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ABSTRACT
Efficient anomaly detection and diagnosis in multivariate time-
series data is of great importance for modern industrial applications.
However, building a system that is able to quickly and accurately
pinpoint anomalous observations is a challenging problem. This is
due to the lack of anomaly labels, high data volatility and the de-
mands of ultra-low inference times in modern applications. Despite
the recent developments of deep learning approaches for anomaly
detection, only a few of them can address all of these challenges.
In this paper, we propose TranAD, a deep transformer network
based anomaly detection and diagnosis model which uses attention-
based sequence encoders to swiftly perform inference with the
knowledge of the broader temporal trends in the data. TranAD uses
focus score-based self-conditioning to enable robust multi-modal
feature extraction and adversarial training to gain stability. Addi-
tionally, model-agnostic meta learning (MAML) allows us to train
the model using limited data. Extensive empirical studies on six pub-
licly available datasets demonstrate that TranAD can outperform
state-of-the-art baseline methods in detection and diagnosis perfor-
mance with data and time-efficient training. Specifically, TranAD
increases F1 scores by up to 17%, reducing training times by up to
99% compared to the baselines.
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1 INTRODUCTION
Modern IT operations generate enormous amounts of high dimen-
sional sensor data used for continuous monitoring and proper func-
tioning of large-scale datasets. Traditionally, data mining experts
have studied and highlighted data that do not follow usual trends
to report faults. Such reports have been crucial for system man-
agement models for reactive fault tolerance and robust database
design [47]. However, with the advent of big-data analytics and
deep learning, this problem has become of interest to data mining

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view
a copy of this license. For any use beyond those covered by this license, obtain
permission by emailing info@vldb.org. Copyright is held by the owner/author(s).
Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514067

researchers and to aid experts in handling increasing amounts of
data. One particular use case is in artificial intelligence for Industry-
4.0 databases, with a specific focus on service reliability [38] that
has automated fault detection, recovery and management of mod-
ern systems. Detecting data-faults, or any type of behavior not
conforming to the expected trends, is an active research discipline
referred to as anomaly detection in multivariate time series [11].
Many data-driven industries, including ones related to distributed
computing, Internet of Things (IoT), robotics and urban resource
management [4, 46] are now adopting machine learning based
unsupervised methods for anomaly detection.

Challenges. The problem of anomaly detection is becoming
increasingly challenging in large-scale databases due to the in-
creasing data modality [18, 28, 54]. In particular, the increasing
number of sensors and devices in contemporary IoT platforms with
increasing data volatility creates the requirement for significant
amounts of data for accurate inference. However, due to the rising
federated learning paradigm with geographically distant clusters,
synchronizing databases across devices is expensive, causing lim-
ited data availability for training [48, 57]. Further, next-generation
applications need ultra-fast inference speeds for quick recovery
and optimal Quality of Service (QoS) [6, 50]. Time-series databases
are generated using several engineering artifacts (servers, robots,
etc.) that interact with the environment, humans or other systems.
As a result, the data often displays both stochastic and temporal
trends [45]. It thus becomes crucial to distinguish outliers due to
stochasticity and only pinpoint observations that do not adhere to
the observed temporal trends. Moreover, the lack of labeled data
and anomaly diversity makes the problem challenging as we cannot
use supervised learning models, which have shown to be effective
in other areas of data mining [12]. Finally, it is not only impor-
tant to detect anomalies but also the root causes, i.e., the specific
data sources leading to abnormal behavior [23]. This complicates
the problem further as we need to perform multi-class prediction
(whether there is an anomaly and from which source if so) [60].

Existing solutions. The above discussed challenges have led
to the development of a myriad of unsupervised learning solu-
tions for automated anomaly detection. Researchers have devel-
oped reconstruction-based methods that predominantly aim to
encapsulate the temporal trends and predict the time-series data in
an unsupervised fashion, then use the deviation of the prediction
with the ground-truth data as anomaly scores. Based on various
extreme value analysis methods, such approaches classify times-
tamps with high anomaly scores as abnormal [4, 10, 14, 20, 28, 29,
45, 60, 62]. The way prior works generate a predicted time-series
from a given one varies from one work to another. Traditional ap-
proaches, like SAND [10], use clustering and statistical analysis to
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detect anomalies. Contemporary methods like openGauss [30] and
LSTM-NDT [20] use a Long-Short-Term-Memory (LSTM) based
neural networks to forecast the data with an input time-series and
a non-parametric dynamic thresholding approach for detecting
anomalies from prediction errors. However, recurrent models like
LSTMs are known to be slow and computationally expensive [4]. Re-
cent state-of-the-art methods, like MTAD-GAT [62] and GDN [14],
use deep neural networks with a time-series window as an input
for more accurate predictions. However, as the inputs become more
data-intensive, small constant size window inputs limit the detec-
tion performance of such models due to the restricted local context
information given to the model [4]. There is a need for a model that
is fast and can capture high-level trends with minimal overheads.

New insights. As noted above, recurrent models based on prior
methods are not only slow and computationally expensive, but are
also unable to model long-term trends effectively [4, 14, 62]. This is
because, at each timestamp, a recurrent model needs to first perform
inference for all previous timestamps before proceeding further. Re-
cent developments of the transformer models allow single-shot in-
ference with the complete input series using position encoding [51].
Using transformers allows much faster detection compared to re-
current methods by parallelizing inference on GPUs [19]. However,
transformers also provide the benefit of being able to encode large
sequences with accuracy and training/inference times nearly ag-
nostic to the sequence length [51]. Thus, we use transformers to
grow the temporal context information sent to an anomaly detector
without significantly increasing the computational overheads.

Our contributions. This work uses various tools, including
Transformer neural networks and model-agnostic meta learning,
as building blocks. However, each of these different technologies
cannot be directly used and need necessary adaptations to cre-
ate a generalizable model for anomaly detection. Specifically, we
propose a transformer-based anomaly detection model (TranAD),
that uses self-conditioning and an adversarial training process. Its
architecture makes it fast for training and testing while maintain-
ing stability with large input sequences. Simple transformer-based
encoder-decoder networks tend to miss anomalies if the deviation
is too small, i.e., it is relatively close to normal data. One of our
contributions is to show that this can be alleviated by an adversarial
training procedure that can amplify reconstruction errors. Further,
using self-conditioning for robust multi-modal feature extraction
can help gain training stability and allow generalization [32]. This,
with model-agnostic meta learning (MAML) helps keep optimum
detection performance even with limited data [15], as we show later
in the validation that methods with simple transformers underper-
form by over 11% compared to TranAD. We perform extensive
empirical experiments on publicly available datasets to compare
and analyze TranAD against the state-of-the-art methods. Our ex-
periments show that TranAD is able to outperform baselines by
increasing prediction scores by up to 17% while reducing training
time overheads by up to 99%.

The rest of the paper is organized as follows. Section 2 overviews
related work. Section 3 outlines the working of the TranAD model
for multivariate anomaly detection and diagnosis. A performance
evaluation of the proposed method is shown in Section 4. Section 5
presents additional analysis. Finally, Section 6 concludes.

2 RELATED WORK
Time series anomaly detection is a long-studied problem in the
VLDB community. The prior literature works on two types of time-
series data: univariate and multivariate. For the former, various
methods analyze and detect anomalies in time-series data with a
single data source [34], while for the latter multiple time-series
together [14, 45, 62].

Classical methods. Such methods for anomaly detection typi-
cally model the time-series distribution using various classical tech-
niques like k-Mean clustering, Support Vector Machines (SVMs)
or regression models [10, 28, 43, 52]. Other methods use wavelet
theory or various signal transformation methods like Hilbert trans-
form [25]. Other classes of methods use Principal Component Anal-
ysis (PCA), process regression or hidden Markov chains to model
time-series data [41]. The GraphAn technique [9] converts the
time-series inputs to graphs and uses graph distance metrics to
detect outliers. Another technique, namely isolation forest, uses an
ensemble of several isolation trees that recursively partition the
feature space for outlier detection [5, 31]. Finally, classical meth-
ods use variants of Auto-Regressive Integrated Moving Average
(ARIMA) to model and detect anomalous behaviour [56]. However,
auto-regression based approaches are rarely used for anomaly de-
tection in high-order multivariate time series due to their inability
to efficiently capture volatile time-series [1]. Other methods like
SAND [10], CPOD [47] and Elle [28] utilize clustering and database
read-write history to detect outliers.

