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ABSTRACT
In this paper, we propose the first deterministic algorithms to

solve the frequency estimation and frequent item problems in the

bounded-deletion model. We establish the space lower bound for

solving the deterministic frequent items problem in the bounded-

deletion model, and propose Lazy SpaceSaving
±
and SpaceSaving

±

algorithms with optimal space bound. We develop an efficient im-

plementation of the SpaceSaving
±
algorithm that minimizes the

latency of update operations using novel data structures. The ex-

perimental evaluations testify that SpaceSaving
±
has accurate fre-

quency estimations and achieves very high recall and precision

across different data distributions while using minimal space. Our

experiments clearly demonstrate that, if allowed the same space,

SpaceSaving± is more accurate than the state-of-the-art protocols

with up to
𝑙𝑜𝑔𝑈−1
𝑙𝑜𝑔𝑈

of the items deleted, where𝑈 is the size of the

input universe. Moreover, motivated by prior work, we propose

Dyadic SpaceSaving
±
, the first deterministic quantile approxima-

tion sketch in the bounded-deletion model.
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1 INTRODUCTION
With the development of new technologies and advancements in

digital devices, massive amounts of data are generated each day

and these data contain crucial information that needs to be ana-

lyzed. To make the best use of streaming big data, data sketch
1

algorithms are often leveraged to process the data only once and
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1
The term sketch refers to the algorithms and data structures that can extract valuable

information through one pass on the entire data.

to provide essential analysis and statistical measures with strong

accuracy guarantees while using limited resources. For instance,

with limited space and one pass on the dataset, Hyperloglog [23]

enables cardinality estimation, the Bloom Filter [8] answers set

membership, and KLL [28, 33] provides quantile approximation.

Two fundamental problems in data streams are identifying the

most frequently occurring items, a.k.a. frequent items, heavy hitters,

Top-K, elephants, iceberg queries, and estimating the frequency

of an item, a.k.a the frequency estimation problem. The formal

definition of these two problems are included in Section 2.1. Several

algorithms [12, 17, 36, 38] have been proposed to solve both prob-

lems with tunable accuracy guarantees using small memory foot-

prints. These algorithms can be categorized into counter based and

linear sketch based approaches. The counter based approach [38]

tracks a subset of input items and their estimated frequencies. The

linear sketch based approach [12, 17, 30] tracks attribute informa-

tion from the universe. While linear sketches [12, 17] directly solve

the frequency estimation problem, they require additional struc-

tures such as heaps or need to impose hierarchical structures over

the assumed-bounded universe to solve the frequent items prob-

lem. The frequency estimation and frequent items problems have

important applications, such as click stream analysis [20, 26, 38],

distributed caches [45], database management [14, 22, 40, 43], and

network monitoring [5, 27, 42]. In addition, if inputs are drawn

from a bounded universe, frequency estimation sketches can also

solve the quantile approximation problem [17, 44].

Historically, all sketches assumed the insertion-only model or the

turnstile model. The insertion-only model consists only of insert

operations, whereas the turnstile model consists of both insert

and delete operations such that deletes are always performed on

previously inserted items [44]. Supporting both insert and delete

operations is harder, e.g., sketches in the turnstile model incur larger

space overhead and higher update times compared to sketches

in the insertion-only model. Jayaram et al. [29] observed that in

practice many turnstile models only incur a fraction of deletions

and proposed an intermediate model, the bounded-deletions model,

in which at most (1− 1

𝛼 ) of prior insertions are deleted where 𝛼 ≥ 1

and (1− 1

𝛼 ) upper bounds the delete:insert ratio. Setting 𝛼 to 1, the

bounded-deletion model becomes the insertion-only model.

The bounded-deletion model is important in many real-world

applications such as summarizing product sales in electronic com-

merce platforms and rankings in standardized testing. Many compa-

nies use purchase frequency to check if their customers are satisfied

with a product and to identify important groups for advertising

1215

https://doi.org/10.14778/3514061.3514068
https://github.com/ZhaoFuheng/SpaceSavingBoundedDeletionModel
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3514061.3514068
https://www.acm.org/publications/policies/artifact-review-and-badging-current


and marketing campaigns. After customers purchase products, a

certain percentage of the purchases may be returned and the fre-

quency estimation should reflect these changes. However, for any

financially viable company, it is highly unlikely that all of these

customers will return their purchases and hence in most cases the

bounded-deletion model can be assumed. In the context of stan-

dardized testing such as SAT, ACT, and GRE, frequency estimations

are often used to compare and contrast performance among differ-

ent demographics
2
. Students may request regrades of their exams

only once to rectify any machine errors or human errors. Hence,

the bounded-deletion model can be used with 𝛼 = 2. Recently,

the bounded-deletion model has gained in popularity, and several

algorithms have been proposed to discover novel properties of

streaming tasks [10, 29, 32, 48].

In this paper, we present the SpaceSaving
±
algorithm that solves

both frequency estimation and frequent items problems in the

bounded-deletion model with state-of-the-art performance and

minimal memory footprint. If the administrator of a large data set

knows, a priori, that deletions are not arbitrarily frequent com-

pared to insertions, then SpaceSaving
±
can efficiently capture these

changes and identify frequent items with small space, fast up-

date time, and high accuracy. In addition, inspired by quantile

summaries [17, 24, 44], we further demonstrate how to leverage

SpaceSaving
±
to support deterministic quantile approximation in

the bounded-deletion model. In summary, the main contributions of

this paper are: (i) we present Lazy SpaceSaving
±
and SpaceSaving

±
,

two space optimal deterministic algorithms in the bounded-deletion

model and establish their space optimality and correctness; (ii) we

propose the Dyadic SpaceSaving
±
sketch, the first deterministic

quantile approximation sketch in the bounded-deletion model; (iii)

we implement SpaceSaving
±
using two heaps to minimize the up-

date time; and (iv) we evaluate SpaceSaving
±
and compare it to

the state-of-the-art approaches [12, 17, 29] and achieve 5 orders of

magnitude better accuracy on a real-world dataset.

The paper is organized as follows, Section 2 discusses the back-

ground of frequency estimation and frequent items problem, and

gives an overview of previous algorithms. Section 3 introduces Lazy

SpaceSaving
±
and SpaceSaving

±
in the bounded-deletion model,

demonstrates that these algorithms are space optimal, and presents

an efficient implementation using a min heap and a max heap

data structure to minimize update time. Section 4 shows the ex-

perimental evaluations conducted using synthetic and real world

datasets and compares SpaceSaving
±
to the state-of-the-art sketches

that support delete operations. Section 5 introduces the Dyadic

SpaceSaving
±
quantile sketch to solve the deterministic quantile

approximation problem in the bounded-deletion model. Finally,

Section 6 summarizes our contributions and concludes this work.

2 BACKGROUND
2.1 Preliminaries
Given a stream 𝜎 = {𝑖𝑡𝑒𝑚𝑡 }𝑡 ∈{1,2,...,𝑁 } of length 𝑁 and items

drawn from 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 of size 𝑈 , the frequency of an item 𝑥 is

𝑓 (𝑥) =
∑︁𝑁
𝑡=1 𝜋 (𝑖𝑡𝑒𝑚𝑡 = 𝑥) where 𝜋 returns 1 if 𝑖𝑡𝑒𝑚𝑡 is 𝑥 , and

returns 0 otherwise. The stream 𝜎 implicitly defines a frequency

2
https://reports.collegeboard.org/pdf/2020-total-group-sat-suite-assessments-

annual-report.pdf

vector 𝐹 = {𝑓 (𝑎1), ..., 𝑓 (𝑎𝑈 )} for items 𝑎1,...,𝑎𝑈 in the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 .

Some algorithms assume the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 is bounded, such as in the

IP network monitoring context [42]. Many algorithms assume unit

updates, such as the click stream, while others consider the scenario

of weighted updates such as purchasing multiple units of the same

item at once on an e-commerce platform. In this paper, we focus on

the unit updates model and assume that items cannot be deleted if

they were not previously inserted and hence all entries in frequency

vector 𝐹 are non-negative.

The frequency estimation problem takes an accuracy parameter 𝜖

and estimates the frequency of any item 𝑥 such that |𝑓ˆ (𝑥) − 𝑓 (𝑥) | ≤
𝜖 · |𝐹 |𝑝 , where 𝑝 can be either 1 or 2 corresponding to 𝑙1 or 𝑙2 norm

and respectively provide 𝑙1 or 𝑙2 guarantees, 𝑓ˆ (𝑥) is the estimated

frequency and 𝑓 (𝑥) is the actual frequency. When 𝑝 > 2, providing

𝑙𝑝 guarantee requires 𝑝𝑜𝑙𝑦 (𝑈 ) space [4]. In this paper, we focus on

the 𝑙1 problem variation. The𝜙 frequent items problem is to identify

a bag of heavy items whose frequency is greater than or equal to the

specified threshold 𝜙 · |𝐹 |1, where 0 < 𝜙 < 1. These heavy items are

also known as the hot items.
3
In addition, some algorithms solve

the (𝜖, 𝜙)-approximate frequent items problem, which is to identify

a bag of items 𝐵, given parameter 0 < 𝜖 ≤ 𝜙 < 1, such that 𝐵 does

not contain any element with frequency less then (𝜙 − 𝜖) |𝐹 |1, i.e.,
∀𝑖 ∈ 𝐵, 𝑓 (𝑖) > (𝜙 − 𝜖) |𝐹 |1 and 𝐵 contains all items with frequency

greater than 𝜙 |𝐹 |1 i.e., ∀𝑖 ∉ 𝐵, 𝑓 (𝑖) < 𝜙 |𝐹 |1.

