertex grows exponentially as the
number of hops increases. To address this problem, mini-batch
neighborhood sampling [46, 78, 80] has been used to sample a
limited number of neighbors for each sampled seed vertex. Figure 2
illustrates how mini-batch graph sampling is applied in the training
of a 2-layered GNN model. We show the sampled 2-hop neighbor-
hood subgraphs of two seed vertices, 𝑣1 and 𝑣2, where we set the
sampling configuration 𝐷1 = 2 and 𝐷2 = 2, meaning that a vertex 𝑣
first samples at most 𝐷1 of its 1-hop neighbors, and then each 𝑢 of
𝑣 ’s sampled 1-hop neighbors further samples 𝐷2 of 𝑢’s neighbors.
Remote sampling requests are sent to remote devices to access the
𝑖-hop neighbors that are stored there. After the sampling finishes,
the sampled neighbors, along with their attributes (which are used
to construct the initial feature vectors), are fetched to the local
device of 𝑣1 (and 𝑣2) to construct its sampled 2-hop neighborhood
subgraph, which is then fed into the GNN model to calculate the
gradients and update the model parameters.

Although the tradeoff is a potential loss in the model accuracy,
mini-batch graph neighborhood sampling still converges to the
required model accuracy. Take the mean aggregator in Graph-
SAGE [31] as an example, using the Monte Carlo estimation, for
the layer 𝑘 , we obtain:

E[ℎ𝑘N𝑠 (𝑣) ] = E[
1

|N𝑠 (𝑣) |
∑︁

𝑢∈N𝑠 (𝑣)
ℎ𝑘−1𝑢 ] = 1

|N (𝑣) |
∑︁

𝑢∈N(𝑣)
ℎ𝑘−1𝑢 = ℎ𝑘N(𝑣) ,

whereN𝑠 (𝑣) is the set of random sampled neighbors of vertex 𝑣 and
|N𝑠 (𝑣) | = 𝐷𝑘 , which is the fanout of layer 𝑘 . Unfortunately, though
ℎ𝑘N𝑠 (𝑣) is an unbiased estimator of ℎ𝑘N(𝑣) , ℎ

𝑘
𝑣𝑠

is not an unbiased

estimator of ℎ𝑘𝑣 due to the non-linearity of 𝜎 (·) in Equation (2)
[14]. Thus, the gradient is biased and the convergence of SGD
is not guaranteed, unless the fanout 𝐷𝑘 goes to infinity. But in
practice, GraphSAGE sets𝐷1 = 25 and𝐷2 = 10 to provide statistically
significant gains over existing approaches [43, 56]. In addition,
AGL [77] also reported that with a suitable sample size, the sample
can well approximate the ground truth.
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Figure 2: 2-hop mini-batch graph sampling
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2.3 Limitations of Existing GNN Systems
Existing systems for distributed GNN training suffer from the fol-
lowing major limitations.

(1) The overhead of network communication is large. As
the sampling procedure shows in Section 2.2, for every sampled seed
vertex 𝑣 in each iteration, we need to construct 𝑣 ’s 𝐾-hop neighbor-
hood subgraph together with the feature vectors of the vertices and
edges in the subgraph. For example, in a 3-hop neighborhood sub-
graph where the sampling configuration is set at 𝑘1 = 15, 𝑘2 = 10
and 𝑘3 = 5 in the Reddit dataset [31], there are 915 vertices each
with a 602-dimension feature vector, which are what we need to
prepare for one sampled seed vertex. As many of the neighbors
and their features may be stored in remote machines, the 𝐾-hop
neighborhood subgraph construction incurs a high network com-
munication overhead. Figure 13(a) shows that the number of remote
vertices is about six times that of local vertices with the widely used
Hash partitioning. In fact, existing graph partitioning algorithms
only consider to reduce the inter-partition edges, but do not con-
sider the data access pattern and load balancing of graph sampling
in GNN training. This calls for a new design of a more effective
graph partitioning strategy tailored for GNN training.

(2) CPU utilization is low. Our performance profiling shows
that existing distributed GNN systems had poor CPU utilization as
shown in Figure 3. By analyzing their system designs, we list the
main causes to their low CPU utilization below.
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The sampling phase of GraphLearn [80] is handled using the
Gremlin semantics [2, 3] to express each sampling step. For each
step, the Gremlin statement is translated by a parser and converted
into several execution operations. An operation is a minimum ex-
ecution unit in GraphLearn. GraphLearn has low CPU utilization
since all the graph sampling operations within each device do not
overlap with each other. DistDGL [78] takes a similar approach but
also has many optimizations such as replicating the neighbors of
its local vertices.

Euler [1], on the other hand, wraps each graph operator into one
TensorFlow dataflow operator. This design is convenient for users
to build the whole computation graph in TensorFlow. However, as
all the sampling operators and the training operators are contained
in one big computation dataflow graph, existing deep learning
systems (including TensorFlow) cannot process it efficiently. It
is difficult to have the optimal execution order for the dataflow
graph with the newly defined graph sampling operators, which is
totally different from the normal tensor computation. Besides, due
to the convergence requirement, TensorFlow only runs one dataflow
graph at a time. Each iteration always starts graph sampling after
the previous training process finishes. This design also eliminates
the opportunities to apply the data prefetching mechanism to the
independent sampling stages.

(3) GPU does not bring enough benefit for GNN training in
large graphs. As mentioned in Section 1, distributed GNN training
on large graphs consists of the sampling phase and training phase.
Due to limited GPU memory capacity, graph data are stored in
the host memory of the machines and thus the sampling phase is
conducted by CPUs. When GPUs are used to conduct the training
phase, the sampling results are loaded into GPU memory from
CPU host memory via PCIe links. As shown in [46, 59], even in
the case of single-machine GNN training using GPU (i.e., data are
not fetched through network), the sampling and data loading time
still take a significant portion of the end-to-end training time. The
training phase can indeed be accelerated using GPUs (compared
with using CPUs), but this only reduces the model updating time
while the sampling phase still dominates the overall processing cost.
This is because most GNN models are considerably small (unlike
DNN models) and the training phase only needs to conduct model
computation on densely packed vectors, while sampling a large
graph involves large amounts of random data access and remote
data fetching in order to construct the neighborhood subgraph for
each sampled seed vertex.