Time-series discord discovery is another recently proposedmethod
for fault prediction [16, 37, 58, 59]. Time series discords refer to
the most unusual time series subsequences, i.e., subsequences that
are maximally different from all other subsequences in the same
time series. A sub-class of methods uses matrix profiling or its vari-
ants for anomaly and motif discovery by detecting time series dis-
cords [16, 35, 63]. Many advances have been proposed to make ma-
trix profiling techniques data and time efficient [21]. Other efforts
aim to make matrix profiling applicable to diverse domains [64].
However, matrix profiling has many more uses than just anomaly
detection and is considered to be slower than pure discord dis-
covery algorithms [37]. A recent approach, MERLIN [37], uses a
parameter-free version of time series discord discovery by itera-
tively comparing subsequences of varying length with their imme-
diate neighbors. MERLIN is considered to be the state-of-the-art
discord discovery approach with low overheads; hence, is regarded
as one of the baselines in our experiments.

Deep Learning based methods.Most contemporary state-of-
the-art techniques employ some form of deep neural networks. The
LSTM-NDT [20] method relies on an LSTM based deep neural net-
work model that uses the input sequence as training data and, for
each input timestamp, forecasts data for the next timestamp. LSTMs
are auto-regressive neural networks that learn order dependence
in sequential data, where the prediction at each timestamp uses
feedback from the output of the previous timestamp. This work
also proposes a non-parametric dynamic error thresholding (NDT)
strategy to set a threshold for anomaly labeling using moving aver-
ages of the error sequence. However, being a recurrent model, such
models are slow to train in many cases with long input sequences.
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Further, LSTMs are often inefficient in modeling long temporal
patterns, especially when the data is noisy [62].

The DAGMM [65] method uses a deep autoencoding Gaussian
mixture model for dimension reduction in the feature space and
recurrent networks for temporal modeling. This work predicts an
output using a mixture of Gaussians, where the parameters of each
Gaussian are given by a deep neural model. The autoencoder com-
presses an input datapoint into a latent space, that is then used
by a recurrent estimation network to predict the next datapoint.
The decoupled training of both networks allows the model to be
more robust; however, it still is slow and unable to explicitly utilize
inter-modal correlations [14]. The Omnianomaly [45] uses a sto-
chastic recurrent neural network (similar to an LSTM-Variational
Autoencoder [39]) and a planar normalizing flow to generate re-
construction probabilities. It also proposes an adjusted Peak Over
Threshold (POT) method for automated anomaly threshold selec-
tion that outperforms the previously used NDT approach. This
work led to a significant performance leap compared to the prior
art, but at the expense of high training times.

The Multi-Scale Convectional Recursive Encoder-Decoder (MS-
CRED) [60] converts an input sequence window into a normalized
two-dimensional image and then passes it through a ConvLSTM
layer. This method is able to capture more complex inter-modal cor-
relations and temporal information, however is unable to generalize
to settings with insufficient training data. The MAD-GAN [29] uses
an LSTM based GAN model to model the time-series distribution
using generators. This work uses not only the prediction error, but
also the discriminator loss in the anomaly scores. MTAD-GAT [62]
uses a graph-attention network to model both feature and temporal
correlations and pass it through a lightweight Gated-Recurrent-
Unit (GRU) network that aids detection without severe overheads.
Traditionally, attention operations perform input compression us-
ing convex combination where the weights are determined using
neural networks. GRU is a simplified version of LSTMwith a smaller
parameter set and can be trained in limited data settings. The CAE-
M [61] uses a convolutional autoencoding memory network, similar
to MSCRED. It passes the time-series through a CNN with the out-
put being processed by bidirectional LSTMs to capture long-term
temporal trends. Such recurrent neural network-based models have
been shown to have high computation costs and low scalability for
high dimensional datasets [4].

More recent works such as USAD [4], GDN [14] and open-
Gauss [30] do not use resource-hungry recurrent models, but only
attention-based network architectures to improve training speeds.
The USAD method uses an autoencoder with two decoders with
an adversarial game-style training framework. This is one of the
first works that focus on low overheads by using a simple autoen-
coder and can achieve a several-fold reduction in training times
compared to the prior art. The Graph Deviation Network (GDN)
approach learns a graph of relationships between data modes and
uses attention-based forecasting and deviation scoring to output
anomaly scores. The openGauss approach uses a tree-based LSTM
that has lower memory and computational footprint and allows
capturing temporal trends even with noisy data. However, due
to the small window as an input and the use of simple or no re-
current models, the latest models are unable to capture long-term
dependencies effectively.

The recently proposed HitAnomaly [19] method uses vanilla
transformers as encoder-decoder networks, but is only applicable
to natural-language log data and not appropriate for generic con-
tinuous time-series data as inputs. In our experiments, we compare
TranAD against the state-of-the-art methods MERLIN, LSTM-NDT,
DAGMM, OmniAnomaly, MSCRED, MAD-GAN, USAD, MTAD-
GAT, CAE-M and GDN. These methods have shown superiority in
anomaly detection and diagnosis, but complement one another in
terms of performance across different time-series datasets. Out of
these, only USAD aims to reduce training times, but does this to a
limited extent. Just like reconstruction based prior work [4, 29, 45,
60, 61], we develop a TranAD model that learns broad level trends
using training data to find anomalies in test data. We specifically
improve anomaly detection and diagnosis performance with also
reducing the training times in this work.

3 METHODOLOGY
3.1 Problem Formulation
We consider a multivariate time-series, which is a timestamped
sequence of observations/datapoints of size 𝑇

T = {𝑥1, . . . , 𝑥𝑇 },
where each datapoint 𝑥𝑡 is collected at a specific timestamp 𝑡 and
𝑥𝑡 ∈ IR𝑚, ∀𝑡 . Here, the univariate setting is a particular case where
𝑚 = 1. We now define the two problems of anomaly detection and
diagnosis.

Anomaly Detection: Given a training input time-series T , for any
unseen test time-series T̂ of length 𝑇 and same modality as the
training series, we need to predict Y = {𝑦1, . . . , 𝑦𝑇 }, where we use
𝑦𝑡 ∈ {0, 1} to denote whether the datapoint at the 𝑡-th timestamp
of the test set is anomalous (1 denotes an anomalous datapoint).

Anomaly Diagnosis: Given the above training and test time-series,
we need to predict Y = {𝑦1, . . . , 𝑦𝑇 }, where 𝑦𝑡 ∈ {0, 1}

𝑚 to denote
which of the modes of the datapoint at the 𝑡-th timestamp are
anomalous.

3.2 Data Preprocessing
To make our model more robust, we normalize the data and con-
vert it to time-series windows, both for training and testing. We
normalize the time-series as:

𝑥𝑡 ←
𝑥𝑡 −min(T )

max(T ) −min(T ) + 𝜖 ′ , (1)

where min(T ) and max(T ) are the mode wise minimum and max-
imum vectors in the training time-series. 𝜖 ′ is a small constant
vector to prevent zero-division. Knowing the ranges a-priori, we
normalize the data to get it in the range [0, 1).

To model the dependence of a data point 𝑥𝑡 at a timestamp 𝑡 , we
consider a local contextual window of length 𝐾 as

𝑊𝑡 = {𝑥𝑡−𝐾+1, . . . , 𝑥𝑡 }.
We use replication padding for 𝑡 < 𝐾 and convert an input time
series T to a sequence of sliding windowsW = {𝑊1, . . . ,𝑊𝑇 }.
Replication padding, for each 𝑡 < 𝐾 , appends to the window𝑊𝑡 a
constant vector {𝑥𝑡 , . . . , 𝑥𝑡 } of length 𝐾 − 𝑡 to maintain the window
length of 𝐾 for each 𝑡 . Instead of using T as training input, we
useW for model training and Ŵ (corresponding to T̂ ) as the test
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Figure 1: The TranAD Model.

series. This is a common practice in prior work [4, 45] as it allows
us to give a datapoint with its local context instead of a standalone
vector, and hence is used in our model. We also consider the time
slice until the current timestamp 𝑡 of a series T and denote it as𝐶𝑡 .

