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ABSTRACT

Data isolation has become an obstacle to scale up query processing
over big data, since sharing raw data among data owners is often
prohibitive due to security concerns. A promising solution is to
perform secure queries over a federation of multiple data owners
leveraging secure multi-party computation (SMC) techniques, as
evidenced by recent federation work over relational data. However,
existing solutions are highly inefficient on spatial queries due to
excessive secure distance operations for query processing and their
usage of general-purpose SMC libraries for secure operation im-
plementation. In this paper, we propose Hu-Fu, the first system for
efficient and secure spatial query processing on a data federation.
The idea is to decompose the secure processing of a spatial query
into as many plaintext operations and as few secure operations
as possible, where fewer secure operators are involved and all se-
cure operators are implemented dedicatedly. As a working system,
Hu-Fu supports not only query input in native SQL, but also het-
erogeneous spatial databases (e.g., PostGIS, Simba, GeoMesa, and
SpatialHadoop) at the backend. Extensive experiments show that
Hu-Fu usually outperforms the state-of-the-arts in running time
and communication cost while guaranteeing security.
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1 INTRODUCTION

Efficient processing of spatial queries over large-scale data is essen-
tial for a wide spectrum of smart city applications including taxi-
calling [68], logistics planning [65], map service [70], and contact-
tracing [36] to name a few. Although the volume of spatial data
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continues to grow, it becomes increasingly difficult for these appli-
cations to take full advantage of the big spatial data due to the data
isolation problem (a.k.a. isolated data) [9, 13, 49, 66]. Spatial datasets
at city or nation scale are often privately possessed and separately
owned by multiple parties, where sharing raw data among parties
or uploading raw data to a third party (e.g., a cloud) is prohibitive
due to legal regulations (e.g., GDPR [56]) or commercial reasons.

A promising paradigm to tackle the data isolation problem is to
perform secure queries over a data federation [4], which consists
of multiple data owners a.k.a. data silos [31, 36, 50], who agree on
the same schema and manage their own data autonomously. Note
that this paradigm differs from conventional federated databases
[26, 48] in the extra security requirement. In general, secure query
processing over data federation can be solved by well-known tech-
niques such as secure multi-party computation (SMC) [7]. Yet, only
recently did pioneer studies such as SMCQL [4] and Conclave [57]
take the first step towards practice with efficient query execution
plans upon SMC libraries for (relational) data federation. Unsur-
prisingly, more applications are being built on federations of spatial
data owners.

Example 1. During COVID-19, several mobile network operators
(e.g., China Mobile [38] and China Telecom [53]) have cooperated
as a spatial data federation to identify who has been to infectious
areas through their location data [55]. Executing spatial queries (e.g.,
range query or distance join) over a spatial data federation can help
identify contacts in infectious areas across multiple organizations’
spatial data without leaking privacy.

Example 2. AMAP (a.k.a. GaoDe Map) [3] has united over 8 Chi-
nese travel companies into an integrated taxi-calling platform to
offer users the taxis resources from all participating companies
[54]. A spatial data federation can protect the distribution of taxis’
locations of each company, which could be a business secret, from
leaking to others.

Nevertheless, directly adapting the state-of-the-art data feder-
ation solutions [4, 57] to spatial data can be inefficient. From our
empirical study (Sec. 2.2) of a kNN query on a real dataset, they are
at least 142× slower, and have at least 1, 216× higher communica-
tion cost than plaintext query processing. There are two reasons
for such inefficiency. (i) Existing solutions process spatial queries
with excessive secure distance operations, which occupy over 90%
of the time cost. For example, SMCQL [4] and Conclave [57] would
securely sort spatial objects by distances to the query point and
pick the top-k objects, where each sorting involves numerous se-
cure distance comparisons. (ii) Previous studies [4, 57] are built on
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general-purpose SMC libraries, which may sacrifice the efficiency
of specific operations for other considerations. For example, our
experiment shows that the secure summation in ObliVM [35], the
SMC library adopted by SMCQL [4], can be accelerated by 15× via
dedicated implementations [19].