We evaluated the performance of DistDGL [78] on a GPU server
(40 cores Intel(R) Xeon(R) Silver 4114 CPU@ 2.20GHz, 256 GBMem-
ory, and one Nvidia RTX 2080Ti graphics card). We tested DistDGL
with different fanout and hidden sizes to show the influence from
the workloads of sampling and training. As Figure 4 shows, the
largest difference in epoch time is only 10% between using GPU
and using CPU. The average GPU utilization for GNN training is
only around 20%, which is consistent with the GPU utilization of
DGL reported in [46]. In fact, even if we purely use CPUs for the
training phase, the sampling phase still dominates the overall cost
as we have shown in Figure 1. In addition, we also need to consider
the operational costs. GPU servers are expensive and GPU quota
is more restricted to training DNNs even in big companies like
ByteDance. In the cloud environment, Dorylus [61] also shows that
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Figure 4: The epoch time of DistDGL with different hidden
sizes and fanout on the Ogbn-product dataset
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GPU-based training is only cost-effective for small, dense graphs.
All the above concerns therefore divert our focus to designing a
CPU-based framework for large-scale GNN training.

Motivation summary. The analysis above motivates us to
design (1) a computation paradigm that uses only CPUs and aims
to maximize CPU utilization by adaptively allocating computing
resources to the sampling and training phases according to their
needs, and (2) a new graph partitioning algorithm in order to reduce
massive network communication caused by graph sampling in GNN
training.

3 SYSTEM DESIGN
Figure 5 shows the architecture of ByteGNN, which consists of
four main components in each machine where ByteGNN is de-
ployed. Graph Store stores a partition of the input graph data
and the Graph Stores of all machines form a distributed Graph
Store. PS is a parameter server that stores the model parameters.
Sampling Worker (S-Worker), handles the sampling phase and
constructs sampled neighborhood subgraphs for sampled seed ver-
tices. Training Worker (T-Worker), handles the training phase,
which computes model gradients on the sampled neighborhood
subgraphs constructed by the S-Worker in the same machine and
synchronizes the gradients with PS to update the model parameters.

In Sections 3.1-3.3 we focus on three key designs in ByteGNN,
which address the limitations of existing GNN systems discussed
in Section 2.3.
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3.1 Abstraction of Mini-Batch Graph Sampling
The sampling process in existing GNN systems [21, 78, 80] is not
well-organized as the tasks in each sampling phase are executed
without overlapping, which often leads to CPU under-utilization.
In addition, sampling is conducted for one iteration (i.e., one mini-
batch) after another, even though different mini-batches are in-
dependent of each other. To support parallel sampling within a
mini-batch and among mini-batches, so as to maximize CPU uti-
lization, we model the sampling process as a DAG of tasks. Then,
we can execute the DAGs of sampling multiple mini-batches in
parallel. We also introduce a scheduler in Section 3.2 to effectively
utilize the computing resources for both intra-DAG and inter-DAG
parallelization, while balancing the loads between sampling and
training so that one is not waiting for the other to finish in order
to continue.

To construct this DAG for a general GNN model, we analyzed
the sampling phase of a broad range of existing GNN models, i.e.,
those that follow a similar neighborhood aggregation as described
in Section 2.1, which cover most of the widely-adopted models such
as GCN [43], GAT [64], GraphSAGE [31], PinSAGE [75], and Graph-
SAINT [76]. We provide a common abstraction for the sampling
phase of these GNN models with a set of five operators: (1) Seed
Sampler: sampling a set of vertices as seeds from the local graph
store; (2) Positive Sampler: sampling vertices from the direct
neighbors of each seed; (3) Negative Sampler: sampling vertices
from those that are not the direct neighbors of each seed; (4)Neigh-
borhood Subgraph Construction (NSC): sampling vertices from
the multi-hop neighborhood of a given vertex and constructing the
sampled neighborhood subgraph; (5) Feature Fetching: fetching
the attributes of a given vertex/edge to construct its feature vector.

With the above five operators, we can present the workflow of
the sampling phase as a DAG, as shown in Figure 6. The DAG on the
left of Figure 6 models supervised training, which consists of three
tasks: Seed Sampling, NSC, and Feature Fetching. For unsupervised
training, we also need to construct the neighborhood subgraphs of
each positively and negatively sampled vertices of the seed vertices,
as shown in the DAG on the right of Figure 6. The three branches
in the DAG for unsupervised training can be executed in parallel,
and the results are then collected in the “End” node to be fed into a
T-Worker for training.

To enable higher parallelism for both supervised and unsuper-
vised training, we create an instance of the two dominating oper-
ations (i.e., NSC and Feature Fetching, as they access multi-hop
neighbors and their attributes) for each sampled vertex and execute
these instances in parallel. In addition, as NSC (along with Feature
Fetching) is executed repeatedly for each hop of neighborhood ex-
pansion, we can break the multi-hop operations into many smaller
tasks of one-hop operations. As shown in Figure 6, each small task
of Feature Fetching can start immediately when the corresponding
small NSC task finishes. The more fine-grained task abstraction
results in higher parallelism and better resource utilization (e.g., less
head-of-line blocking and stragglers, less fragmentation in resource
utilization).

To construct a DAG, users only need to specify the customized
sampling functions in Seed Sampler, Positive Sampler, Negative
Sampler, and also in NSC (e.g., how and how many neighbors in
each hop should be sampled). This design also leaves space for
researchers and engineers to explore new, high-quality sampling
strategies using the framework. Note that the logical DAG is created
only once and physical instances are generated and executed for
each mini-batch by the S-Workers.

3.2 Two-Level Scheduling
ByteGNN adopts a two-level scheduling strategy to improve CPU
utilization and reduce the end-to-end GNN training time. Although
many scheduling strategies have been proposed, they are mostly for
job scheduling at the cluster level [17, 19, 20, 25, 28–30, 35, 40, 47,
57, 60, 63, 74] or heterogeneous jobs/tasks in dataflow systems [39],
which are over-complicated and incur extra overheads for schedul-
ing the simple tasks in our system (note that for the training of a
GNN model, we only need to schedule instances of the same DAG
instead of many different DAGs).

Coarse-grained scheduling. The S-Worker in each machine
executes multiple DAGs in parallel to increase throughput and
reduce the end-to-end GNN training time. The first question we
need to answer is how many DAGs should be launched in a ma-
chine. If we launch too many DAGs, which means more resource is
needed by sampling, then resource contention becomes a problem.
Resource contention does not just occur among the DAGs, but also
between sampling (i.e., DAG execution) and training (i.e., model
computation). The training time increases significantly when too
many DAGs are launched. On the other hand, if too few DAGs are
running, the resource is under-utilized. The training phase finishes
quickly and the next iteration’s training waits for the neighborhood
subgraphs to be produced by the DAGs.