2.2 Deterministic and Randomized Solutions
Reporting the exact frequent items requires Ω(𝑁 ) space [13]. With

limited memory, solving the exact frequent items problem is infea-

sible for large datasets. An alternative and practical approach in

the context of big data is to use approximation techniques.

Deterministic solutions for the 𝜙 frequent items problem guar-

antee to return all heavy items and potentially some non-heavy

items [21, 34, 38, 39]. Randomized solutions for the (𝜖, 𝜙)-approximate

frequent items problem allow the algorithm to fail with some proba-

bility 𝛿 [12, 17, 29]. In much of the literature, the failure probability

is to set 𝛿 = 𝑂 (𝑈 −𝑐 ) where 𝑈 is the bounded universe size and 𝑐

is some constant. From the user perspective, deterministic algo-

rithms provide stronger guarantees as all heavy items are identified.

Randomized algorithms, on the other hand, with 1 − 𝛿 probability

report all heavy items and do not report any light weighted items.

2.3 Algorithms in Insertion-Only Model
The insertion-only model consists only of insert operations and

many of the proposed algorithms in the insertion-only model are

counter-based algorithms which maintain a fixed number of 𝑖𝑡𝑒𝑚

and 𝑐𝑜𝑢𝑛𝑡 pairs, and the underlying maintenance algorithm incre-

ments or decrements these counts to capture the frequency of items

that are being tracked.

The first counter-based one pass algorithm to find the most

frequent items in a large dataset dates back to the deterministic

MajorityAlgorithm by Boyer and Moore in 1981 [9]. In 1982, Misra

and Gries [39] generalized the majority problem and proposed the

deterministic MG summary which uses 𝑂 ( 1𝜖 ) space to solve the

frequency estimation and frequent items problems. MG summary

is a set of
1

𝜖 counters that correspond to monitored items. When a

3
The term “Hot Items” was coined in [18]
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Table 1: Comparison between different 𝑙1 frequency estimation algorithm.

Sketch Space Update Time Randomization Model Note
SpaceSaving [38] 𝑂 ( 1𝜖 ) 𝑂 (1) Deterministic Insertion-Only see Lemma 1

Count-Min [17] 𝑂 ( 1𝜖 𝑙𝑜𝑔
1

𝛿
) 𝑂 (𝑙𝑜𝑔 1

𝛿
) Randomized Turnstile Never Underestimate

Count-Median [12] 𝑂 ( 1𝜖 𝑙𝑜𝑔
1

𝛿
) 𝑂 (𝑙𝑜𝑔 1

𝛿
) Randomized Turnstile Unbiased Estimation

CSSampSim [29] 𝑂 ( 1𝜖 𝑙𝑜𝑔
1

𝛿
𝑙𝑜𝑔

𝛼𝑙𝑜𝑔𝑈
𝜖 ) bits Θ( 𝛼𝑙𝑜𝑔𝑈

𝜖𝑈
𝑙𝑜𝑔 1

𝛿
) Randomized Bounded-Deletion

Lazy-SpaceSaving
± 𝑂 ( 𝛼𝜖 ) 𝑂 (𝑙𝑜𝑔𝛼

𝜖 ) Deterministic Bounded-Deletion see Lemma 7

SpaceSaving
± 𝑂 ( 𝛼𝜖 ) 𝑂 (𝑙𝑜𝑔𝛼

𝜖 ) Deterministic Bounded-Deletion

Table 2: Frequently used symbols

𝜎 Data stream

𝑁 Data stream length

𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 All data are drawn from 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒

𝑈 Size of the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒

𝐹 Frequency vector

𝑓 (𝑥) 𝑥 ’s true frequency

𝑓ˆ (𝑥) 𝑥 ’s estimated frequency

𝜖 Accuracy

𝛿 Failure probability

𝐼 Number of insertions

𝐷 Number of deletions

𝛼 In the bounded-deletion model, 𝐷 ≤ (1 − 1

𝛼 )𝐼
𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 The minimum count inside a sketch

𝑚𝑖𝑛𝐼𝑡𝑒𝑚 The item with𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡

new item arrives, MG performs the following updates: if the new

item is monitored, then increase its count by 1. Else if the summary

is not full, monitor the new item. Else decrement all counts by

1 and remove any items with a count of zero. As a result of MG

decrementing all counts by 1 when an arriving item is unmonitored,

MG always underestimate item’s frequency, and a hash-table im-

plementation requires worst case𝑂 (1/𝜖) update time. Two decades

later, Manku and Motwani [36] proposed a randomized StickySam-
pling algorithm and a deterministic LossyCounting algorithm

with worst case space 𝑂 ( 1𝜖 𝑙𝑜𝑔(𝜖𝑁 )), which exceeds the memory

cost of MG summary. In 2003, Demaine et al. [21] and Karp et al. [34]

independently generalized the majority algorithm and proposed

the Frequent algorithm, which are both a rediscovery of the MG.

Two years later, in 2005, Metwally, Agrawal, and El Abbadi [38]

proposed the SpaceSaving algorithm that provides highly accurate

frequency estimates for frequent items and also presents a very

efficient method to process insertions. SpaceSaving uses 𝑘 counters

to store an item’s identity, estimated count and estimation error

information, i.e., (𝑖𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚), and 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚 is an

upper bound on the difference between the item’s estimated fre-

quency and its true frequency. When 𝑘 = 1

𝜖 , SpaceSaving solves

both frequency estimation and frequent items problem. As shown

in Algorithm 1, insertions proceed as follows, when a new item

(𝑛𝑒𝑤𝐼𝑡𝑒𝑚) arrives: if 𝑛𝑒𝑤𝐼𝑡𝑒𝑚 is monitored, then increment its

count; if 𝑛𝑒𝑤𝐼𝑡𝑒𝑚 is not monitored and sketch size not full, then

monitor 𝑛𝑒𝑤𝐼𝑡𝑒𝑚, and set 𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑤𝐼𝑡𝑒𝑚 to 1 and 𝑒𝑟𝑟𝑜𝑟𝑛𝑒𝑤𝐼𝑡𝑒𝑚

to 0; otherwise, SpaceSaving replaces the item (𝑚𝑖𝑛𝐼𝑡𝑒𝑚) with

the minimum count (𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 ) by 𝑛𝑒𝑤𝐼𝑡𝑒𝑚, sets 𝑒𝑟𝑟𝑜𝑟𝑛𝑒𝑤𝐼𝑡𝑒𝑚

to 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 and increments 𝑐𝑜𝑢𝑛𝑡𝑛𝑒𝑤𝐼𝑡𝑒𝑚 . In SpaceSaving [38],

𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚 is only used to show certain properties of the algorithm,

while in this work we leverage this information for handling dele-

tions. As shown in Algorithm 2, to estimate the frequency of an

item in SpaceSaving, if the item is inside the sketch then report

its count value, otherwise report 0. In [2], Agarwal et al. showed

that both SpaceSaving and MG are mergeable
4
, and a SpaceSaving

with 𝑘 counters can be isomorphically transformed into a MG sum-

mary with 𝑘 − 1 counters. Although SpaceSaving and MG share

similarities, they follow different sets of update rules. When a new

inserted item is unmonitored and the sketch is full, SpaceSaving

replaces the min item with the new item and increments the count

by one, whereas the MG decrements all item counts’ by 1. As a

result, SpaceSaving maintains an upper bound on the frequency

of stored items, while MG always underestimates the frequency.

Since SpaceSaving always increments one of the counts by one, the

sum of all counts in SpaceSaving is equal to the |𝐹 |1. Moreover, the

SpaceSaving elegantly handles the case when an unmonitored new

item arrives and the sketch is full, and naturally leads to a min-heap

implementation such that incrementing any count and replacing

the min item have 𝑂 (𝑙𝑜𝑔𝑘) update times, where 𝑘 is the number

of counters. SpaceSaving can also be implemented with a linked

list data structure by keeping items with equal counts in a group,

resulting in an 𝑂 (1) update time [38].

SpaceSaving satisfies the following properties (the first three

properties are proved in [38] while the latter two are proved in [47]):

Lemma 1. Frequency estimations for monitored items are never
underestimated in SpaceSaving.

Lemma 2. SpaceSaving with 𝑘 = 1

𝜖 counters ensures that after
processing 𝐼 insertions, the minimum count of all monitored items is
no more than 𝐼

𝑘
= 𝜖𝐼 , i.e,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 < 𝜖𝐼 .

Lemma 3. All itemswith frequency greater than or equal to𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡

are inside the SpaceSaving.

Lemma 4. The sum of all estimation errors in the sketch is an upper
bound on the sum of the frequencies of all unmonitored items.

Lemma 5. SpaceSaving with 1

𝜖 counters can estimate the frequency
of any item with an additive error less than 𝜖𝐼 .