Now, instead of directly predicting the anomaly label 𝑦𝑡 for each
input window𝑊𝑡 , we shall first predict an anomaly score 𝑠𝑡 for
this window. Using anomaly scores for the past input windows,
we calculate a threshold value 𝐷 , above which we label the input
window as anomalous, thus 𝑦𝑡 = 1(𝑠𝑡 ≥ 𝐷). To calculate the
anomaly score 𝑠𝑡 , we reconstruct the input window as 𝑂𝑡 and use
the deviation between𝑊𝑡 and 𝑂𝑡 . For the sake of simplicity and
without loss of generality, we shall use𝑊 , 𝐶 , 𝑂 and 𝑠 for the rest
of the discussion.

3.3 Transformer Model
Transformers are popular deep learning models that have been
used in various natural language and vision processing tasks [51].
However, we use insightful refactoring of the transformer architec-
ture for the task of anomaly detection in time-series data. Just like
other encoder-decoder models, in a transformer, an input sequence
undergoes several attention-based transformations. Figure 1 shows
the architecture of the neural network used in TranAD. The encoder
encodes the complete sequence until the current timestamp 𝐶 with
a focus score (more details later). The window encoder uses this to
create an encoded representation of the input window𝑊 , which is
then passed to two decoders to create its reconstruction.

We now provide details on the working of TranAD. A multivari-
ate sequence like𝑊 or 𝐶 is transformed first into a matrix form
with modality𝑚. We define scaled-dot product attention [51] of
three matrices 𝑄 (query), 𝐾 (key) and 𝑉 (value):

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇
√
𝑚

)
𝑉 . (2)

Here, the softmax forms the convex combination weights for the
values in 𝑉 , allowing us to compress the matrix 𝑉 into a smaller
representative embedding for simplified inference in the down-
stream neural network operations. Unlike traditional attention op-
eration, the scaled-dot product attention scales the weights by a√
𝑚 term to reduce the variance of the weights, facilitating stable

training [51]. For input matrices 𝑄 , 𝐾 and 𝑉 , we apply Multi-Head
Self Attention [51] by first passing it through ℎ (number of heads)
feed-forward layers to get 𝑄𝑖 , 𝐾𝑖 and𝑉𝑖 for 𝑖 ∈ {1, . . . , ℎ}, and then

applying scaled-dot product attention as

MultiHeadAtt(𝑄,𝐾,𝑉 ) = Concat(𝐻1, . . . , 𝐻ℎ),
where 𝐻𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) .

(3)

Multi-Head Attention allows the model to jointly attend to informa-
tion from different representation sub-spaces at different positions.
In addition, we use position encoding of the input matrices as de-
fined in [51].

As GAN models have been shown to perform well in character-
istic tasks of whether an input is anomalous or not, we leverage a
time-efficient GAN style adversarial training method. Our model
consists of two transformer encoders and two decoders (Figure 1).
We consider the model inference in two phases. We first take the𝑊
and 𝐶 pair as an input and a focus score 𝐹 (initially a zero matrix
of the dimension of𝑊 , more details in the next subsection). We
broadcast 𝐹 to match the dimension of𝑊 , with appropriate zero-
padding and concatenate the two. We then apply position encoding
and obtain the input for the first encoder, say 𝐼1. The first encoder
performs the following operations

𝐼11 = LayerNorm(𝐼1 +MultiHeadAtt(𝐼1, 𝐼1, 𝐼1)),
𝐼21 = LayerNorm(𝐼11 + FeedForward(𝐼

1
1 )) .

(4)

Here,MultiHeadAtt(𝐼1, 𝐼1, 𝐼1) denotes the multi-head self attention
operation for the input matrix 𝐼1 and + denotes matrix addition. The
above operations generate attention weights using the input time-
series windows and the complete sequence to capture temporal
trends within the input sequences. These operations enable the
model to infer over multiple batches of the time-series windows in
parallel as the neural network, at each timestamp, does not depend
on the output of a previous timestamp, significantly improving the
training time of the proposed method. For the window encoder,
we apply position encoding to the input window𝑊 to get 𝐼2. We
modify the self-attention in the window encoder to mask the data
at subsequent positions. This is done to prevent the decoder from
looking at the datapoints for future timestamp values at the time
of training as all data𝑊 and 𝐶 is given at once to allow parallel
training. The window encoder performs the following operations

𝐼12 = Mask(MultiHeadAtt(𝐼2, 𝐼2, 𝐼2)),
𝐼22 = LayerNorm(𝐼2 + 𝐼12 ),
𝐼32 = LayerNorm(𝐼22 +MultiHeadAtt(𝐼21 , 𝐼

2
1 , 𝐼

2
2 )) .

(5)
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Algorithm 1 The TranAD training algorithm
Require:

Encoder 𝐸, Decoders 𝐷1 and 𝐷2
Dataset used for trainingW
Evolutionary hyperparameter 𝜖
Iteration limit 𝑁

1: Initialize weights 𝐸, 𝐷1, 𝐷2
2: 𝑛 ← 0
3: do
4: for(𝑡 = 1 to 𝑇 )
5: 𝑂1,𝑂2 ← 𝐷1 (𝐸 (𝑊𝑡 , ®0)), 𝐷2 (𝐸 (𝑊𝑡 , ®0))
6: �̂�2 ← 𝐷2 (𝐸 (𝑊𝑡 , ∥𝑂1 −𝑊𝑡 ∥2))
7: 𝐿1 = 𝜖−𝑛 ∥𝑂1 −𝑊𝑡 ∥2 + (1 − 𝜖−𝑛)∥�̂�2 −𝑊𝑡 ∥2
8: 𝐿2 = 𝜖−𝑛 ∥𝑂2 −𝑊𝑡 ∥2 − (1 − 𝜖−𝑛)∥�̂�2 −𝑊𝑡 ∥2
9: Update weights of 𝐸, 𝐷1, 𝐷2 using 𝐿1, 𝐿2
10: 𝑛 ← 𝑛 + 1
11: Meta-Learn weights 𝐸, 𝐷1, 𝐷2 using a random batch
12: while 𝑛 < 𝑁

The encoding of the complete sequence 𝐼21 is used as value and
keys by the window encoder for the attention operation using the
encoded input window as the query matrix. The motivation behind
the operations in (5) is similar to the one for (4); however, here we
apply masking of the window input to hide the window sequences
for future timestamps in the same input batch. As the complete
input sequence up to the 𝑡-th timestamp is given to the model as
an input; it allows the model to encapsulate and leverage a larger
context compared to a bounded, limited one as in prior art [4, 45, 62].
Finally, we use two identical decoders which perform the operation

𝑂𝑖 = Sigmoid(FeedForward(𝐼32 )), (6)

where 𝑖 ∈ {1, 2} for the first and second decoder respectively. The
Sigmoid activation is used to generate an output in the range [0, 1],
to match the normalized input window. Thus, the TranAD model
takes the inputs 𝐶 and𝑊 to generate two outputs 𝑂1 and 𝑂2.

3.4 Offline Two-Phase Adversarial Training
We now describe the adversarial training process and the two-
phase inference approach in the TranAD model, summarized in
Algorithm 1.