To control the resource utilization, we need to decide when to
launch a DAG. We can model this problem as a variation of the
classical Job-Shop Scheduling Problem (JSP) [7]. Each DAG can
be regarded as a job, where a set of operations (tasks) in each
job need to be processed in a specific order, and we have a set of
jobs that are to be processed on a given set of workers. Knowing
the best timing for DAG launching is equivalent to getting the
earliest starting time of each job in the solution to this special
Job-Shop Scheduling Problem. The Job-Shop Scheduling Problem
has been well studied and to find a schedule that minimizes the
makespan or minimizes the sum of the job completion time was
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Algorithm 1: The Coarse-Grained Scheduling Strategy
Variable:𝐶util ,𝑄size ,𝑇𝑔𝑎𝑝
Given: 𝜎=launch-score
while more_dag do

//more_dag=1 when more DAGs can be launched
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =

𝑇avg_sample
𝑇avg_train∗Qsize

;

𝑓 (𝐶util) = (101 − 𝑒𝐶𝑢𝑡𝑖𝑙 /𝑐 ) , where 𝑐 = 100
ln101 ;

launch-score =𝑇𝑔𝑎𝑝 * 𝑓 (𝐶util) * 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ;
if launch-score ≥ 𝜎 then

more_dag = Launch_DAG();
// launches a new DAG; returns 0 when no more DAG to
launch
𝑇𝑙𝑎𝑠𝑡_𝑙𝑎𝑢𝑛𝑐ℎ =𝑇𝑖𝑚𝑒 () // used to calculate𝑇𝑔𝑎𝑝

else
sleep(5ms);

end
end

proved to be strongly NP-hard [11]. Some new research also shows
that the currently best approximation algorithms have worse than
logarithmic performance guarantee [26].

We propose a heuristic strategy to decide when to launch a DAG
based on three runtime measures: 𝐶util , 𝑄size , and 𝑇gap .
𝐶util is the CPU utilization rate. If 𝐶util is low, we may launch a

new DAG; otherwise, we may wait until 𝐶util drops to a suitable
level. Note that high 𝐶util does not necessarily result in better per-
formance because there could be much contention and switching
among DAGs and between sampling and training.

In addition to CPU utilization, We also need to consider the mem-
ory footprint. The neighborhood subgraph constructed from each
DAG execution is kept in the DAG output queue in the S-Worker
and𝑄size is the size of this queue. The neighborhood subgraphs are
then consumed by the T-Worker for training. Thus, 𝑄size is essen-
tially an indicator of the speed of production (by the S-Worker) and
the speed of consumption (by the T-Worker) of the neighborhood
subgraphs. If 𝑄size is small, we may launch new DAGs; otherwise,
we pause the launching. If 𝑄size is large, it implies an over-supply
of neighborhood subgraphs and we may shift more computing re-
source from sampling to accelerate training. Thus, 𝑄size not only
controls the memory usage, but also balances the overall resource
usage between sampling and training.

We also found that the real-time measure for𝐶util is not sensitive
enough since newly launched DAGs may not change the CPU
utilization in a short time period and many DAGs may be launched
during the period. Later, when the tasks in these DAGs start to
run in parallel and use up the computing resource, the system
suffers from severe resource contention. To avoid such delayed
performance punishments, we introduce 𝑇gap , which is the time
gap elapsed since the previous DAG launch. If 𝑇gap is too small, we
may want to wait for a bit longer before we launch a new DAG.

It would be undesirable if users need to set the thresholds for the
three measures, as it is hard to determine what values of𝐶util ,𝑄size ,
and 𝑇gap are good and how to relate them to each other. To this
end, we integrate them into one single score, launch-score, to decide
whether we should launch a new DAG. The idea is to maintain the
balance between the production speed and the consumption speed

of neighborhood subgraphs, while keeping CPU utilization high.
Ideally, we hope that the output of each DAG will be consumed
immediately by the training phase, which means that 𝑄size should
be close to 0 all the time. However, in most of the cases a very low
𝑄size happens with a very low𝐶util . Thus, we need to consider𝑄size
together with 𝐶util .

Algorithm 1 shows the algorithm for coarse-grained scheduling.
First, we want to maintain 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =

𝑇avg_sample
𝑇avg_train∗𝑄size

= 1, where
𝑇avg_sample and 𝑇avg_train are the average time for sampling and
training a mini-batch. If balance > 1, it means that it would take
less time to consume the current 𝑄size sampling results than to
produce a new sampling result, which is an indicator that a new
DAG should be launched. Next, we first attempt to use (100−𝐶util)
to give a higher weight to balance if𝐶util is low and penalize balance
(i.e., delay new DAG launching) when𝐶util is high. However, simply
using (100−𝐶util) does not work well as it is a linear scale. Instead,
we want to quickly increase CPU utilization when 𝐶util is low and
prevent contention promptly when𝐶util is already very high. Thus,
we use an exponential function, 𝑓 (𝐶util) = 101 − 𝑒𝐶util/𝑐 , where
𝑐 = 100

𝑙𝑛101 is a constant used to align the range of 𝑓 (𝐶util) with that
of𝐶util , i.e., 𝑓 (0) = 100, 𝑓 (100) = 0, and 0 ≤ 𝑓 (𝐶util) ≤ 100. Finally,
we also put 𝑇gap as a weight to reflect the delay in the real-time
measurement of 𝐶util , which leads to the definition of launch-score
in Algorithm 1.

We monitor launch-score in real time and launch a new DAG
when launch-score ≥ 𝜎 , where 𝜎 is a threshold set as follows. As
shown in Algorithm 1 and explained above, launch-score connects
𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 𝑓 (𝐶util) and 𝑇𝑔𝑎𝑝 together to determine whether a new
DAG job should be launched. In practice, there exist reasonable
values of 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 𝑓 (𝐶util) and 𝑇𝑔𝑎𝑝 for which a new DAG should
be launched; Note that there are always trade-offs between 𝑏𝑎𝑙𝑎𝑛𝑐𝑒
and 𝑓 (𝐶util), e.g., a higher 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 and a lower 𝑓 (𝐶util), to achieve
a high launch-score. Such tradeoffs in runtime allows the system to
automatically adjust the resource allocation to balance the sampling
and training progress.