Lemma 2 and Lemma 3, show that SpaveSaving with
1

𝜖 counters

reports all items whose frequencies are greater than or equal to

4
Mergeability is desired for distributed settings and means summaries over datasets

can be merged into a single summary as if the single summary processed all datasets.
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𝜖 |𝐹 |1. Empirically, many studies have demonstrated that SpaceSav-

ing outperforms other deterministic algorithms and it is considered

to be the state of the art for finding frequent items [13, 35]. More-

over, due to the superior performance of SpaceSaving, many works

use it as a fundamental building block [5, 42, 43, 45, 46]. Recently,

a new randomized algorithm BPtree was proposed by Braverman

et al. [11] to solve the frequent items problem with 𝑙2 guarantees

in the insertion-only model using 𝑂 ( 1

𝜖2
𝑙𝑜𝑔 1

𝜖 ) space.

Algorithm 1: SpaceSaving Insert Algorithm

1 for item from insertions do
2 if item ∈ Sketch then
3 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 += 1 ;

4 else if Sketch not full then
5 Sketch = Sketch ∪ item ;

6 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 = 1 ;

7 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚 = 0 ;

8 else
9 // Sketch is full;

10 𝑚𝑖𝑛𝐼𝑡𝑒𝑚 =𝑚𝑖𝑛𝑚𝑖𝑛𝐼𝑡𝑒𝑚∈𝑆𝑘𝑒𝑡𝑐ℎ 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛𝐼𝑡𝑒𝑚 ;

11 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚 = 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛𝐼𝑡𝑒𝑚 ;

12 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 = 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛𝐼𝑡𝑒𝑚+1 ;

13 Replace (𝑚𝑖𝑛𝐼𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛𝐼𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑚𝑖𝑛𝐼𝑡𝑒𝑚) by
(𝑖𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚)

14 end

Algorithm 2: SpaceSaving Query(item)

1 if 𝑖𝑡𝑒𝑚 ∈ Sketch then
2 return 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚

3 return 0;

2.4 Algorithms in Turnstile Model
In the turnstile model, the stream consists of both insert and delete

operations such that the deletes are always performed on previously

inserted items. The sketches for solving the frequency estimation

problem in the turnstile model are known as linear sketches [13].
While the counter-based solutions solve both the frequency esti-

mation and frequent items problems, the linear sketch solutions

directly answer the frequency estimation problem but need ad-

ditional information to solve the frequent items problem. When

assuming the inputs are from a bounded 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 , linear sketches

can query all items in the universe to identify the frequent items.

In 1999, Alon et al. [3] proposed the randomized AMS sketch

to approximate the second frequency moment. Charikar et al. [12]

improved upon the AMS sketch and proposed the randomized

Count-Median sketch. The Count-Median sketch provides an un-

biased estimator and uses𝑂 ( 1𝜖 𝑙𝑜𝑔
1

𝛿
) and𝑂 ( 1

𝜖2
𝑙𝑜𝑔 1

𝛿
) space to solve

the 𝑙1 and 𝑙2 frequency estimation problems respectively. Cormode

and Muthukrishnan [17] proposed the Count-Min sketch that

shares a similar algorithm and data structure as the Count-Median

sketch. Count-Min sketch never underestimates frequencies, and

uses 𝑂 ( 1𝜖 𝑙𝑜𝑔
1

𝛿
) space to solve the 𝑙1 frequency estimation problem.

Although one may exhaustively iterate through the universe to

find frequent items, iterating through the universe can be slow and

inefficient. As a result, Cormode andMuthukrishnan [17] suggested

to imposes a hierarchical structure on the bounded universe, such

that there are 𝑙𝑜𝑔𝑈 layers and one Count-Min or Count-Median

sketch per layer. Then use divide-and-conquer to search for the

frequent items from the largest range to an individual item. The

required space is 𝑂 ( 1𝜖 𝑙𝑜𝑔
1

𝛿
𝑙𝑜𝑔𝑈 ) and update time is 𝑂 (𝑙𝑜𝑔 1

𝛿
𝑙𝑜𝑔𝑈 ).

Dyadic intervals are in the form of [𝑖2𝑗 , (𝑖 + 1)2𝑗 − 1] for 𝑗 ∈ 𝑙𝑜𝑔2𝑈

and any constant 𝑖 , such that any ranges can be decomposed into

at most 𝑙𝑜𝑔2𝑈 disjoint dyadic ranges [15]. Dyadic intervals over

a bounded universe can be integrated with frequency estimation

sketches to solve the quantile approximation problem in the turn-

stile model [17, 24, 44].

2.5 Algorithms in Bounded-Deletion Model
In the bounded-deletion model, the stream consists of both insert

and delete operations and a constant 𝛼 ≥ 1 is given such that at

most (1 − 1

𝛼 ) of prior insertions are deleted, i.e., 𝐷 ≤ (1 − 1

𝛼 )𝐼
where 𝐼 is the number of insertions and 𝐷 is the number of dele-

tions. Jayaram et al. [29] proposed the CSSS (Count-Median Sketch
Sample Simulator) to solve the frequency estimation problem in the

bounded-deletion model. Assuming 𝛿 = 𝑂 (𝑈 −𝑐 ) for some constant

𝑐 and the maximum entry of 𝐹 is 𝑂 (𝑈 ), then the Count-Min and

the Count-Median sketches require 𝑂 ( 1𝜖 𝑙𝑜𝑔
2𝑈 ) bits and achieves

the optimal space lower bound in the turnstile model [31]. Jayaram

et al. [29] pointed out that in the bounded-deletion model by simu-

lating the Count-Median sketch over𝑂 ( 𝛼𝑙𝑜𝑔𝑈𝜖 ) uniformly sampled

items from the stream and then scaling the counts at the end, the

𝐶𝑆𝑆𝑆 sketch can accurately approximate the true frequency of an

itemwith high probability. Hence, by carefully tuning the size of the

Count-Median, CSSS requires 𝑂 ( 1𝜖 𝑙𝑜𝑔
1

𝛿
𝑙𝑜𝑔

𝛼𝑙𝑜𝑔𝑈
𝜖 ) bits, improving

the overall space compared to sketches in the turnstile model.

2.6 Summary
In Table 1, we compare the differences and similarities among sev-

eral different sketches for 𝑙1 frequency estimation. These sketches

can also solve 𝑙1 heavy hitters, though some sketches may need

additional modifications to the parameters or leverage external

data structures. In Table 2, we listed the important symbols used

in the paper. Counter-based solutions have many advantages over

linear sketches. Counter-based solutions are guaranteed to report

all heavy items; they use 𝑂 (𝑙𝑜𝑔 1

𝜖 ) update time instead of 𝑂 (𝑙𝑜𝑔𝑈 )
update time where

1

𝜖 is often less than the universe size𝑈 ; and they

make no assumptions on the 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 and thus can be useful in

Big Data applications where items are drawn from unbounded do-

mains. In this paper, we present SpaceSaving
±
, an optimal counter-

based deterministic algorithm with 𝑙1 guarantee to solve both the

frequency estimation and frequent items problem in the bounded-

deletion model using 𝑂 ( 𝛼𝜖 ) space.

3 THE SPACESAVING± ALGORITHM
In this section, we first show the space lower bound for solving

the frequent items problem in the bounded-deletion model. Then,

we introduce the Lazy 𝑆𝑝𝑎𝑐𝑒𝑆𝑎𝑣𝑖𝑛𝑔± and 𝑆𝑝𝑎𝑐𝑒𝑆𝑎𝑣𝑖𝑛𝑔± algorithms
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with optimal space to solve both the frequency estimation and

frequent items problems in the bounded-deletion model in which

the total number of deletions (𝐷) is less than (1 − 1

𝛼 ) of the total
insertions (𝐼 ) where 𝛼 ≥ 1. Given a user specified accuracy on the

parameter 𝜖 , a deterministic algorithm for frequency estimation

and frequent items problems must:

• Approximate the frequency of all items 𝑖 with high accuracy

such that ∀ 𝑖 : |𝑓 (𝑖) − 𝑓ˆ (𝑖) |) ≤ 𝜖 |𝐹 |1; and
• Report all the items with frequency greater than or equal

to 𝜖 |𝐹 |1.
We propose Lazy SpaceSaving

±
and SpaceSaving

±
. The main dif-

ference between the two variants of SpaceSaving
±
arises in the way

deletions are handled. Since we assume the strict bounded-deletion

model, a delete operation must correspond to a previously inserted

item. If the item is being tracked in the sketch, processing such a

delete operation is straightforward since the count associated with

the item can be decreased by 1. On the other hand, the challenge

arises when the sketch maintenance algorithm encounters a delete

of an item that is not being tracked in the sketch. We develop dif-

ferent ways of handling such a delete in the two algorithms and

the resulting correctness guarantees.

3.1 Space Lower Bound
Wefirst show that there is no counter based algorithm that can solve

the deterministic frequent items problem in the bounded-deletion

model using less than
𝛼
𝜖 counters.

Theorem 1. In the bounded-deletion model, any counter based
algorithm needs at least 𝛼𝜖 counters to solve the deterministic frequent
items problem i.e, identify all the items with frequency greater than
or equal to 𝜖 |𝐹 |1.