Phase 1 - Input Reconstruction. The Transformer model en-
ables us to predict the reconstruction of each input time-series win-
dow. It does this by acting as an encoder-decoder network at each
timestamp. However, traditional encoder-decoder models often are
unable to capture short-term trends and tend to miss anomalies
if the deviations are too small [29]. To tackle this challenge, we
develop an auto-regressive inference style that predicts the recon-
structed window in two-phases. In the first phase, the model aims
to generate an approximate reconstruction of the input window.
The deviation from this inference, referred to as the focus score
mentioned previously, facilitates the attention network inside the
Transformer Encoder to extract temporal trends, focusing on the
sub-sequences where the deviations are high. Thus, the output of
the second phase is conditioned on the deviations generated from
the first phase. Thus, in the first stage, the encoders convert the

input window𝑊 ∈ IR𝐾×𝑚 (with focus score 𝐹 = [0]𝐾×𝑚) to a com-
pressed latent representation 𝐼32 using context-based attention as
in a common transformer model. This compressed representation
is then converted to generate outputs 𝑂1 and 𝑂2 via Eq. (6).

Phase 2 - Focused InputReconstruction. In the second phase,
we use the reconstruction loss for the first decoder as a focus score.
Having the focus matrix for the second phase 𝐹 = 𝐿1, we rerun
model inference to obtain the output of the second decoder as �̂�2.

The focus score generated in the first phase indicates the devia-
tions of the reconstructed output from the given input. This acts as a
prior to modify the attention weights in the second phase and gives
higher neural network activation to specific input sub-sequences
to extract short-term temporal trends. We refer to this approach as
“self-conditioning” in the rest of the paper. This two-phase auto-
regressive inference style has a three-fold benefit. First, it amplifies
the deviations, as the reconstruction error acts as an activation in
the attention part of the Encoder in Figure 1, to generate an anomaly
score, simplifying the fault-labeling task (discussed in Section 3.5).
Second, it prevents false positives by capturing short-term temporal
trends in the Window Encoder in Figure 1. Third, the adversarial
style training is known to improve generalizability and make the
model robust to diverse input sequences [4].

Evolving Training Objective. The above-described model is
bound to suffer from similar challenges as in other adversarial
training frameworks. One of the critical challenges is maintaining
training stability. To tackle this, we design an adversarial training
procedure that uses outputs from two separate decoders (Decoders
1 and 2 in Figure 1). Initially, both decoders aim to independently
reconstruct the input time-series window. As in [45] and [39], we
define the reconstruction loss for each decoder using the L2-norm
using the outputs of the first phase:

𝐿1 = ∥𝑂1 −𝑊 ∥2,
𝐿2 = ∥𝑂2 −𝑊 ∥2 .

(7)

We now introduce the adversarial loss that uses outputs of the
second phase. Here, the second decoder aims to distinguish between
the input window and the candidate reconstruction generated by
the first decoder in phase 1 (using the focus scores) by maximizing
the difference | |�̂�2 −𝑊 | |2. On the other hand, the first decoder
aims to fool the second decoder by aiming to create a degenerate
focus score (a zero vector) by perfectly reconstructing the input
(i.e., 𝑂1 =𝑊 ). This pushes the decoder 2, in this phase, to generate
the same output as 𝑂2 which it aims to match the input in phase 1.
This means the training objective is

min
Decoder1

max
Decoder2

∥�̂�2 −𝑊 ∥2 . (8)

Thus, the objective of the first decoder is to minimize the reconstruc-
tion error of this self-conditioned output, whereas the objective of
the second one is to maximize the same. We realize this by using
the loss as:

𝐿1 = +∥�̂�2 −𝑊 ∥2,
𝐿2 = −∥�̂�2 −𝑊 ∥2 .

(9)

Now that we have loss functions for both phases, we need to
determine the cumulative loss for each decoder. We thus use an
evolutionary loss function that combines the reconstruction and
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Algorithm 2 The TranAD testing algorithm
Require:

Trained Encoder 𝐸, Decoders 𝐷1 and 𝐷2
Test Dataset Ŵ

1: for(𝑡 = 1 to 𝑇 )
2: 𝑂1,𝑂2 ← 𝐷1 (𝐸 (�̂�𝑡 , ®0)), 𝐷2 (𝐸 (�̂�𝑡 , ®0))
3: �̂�2 ← 𝐷1 (𝐸 (�̂�𝑡 , ∥𝑂1 −𝑊 ∥2)), 𝐷2 (𝐸 (�̂�𝑡 , ∥𝑂1 −𝑊 ∥2))
4: 𝑠 = 1

2 ∥𝑂1 − �̂� ∥2 + 1
2 ∥�̂�2 − �̂� ∥2

5: 𝑦𝑖 = 1(𝑠𝑖 ≥ POT(𝑠𝑖 ))
6: 𝑦 = ∨

𝑖
𝑦𝑖

adversarial loss functions from the two phases as

𝐿1 = 𝜖
−𝑛 ∥𝑂1 −𝑊 ∥2 + (1 − 𝜖−𝑛)∥�̂�2 −𝑊 ∥2,

𝐿2 = 𝜖
−𝑛 ∥𝑂2 −𝑊 ∥2 − (1 − 𝜖−𝑛)∥�̂�2 −𝑊 ∥2,

(10)

where 𝑛 is the training epoch and 𝜖 is a training parameter close
to one (lines 7-8 in Alg. 1). Initially, the weight given to the re-
construction loss is high. This is to ensure stable training when
the outputs of the decoders are poor reconstructions of the input
window. With poor reconstructions, the focus scores used in the
second phase would be unreliable; and hence, cannot be utilized
as a prior to indicating reconstructions that are far from the input
sequence. Thus, the adversarial loss is given a low weight in the
initial part of the process to avoid destabilizing model training. As
reconstructions become closer to the input windows, and focus
scores become more precise, the weight to the adversarial loss is
increased. As loss curves in the neural network training process
typically follow exponential function, we use weights of the form
𝜖−𝑛 in the training process with a small positive constant 𝜖 .

As the training process does not assume that the data is available
sequentially (as in an online process), the complete time-series
can be split into (𝑊 , 𝐶) pairs and the model can be trained using
input batches. Masked multi-head attention allows us to run this in
parallel across several batches and speed up the training process.

Meta Learning. Finally, our training loop uses model-agnostic
meta learning (MAML), a few-shot learning model for fast adap-
tation of neural networks [15]. This helps our TranAD model
learn temporal trends in the input training time-series with limited
data. In each training epoch, a gradient update for neural network
weights (without loss in generality assume 𝜃 ) can be simply written

𝜃 ′ ← 𝜃 − 𝛼∇𝜃𝐿(𝑓 (𝜃 )), (11)

where 𝛼 , 𝑓 (·) and 𝐿(·) are learning rate, abstract representation of
the neural network and loss function respectively. Now, at the end
of each epoch we perform meta-learning step as

𝜃 ← 𝜃 − 𝛽∇𝜃𝐿(𝑓 (𝜃 ′)) . (12)

The meta-optimization is performed with a meta step-size 𝛽 , over
the model weights 𝜃 where the objective is evaluated using the
updated weights 𝜃 ′. Prior work has shown that this allows models
to be trained quickly with limited data [15]. We encapsulate this in
a single line in Algorithm 1 (line 11).

Figure 2: Visualization of anomaly prediction.

3.5 Online Inference, Anomaly Detection and
Diagnosis

We now describe the inference procedure using the trained trans-
former model (summarized in Algorithm 2). For an unseen data (�̂� ,
𝐶), the anomaly score is defined as

𝑠 = 1
2 ∥𝑂1 − �̂� ∥2 + 1

2 ∥�̂�2 − �̂� ∥2 . (13)

The inference at test time runs again in two phases and hence
we get a single pair of reconstruction (𝑂1, �̂�2) (lines 2 and 3 in
Alg. 2). At test time, we only consider the data until the current
timestamp and hence this operation runs sequentially in an online
fashion. Once we have the anomaly scores for a timestamp for each
dimension 𝑠𝑖 , we label the timestamp anomalous if this score is
greater than a threshold. As is common in prior work [9, 20, 45],
for fair comparison, we use the Peak Over Threshold (POT) [44]
method to choose the threshold automatically and dynamically. In
essence, this is a statistical method that uses “extreme value theory”
to fit the data distribution with a Generalized Pareto Distribution
and identify appropriate value at risk to dynamically determine
threshold values. We also tested with another popular EVT method,
namely annual maximum (AM) [7]; however, we have observed
7.2% higher F1 scores on an average for TranAD with POT than AM.
Anomaly diagnosis label for each dimension 𝑖 (𝑦𝑖 ) and detection (𝑦)
results is defined as

𝑦𝑖 = 1(𝑠𝑖 ≥ POT(𝑠𝑖 )),
𝑦 = ∨

𝑖
𝑦𝑖 .