Fine-grained scheduling. After new DAGs are launched, the S-
Worker executes the tasks in the DAGs, in parallel with the tasks in
other DAGs. These tasks are put in a queue when their dependency
is cleared (i.e., their parent tasks in the DAG are completed) and
are handled by a pool of processing threads. If we execute the tasks
in an FIFO order, some tasks of newly launched DAGs could be
in front of the tasks in those almost-finished DAGs. For example,
when the 𝐷𝐴𝐺1 pushes the “END” node in the task queue and
there are already “NSC” tasks from 𝐷𝐴𝐺2 and 𝐷𝐴𝐺3 in the queue,
the “NSC” tasks will be executed first and the “END” task will be
processed later even although the “END” task is the last task in
𝐷𝐴𝐺1, completing which will immediately return the sampled data
to the T-Worker for training. Meanwhile, one task may unlock a
lot of downstream tasks in the same DAG, and heavy tasks may
block many light tasks. Thus, the average completion time of the
DAG jobs and hence the end-to-end GNN training time can be
significantly increased.

We schedule tasks according to the following orders: (1) tasks in
a DAG with a smaller ID will be executed first; (2) tasks in the same
DAG will be executed in ascending order of their costs. We assign a
smaller ID to a DAG launched earlier to prioritize earlier DAGs to be
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Algorithm 2: Block Assignment
Input: List of Blocks B = 𝐵1, 𝐵2, ....., 𝐵𝑛
Output: Graph partitions 𝑃1, 𝑃2, 𝑃3, ......, 𝑃𝑘
for each block 𝐵𝑖 in B do

for j← 1 to 𝑘 do
CE[j] = |Cross_Edge(𝑃 𝑗 , 𝐵𝑖 )| / |𝑃 𝑗 |
BS[j] = (1-𝛼 ∗ |𝑃 𝑗 (train) |

𝐶 (train) -𝛽 ∗ |𝑃 𝑗 (val) |
𝐶 (val) -𝛾 ∗ |𝑃 𝑗 (test) |

𝐶 (test) )
end
𝑥 = argmax

1≤𝑡 ≤𝑘
{CE[t] * BS[t]}

𝑃𝑥 = 𝑃𝑥 ∪ 𝐵𝑖
end
return 𝑃1, 𝑃2, 𝑃3, ......, 𝑃𝑘

completed first. We calculate the cost of a task by the data it needs
to handle. For example, for sampling tasks in each hop of NSC, the
cost is equal to the total number of neighbors of the input vertices;
for Feature Fetching, the cost is the number of vertices/edges to be
fetched multiplied by the vertex/edge feature dimension. As tasks
may require data from remote machines, the S-Worker sends data
fetching requests to the local Graph Store, which communicates
with remote Graph Stores to fetch the data. The remote requests
are also scheduled in a similar way and the network operations are
processed concurrently with the CPU operations.

3.3 GNN-based Graph Partitioning
Existing graph partitioning algorithms [37, 41, 46] are mainly de-
signed to reduce inter-partition edges and balance the workload.
They have been widely adopted in distributed graph processing sys-
tems [27, 53, 81] to reduce inter-machine communication. However,
sample-based GNN training focuses on the 𝐾-hop neighborhood
of only the vertices in the training, validation and test sets (instead
of all vertices). For example, in Figure 7, traditional partitioning
strategies cut the graph into two parts by the left dotted line since
it not only balances the vertices but also has the least cut edge. But
for a 2-layer GNN training, since vertex 𝐴 and vertex 𝐵 are the
labeled vertices, partitioning by the right dotted line is actually a
better choice. Even if this results in two cut edges, it would not
cause any data movement in the training process as only the 2-hop
neighbors of the labeled vertices are required.

In addition, the ratio of the sizes of the training, validation, and
test sets of different real-world graphs may differ significantly. For
example, in the Ogbn-Product dataset, the test set size is 11 times
the training set size and 56 times the validation set size; while in the
Ogbn-Papers dataset, the test set size is only 0.18 times the training
set size and 1.7 times the validation set size. Thus, the partitioning
algorithm should consider both the special data access pattern of
𝑘-layer GNN training and the balanced distribution of the training,
validation, and test sets.

It is known that the traditional graph partitioning problem is
proved to be APX-hard [6]. Thus, our graph partitioning problem is
also APX-hard as it can be reduced to the traditional graph partition-
ing problem. We propose a heuristic two-step graph partitioning
strategy tailored for GNN sampling workloads. The main idea is
to group vertices into multi-hop neighborhood-based blocks and
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Figure 7: Traditional partitioning vs. GNN partitioning

then assign these blocks to partitions by balancing the numbers of
training, validation and test vertices in the partitions.

Step (1) neighborhood block construction. To better pre-
serve the locality of graph data for GNN sampling workloads, we
construct a neighborhood block for each vertex in the training, vali-
dation and test sets. We start a𝐾-hop breadth-first search from each
vertex 𝑣 (𝑣 is called the block center) and broadcast the unique
block ID of 𝑣 to its 𝐾-hop neighbors being visited. Every vertex
only keeps the first block ID it receives, except for block centers
which keep their own block ID. A block is then formed of all the
vertices that keep the same block ID. Figure 7 demonstrates how to
construct the blocks.

Step (2) block assignment. Just as existing graph partitioning
algorithms aim to balance the number of vertices in the partitions,
our objective is to also balance the number of training, validation
and test vertices in the partitions so that the work of training, vali-
dation and test is also balanced among the machines. Algorithm 2
shows how to assign the blocks. For each block 𝐵𝑖 , it is assigned
to the partition with the highest score. 𝑃 𝑗 is the set of vertices that
have already been assigned to partition 𝑗 . 𝐶𝐸 [ 𝑗] is the number
of cross-edges between 𝐵𝑖 and 𝑃 𝑗 , which will be eliminated if 𝐵𝑖
is assigned to 𝑃 𝑗 . Thus, the larger 𝐶𝐸 [ 𝑗] is, the more likely 𝐵𝑖 is
assigned to 𝑃 𝑗 . As the size of different partitions may vary during
the assignment, we normalize𝐶𝐸 [ 𝑗] by |𝑃 𝑗 |. 𝐵𝑆 [ 𝑗] is the balancing
score that controls the number of training/validation/test vertices
in partition 𝑗 to be close to the average value. For example, the
expected number of training vertices in each partition is 𝐶 (train)
= |𝑉 (train) |/𝑁 , where 𝑉 (train) is the set of all training vertices
and 𝑁 is the total number of partitions. Let 𝑃 𝑗 (train) be the set of
training vertices currently in partition 𝑗 . Thus, a smaller |𝑃 𝑗 (train) |

𝐶 (train)
means that more training vertices can be assigned to partition 𝑗 .
The above applies to the validation and test vertices as well. In
addition, we also use a weight to put more attention on a specific
type of vertices according to the scale of that type in order to obtain
a better overall performance. For example, if the number of training
vertices is significantly more, we may set a larger 𝛼 to favor the
training process, which can improve the end-to-end processing
time.