Proof. By Contradiction.

Assume that there exists a counter based deterministic solution

using 𝑘 < 𝛼
𝜖 counters that can report all the items with frequency

greater than or equal to 𝜖 |𝐹 |1. Consider a stream 𝜎 with bounded-

deletions that contains 𝐼 insertions and 𝐷 deletions where all inser-

tions come before any deletions. Let the 𝐼 insertions consist exactly

of
𝛼
𝜖 unique items, each with an exact count of

𝜖
𝛼 𝐼 . After processing

all insertions, the optimal algorithm with 𝑘 < 𝛼
𝜖 counters will mon-

itor at most 𝑘 unique items, and there would be at least one item

from the insertions that is left out. Let the set𝑀𝑖𝑠𝑠𝑖𝑛𝑔 contains all

such unique items that appeared in 𝐼 but are not monitored by the

optimal algorithm. Now let the 𝐷 = (1 − 1

𝛼 )𝐼 deletions be applied
arbitrarily on the monitored items. After all 𝐷 deletions, all items

in𝑀𝑖𝑠𝑠𝑖𝑛𝑔 have frequency of
𝜖
𝛼 𝐼 in which

𝜖
𝛼 𝐼 ≥ 𝜖 (𝐼 − 𝐷) ≥ 𝜖 |𝐹 |1,

and these items are frequent and must be monitored by the optimal

algorithm. However, the sketch, with space 𝑘 , after processing all

insertions loses the information regarding𝑀𝑖𝑠𝑠𝑖𝑛𝑔. Therefore, it is

not possible to use less than
𝛼
𝜖 counters to solve the deterministic

frequent items problem in the bounded-deletion model. □

3.2 Lazy SpaceSaving± Approach
Since supporting both insertions and bounded deletions is a much

harder task compared to only allowing for insertions, the overall

space needs to be increased. From the previous section, we can see

that if the goal is to report all the items with frequency more than

𝜖 |𝐹 |1, where |𝐹 |1 = 𝐼 −𝐷 , we need to track more items. Since before

any deletions, the sketch has no knowledge regarding which items

are going to be deleted, then all elements with frequency higher

than 𝜖 (𝐼 − 𝐷) are potential candidates before any deletions. We

need an algorithm that can identify these potential candidate items.

By Lemma 2 and Lemma 3, SpaceSaving [38] with space 𝑘 reports

all the items with frequency greater than or equal to
𝐼
𝑘
. Therefore

by using 𝑘 = 𝛼
𝜖 space to process 𝐼 insertions on the SpaceSaving

algorithm, it will report all item with frequency greater than or

equal to
𝜖
𝛼 𝐼 . Since we know

1

𝛼 ≤ (𝐼−𝐷)
𝐼

,
𝜖
𝛼 𝐼 ≤ 𝜖𝐼

(𝐼−𝐷)
𝐼

= 𝜖 (𝐼 − 𝐷).
Hence by using

𝛼
𝜖 counters, all the items with frequency greater

than or equal to 𝜖 (𝐼 − 𝐷) will be identified.
Interestingly, we find that modifying the original SpaceSaving

algorithm with 𝑂 ( 𝛼𝜖 ) space leads to an algorithm that solves the

frequency estimation and frequent items problems in the bounded-

deletion model. The Lazy SpaceSaving
±
algorithm handles inser-

tions exactly in the same manner as in the original Algorithm 1.

For deletions, the Lazy SpaceSaving
±
decreases the monitored item

counter, if the deleted item is monitored. Otherwise, the deletions

on unmonitored item are ignored, as shown in Algorithm 3. The

frequency is still estimated according to Algorithm 2. The rationale

for this design is that an unmonitored item has estimated frequency

of 0 and deletions of the unmonitored items will not amplify the

difference but in fact narrows the difference. Initially, this may seem

to be counter-intuitive. Another way to think about it is that the

frequency estimations for unmonitored items can only be under-

estimations. Thus, the decrease in an unmonitored item’s exact

frequency reduces the underestimation.

Algorithm 3: Lazy SpaceSaving
±
: Deletion Handling

1 for item from deletions do
2 if item in Sketch then
3 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 -= 1 ;

4 else
5 //ignore

6 end

We now formally establish that Algorithm 3 solves the frequency

estimation problem in the bounded-deletion model. Let 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 be

the maximum error of frequency estimations in Lazy SpaceSaving
±
.

We show by induction that 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 is always less than 𝜖 (𝐼 − 𝐷).
First, we establish an upper bound on𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 in Lemma 6.

Lemma 6. The minimum count,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 , in Lazy SpaceSaving±

with 𝑘 counters is less than or equal to 𝐼
𝑘
.

Proof. Since deletions never increment any counts,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡

is maximized by processing 𝐼 insertions. With 𝐼 insertions and no

deletions, the sum of all counts is equal to 𝐼 .𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is largest

when all the other counts are𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 . Hence,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 ≤ 𝐼
𝑘
. □

Theorem 2. In the bounded-deletion model where 𝐷 ≤ (1 − 1

𝛼 )𝐼 ,
after processing 𝐼 insertions and D 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 , Lazy SpaceSaving±

using 𝑂 ( 𝛼𝜖 ) space solves the frequency estimation problem in which
∀𝑖, |𝑓 (𝑖) − 𝑓ˆ (𝑖) | < 𝜖 (𝐼 − 𝐷) where 𝑓 (𝑖) and 𝑓ˆ (𝑖) are the exact and
estimated frequencies of an item 𝑖 .
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Proof. By Induction.

Base case: After 𝑖 ′ < 𝐼 insertions and 0 deletions with 𝑂 ( 𝛼𝜖 )
space, we show that 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 is less than 𝜖 (𝐼 − 𝐷) as follows: By
Lemma 5 (of the insertion-only 𝑆𝑝𝑎𝑐𝑒𝑆𝑎𝑣𝑖𝑛𝑔), 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 < 𝑖 ′ 𝜖𝛼 ≤
𝜖
𝑖′ (𝐼−𝐷)

𝐼
< 𝜖 (𝐼 − 𝐷).

Induction hypothesis: After 𝑖 < 𝐼 insertions and 𝑑 < 𝐷 deletions,

the maximum error of frequency estimations based on the sketch

is 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 < 𝜖 (𝐼 − 𝐷).
Induction Step: Consider the case when the (𝑖 + 𝑑 + 1)𝑡ℎ input

item is an insertion. If the newly inserted item 𝑥 is monitored or the

sketch is not full, then no error is introduced. If the newly inserted

item 𝑥 is not monitored and the sketch is full, then 𝑥 replaces the

𝑚𝑖𝑛𝐼𝑡𝑒𝑚 which is the item with minimum count, 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 , in

all monitored items. Based on Lemma 6, by using
𝛼
𝜖 counters in

Lazy SpaceSaving
±
, 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 ≤ 𝑖 𝜖𝛼 < 𝜖 (𝐼 − 𝐷). The estimated

frequency for 𝑥 is 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡+1 and 𝑥 is at most overestimated

by 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 . The frequency estimation for 𝑚𝑖𝑛𝐼𝑡𝑒𝑚 becomes 0,

and 𝑚𝑖𝑛𝐼𝑡𝑒𝑚’s frequency estimation is off by at most 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 .

Therefore, 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥 after processing the newly inserted item is still

less than 𝜖 (𝐼 − 𝐷).
Consider the case when the (𝑖 + 𝑑 + 1)𝑡ℎ input item is a deletion.

If the newly deleted item 𝑥 is monitored, its corresponding counter

will be decremented and no extra error is introduced and 𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥

is still less than 𝜖 (𝐼−𝐷). If the newly deleted item 𝑥 is not monitored,

then the algorithm ignores this deletion. The frequency estimation

errors for monitored items do not change and they are still less than

𝜖 (𝐼−𝐷). Moreover, before the arrival of 𝑥 ,∀𝑖 ∉ 𝑆𝑘𝑒𝑡𝑐ℎ, 𝑓 (𝑖)− 𝑓ˆ (𝑖) =
𝑓 (𝑖) − 0 < 𝜖 (𝐼 − 𝐷). By ignoring the deletion of the unmonitored

items, ∀𝑖 ∉ 𝑆𝑘𝑒𝑡𝑐ℎ, (𝑓 (𝑖) − 1) − 𝑓ˆ (𝑖) < 𝑓 (𝑖) − 𝑓ˆ (𝑖) < 𝜖 (𝐼 − 𝐷).
Conclusion: By the principle of induction, Lazy SpaceSaving

±

using 𝑂 ( 𝛼𝜖 ) space solves the frequency estimation problem with

bounded error, i.e, ∀𝑖, |𝑓 (𝑖) − 𝑓ˆ (𝑖) | < 𝜖 (𝐼 − 𝐷). □

Lazy SpaceSaving
±
also solves the frequent items problem. To

prove this, we first show Lazy SpaceSaving
±
never underestimates

the frequency of a monitored item.

Lemma 7. Lazy SpaceSaving± never underestimates the frequency
of monitored items.