(14)

Thus, we label the current timestamp anomalous if any of the𝑚
dimensions is anomalous (lines 5-6 in Alg. 2). Figure 2 illustrates
this process for a sample time-series.

Impact of Attention and Focus Scores. Figure 3 visualizes
the attention and focus scores for the TranAD model trained on the
SMD dataset (details in Section 4.1). We show the time-series, the
average attention weights for each window (averaged over multiple
heads) and focus scores for the first six dimensions of the dataset.
It is apparent that the focus scores are highly correlated with the
peaks and noise in the data. There is also a high correlation of focus
scores across dimensions. For timestamps with sudden changes in
the time-series, focus scores are higher. Further, the model gives
higher attention weights to the specific dimensions of the time-
series where the deviations are higher. This allows the model to
specifically detect anomalies in each dimension individually, with
the contextual trend of the complete sequence as a prior.
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Figure 3: Visualization of focus and attention scores.

4 EXPERIMENTS
We compare TranAD with state-of-the-art models for mutlivari-
ate time-series anomaly detection, including MERLIN [37], LSTM-
NDT [20] (with autoencoder implementation from openGauss [30]),
DAGMM [65], OmniAnomaly [45], MSCRED [60], MAD-GAN [29],
USAD [4], MTAD-GAT [62], CAE-M [61] and GDN [14] (with graph
embedding implementation from GraphAn [9]) . For more details
refer Section 2.1 We also tested the Isolation Forest method, but
due to its low F1 scores, do not include the corresponding results
in our discussion. Other classical methods have been omitted as
deep-learning based approaches have already been shown to out-
perform them in prior work [4, 14, 62]. We use hyperparameters
of the baseline models as presented in their respective papers. We
train all models using PyTorch-1.7.1 [40] library2.

We use the AdamW [27] optimizer to train our model with an ini-
tial learning rate of 0.01 (meta learning rate 0.02) and step-scheduler
with step size of 0.5 [42]. We use the following hyperparameter
values determined using grid-search.
• Window size = 10.
• Number of layers in transformer encoders = 1
• Number of layers in feed-forward unit of encoders = 2
• Hidden units in encoder layers = 64
• Dropout in encoders = 0.1

1We use publicly available code sources for most of the baselines. LSTM-
NDT https://github.com/khundman/telemanom, openGauss https://gitee.
com/opengauss/openGauss-AI, DAGMM https://github.com/tnakae/DAGMM,
OmniAnomaly https://github.com/NetManAIOps/OmniAnomaly, MSCRED
https://github.com/7fantasysz/MSCRED, MAD-GAN https://github.com/
LiDan456/MAD-GANs. All URLs last accessd on 18 February 2022. Other models were
re-implemented by us (details on the implementation of the MERLIN baseline in [49]).
2Parallel Transformer training was implemented as per [51]. All model training and
experiments were performed on a system with configuration: Intel i7-10700K CPU,
64GB RAM, Nvidia RTX 3080 and Windows 11 OS.

Table 1: Dataset Statistics

Dataset Train Test Dimensions Anomalies (%)
NAB 4033 4033 1 (6) 0.92
UCR 1600 5900 1 (4) 1.88
MBA 100000 100000 2 (8) 0.14
SMAP 135183 427617 25 (55) 13.13
MSL 58317 73729 55 (3) 10.72
SWaT 496800 449919 51 (1) 11.98
WADI 1048571 172801 123 (1) 5.99
SMD 708405 708420 38 (4) 4.16
MSDS 146430 146430 10 (1) 5.37

The effect of window size on anomaly detection performance is an-
alyzed in Section 5. We choose hyperparameters other than the win-
dow size using grid search. For POT parameters, coefficient = 10−4
for all data sets, low quantile is 0.07 for SMAP, 0.01 for MSL, and
0.001 for others. These were selected as per the implementation of
the OmniAnomaly baseline [45]. The only dataset-specific hyperpa-
rameter is the number of heads in multi-head attention, which was
kept to be the same as the dimension size of the dataset. Other as-
signments for this hyperparameter give similar broad-level trends.

To train TranAD, we divide the training time-series into 80%
training data and 20% validation data. To avoid model over-fitting,
we use early-stopping criteria to train TranAD, i.e., we stop the
training process once the validation accuracy starts to decrease.

4.1 Datasets
We use seven publicly available datasets in our experiments. We
summarize their characteristics in Table 1. The values in parenthesis
are the number of sequences in the dataset repository and we report
average scores across all sequences in a dataset. For instance, the
SMAP dataset has 55 traces with 25 dimensions each. While we
share some of the concerns expressed in [55] about the lack of
quality benchmark datasets for time series anomaly detection, we
use these commonly-used benchmark datasets here to enable direct
comparison of our approach to competing methods.
(1) Numenta Anomaly Benchmark (NAB): is a dataset of multiple

real-world data traces, including readings from temperature
sensors, CPU utilization of cloud machines, service request
latencies and taxi demands in New York city [2]. However, this
dataset is known to have sequences with incorrect anomaly
labels [55] such as the nyc-taxi trace [37], which we exclude
in our experiments.

(2) HexagonML (UCR) dataset: is a dataset of multiple univariate
time series (included just for completeness) that was used in
KDD 2021 cup [13, 26]. We include only the datasets obtained
from natural sources (the InternalBleeding and ECG datasets)
and ignore the synthetic sequences.

(3) MIT-BIH Supraventricular Arrhythmia Database (MBA): is a
collection of electrocardiogram recordings from four patients,
containing multiple instances of two different kinds of anom-
alies (either supraventricular contractions or premature heart-
beats) [17, 36]. This is a popular large-scale dataset in the data
management community [8, 10].
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(4) Soil Moisture Active Passive (SMAP) dataset: is a dataset of soil
samples and telemetry information using the Mars rover by
NASA [20].

(5) Mars Science Laboratory (MSL) dataset: is a dataset similar to
SMAP but corresponds to the sensor and actuator data for the
Mars rover itself [20]. However, this dataset is known to have
many trivial sequences [55]; hence, we consider only the three
non-trivial ones (A4, C2 and T1) pointed out by [37].

(6) Secure Water Treatment (SWaT) dataset: This dataset is collected
from a real-world water treatment plant with 7 days of normal
and 4 days of abnormal operation [33]. This dataset consists of
sensor values (water level, flow rate, etc.) and actuator opera-
tions (valves and pumps).

(7) Water Distribution (WADI) dataset: This is an extension of the
SWaT system but had more than twice the number of sensors
and actuators than the SWaT model [3]. The dataset is also
collected for a longer duration of 14 and 2 days of normal and
attack scenarios.

(8) Server Machine Dataset (SMD): This is a five-week long dataset
of stacked traces of the resource utilizations of 28 machines
from a compute cluster [45]. Similar to MSL, we use the non-
trivial sequences in this dataset, specifically the traces named
machine-1-1, 2-1, 3-2 and 3-7.

(9) Multi-Source Distributed System (MSDS) Dataset: This is a re-
cent high-quality multi-source data composed of distributed
traces, application logs, and metrics from a complex distributed
system [38]. This dataset is specifically built for AI operations,
including automated anomaly detection, root cause analysis,
and remediation.

We eschew comparisons on the Yahoo [53] dataset that has been
claimed to suffer from mislabeling and run-to-failure bias [55].

4.2 Evaluation Metrics
4.2.1 Anomaly Detection. We use precision, recall, area under the
receiver operating characteristic curve (ROC/AUC) and F1 score to
evaluate the detection performance of all models [14, 62]. We also
measure the AUC and F1 scores by training all models with 20% of
the training data (again using the 80:20 split for validation dataset
and the rest as the test set), and call these AUC* and F1* respectively,
to measure the performance of the models with limited data. We
train on the five sets of 20% training data and report average results
for statistical significance.