Before the block assignment, we sort the blocks in descending or-
der ofmax{|𝑉 (train) |, |𝑉 (val) |, |𝑉 (test) |}. Then, we start the block
assignment according to this order. In this way, larger blocks are
assigned to different partitions first, so that smaller blocks may
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be used later to fill the partitions more easily when the partitions
begin to fill up.

4 SYSTEM IMPLEMENTATION
We implemented ByteGNN based on GraphLearn [4], using Tensor-
Flow [5] as the backend deep learning framework for the training
phase. We used the data loader and distributed graph storage in
GraphLearn, where the graph topology data is stored in adjacency
list format and the features are stored separately and indexed by
their vertex/edge ID. Our implementation focuses on efficient DAG
construction and execution, graph partitioning, and gradient syn-
chronization.

DAG construction and execution. We adopt the Gremlin syn-
tax to help us construct the DAG.We redesigned the parsingmethod
to encode necessary metadata from a Gremlin query for generat-
ing DAG nodes. Since one Gremlin statement may become several
nodes in the final DAG, we implemented the parsing phase to care-
fully handle the complex dependency among the task nodes. We
also changed all the communication methods from synchronous in
GraphLearn to asynchronous in ByteGNN.

Graph partitioning.We implemented our graph partitioning
strategy on the streaming graph partitioning framework in [12,
46]. The random start seed vertices in [12] were replaced with
labeled vertices/edges. The framework first does the multi-source
distributed BFS to build the 𝐾-hop neighborhood blocks, and then
applies our block assignment strategy in Section 3.3 to assign blocks
to the partitions. The partitions are written into HDFS and then
loaded by the system for sampling and training.

Gradient synchronization. To address the potential conver-
gence issue, we implemented the bulk synchronous parallel (BSP)
and stale synchronous parallel (SSP) models based on the Tensor-
Flow API, so that users may also choose to use BSP or SSP to obtain
faster model convergence and reduce the training time.

5 SYSTEM EVALUATION
We evaluate the performance of ByteGNN by comparing with
Graph-Learn [4], Euler [1] and Distributed DGL (DistDGL) [78]. We
also examine the effects of our system designs on the performance.

Testbed.We ran our experiments on a cluster of machines where
each machine is equipped with 1T DDR4 main memory and two
2.40GHz Intel(R) Xeon(R) Platinum 8260 CPU (each CPU has 24
cores or 48 virtual cores by hyper-threading). All the machines are
connected by a 25Gbps network and the OS is the Debian 9.13 with
Linux kernel 4.19.117.

Datasets. We used three datasets in the evaluation, as shown
in Table 1. 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 and 𝑂𝑏𝑔𝑛-𝑃𝑎𝑝𝑒𝑟𝑠 are the largest two
graphs in the Open Graph Benchmark (OGB). 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 is an
undirected and unweighted graph modeling an Amazon product co-
purchasing network [32]. 𝑂𝑏𝑔𝑛-𝑃𝑎𝑝𝑒𝑟𝑠 is a directed citation graph
of 111 million papers indexed by MAG [65]. The 𝑆𝑜𝑐𝑖𝑎𝑙 dataset is a
directed graph in industry from the social network scenario.

Models.We used three representative GNN models, Graph Con-
volutional Network (GCN) [43], GraphSAGE [31] and Graph Atten-
tion network(GAT) [64], in our evaluation. In order to demonstrate
the expressiveness and efficiency of ByteGNN, we also tested the un-
supervised variants of these three models. Although unsupervised

Table 1: Graph datasets

Dataset Ogbn-Product Ogbn-Papers Social
(Product) (Papers)

Vertices 2,449,029 111,059,956 66,351,656
Edges 123,718,280 1,615,685,872 1,751,915,191
Feature 100 128 150
Classes 47 172 2
Training set 196,615 1,207,179 6,631,989
Validation set 39,323 125,265 19,908,461
Test set 2,213,091 214,338 39,811,206

learning shares most of the GNN architectures with supervised
learning, it involves the negative sampling operator in the sam-
pling phase and is also widely used in important tasks such as
link prediction. Since many works are proposed to improve the
sampling of GNN models, we used GraphSAINT [76] as a typical
example to show how our sampling abstraction can be applied.

As shown by prior works [16, 32, 37], deeper and larger GNN
architectures can achieve better model accuracy. We used three
network layers for the models and set the sampling configuration
to 𝑘1 = 10, 𝑘2 = 5 and 𝑘3 = 3 for the neighborhood sampling
models. The mini-batch size was set to 512 in all the experiments.

Systems.We compared with three distributed GNN training sys-
tems, GraphLearn, Euler (v1.0) andDistDGL (DGL v0.5.3). GraphLearn
is a distributed framework designed for the development and ap-
plication of GNNs on large scale graphs within Alibaba. Euler is
also developed by Alibaba but it has been used in many companies
for large scale GNN training. Both GraphLearn and Euler use Ten-
sorFlow as the backend system. DistDGL is a popular GNN system
and its latest version (v0.5.3) supports distributed GNN training.
The computational patterns of DistDGL are highly optimized by
dedicated sparse tensor operations, which are currently lacking in
ByteGNN as this work focuses on improving the sampling perfor-
mance. Unless otherwise stated, we used the default configuration
of these systems in our experiments. ByteGNN used the BSP model
to obtain better test accuracy. All the systems adopt the random
neighborhood sampling method as the default sampling method
and use the same hop number and fanout.