Proof. Since the handling of insertions is the same as the Space-

Saving and SpaceSaving never underestimates the frequency of

monitored items by Lemma 1, it is clear that the insertions can

not lead to frequency underestimation for monitored items. When

handling deletions, Lazy SpaceSaving
±
only decrements the count

when the deleted item is monitored. Since the deletion of a moni-

tored item implies its exact frequency and its estimated frequency

both decrease by one, this procedure has no effect on the difference

between its exact frequency and estimated frequency. Therefore,

Lazy SpaceSaving
±
never underestimates the frequency of moni-

tored items. □

Since Lazy SpaceSaving
±
never underestimates, then report all

the items with frequency estimations greater than or equal to 𝜖 (𝐼 −
𝐷), then all frequent items will be reported as shown in Theorem 3.

Theorem 3. In the bounded-deletion model where 𝐷 ≤ (1 − 1

𝛼 )𝐼 ,
Lazy SpaceSaving± solves the frequent items problem using 𝑂 ( 𝛼𝜖 )
space.

Proof. By Contradiction.

Assume a frequent item 𝑥 is not reported and by definition of

frequent items, 𝑓 (𝑥) ≥ 𝜖 (𝐼 − 𝐷). Since it is not reported, its fre-
quency estimation, 𝑓ˆ (𝑥), must be less than 𝜖 (𝐼 −𝐷). There are two
cases where 𝑥 will not be reported: (i) 𝑥 is not monitored, or (ii) 𝑥 is

monitored, but its frequency is underestimated, i.e., 𝑓ˆ (𝑥) < 𝜖 (𝐼−𝐷).
In the first case where 𝑥 is not monitored, the estimation fre-

quency of 𝑥 is 0, i.e, 𝑓ˆ (𝑥) = 0. Since 𝑥 is by assumption a frequent

item, the frequency estimation difference for 𝑥 is |𝑓ˆ (𝑥) − 𝑓 (𝑥) | ≥
𝜖 (𝐼 − 𝐷). However, this contradicts Theorem 2 in which, for any

items, the difference between its exact frequency and estimated

frequency is less than 𝜖 (𝐼 − 𝐷).
In the second case, 𝑥 is monitored but not reported which im-

plies 𝑓ˆ (𝑥) is less than 𝜖 (𝐼 − 𝐷). Since 𝑥 is frequent, 𝑓ˆ (𝑥) is an
underestimation. However, by Lemma 7, Lazy SpaceSaving

±
never

underestimates the frequency of monitored items.

Hence, by contradiction Lazy SpaceSaving
±
solves the determin-

istic frequent items problem. □

3.3 An illustration of Lazy SpaceSaving±

Figure 1: Input Stream consisting of 6 insertions and 3 dele-
tions. Each tuple represents (𝑖𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚).

Consider an instance of Lazy SpaceSaving
±
with capacity of 2.

The input stream 𝜎 is (𝐴,𝐴,𝐴,𝐶,−𝐴, 𝐵,𝐴,−𝐶,−𝐵) where the minus

sign indicate a deletion. The corresponding true frequency of 𝐴 is 3

while the true frequency of all other items is 0. For the first four in-

sertions and one deletion of the monitored item 𝐴, the sketch main-

tains the exact count with no errors. When the sixth item 𝐵 arrives,

𝐵 replaces item 𝐶 , since 𝐶 has the minimum count. The following

insertion is 𝐴 and since 𝐴 is monitored, 𝐴’s count increases. Then

items −𝐶,−𝐵 arrive. Since 𝐶 is not monitored, Lazy SpaceSaving
±

ignores the deletion of 𝐶 , and the deletion of monitored item 𝐵

decreases the corresponding count, as shown in Figure 1. After

processing all inputs, the lazy-approach does not underestimate the

frequency of the items in the sketch. It overestimates the frequency

of item 𝐵 in which 𝑓ˆ (𝐵) − 𝑓 (𝐵) = 1 and 𝑓ˆ (𝐴) − 𝑓 (𝐴) = 0.

3.4 SpaceSaving±

While Lazy SpaceSaving
±
elegantly satisfies all the necessary re-

quirements, the average frequency error and total frequency error
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may increase if there are significant deletions of the unmonitored

items. Therefore, we propose SpaceSaving
±
, a novel algorithm and

data structures that accurately handles deletions of the unmoni-

tored items and item’s frequency is still estimated according to Algo-

rithm 2. Interestingly, we experimentally show that SpaceSaving
±

performs better than Lazy SpaceSaving
±
when they are both allo-

cated the same sketch space, even though we need more space by a

constant factor to establish the correctness of SpaceSaving
±
.

Both SpaceSaving and our proposed Lazy SpaceSaving
±
algo-

rithms have the property of never underestimating the frequency

of the monitored items. Since the 𝜖-approximation requirement

is ∀𝑖, |𝑓 (𝑖) − 𝑓ˆ (𝑖) | < 𝜖 (𝐼 − 𝐷), there are opportunities to reduce

the amount of overestimation for the monitored items, as long as

the difference is still within this bound. We observe that an item

with a large estimation error indicates that it is unlikely to be a

heavy item, as heavy items are often never evicted from the sketch

and have small estimation error. In addition, items with large es-

timation errors are often overestimated due to the aggregation of

the frequencies of many less-weighted items. SpaceSaving
±
lever-

ages this intuition. It handles the insertions of all items, and the

deletions of the monitored items exactly in the same way as the

Lazy SpaceSaving
±
. For the deletions of the unmonitored items,

SpaceSaving
±
decrements the count of the item that has the maxi-

mum estimation error inside the sketch, as shown in Algorithm 4.

The estimation error in SpaceSaving
±
is an upper bound on the

difference between the item’s estimated frequency and its true fre-

quency. With this modification, the estimated frequency of any

item reduces either from being replaced or from a deletion of an

unmonitored item. In the following proofs, SpaceSaving
±
uses

2𝛼
𝜖

to ensure (i) no item can be severely overestimated, and (ii) no item

can be severely underestimated. To estimate the frequency of an

item, we still use Algorithm 2. Before analyzing the correctness of

the algorithm, we first establish three helpful lemmas.

Lemma 8. The minimum count,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 , in SpaceSaving± with
2𝛼
𝜖 counters is less than or equal to 𝜖

2
(𝐼 − 𝐷).

Proof. Similar to the proof of Lemma 6. Since deletions never

increment any counts, 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is maximized by processing 𝐼

insertions and hence the sum of all the counts is upper bounded by

𝐼 .𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is largest when all the other counts are also𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 .

Hence,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 ≤ 𝜖𝐼
2𝛼 ≤ 𝜖 (𝐼−𝐷)

2
. □

Lemma 9. Themaximum estimation error, 𝑎𝑟𝑔𝑚𝑎𝑥 𝑗 ∈𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑟𝑟𝑜𝑟 𝑗 ,
in SpaceSaving± with 2𝛼

𝜖 counters is less than 𝜖
2
(𝐼 − 𝐷).

Proof. The estimation error only increases when𝑚𝑖𝑛𝐼𝑡𝑒𝑚 is

replaced by a newly inserted item and after the replacement, the

estimation error becomes𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 .𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is maximized when

the input contains 𝐼 insertions and no deletions. Hence by Lemma 2,

SpaceSaving
±
with

2𝛼
𝜖 counters has 𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 < 𝜖

2
(𝐼 − 𝐷). The

estimation error is at most𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 and less than
𝜖
2
(𝐼 − 𝐷) . □

Lemma 10. The sum of all estimation errors in SpaceSaving±, is
an upper bound on the sum of frequencies of all unmonitored items
and the maximum estimation error is greater than or equal to 0.

Proof. The deletion of a monitored item has no effect on the

sum of the estimation errors, and it has no effect on the sum of

the frequencies of the unmonitored items. The deletion of an un-

monitored item decreases both the sum of the frequencies of the

unmonitored items by 1 and the sum of the estimation errors by

1. From this observation and Lemma 4, we can conclude that in

SpaceSaving
±
with 𝑘 counters, the sum of all estimation errors is

an upper bound on the sum of frequencies of all unmonitored items.

Since the sum of frequencies of all unmonitored items is greater

than or equal to 0 and the sum of all estimation errors is upper

bounded by 𝑘 times the maximum estimation error, the maximum

estimation error is greater than or equal to 0. □

Algorithm 4: SpaceSaving±: Deletion Handling

1 for item from deletions do
2 if item in Sketch then
3 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚 -= 1 ;

4 else
5 j = arg𝑚𝑎𝑥 𝑗 ∈𝑆𝑘𝑒𝑡𝑐ℎ𝑒𝑟𝑟𝑜𝑟 𝑗 ;
6 𝑐𝑜𝑢𝑛𝑡 𝑗 -= 1 ;

7 𝑒𝑟𝑟𝑜𝑟 𝑗 -= 1 ;

8 end

Theorem 4. In the bounded-deletion model where 𝐷 ≤ (1 −
1/𝛼)𝐼 , after processing 𝐼 insertions and D 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠 , SpaceSaving±

using 𝑂 ( 𝛼𝜖 ) space solves the frequency estimation problem in which
∀𝑖, |𝑓 (𝑖) − 𝑓ˆ (𝑖) | < 𝜖 (𝐼 − 𝐷) where 𝑓 (𝑖) and 𝑓ˆ (𝑖) are the exact and
estimated frequencies of an item 𝑖 .