4.2.2 Anomaly Diagnosis. We use commonly used metrics to mea-
sure the diagnosis performance of all models [62]. HitRate@P%
is the measure of how many ground truth dimensions have been
included in the top candidates predicted by the model [45]. 𝑃% is
the percentage of the ground truth dimensions for each timestamp,
which we use to consider the top predicted candidates. For instance,
if at timestamp 𝑡 , if 2 dimensions are labeled anomalous in the
ground truth, HitRate@100% would consider top 2 dimensions and
HitRate@150% would consider 3 dimensions (100 and 150 are cho-
sen based on prior work [62]). We also measure the Normalized
Discounted Cumulative Gain (NDCG) [24]. NDCG@P% considers
the same number of top predicted candidates as HitRate@P%.

4.3 Results
Anomaly Detection. Tables 2 and 3 provide the precision, recall,
AUC, F1, AUC* and F1* scores for TranAD and baseline models for
all datasets. On average, the F1 score of the TranAD model is 0.8802
and F1* is 0.8012. TranAD outperforms the baselines (in terms of F1
score) for all datasets except MSL when we consider the complete
dataset for model training. TranAD also outperforms baselines for
all datasets except the WADI dataset with 20% of the dataset used
for training (F1* score). For MSL, the GDN model has the highest
F1 score (0.9591) and for the WADI dataset, OmniAnomaly has the
highest F1* score (0.1017). Similarly, TranAD outperforms baselines
in terms of AUC scores for all datasets except MSDS, where GDN
has the highest AUC (0.9105). All models perform relatively poorly
on WADI due to its large-scale in terms of sequence lengths and
data modality. Specifically, TranAD achieves improvement of up to
17.06% in F1 score, 14.64% in F1* score, 11.69% in AUC and 11.06%
in AUC* scores over the state-of-the-art baseline models.

The MERLIN baseline is a parameter free approach that does
not require any training data; hence, we report F1* and AUC* as
F1 and AUC scores, respectively. MERLIN performs relatively well
only on the univariate datasets, i.e. NAB and UCR, and is unable
to scale effectively to multivariate data in our traces. The baseline
method LSTM-NDT has a good performance on MSL and SMD, but
performs poorly on other datasets. This is due to its sensitivity to
different scenarios and poor efficiency of the NDT thresholding
method [62]. The POT technique used in TranAD and other models
like OmniAnomaly helps set more accurate threshold values by also
considering the localized peak values in the data sequence. DAGMM
model performs very well for short datasets like UCR, NAB, MBA
and SMAP, but its scores drop significantly for other datasets with
longer sequences. This is because it does not map the temporal
information explicitly as it does not use sequence windows but
only a single GRU model. The window encoder in TranAD, with
the encoding of the complete sequence as a self-condition, allows
it to perform better even with long high-dimensional sequences.
The OmniAnomaly, CAE-M and MSCRED models use sequential
observations as input, allowing these methods to retain the tempo-
ral information. Such methods perform reconstruction regardless
of anomalous data, which prevents them from detecting anomalies
close to the normal trends [4]. TranAD tackles this by using adver-
sarial training to amplify errors. Hence, in datasets like SMD, where
anomalous data is not very far from normal data, it can detect even
mild anomalies.

Recent models such as USAD, MTAD-GAT and GDN use atten-
tion mechanisms to focus on specific modes of the data. Moreover,
these models try to capture the long-term trends by adjusting the
weights of their neural network and only use a local window as an
input for reconstruction. GDN has slightly higher scores for MSL
and MSDS datasets than TranAD due to the scalable graph-based
inference over the inter-dimensional data correlations [14]. TranAD
does this using self-attention and performs better than GDN overall
across all datasets. The limitation of seeing only a local contextual
window prevents methods such as USAD and MTAD-GAT from
classifying long-term anomalies (like in SMD or WADI). However,
self-conditioning on an embedding of the complete trace with posi-
tion encoding aids temporal attention, thanks to the transformer
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Table 2: Performance comparison of TranAD with baseline methods on the complete dataset. P: Precision, R: Recall, AUC:
Area under the ROC curve, F1: F1 score with complete training data. The best F1 and AUC scores are highlighted in bold.

Method NAB UCR MBA
P R AUC F1 P R AUC F1 P R AUC F1

MERLIN 0.8013 0.7262 0.8414 0.7619 0.7542 0.8018 0.8984 0.7542 0.9846 0.4913 0.7828 0.6555
LSTM-NDT 0.6400 0.6667 0.8322 0.6531 0.5231 0.8294 0.9781 0.5231 0.9207 0.9718 0.9780 0.9456
DAGMM 0.7622 0.7292 0.8572 0.7453 0.5337 0.9718 0.9916 0.5337 0.9475 0.9900 0.9858 0.9683
OmniAnomaly 0.8421 0.6667 0.8330 0.7442 0.8346 0.9999 0.9981 0.8346 0.8561 1.0000 0.9570 0.9225
MSCRED 0.8522 0.6700 0.8401 0.7502 0.5441 0.9718 0.9920 0.5441 0.9272 1.0000 0.9799 0.9623
MAD-GAN 0.8666 0.7012 0.8478 0.7752 0.8538 0.9891 0.9984 0.8538 0.9396 1.0000 0.9836 0.9689
USAD 0.8421 0.6667 0.8330 0.7442 0.8952 1.0000 0.9989 0.8952 0.8953 0.9989 0.9701 0.9443
MTAD-GAT 0.8421 0.7272 0.8221 0.7804 0.7812 0.9972 0.9978 0.7812 0.9018 1.0000 0.9721 0.9484
CAE-M 0.7918 0.8019 0.8019 0.7968 0.6981 1.0000 0.9957 0.6981 0.8442 0.9997 0.9661 0.9154
GDN 0.8129 0.7872 0.8542 0.7998 0.6894 0.9988 0.9959 0.6894 0.8832 0.9892 0.9528 0.9332
TranAD 0.8889 0.9892 0.9541 0.9364 0.9407 1.0000 0.9994 0.9407 0.9569 1.0000 0.9885 0.9780

Method SMAP MSL SWaT
P R AUC F1 P R AUC F1 P R AUC F1

MERLIN 0.1577 0.9999 0.7426 0.2725 0.2613 0.4645 0.6281 0.3345 0.6560 0.2547 0.6175 0.3669
LSTM-NDT 0.8523 0.7326 0.8602 0.7879 0.6288 1.0000 0.9532 0.7721 0.7778 0.5109 0.7140 0.6167
DAGMM 0.8069 0.9891 0.9885 0.8888 0.7363 1.0000 0.9716 0.8482 0.9933 0.6879 0.8436 0.8128
OmniAnomaly 0.8130 0.9419 0.9889 0.8728 0.7848 0.9924 0.9782 0.8765 0.9782 0.6957 0.8467 0.8131
MSCRED 0.8175 0.9216 0.9821 0.8664 0.8912 0.9862 0.9807 0.9363 0.9992 0.6770 0.8433 0.8072
MAD-GAN 0.8157 0.9216 0.9891 0.8654 0.8516 0.9930 0.9862 0.9169 0.9593 0.6957 0.8463 0.8065
USAD 0.7480 0.9627 0.9890 0.8419 0.7949 0.9912 0.9795 0.8822 0.9977 0.6879 0.8460 0.8143
MTAD-GAT 0.7991 0.9991 0.9844 0.8880 0.7917 0.9824 0.9899 0.8768 0.9718 0.6957 0.8464 0.8109
CAE-M 0.8193 0.9567 0.9901 0.8827 0.7751 1.0000 0.9903 0.8733 0.9697 0.6957 0.8464 0.8101
GDN 0.7480 0.9891 0.9864 0.8518 0.9308 0.9892 0.9814 0.9591 0.9697 0.6957 0.8462 0.8101
TranAD 0.8043 0.9999 0.9921 0.8915 0.9038 0.9999 0.9916 0.9494 0.9760 0.6997 0.8491 0.8151