5.1 Overall Performance
Wefirst compared the overall performance of the systems.We report
the throughput of each system, i.e., the number of samples being
processed per second, which is a metric commonly used to measure
the performance of model training of a system. The throughput is
calculated as the total number of seed vertices processed divided by
the end-to-end GNN training time. Thus, the larger the throughput
of a system, the shorter is the end-to-end GNN training time of the
system. The hidden size is set to 32 in GCN and GraphSAGE. For
GAT, we used 4 attention heads with hidden size 16. Since Euler
failed to run unsupervised GAT training, we ignore this result.

Figure 8 reports the results. ByteGNN achieves 7.5 to 16.2 times
speedup compared with GraphLearn on supervised training and up
to 23 times on unsupervised training. As ByteGNN is implemented
on GraphLearn and the key differences from GraphLearn are the
three system designs presented in Sections 3.1-3.3, the results show

1235



Product Papers Social
0 K

10 K

20 K

30 K

40 K

50 K

60 K

70 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(a) GCN

Product Papers Social
0 K

10 K

20 K

30 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(b) Unsupervised GCN

Product Papers Social
0 K

10 K

20 K

30 K

40 K

50 K

60 K

70 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(c) GraphSAGE

Product Papers Social
0 K

10 K

20 K

30 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(d) Unsupervised GraphSAGE

Product Papers Social
0 K

10 K

20 K

30 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(e) GAT

Product Papers Social
0 K

10 K

T
h
ro
u
gh
p
u
t(
S
am

p
le
/s
)

GraphLearn Euler DistDGL ByteGNN

(f) Unsupervised GAT

Figure 8: The throughput of GraphLearn, Euler, DistDGL, and
ByteGNN for training different models on 4 machines

that our designs are effective. In particular, the performance im-
provement obtained by ByteGNN is more significant for unsuper-
vised training that has more parallel sampling tasks, which is as a
result of the high parallelism enabled for tasks within a DAG and
among DAGs.

Compared with Euler, although Euler also adopts the data-flow
graph by TensorFlow for sampling the mini-batch neighborhood
and training, ByteGNN can still achieve up to 4.7 times performance
speedup. Euler cannot run two TensorFlow’s computation graphs at
the same time as otherwise it would lead to a convergence problem.
In contrast, the separation of sampling phase and training phase
in ByteGNN enables concurrent execution of multiple DAGs to
maximize CPU utilization.
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Figure 9: Average CPU utilization of ByteGNN

Compared with DistDGL, ByteGNN achieves 2.1 ~ 3.5 times
speedup for training the dense graph 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 in both su-
pervised and unsupervised training. For the sparse graphs 𝑂𝑔𝑏𝑛-
𝑃𝑎𝑝𝑒𝑟𝑠 and 𝑆𝑜𝑐𝑖𝑎𝑙 , ByteGNN still has better performance. In the
supervised training, ByteGNN is 1.5x and 1.3x faster than Dist-
DGL in GCN and GraphSAGE. But the speedup is less significant
compared with that on the dense graph, especially for GAT. This
is because sparse tensor operations in the training phase of Dist-
DGL have been highly optimized, while currently there is no such
optimization in ByteGNN. For unsupervised training that has heav-
ier sampling workloads, Figures 8(b)&(d)&(f) show that ByteGNN
achieves considerably better performance as ByteGNN’s design
enables higher parallelism in sampling execution. (e.g., 2.4x for
unsupervised GraphSAGE and 1.6x for unsupervised GAT).

We also report the average CPU utilization of ByteGNN for
training all the models in Figure 9. The result is reported for 𝑂𝑔𝑏𝑛-
𝑃𝑎𝑝𝑒𝑟𝑠 , while ByteGNN’s CPU utilization for the other two datasets
is similar. Comparedwith the average CPUutilization of GraphLearn,
Euler and DistDGL as shown in Figure 3, ByteGNN achieves 3 - 6
times higher CPU utilization. ByteGNN has lower CPU utilization
for supervised GCN and GraphSAGE because the number of neigh-
borhood subgraphs in the DAG output queue is sufficient, S-Worker
dynamically frees up some resource to T-Worker and the training
workload for GCN is not heavy.

5.2 Scalability
Figure 10 reports the throughput scalability of the systems for the
𝑂𝑔𝑏𝑛-𝑃𝑎𝑝𝑒𝑟𝑠 dataset, where we increase the number of machines
from 4 to 64. ByteGNN achieves better scalability than all the other
three systems. We omit the results for the other two datasets due
to the page limitation, but the patterns are similar and ByteGNN’s
performance on the dense graph 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 is even better. The
hidden size is set to 256 here to demonstrate the performance of
our system in different configuration.

In general, the throughput performance in distributed GNN
training has sub-linear scalability due to the synchronization over-
head (when the BSP model is used to achieve high accuracy) and
heavy network I/O among the machines. GraphLearn and Euler
scale poorly and their throughputs are relatively low. Although
GraphLearn and Euler are built on top of TensorFlow, the default
asynchronous gradient update in distributed TensorFlow does not

1236



4 8 16 32 64
0 K

100 K

200 K

300 K

400 K

Number of Machines

Th
ro
ug

hp
ut
(S
am

pl
e/
s) GraphLearn Euler DistDGL ByteGNN

(a) GraphSAGE

4 8 16 32 64
0 K

100 K

200 K

300 K

400 K

Number of Machines

Th
ro
ug

hp
ut
(S
am

pl
e/
s) GraphLearn Euler DistDGL ByteGNN

(b) GCN

Figure 10: Scalability comparison

cause much synchronization overhead (though with potential ac-
curacy loss). However, without an effective graph partitioning al-
gorithm to preserve the locality of neighborhood access, remote
data fetching results in high network communication overhead. In
contrast, DistDGL’s main issue in scalability is due to the synchro-
nization overhead for gradient update. If the sampling output of a
mini-batch cannot return on time, the trainer will get the forward
loss later and all the other machines will wait for this loss to begin
the back propagation. Even with the fixed prefetching mechanism,
the possibility of the back propagation waiting increases as the
number of machines increases. In comparison, ByteGNN’s sched-
uling allows the sampling outputs to be pipelined to the trainers
while other sampling processes continue, which results in better
resource utilization. ByteGNN’s GNN-tailored graph partitioning
algorithm also leads to lower network communication overhead as
the number of machines increases. As a result, ByteGNN achieves
better scalability than the other systems.