Proof. Consider an instance of SpaceSaving
±
with

2𝛼
𝜖 counters

to process 𝐼 insertions and 𝐷 deletions. First, we prove there is no

item 𝑖 such that the frequency estimate of 𝑖 severely overestimate

its true frequency, i.e, ∄𝑖, 𝑓ˆ (𝑖) − 𝑓 (𝑖) > 𝜖 (𝐼 − 𝐷). In SpaceSaving
±
,

the handling of deletions can not lead to any overestimation as

counters will only be decremented, and only the replacement of

the𝑚𝑖𝑛𝐼𝑡𝑒𝑚 due to a newly inserted item can lead to frequency

overestimation of the newly inserted item. From Lemma 8, the

𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 in SpaceSaving
±
with

2𝛼
𝜖 counters is no more than

𝜖
2
(𝐼 −

𝐷). The overestimation of a newly inserted item can be at most

𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 . Therefore, no item can be overestimated by more than

𝜖
2
(𝐼 − 𝐷).
Second, we prove there is no item that can be severely underes-

timated i.e, ∄𝑖, 𝑓ˆ (𝑖) − 𝑓 (𝑖) < −𝜖 (𝐼 − 𝐷). Two operations may lead

to frequency underestimation: (i) Replacement of𝑚𝑖𝑛𝐼𝑡𝑒𝑚, or (ii)

Deletion of an unmonitored item. For the first case,𝑚𝑖𝑛𝐶𝑜𝑢𝑛𝑡 is

always less than
𝜖
2
(𝐼 − 𝐷), and the amount of underestimation is

less than
𝜖
2
(𝐼 − 𝐷) for any item due to the replacement.

We show that the deletion of an unmonitored item can lead to

at most
𝜖
2
(𝐼 − 𝐷) frequency underestimation. Based on Lemma 9

and Lemma 10, the maximum estimation error must be less than

𝜖
2
(𝐼 − 𝐷) and greater than or equal to 0. In Algorithm 4, lines 6

and 7, the deletion of an unmonitored item decreases both the

count and the estimation error of the item with the maximum

estimation error. Call this item 𝑥 . Since 𝑥 ’s counter decreases by

1, the difference between 𝑥 ’s frequency estimation and 𝑥 ’s true

frequency, 𝑓ˆ (𝑥) − 𝑓 (𝑥), also decreases by 1. Once an item becomes
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monitored, its estimation error can only decrease. The number of

decrements due to an unmonitored item is at most
𝜖
2
(𝐼 −𝐷). Hence

for any item, its frequency is underestimated by at most
𝜖
2
(𝐼 − 𝐷)

due to the deletion of unmonitored items. As a result, for any item,

its frequency can be underestimated by at most 𝜖 (𝐼−𝐷) by replacing
the𝑚𝑖𝑛𝐼𝑡𝑒𝑚 and the deletions of the unmonitored items. □

In Theorem 4, we proved that SpaceSaving
±
guarantees that all

items’ estimated frequencies are off by no more than 𝜖 (𝐼 − 𝐷), i.e.,
∀𝑖, |𝑓ˆ (𝑖)− 𝑓 (𝑖) | ≤ 𝜖 (𝐼−𝐷). By reporting all the items with estimated

frequency greater than 0, all frequent items must be reported, which

is established in Theorem 5.

Theorem 5. In the bounded-deletion model, where 𝐷 ≤ (1 − 1

𝛼 )𝐼 ,
SpaceSaving± solves the frequent items problem using 𝑂 ( 𝛼𝜖 ) space.

Proof. Proof by contradiction:

Assume SpaceSaving
±
does not report all frequent items. There

must exist a frequent item𝑥 that is not reported. Since SpaceSaving±

reports all the items with estimated frequency greater than 0 as

frequent items (recall unmonitored items have estimated frequency

of 0), 𝑥 ’s estimated frequency must be less than or equal to 0, i.e.,

𝑓ˆ (𝑥) ≤ 0. Moreover, since 𝑥 is a frequent item, then the exact

frequency of 𝑥 must be greater than or equal to 𝜖 (𝐼 −𝐷), i.e., 𝑓 (𝑥) ≥
𝜖 (𝐼 −𝐷). The difference between 𝑥 estimated frequency and 𝑥 exact

frequency is greater than or equal to 𝜖 (𝐼 − 𝐷), i.e., |𝑓 (𝑥) − 𝑓ˆ (𝑥) | ≥
𝜖 (𝐼 −𝐷). This leads to a contradiction since it violates the frequency
approximation guarantee proved in Theorem 4. □

3.5 An illustration of SpaceSaving±

Figure 2: Input Stream consists of 6 insertions and 3 deletions.
Each tuple represents (𝑖𝑡𝑒𝑚, 𝑐𝑜𝑢𝑛𝑡𝑖𝑡𝑒𝑚, 𝑒𝑟𝑟𝑜𝑟𝑖𝑡𝑒𝑚).

Consider the same stream illustrated in Section 3.3 in which

the stream 𝜎 is (𝐴,𝐴,𝐴,𝐶,−𝐴, 𝐵,𝐴,−𝐶,−𝐵) where the minus sign

indicate a deletion. The corresponding exact frequency of 𝐴 is 3,

while the true frequency of all other items is 0. Consider an instance

of SpaceSaving
±
with capacity of 2. The SpaceSaving

±
image after

digesting the first 7 items are exactly the same as in the previous

example. When the deletion of item 𝐶 arrives, SpaceSaving
±
does

not ignore the deletion of unmonitored item𝐶 , and since item 𝐵 has

the largest estimation error, both 𝐵’s count and 𝐵’s estimation error

are decreased. The final deletion of 𝐴 decreased 𝐴’s corresponding

count. After processing the stream, the estimated frequency for 𝐴

and 𝐵 are 3 and 0 respectively, as shown in Figure 2. The frequency

estimations are exact in which |𝑓ˆ (𝐴) − 𝑓 (𝐴) | = 0 and |𝑓ˆ (𝐵) −
𝑓 (𝐵) | = 0. With the same bounded-deletion stream and sketch

space, Lazy SpaceSaving
±
overestimated the frequency of item 𝐵

by 1 (Section 3.3), while SpaceSaving
±
is able to further reduce

the estimation error to 0. By judiciously handling the deletion

of the unmonitored items, SpaceSaving
±
reduces the impact of

overestimation and achieves better accuracy.

3.6 Min Heap and Max Heap
SpaceSaving algorithm is usually implemented with a standard

min-heap data structure such that the operations that increase the

item counts and that remove the minimum item can be performed

in logarithmic time [6]. To support the deletion of the unmonitored

items, SpaceSaving
±
further needs to find the item with the maxi-

mum estimation error and modify the estimation errors efficiently.

From these observations, we use two heaps on both the estimated

counts and the estimation errors, as underlying data structures. The

estimated counts are stored in a min heap, the estimation errors

are stored in a max heap, and a dictionary maps each item to the

corresponding nodes in these two heaps. Using two heaps and a dic-

tionary with 𝑂 (𝑘) space, both the minimum count and maximum

estimation error can be found in 𝑂 (1) time; while insertions and

deletions can be done in 𝑂 (𝑙𝑜𝑔𝑘) time. For example, if the sketch

needs to delete an unmonitored item, then the procedure would be

as follows: (1) use the dictionary to ascertain that the deletion is

performed on an unmonitored item; (2) use the max heap to find

the item with maximum estimation error; (3) use the dictionary to

find the location of the item with maximum estimation error in the

min heap; (4) decrease both its count (min heap) and its estimation

error (max heap); (5) percolate it up in min heap and percolate it

down in max heap;

4 EVALUATION
This section evaluates the performance of Lazy SpaceSaving

±
and

SpaceSaving
±
. They are the first deterministic frequency estimation

and frequent item algorithms in the bounded-deletion model and

make no assumptions on the universe. The experiments aim to

identify advantages and disadvantages of Lazy SpaceSaving
±
and

SpaceSaving
±
compared to other state-of-the-art sketches such as:

• CSSS [29] : The CSSS sketch is the first theoretical algo-

rithm to solve the frequency estimation and frequent item

problems in the bounded-deletion model.

• Count-Min 5
[17]: Count-Min Sketch operates in the turn-

stile model and never underestimate frequencies.

• Count-Median 6
[12]: Count-Median Sketch operates in

the turnstile model and its frequency estimation is unbiased.

4.1 Experimental Setup
We implemented SpaceSaving

±
using the min and max heap data

structures described in Section 3.6 in Python. The main distinc-

tion from the original SpaceSaving [38] are: (i) support of delete

5
See https://github.com/rafacarrascosa/countminsketch for implementation detail

6
See [19] for implementation detail
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operations using the Algorithm 3 or Algorithm 4; (ii) the use of

a max heap on the estimation errors; and (iii) the overall space

complexity is
𝛼
𝜖 and the update time complexity is 𝑂 (𝑙𝑜𝑔𝛼

𝜖 ). We

also implemented the CSSS sketch as described in [29]. All the

experimental metrics are averaged over 5 independent runs. In all

experiments, Lazy SpaceSaving
±
and SpaceSaving

±
use the same

amount of space, and to align the experiments with the theoretical

literature [7, 29], we set the universe size𝑈 = 2
16

and 𝛿 = 𝑈 −1
.