Method WADI SMD MSDS
P R AUC F1 P R AUC F1 P R AUC F1

MERLIN 0.0636 0.7669 0.5912 0.1174 0.2871 0.5804 0.7158 0.3842 0.7254 0.3110 0.5022 0.4353
LSTM-NDT 0.0138 0.7823 0.6721 0.0271 0.9736 0.8440 0.9671 0.9042 0.9999 0.8012 0.8013 0.8896
DAGMM 0.0760 0.9981 0.8563 0.1412 0.9103 0.9914 0.9954 0.9491 0.9891 0.8026 0.9013 0.8861
OmniAnomaly 0.3158 0.6541 0.8198 0.4260 0.8881 0.9985 0.9946 0.9401 1.0000 0.7964 0.8982 0.8867
MSCRED 0.2513 0.7319 0.8412 0.3741 0.7276 0.9974 0.9921 0.8414 1.0000 0.7983 0.8943 0.8878
MAD-GAN 0.2233 0.9124 0.8026 0.3588 0.9991 0.8440 0.9933 0.9150 0.9982 0.6107 0.8054 0.7578
USAD 0.1873 0.8296 0.8723 0.3056 0.9060 0.9974 0.9933 0.9495 0.9912 0.7959 0.8979 0.8829
MTAD-GAT 0.2818 0.8012 0.8821 0.4169 0.8210 0.9215 0.9921 0.8683 0.9919 0.7964 0.8982 0.8835
CAE-M 0.2782 0.7918 0.8728 0.4117 0.9082 0.9671 0.9783 0.9367 0.9908 0.8439 0.9013 0.9115
GDN 0.2912 0.7931 0.8777 0.4260 0.7170 0.9974 0.9924 0.8342 0.9989 0.8026 0.9105 0.8900
TranAD 0.3529 0.8296 0.8968 0.4951 0.9262 0.9974 0.9974 0.9605 0.9999 0.8626 0.9013 0.9262

architecture in TranAD. This allows TranAD to capture long-term
trends more effectively. Further, due to the meta-learning, TranAD
also outperforms baselines with limited training data except for
OmniAnomaly on the WADI dataset, indicating its high efficacy
even with limited data. OmniAnomaly performs best among all
methods on the WADI dataset due to high noise in this dataset and
dedicated stochasticity modeling in OmniAnomaly [45]. TranAD
is slightly behind this method in terms of F1* and AUC*; however,
outperforms it when compared across all datasets and also when
given the complete WADI dataset.

We perform critical difference analysis to assess the significance
of the differences among the performance of the models. Figure 4
depicts the critical difference diagrams for the F1 and AUC scores
based on the Wilcoxon pair-wised signed-rank test (with 𝛼 = 0.05)

after rejecting the null hypothesis using the Friedman test on all
datasets [22]. TranAD achieves the best rank across all models with
a significant statistical difference.

Anomaly Diagnosis. The anomaly diagnosis results in Table 4
where H and N correspond to HitRate and NDCG (with complete
data used for model testing). We only present results on the multi-
variate SMD and MSDS datasets for the sake of brevity (TranAD
yields better scores for others as well). We also ignore models that
do not explicitly output anomaly class outputs for each dimension
individually. Multi-head attention in TranAD allows it to attend
to multiple modes simultaneously, making it more suitable for
more inter-correlated anomalies. This is observed and explained by
datasets like MSDS (distributed systems) where anomalous behav-
ior in one mode can lead to a chain of events causing anomalies
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Table 3: Performance comparison of TranAD with baseline
methods with 20% of the training dataset. AUC*: AUC with
20% training data, F1*: F1 score with 20% training data. The
best F1* and AUC* scores are highlighted in bold.

Method NAB UCR MBA
AUC* F1* AUC* F1* AUC* F1*

MERLIN 0.8029 0.7619 0.8984 0.7773 0.7828 0.6555
LSTM-NDT 0.8013 0.6212 0.8913 0.5198 0.9617 0.9282
DAGMM 0.7827 0.6125 0.9812 0.5718 0.9671 0.9396
OmniAnomaly 0.8129 0.6713 0.9728 0.7918 0.9407 0.9217
MSCRED 0.8299 0.7013 0.9637 0.4929 0.9499 0.9108
MAD-GAN 0.8194 0.7109 0.9959 0.8216 0.9550 0.9192
USAD 0.7267 0.6781 0.9967 0.8538 0.9697 0.9425
MTAD-GAT 0.6956 0.7013 0.9974 0.8671 0.9688 0.9425
CAE-M 0.7312 0.7126 0.9926 0.7525 0.9616 0.9002
GDN 0.8299 0.7013 0.9937 0.8029 0.9671 0.9316
TranAD 0.9217 0.8421 0.9989 0.9399 0.9718 0.9617

Method SMAP MSL SWaT
AUC* F1* AUC* F1* AUC* F1*

MERLIN 0.7426 0.2725 0.6281 0.3345 0.6175 0.3669
LSTM-NDT 0.7007 0.5418 0.9520 0.7608 0.6690 0.4145
DAGMM 0.9881 0.8369 0.9606 0.8010 0.8421 0.8001
OmniAnomaly 0.9879 0.8131 0.9703 0.8424 0.8319 0.7433
MSCRED 0.9811 0.8050 0.9797 0.8232 0.8385 0.7922
MAD-GAN 0.9877 0.8468 0.9649 0.8190 0.8456 0.8012
USAD 0.9883 0.8379 0.9649 0.8190 0.8438 0.8087
MTAD-GAT 0.9814 0.8225 0.9782 0.8024 0.8459 0.8079
CAE-M 0.9892 0.8312 0.9836 0.7303 0.8458 0.7841
GDN 0.9887 0.8411 0.9414 0.8959 0.8390 0.8072
TranAD 0.9885 0.8889 0.9857 0.9172 0.8438 0.8094

Method WADI SMD MSDS
AUC* F1* AUC* F1* AUC* F1*

MERLIN 0.5912 0.1174 0.7158 0.3842 0.5022 0.4353
LSTM-NDT 0.6637 0.0000 0.9563 0.6754 0.7813 0.7912
DAGMM 0.6497 0.0630 0.9845 0.8986 0.7763 0.8389
OmniAnomaly 0.7913 0.1017 0.9859 0.9352 0.5613 0.8389
MSCRED 0.6029 0.0413 0.9768 0.8004 0.7716 0.8283
MAD-GAN 0.5383 0.0937 0.8635 0.9318 0.5002 0.7390
USAD 0.7011 0.0733 0.9854 0.9213 0.7613 0.8389
MTAD-GAT 0.6267 0.0520 0.9798 0.6661 0.6122 0.8248
CAE-M 0.6109 0.0781 0.9569 0.9318 0.6001 0.8389
GDN 0.6121 0.0412 0.9811 0.7107 0.6819 0.8389
TranAD 0.7688 0.0649 0.9869 0.9478 0.8113 0.8391

in other modes (see Figure 5). TranAD is able to leverage the com-
plete trace information with the local window to aid in pinpointing
anomalous behavior to specific modes. The table demonstrates that
TranAD is able to detect 46.3% − 75.3% root causes for anomalies.

Compared to the baseline methods, TranAD is able to improve
diagnosis score by up to 6% for SMD and 30% for MSDS. The average
improvement in diagnosis scores is 4.25%.

5 ANALYSES
5.1 Ablation Analysis
To study the relative importance of each component of the model,
we exclude every major one and observe how it affects the perfor-
mance in terms of the F1 scores for each dataset. First, we consider
the TranAD model without the transformer-based encoder-decoder

Figure 4: Critical difference diagrams for F1 and AUC scores
using the Wilkoxon pairwised signed rank test (with 𝛼 =

0.05) on all datasets. Rightmost methods are ranked higher.
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Figure 5: Predicted and Ground Truth labels for the MSDS
test set using the TranAD model.

architecture but instead with a feed-forward network. Second, we
consider the model without the self-conditioning, i.e., we fix the
focus score 𝐹 = ®0 in phase 2. Third, we study the model without
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Table 4: Diagnosis Performance.