5.3 Model Accuracy
We also report the correctness of ByteGNN by evaluating the test
accuracy of the GraphSAGE model on the 𝑂𝑔𝑏𝑛-𝑃𝑟𝑜𝑑𝑢𝑐𝑡 dataset,
comparing with GraphLearn and DistDGL. Euler has similar ac-
curacy as GraphLearn. In Figure 11, we report the test accuracy
of different systems at every epoch until the training converges.
The result shows that the systems achieve similar or the same ac-
curacy eventually, but ByteGNN converges the fastest, in both the
single-machine setting (1M) and distributed 4-machine setting (4M).
We also note that as the mini-batch training can update the model
many times in one epoch, the accuracy increases quickly in the first
several epochs. The single-machine accuracy of GraphLearn can
also be seen as the baseline to demonstrate that our code changes
to GraphLearn do not affect the semantics of the GNN models. And
as ByteGNN uses BSP to ensure model convergence in distributed
training, it achieves approximately the same accuracy as DistDGL
but uses less time.
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Figure 11: Accuracy comparison

5.4 Evaluation on System Designs
We further evaluate the effectiveness of each individual system
design in ByteGNN.

5.4.1 Sampling Abstraction. We used the GraphSAINT model to
demonstrate how to build a DAG using our sampling abstraction.
Different from sampling neighbors across the layers, GraphSAINT
constructs mini-batches by sampling the whole input graph once
and then building a full GCN on the sampled subgraph. It provides
three light-weight and efficient samplers, NodeSampler, EdgeSam-
pler, and RandomWalkSampler. Due to space constraints, we only
show the implementation of the Seed Sampler function in our sam-
pling abstraction for GraphSAINT’s NodeSampler and EdgeSampler.
Note that the training part is the same for different samplers.

1 / / NodeSampler
2 de f s eed_samp le r ( s e l f ) :
3 r e t u r n s e l f . g . V ( node_type= " t r a i n " )
4 . ba t ch ( b a t c h _ s i z e = n )
5 . by ( " I nD e g r e e " )
6
7 / / EdgeSampler
8 de f s eed_samp le r ( s e l f ) :
9 r e t u r n s e l f . g . E ( edge_ type= " t r a i n " )
10 . ba t ch ( b a t c h _ s i z e = m)
11 . by ( " EdgeWeight " ) . bothV ( )

For GraphSAINT’s NodeSampler, we sample 𝑛 vertices from all
the training vertices according to a vertex probability distribution
𝑃 (𝑢) ∝ ||�̃�:,𝑢 | |2. We call this “InDegree” sampling as it is associated
with the in-degree of each vertex. For EdgeSampler, the edge prob-
ability distribution follows 𝑝𝑒 (𝑣,𝑢) ∝ 1

𝑑𝑒𝑔 (𝑢) +
1

𝑑𝑒𝑔 (𝑣) . Normally, it
can be pre-calculated dependent on the graph topology only and
become the weight of edges. The code above shows the Seed Sam-
pler function of these two samplers using our sampling abstraction.
Using Gremlin, users can easily write the sampling logic. Then, the
sampling stage can be completed by the NSC and Feature Fetching
functions as discussed in Section 3.1.

We also implemented the GraphSAINT model in GraphLearn to
compare the end-to-end training performance. Table 2 reports the
speedup ratio of ByteGNN over GraphLearn for training Graph-
SAINT on different graphs using four machines, using the same
sampling setting from [76]. Even though GraphSAINT has a light
sampling workload, ByteGNN can still achieve significant speedup
compared with GraphLearn. Note that ByteGNN has better perfor-
mance with EdgeSampler because EdgeSampler needs to obtain the
two end-vertices of the sampled edge and has a higher workload
than NodeSampler.
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Table 2: Speedup ratio of ByteGNN over GraphLearn

Type Ogbn-Product Ogbn-Papers Social

NodeSampler 3.40 2.80 4.05
EdgeSampler 4.72 3.25 5.89

Table 3: The execution time (sec) of one epoch for different
sampling settings, running on𝑂𝑔𝑏𝑛-𝑃𝑎𝑝𝑒𝑟𝑠 using 8 machines

(a) The execution time of light sampling workload

Sequential Fixed DAGs Coarse-Grained

512 79.04 19.56 18.62
1024 75.29 19.21 17.52
2048 74.52 19.90 17.75

(b) The execution time of heavy sampling workload

Sequential Fixed DAGs Coarse-Grained

512 314.04 63.41 56.70
1024 312.14 68.72 57.20
2048 310.43 78.10 62.46

5.4.2 Coarse-Grained Scheduling. We first evaluate the perfor-
mance of the coarse-grained scheduling strategy. We used three
different batch sizes: 512, 1024 and 2048. We created a light sam-
pling workload by setting the sampling configuration to 𝑘1 = 10,
𝑘2 = 5 and 𝑘3 = 3. We also created a heavy sampling workload by
setting the sampling configuration to 𝑘1 = 15, 𝑘2 = 10 and 𝑘3 = 5.

We used two baselines. The first baseline is sequential DAG
execution, which runs DAGs one after another. The second baseline
is running a fixed number of DAGs at any time. The DAG size is
set to 16 which is the same as the default in DistDGL prefetching.

Table 3 shows that coarse-grained scheduling achieves the best
performance in all cases. For sequential DAG execution, the execu-
tion of a single DAG at a time results in resource under-utilization
and thus has poor performance. For the light sampling workload,
the fixed number of DAGs has performance close to that of coarse-
grained scheduling. This is because the sampling workload is light
and can be finished quickly so that DAGs can already produce
the sampling results fast enough for the trainer to consume. How-
ever, the lower sampling rate leads to more biased results and the
light workload also results in resource under-utilization. When
the sampling workload is heavier, the higher random data access
overhead and higher network I/O cost to retrieve remote neighbors
become the performance bottleneck. In this case, our coarse-grained
scheduling strategy becomes effective as it dynamically adjusts the
resource allocation to sampling and training in order to maximize
resource utilization.

5.4.3 Fine-Grained Scheduling. We further show the impact of the
fine-grained scheduling strategy on the DAG completion time. We
ran ByteGNN for 10 epochs and measured the completion time of
each DAG of mini-batch sampling under two settings: using the
priority-based scheduling in the fine-grained scheduling strategy
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Figure 12: Distribution of DAG completion time

and using FIFO-based scheduling. We use the box plot to report the
distribution of the DAG completion time. Figure 12 shows that the
priority-based scheduling can significantly reduce the completion
time of the DAGs, and the DAG completion time is also more stable,
which avoids the short time period of under-supply or over-supply
of the sampling outputs. In supervised training, when the number
of DAGs is in the suitable range, there are not too many small tasks
in the DAGs so that the FIFO scheduling can handle it. However,
unsupervised training launches more sampling tasks during the
DAG execution. The median DAG completion time of the FIFO
scheduling is almost two times greater than the median of the
priority-based scheduling.