4.2 Data Sets
The experimental evaluation is conducted using both synthetic and

real world data sets consisting of items that are inserted and deleted.

For the synthetic data, we consider three different distributions:

• ZipfDistribution: The elements are drawn from a bounded

universe and the frequencies of elements follow the Zipf

Law [49], in which the frequency of an element with rank

𝑅: 𝑓 (𝑅, 𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑅𝑠 where 𝑠 indicates skewness. Deletions

are uniformly chosen from the insertions.

• Binomial Distribution: The elements are generated ac-

cording to the binomial distribution with parameters 𝑛 and

𝑝 where 𝑝 is the probability of success in 𝑛 independent

Bernoulli trials.

In addition to the synthetic data sets, we used the following real

world CAIDA Anonymized Internet Trace 2015 Dataset [1].

• 2015CAIDADataset: The CAIDA dataset is collected from

the ‘equinixchicago’ high-speed monitor. In the experiment,

we use 5 disjoint batches of 2 million TCP packets where

insertions are the destination IP addresses and deletions

are randomly chosen from insertions.

We also conducted experiments by exploring two additional

patterns of the data sets:

• Shuffled: The insertions are randomly shuffled and the

deletions are randomly and uniformly chosen from inser-

tions.

• Targeted: The insertions are randomly shuffled and the

deletions delete the item with the least frequency.

The metrics used in the experiments are:

• Mean Squared Error: The mean squared error (MSE) is the

average of the squares of the frequency estimation errors.

MSE is a measurement widely used to judge the accuracy

of an estimation and serves as an empirical estimation of

the variance [16].

• Recall: Recall is defined as 𝑇𝑃
𝑇𝑃+𝐹𝑁 where𝑇𝑃 (true positive)

is the number of items that are estimated to be frequent and

are indeed frequent and 𝐹𝑁 (false negative) is the number of

items that are frequent but not included in the estimations.

• Precision: Precision is defined as
𝑇𝑃

𝑇𝑃+𝐹𝑃 where 𝐹𝑃 (false

positive) is the number of items that are estimated to be

frequent but are not frequent.

The experiments are presented in the following two subsections:

frequency estimation and frequent item experiments.

4.3 Frequency Estimation Evaluation
In this section, we compare Lazy SpaceSaving

±
and SpaceSaving

±

with state-of-the-art frequency estimation sketches. Our proposed

algorithms use𝑂 ( 𝛼𝜖 ) space while the Count-Min and Count-Median

use 𝑂 ( 1𝜖 𝑙𝑜𝑔𝑈 ) space. When 𝛼 = 𝑙𝑜𝑔𝑈 , they share the same space

and the delete:insert ratio becomes
𝑙𝑜𝑔𝑈−1
𝑙𝑜𝑔𝑈

. In addition, these ex-

periments evaluate the accuracy of each sketch using the mean

square error (MSE). In MSE figures the x-axis denotes the sketch

size while the y-axis depicts the average of the mean square errors.

Since the mean square error is strictly positive, the lower y-axis

values indicate better accuracy. In the following experiments, we

assume all insertions arrive before any deletions into the sketch

which is an adversarial pattern as spatial locality is minimized.

4.3.1 Sketch Size. In this experiment, the input data has I insertions

and D deletions. The delete:insert ratio is 0.5 and 𝑎𝑙𝑝ℎ𝑎 equals to

2. The deletion pattern is either shuffled, randomly chosen from

insertions, or targeted delete of the least frequent items. The Zipf

and Binomial distributions have |𝐹 |1 = 10
5
and the CAIDA dataset

has |𝐹 |1 = 10
6
. This experiment explores the effect of distribution

skewness and the space size effect of sketches operating in both

the bounded-deletion model and in the turnstile model.

As expected, all sketches share the same pattern: increasing the

sketch size leads to decrease in the MSE, shown in Figure 3. All

experiments show SpaceSaving
±
has the lowest MSE and best accu-

racy as the sketch size grows. For the skewed Zipf distribution and

CAIDA dataset, SpaceSaving
±
is the clear winner for all sketch sizes,

as shown in Figure 3. For the lesser skewed binomial distribution,

Count-Median performs competitively compared to SpaceSaving
±
;

however, SpaceSaving
±
eventually has better accuracy as the sketch

size increases, as shown in Figure 3(b,e). The CSSS sketch has accu-

racy between Count-Median and Count-Min sketches. The Count-

Min sketch often overestimates an item’s frequency and thus has

higher mean square error across all distribution.

The targeted deletion pattern, when the least frequent items are

targeted for deletions, leads to a slight decrease in MSE across all

distributions for Count-Min. The targeted delete pattern decreases

the cardinality of 𝐹 , increases the overall skewness, and hence

heavy hitter items become more dominant and all sketches are able

to capture the overall change and have less mean square error.

4.3.2 Delete:Insert Ratio and 𝛼 . Sketches in the bounded-deletion

model have space complexity dependent on parameter 𝛼 , which

upper bounds the delete:insert ratio. With higher delete:insert ratio,

these sketches need to increase their sketch space to tolerate the

increase in deletions in order to deliver the same guarantee. In

this experiment, we fixed the sketch space to 10
3𝑙𝑜𝑔𝑈 bits and

fixed the input stream length to one million. The x-axis represents

different delete:insert ratio, and the y-axis is the mean squared error

averaged over 5 independent runs, as shown in Figure 4.

As expected, the accuracy of Lazy SpaceSaving
±
and CSSS de-

pends on 𝛼 and their MSE increases as the delete:insert ratio in-

creases. The more interesting result is that SpaceSaving
±
’s MSE

decreases when the delete:insert ratio is less or equal to 0.9. More-

over, for a universe of size 2
16
, SpaceSaving

±
providesMSE less than

CSSS, Count-Min, and Count-Median even if the delete:insert ratio

is as high as 0.9375, which is
𝑙𝑜𝑔𝑈−1
𝑙𝑜𝑔𝑈

, while using the same amount

of space, as shown by the right most values in Figure 4. By han-

dling the deletion of unmonitored items judiciously, SpaceSaving
±
’s

frequency estimation is more robust to the increase in deletions

than other algorithms in the bounded-deletion model. For sketches
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(a) (b) (c)

(d) (e) (f)

Figure 3: Trade-off between space and accuracy on various data distributions and different patterns

Figure 4: Varying delete:insert ratio.

that operate in the turnstile model, the MSE of Count-Min and

Count-Median decreases as the delete:insert ratio increases, since

more deletions reduce the number of hash collisions and reduce

the amount of over counting in each bucket. If the universe size

increases, the performance of linear sketches will further decrease,

whereas the data-driven SpaceSaving
±
has no dependency on the

universe, and can provide accurate estimations even in the extreme

case of unbounded universe.

4.3.3 Update Time. In Figure 5 , the x-axis is the stream length

and the y-axis is the average latency in second per item over 5

independent runs. The input is a shuffled Zipf distribution and the

delete:insert ratio is 0.5. All sketches use 10
3𝑙𝑜𝑔𝑈 bits. As shown

in Figure 5, Lazy SpaceSaving
±
has slightly less update time than

SpaceSaving
±
. The lazy approach ignores deletions of unmonitored

Figure 5: Update times for Sketches

items and achieves better latency. CSSS sketch update time de-

creases as the stream length grows because it performs sampling

to obtain 𝑂 ( 𝛼𝑙𝑜𝑔𝑈𝜖 ) samples and runs Count-Median sketch on the

samples. As the stream length increases the sample size increases

at a slower pace, and the average update time per item decreases.

Count-Min and Count-Median have update times depend on the

universe size where a larger universe size will further increase

the update time. Since Count-Median performs more hashes than

Count-Min, Count-Median requires more update time than Count-

Min. While randomized CSSS has fast update time, our algorithms

are deterministic and provide very accurate approximations.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Recall and Precision Comparison

4.4 Frequent Items Evaluation
In this section, we compare the recall and precision of our proposed

algorithms with state-of-the-art sketches for identifying frequent

items. All experiments in this section have delete:insert ratio of

0.5, 𝛼 = 2, and all insertions arrive before any deletions. The left

y-axis depicts either the average recall or average precision over

5 independent runs: higher y-axis values indicate better recall or

precision. The right y-axis denotes the space used for each sketch

where Lazy SpaceSaving
±
and SpaceSaving

±
use

𝛼
𝜖 𝑙𝑜𝑔𝑈 bits; Count-

Min and Count-Median use
1

𝜖 𝑙𝑜𝑔
2𝑈 bits. Each sketch queries all

potential items and then reports items with estimated frequency

greater than or equal to 𝜙 |𝐹 |1 as the frequent items. In addition,

the following experiments do not compare with the CSSS sketch.

Although CSSS can solve the frequent item problem, CSSS is more

of theoretical interest since it reduces the size of each counter from

𝑂 (𝑙𝑜𝑔𝑈 ) bits to𝑂 (𝑙𝑜𝑔(𝛼)) bits but in practice, it requires a lot more

space to solve the frequent item problem. More specifically, the

sketch size increases by 192 times, which implies the universe is

powered by 192 times. The space increase is more significant than

the space saved by reducing the number of bits per counter.