Method SMD MSDS

H@100% H@150% N@100% N@150% H@100% H@150% N@100% N@150%

MERLIN 0.5907 0.6177 0.4150 0.4912 0.3816 0.5626 0.3010 0.3947
LSTM-NDT 0.3808 0.5225 0.3603 0.4451 0.1504 0.2959 0.1124 0.1993
DAGMM 0.4927 0.6091 0.5169 0.5845 0.2617 0.4333 0.3153 0.4154
OmniAnomaly 0.4567 0.5652 0.4545 0.5125 0.2839 0.4365 0.3338 0.4231
MSCRED 0.4272 0.5180 0.4609 0.5164 0.2322 0.3469 0.2297 0.2962
MAD-GAN 0.4630 0.5785 0.4681 0.5522 0.3856 0.5589 0.4277 0.5292
USAD 0.4925 0.6055 0.5179 0.5781 0.3095 0.4769 0.3534 0.4515
MTAD-GAT 0.3493 0.4777 0.3759 0.4530 0.5812 0.5885 0.5926 0.6522
CAE-M 0.4707 0.5878 0.5474 0.6178 0.2530 0.4171 0.2047 0.3010
GDN 0.3143 0.4386 0.2980 0.3724 0.2276 0.3382 0.2921 0.3570
TranAD 0.4981 0.6401 0.4941 0.6178 0.4630 0.7533 0.5981 0.6963

Table 5: Comparison of training times in seconds per epoch.

Method NAB UCR MBA SMAP MSL SWaT WADI SMD MSDS

MERLIN 3.28 4.09 20.19 6.89 5.12 10.12 132.69 72.32 42.22
LSTM-NDT 10.64 8.71 27.80 27.62 26.24 26.43 297.12 373.14 361.12
DAGMM 25.38 20.78 74.62 19.05 16.41 18.51 178.17 204.36 187.54
OmniAnomaly 38.27 27.96 109.86 27.05 21.31 28.39 212.99 276.97 277.10
MSCRED 258.86 262.45 592.13 16.13 33.47 183.67 1349.05 237.66 109.63
MAD-GAN 39.80 25.71 160.29 29.49 26.27 27.79 293.60 314.82 285.25
USAD 31.21 21.10 120.86 23.63 21.22 22.72 242.86 250.97 232.82
MTAD-GAT 145.00 97.12 233.08 1015.03 1287.42 103.92 9812.13 6564.11 1304.09
CAE-M 22.48 19.42 67.44 187.35 575.96 41.25 5525.62 3102.12 552.83
GDN 83.84 58.78 159.01 62.33 96.71 59.40 4063.05 809.94 585.34
TranAD 1.25 0.84 4.08 3.55 5.27 0.87 115.91 43.56 17.15

Table 6: Ablation Study - F1 and F1* scores for TranAD and
its ablated versions.

Method NAB UCR MBA

F1 F1* F1 F1* F1 F1*

TranAD 0.9364 0.8421 0.9694 0.9399 0.9780 0.9617
w/o transformer 0.8850 0.8019 0.8466 0.5495 0.9749 0.9584
w/o self-condition 0.8887 0.8102 0.9191 0.9028 0.9770 0.9617
w/o adversarial training 0.9012 0.8102 0.9634 0.9289 0.9752 0.9592
w/o MAML 0.9068 0.8210 0.9689 0.9304 0.9756 0.9617

Method SMAP MSL SWaT

F1 F1* F1 F1* F1 F1*

TranAD 0.8915 0.8889 0.9494 0.9172 0.8151 0.8094
w/o transformer 0.8643 0.8147 0.9137 0.9037 0.8143 0.6360
w/o self-condition 0.8894 0.8153 0.9175 0.8913 0.7953 0.8094
w/o adversarial training 0.8906 0.8476 0.9455 0.9172 0.8028 0.7832
w/o MAML 0.8915 0.8899 0.9466 0.6732 0.8143 0.8079

Method WADI SMD MSDS

F1 F1* F1 F1* F1 F1*

TranAD 0.4951 0.0649 0.9605 0.9478 0.9262 0.8391
w/o transformer 0.2181 0.0037 0.9071 0.9032 0.8867 0.8389
w/o self-condition 0.3620 0.0631 0.9502 0.8847 0.8748 0.8214
w/o adversarial training 0.3820 0.0621 0.9177 0.8667 0.9181 0.8389
w/o MAML 0.4815 0.0553 0.9433 0.8164 0.8870 0.8389

the adversarial loss, i.e., a single-phase inference and only the re-
construction loss for model training. Finally, we consider the model
without meta-learning. The results are summarized in Table 6 and
provide the following findings:
• Replacing the transformer-based encoder-decoder has the high-
est performance drop of nearly 11% in terms of the F1 score. This
drop is more pronounced for theWADI dataset (56%), demonstrat-
ing the need for the attention-based transformer for large-scale
datasets.
• When we remove the self-conditioning, the average drop in F1
scores is 6%, which shows that the focus score aids prediction
performance.
• Removing the two-phase adversarial training mainly affects SMD
andWADI datasets as these traces have a large proportion of mild
anomalies and the adversarial loss helps amplify the anomaly
scores. The average drop in F1 score, in this case, is 5%.
• Not having the meta-learning in the model has little effect to the
F1 scores (≈1%); however, it leads to a nearly 12% drop in F1*.

5.2 Overhead Analysis
Table 5 shows the average training times for all models on every
dataset in seconds per epoch. For comparison, we report the train-
ing time for MERLIN as the time it takes to discover discords in
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Figure 6: F1 score, ROC/AUC score and training times with dataset size.
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Figure 7: F1 score, ROC/AUC score and training times with window size.

the test data. The training time of TranAD is 75% − 99% lower than
those of the baselines. This demonstrates the advantage of hav-
ing a transformer with positional encoding to push the complete
sequence as an input instead of inferring over sequential windows.

5.3 Sensitivity Analysis
Sensitivity to the training set size. Figure 6 shows the variation
of the F1 and AUC scores of all models averaged for all datasets, and
the training time with the ratio of the training data used for model
training, ranging from 20% to 100%. We do not report sensitivity
results on MERLIN as it does not use training data. Other deep
learning based reconstruction models are given the same randomly
sampled subsequence of 20% to 100% size as that of the training data.
We report 90% confidence bounds in Figure 6. Clearly, as dataset size
increases, the prediction performance improves and the training
time increases. We observe that for every ratio, the TranAD model
has a higher F1 score and a lower training time.

Sensitivity to thewindow size.We also show the performance
of the TranAD model and its variants with different window sizes
in Figure 7. The window size has an impact both on the anomaly
detection scores and training times. TranAD can detect anomalies
faster when we have smaller windows since the inference time is
lower for smaller inputs. If the window is too small, it does not
represent the local contextual information well. However, if the
window is too large, short anomalies may be hidden in a large
number of datapoints in such a window (see the drop in F1 score

for some models). A window size of 10 gives a reasonable balance
between the F1 score and training times and hence is used in our
experiments.

6 CONCLUSIONS
We present a transformer based anomaly detection model (TranAD)
that can detect and diagnose anomalies for multivariate time-series
data. The transformer based encoder-decoder allows quick model
training and high detection performance for a variety of datasets
considered in this work. TranAD leverages self-conditioning and
adversarial training to amplify errors and gain training stability.
Moreover, meta-learning allows it to be able to identify data trends
even with limited data. Specifically, TranAD achieves an improve-
ment of 17% and 11% for F1 score on complete and limited training
data, respectively. It is also able to correctly identify root causes for
up to 75% of the detected anomalies, higher than the state-of-the-art
models. It is able to achieve this with up to 99% lower training times
compared to the baseline methods. This makes TranAD an ideal
choice for modern industrial systems where accurate and quick
anomaly predictions are required.

For the future, we propose to extend the method with other
transformer models like bidirectional neural networks to allow
model generalization to diverse temporal trends in data. We also
wish to explore the direction of applying cost-benefit analysis for
each model component based on the deployment setting to avoid
expensive computation.
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