5.4.4 Graph Partitioning. To validate the effectiveness of our GNN-
tailored graph partitioning (GNN-P) algorithm, we compared GNN-
P with three well-known graph partitioning methods: hash par-
titioning, Fennel partitioning [62] and METIS partitioning [41].
Both hash and METIS partitioning have been widely adopted in
distributed graph computing systems. Fennel is the representative
of one-pass streaming partitioning algorithms.

Figure 13 reports the distribution of the requests for remote and
local neighborhood data in one training epoch by each machine
(the distributions of the requests for validation and test show a
similar pattern). First, Figure 13(a) shows that hash partitioning
achieves the best balanced distribution because hash partitioning
assigns each type of vertices to different partitions with the same
possibility. However, it does not consider the locality of neighbor-
hood data access and thus incurs much higher remote data requests,
which result in high network communication overhead. The num-
ber of remote requests is about 6.32 times the local data requests.
Although METIS keeps the total number of vertices similar in each
partition, the number of training vertices varies significantly among
the partitions (also true for validation and test vertices). Half of
the training vertices are assigned to one partition in Machine 1,
which indeed reduces remote data requests; however, the imbal-
anced distribution results in Machine 1 being a severe straggler,
which processes around 80% of the data requests in each training
epoch. Fennel roughly balances the total load in each partition.
Fennel considers data locality but it is only limited to direct neigh-
bors, and thus remote data requests still take a major portion of
the total number of data requests in each partition. In contrast, the
multi-hop block construction of GNN-P significantly improves the
data locality of each partition. The ratio of remote data requests and
local data requests in the partitions of GNN-P is also considerably
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Figure 13: The distribution of remote/local data requests

smaller than that of the hash and Fennel partitions. In addition,
with the balance-aware assignment algorithm, GNN-P achieves a
much more balanced distribution of the total workload.

6 RELATEDWORK
Single-machine GNN systems. PyG [21] integrates with Py-
Torch [54] to provide a message-passing API for GNN training.
Incorporated with the Apache TVM compiler [15], FeatGraph [33]
generates optimized kernels for both CPU and GPU. But to im-
plement new GNN operators, users need to have the background
of TVM primitives. NeuGraph [48] proposes Scatter-ApplyEdge-
Gather-ApplyVertex programming model to express GNN models
and supports full-batch training in a single machine with multiple
GPUs. It divides a graph into 2-D chunks and introduces a streaming
scheduler to handle the CPU-GPU data transfer when GNN compu-
tation for a graph cannot fit in the GPU memory. Seastar [69, 70]
proposes a vertex-centric programming model to express GNN
models using native Python syntax and identifies a common seastar
computation pattern in GNN training to generate high-performance
fused kernels. There are also works [36, 46] that focus on addressing
the bottleneck of mini-batch sampling. PaGraph [46] is a sampling-
based training framework on multi-GPUs that addresses the ex-
pensive subgraph data loading issue by a GNN computation-aware
cache policy. NextDoor [36] enables users to express the sampling
tasks in GPUs by a high-level API and also proposes a novel transit
parallelism approach to parallelize graph sampling. However, these
single-machine systems have the limitation of processing large
industrial graphs due to limited GPU memory.

Distributed GNN systems. For training GNNs on large graphs
in a distributed manner, AliGraph [80] provides sampling-based
distributed GNN training and reduces network communication by
caching vertices on local machines. DistDGL [78] uses a distributed
in-memory key-value store to support efficient access to graph
topology and feature data in distributed GNN training. DGCL [10]
proposes an efficient communication library for distributed full-
batch GNN training on multi-GPUs using NVLink. DGCL needs to
load all the graph data into GPUs first and is not suitable for training
large graphs. Based on FlexFlow [38], a distributed DNN training
framework, Roc [37] also adopts full-batch training in multi-GPUs
using dynamic programming to minimize data swapping between
host DRAM and GPU memory. P3 [23] reduces communication by
model parallelism for the first layer, while it uses data parallelism for
the remaining layers. However, if the hidden size is larger than the
input dimension, it still incurs a high cost for the synchronization of
the output of the first layer. AGL [77] uses MapReduce to preprocess
a graph, which samples multiple neighborhood subgraphs for each
vertex and stores them in a distributed file system. During training,
AGL loads the required samples of neighborhood subgraphs of the
vertices directly from the disk. However, the preprocessing cost
is high and the storage overhead can also be large. Dorylus [61]
designs a computation separation mechanism and pipelines the
different computation patterns in the Amazon EC2 machine and
serverless Lambdas in the cloud environment.

Graph partitioning in GNN. METIS [41] is commonly used
for graph partitioning in GNN algorithms [16, 44, 45] and sys-
tems [10, 48, 78]. Cluster-GCN [16] adopts METIS to build small
clusters and then uses the partitions to perform an SGD update.
DistDGL [78] adjusts the METIS algorithm to balance the training
vertices in each partition. NeuGraph [48] uses the Kernighan-Lin
algorithm to make the chunks in the diagonal have as many edges
as possible. Roc [37] uses an linear-regression based algorithm to
achieve balanced partitioning for both GNN training and inference;
but it still treats all the vertices equally, which makes the computa-
tion load unbalanced. PaGraph [46] partitions a graph based on the
neighborhood of a training vertex. However, with the multi-hop
feature cache to avoid feature communication between different
trainers, the memory overhead is too high.

7 CONCLUSIONS
Wepresented ByteGNN, a distributed GNN training system for GNN
training in large graphs. ByteGNN abstracts the sampling phase of
a mini-batch as a DAG of small tasks to support high parallelism.
Leveraging the DAG abstraction, ByteGNN designs a two-level
scheduling to improve resource utilization and reduce the end-to-
end GNN training time. ByteGNN also tailors graph partitioning for
GNN workloads to reduce network I/O and balance the workload.
Experimental results show that ByteGNN can significantly shorten
the end-to-end training time compared with existing distributed
GNN systems.
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