4.4.1 Recall. In these experiments, we compare the recall among

Lazy SpaceSaveing
±
, SpaceSaving

±
, Count-Min and Count-Median.

In Figure 6 (a), (b), and (c), the x-axis represents different frequent

items threshold 𝜙 in which frequent items have frequency greater

than or equal to 𝜙 |𝐹 |1. The right y-axis denotes the space used for

each sketches in which Lazy SpaceSaving
±
and SpaceSaving

±
use

𝛼
𝜖 𝑙𝑜𝑔𝑈 bits; Count-Min and Count-Median use

1

𝜖 𝑙𝑜𝑔
2𝑈 bits. The

sketch space increases as 𝜙 decreases. The left y-axis is the recall

ratio. As expected, Lazy SpaceSaving
±
and Count-Min sketches

have 100% recall across all distributions, since they never under-

estimate the frequent item’s frequency. The Count-Median sketch

may sometimes underestimate the frequency and thus does not

always achieve 100% recall, as shown in Figure 6 (c). In the proof of

Theorem 5, SpaceSaving
±
needs to report all items with frequency

greater than 0 to identify all frequent items and achieve 100% recall.

In this experiment, SpaceSaving
±
reports items with frequency

larger than 𝜙 |𝐹 |1. Since it might underestimate an item’s frequency,

the recall rate might not be 100%. However, in these experiments,

SpaceSaving
±
still achieves 100% recall across all distributions and

thus indicates SpaceSaving
±
rarely underestimates.

4.4.2 Precision. In this subsection, we compare the precision among

Lazy SpaceSaveing
±
, SpaceSaving

±
, Count-Min and Count-Median.

In Figure 6 (d), (e), and (f), the x-axis represents the different fre-

quent items threshold 𝜙 . The right y-axis denotes the space budget

in which Lazy SpaceSaving
±
and SpaceSaving

±
use

𝛼
𝜖 𝑙𝑜𝑔𝑈 bits;

Count-Min and Count-Median use
1

𝜖 𝑙𝑜𝑔
2𝑈 bits. The sketch space

increases as 𝜙 decreases. The left y-axis is the precision ratio. Lazy

SpaceSaving
±
, SpaceSaving

±
and Count-Median have above 90%

precision for all 𝜙 and distributions. Since Lazy SpaceSaving
±
some-

times overestimates an item’s frequency, a few items’ frequency are

overestimated and hence they may be falsely classified as frequent

items. SpaceSaving
±
judiciously handles the deletion and achieves

very high precision across all distributions using minimal space.

Count-Min often overestimates items’ frequencies and many items

are incorrectly classified as frequent.
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5 QUANTILE SKETCH
In this section, we demonstrate that SpaceSaving

±
can be easily

integrated with prior protocols [17, 44] to solve the quantile approx-

imation problem. We propose Dyadic SpaceSaving
±
(DSS

±
), the

first deterministic quantile sketch in the bounded-deletion model.

Dyadic SpaceSaving
±
sketch is a universe-driven algorithm that

accurately approximates quantiles with strong guarantees.

5.1 The Quantiles Problem
The rank of an element 𝑥 is the total number of elements that are

less than or equal to 𝑥 , denoted as 𝑅(𝑥). The quantile of an element

𝑥 is defined as 𝑅(𝑥)/|𝐹 |1 where 𝐹 is the frequency vector. The most

familiar quantile value is 0.5 also known as median. Deterministic 𝜖
approximation quantile algorithms [25, 41] take as input a precision

value 𝜖 and an item such that the approximated rank has at most

𝜖 |𝐹 |1 additive error. The randomized quantile algorithms provide a

weaker guarantee in which the approximated rank of an item has

at most 𝜖 |𝐹 |1 additive error with high probability [28, 33, 37].

Recently, Zhao et al. [48] proposed the first randomized quantile

sketch KLL
±
using𝑂 ( 𝛼1.5

𝜖 𝑙𝑜𝑔2𝑙𝑜𝑔 1

𝜖 ) space in the bounded deletion

model by generalizing the KLL [33] from the insertion-only model.

The first sketch to summarize quantiles in the turnstile model is

the Random Subset Sums (RSS) proposed by Gilbert et al. [24].

RSS is a universe driven algorithm, which assume input are drawn

from a bounded universe and maintain attributes over the bounded

universe [14]. RSS breaks down the bounded universe into dyadic

intervals and maintains frequency estimations for each interval.

Recall, dyadic intervals are in the form of [𝑖2𝑗 , (𝑖 + 1)2𝑗 − 1] for
𝑗 ∈ 𝑙𝑜𝑔2𝑈 and any constant 𝑖 , such that any ranges can be decom-

posed into at most 𝑙𝑜𝑔2𝑈 disjoint dyadic ranges [15]. Cormode et

al. [17] proposed the Dyadic Count-Min (DCM) which replaces

the frequency estimation sketch for each dyadic interval with a

Count-Min, and hence improves the overall space complexity to

𝑂 ( 1𝜖 log
2𝑈 log ( log𝑈𝜖 ))) and update time to 𝑂 (log𝑈 log ( log𝑈𝜖 )).

Then, Wang et al. [44] proposed the Dyadic Count-Median (DCS)

which replaces Count-Min with Count-Median [12] to further im-

prove the space complexity to 𝑂 ( 1𝜖 log
1.5𝑈 log

1.5 ( log𝑈𝜖 ))), while
using the same update time complexity as DCM.

5.2 DSS±: A Deterministic Quantile Sketch
We propose the Dyadic SpaceSaving

±
(DSS

±
) to solve deterministic

quantile approximation in the bounded-deletion model. Inspired by

the previous algorithms, we observe that by replacing the frequency

estimation sketch in each dyadic layer with a SpaceSaving
±
of

space𝑂 ( 𝛼𝜖 𝑙𝑜𝑔𝑈 ) solves the quantile approximation in the bounded-

deletion model. Any range can be decomposed into at most 𝑙𝑜𝑔𝑈

dyadic intervals [15]. Since SpaceSaving
±
with 𝑂 ( 𝛼𝜖 𝑙𝑜𝑔𝑈 ) space

ensures that the frequency estimation has at most
𝜖 (𝐼−𝐷)
𝑙𝑜𝑔𝑈

additive

error and by summing up at most 𝑙𝑜𝑔𝑈 frequencies, the approxi-

mated rank has at most 𝜖 (𝐼−𝐷) additive error and the approximated

quantile has at most 𝜖 error. To update the DSS
±
quantile sketch

with an item 𝑥 : for each 𝑙𝑜𝑔𝑈 layers, 𝑥 is mapped to an element in

that layer and increments the corresponding element’s frequency,

as shown in Algorithm 5. The rank information of an item can be

calculated by summing 𝑂 (𝑙𝑜𝑔𝑈 ) number of subset sums, as shown

in Algorithm 6. Therefore, the Dyadic SpaceSaving
±
sketch requires

𝑂 ( 𝛼𝜖 𝑙𝑜𝑔
2𝑈 ) space with update time𝑂 (𝑙𝑜𝑔𝑈𝑙𝑜𝑔𝛼𝑙𝑜𝑔𝑈

𝜖 ). The quantile
experiments comparing DSS

±
, KLL

±
and DCS are shown in [47].

Algorithm 5: DSS± Update(x,1)

1 for h from 0 to logU do
2 DSS

±
[h].update(x, 1);

3 x= x/2;

4 end

Algorithm 6: DSS± Query(x)

1 Rank = 0;

2 for h from 0 to logU do
3 if x is odd then
4 Rank = Rank + DSS

±
[h].query(x);

5 x= x/2;

6 end
7 return Rank;

6 CONCLUSION
Frequency estimation and frequent items are two important prob-

lems in data stream research, and have significant impact for real

world systems. Over the past decades of research, many algorithms

have been proposed for the insertion-only and the turnstile models.

In this work, we propose data-driven deterministic SpaceSaving
±

sketches to accurately approximate item frequency and report

heavy hitter items in the bounded-deletion model. To our knowl-

edge, Lazy SpaceSaving
±
and SpaceSaving

±
are the first determinis-

tic algorithms to solve these two problems in the bounded-deletion

model and they make no assumption on the universe. The experi-

mental evaluations of SpaceSaving
±
highlight that it has the best fre-

quency estimation accuracy among other state-of-the-art sketches,

and requires the least space to provide strong guarantees. We also

demonstrate that implementing SpaceSaving
±
with the min and

max heap approach provides fast update time. Furthermore, the

experiments showcase that SpaceSaving
±
has very high recall and

precision rates across a range of data distributions. These charac-

teristics of SpaceSaving
±
make it a practical choice for real world

applications. Finally, by leveraging SpaceSaving
±
and dyadic in-

tervals over bounded universe, we proposed the first determinis-

tic quantile sketch in the bounded-deletion model. Our analysis

clearly demonstrates that overall, for an unbounded universe or

for practical delete:insert ratios below
𝑙𝑜𝑔𝑈−1
𝑙𝑜𝑔𝑈

(e.g., for a realistic

universe size of U=2
16
, a ratio of .93 and for U=2

32
, a ratio of .96),

SpaceSaving
±
is the best algorithm to use and solves several major

problems with strong guarantees in a unified algorithm.
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