In this paper, we aim at efficient and secure spatial queries over a
data federation, whichwe call as federated spatial queries. Wemainly
study five queries (federated range query/counting, kNN query,
distance join and kNN join) commonly seen in spatial database
research [16, 43, 64] and follow the semi-honest adversary model
adopted by previous work [4, 23, 57, 60]. Moreover, we develop a
more practical solution than [4, 57] by eliminating the need for an
honest broker and supporting more data silos (these works support
no more than 3 data silos whereas we tested up to ten).

To this end, we propose Hu-Fu, a system for efficient and secure
processing of federated spatial queries. As explained above, secure
operations are usually slow and easily become the efficiency bot-
tleneck. Thus, the key idea of Hu-Fu is to decompose a federated
spatial query into asmany plaintext operations and as few secure op-
erations as possible without compromising security, where (i) no se-
cure distance-related operations are involved and (ii) the secure op-
erations have implementations faster than those in general-purpose
SMC libraries. To realize this idea and implement a practical system,
Hu-Fu consists of three components: an query rewriter with novel
decomposition plans, a set of drivers adaptable to heterogeneous
databases and an easy-to-use query interface with SQL support.
Specifically, the query rewriter identifies a set of plaintext and se-
cure operators to cover the queries of interest, and adopts novel
decomposition plans to minimize the usage of secure operators
while ensuring security. The drivers provide the implementations
of secure operators with dedicated SMC protocols and plaintext op-
erations as interfaces on top of the heterogeneous spatial databases
adopted by different data silos. The query interface supports spatial
queries in native SQL for easy usage.

Our main contributions and results are summarized as follows.
• To the best of our knowledge, Hu-Fu is the first system on effi-
cient and secure spatial queries over a data federation.

• Wedevise novel decomposition plans for federated spatial queries.
After decomposition, an execution plan involves only a limited
number of secure operators that can be effectively supported
with fast and dedicated implementations.

• Hu-Fu is an efficient, easy-to-use system that supports query
input in SQL and heterogeneous spatial databases, e.g., Post-
GIS [45], MySQL [61], SpatiaLite [51], Simba [64], GeoMesa [27],
and SpatialHadoop [16].

• Extensive evaluations show that Hu-Fu usually outperforms the
state-of-the-arts [4, 57] in efficiency. Compared with two strong
baselines, namely SMCQL-GIS and Conclave-GIS, which are ex-
tended from SMCQL [4] and Conclave [57] to spatial queries,
Hu-Fu is up to 4 orders of magnitude faster and 5 orders of mag-
nitude lower in communication than SMCQL-GIS and Conclave-
GIS with the same security level.

In the rest of this paper, we define our problem scope and iden-
tify the inefficiency of existing solutions in Sec. 2. We present an
overview of Hu-Fu in Sec. 3 and elaborate on its functional compo-
nents in Sec. 4, Sec. 5 and Sec. 6. Finally, we present the evaluations
in Sec. 7, review the related work in Sec. 8, and conclude in Sec. 9.

2 PROBLEM STATEMENT
This section clarifies our problem scope (Sec. 2.1) and highlights
the challenges (Sec. 2.2) that motivate the design of Hu-Fu.

2.1 Problem Scope
We consider a data federation 𝐹 (“federation” for short) consisting of
𝑛 data silos (“silos” for short, denoted by 𝐹𝑖 ), where each silo holds
multiple spatial objects. Each spatial object 𝑜 has a location 𝑙𝑜 and
other attributes 𝑎𝑜 . The federation supports federated spatial queries
over the spatial objects of all silos under the following settings.

• Spatial queries: The federation 𝐹 should support mainstream
spatial queries including range query, range counting, kNN query,
distance join, and kNN join [52, 64].

• Autonomous databases: Each silo is an autonomous database that
does not share its raw spatial objects with other silos. This is
aligned with real-world data federations [4–6, 57].

• Semi-honest adversaries: Each silo honestly executes queries re-
ceived and returns authentic results, but may attempt to infer
data from other silos during query execution. This assumption
is common in query processing over a data federation [4, 57].

We focus on query processing with the following requirements.

• Efficiency requirements. We care about the running time and
communication cost to execute exact queries over multiple si-
los. Short running time is desirable since real applications may
process massive queries and a long latency can have bad effects
(e.g., it may cause an extended spread of diseases for contact
tracing or degraded user experience for taxi-calling). Minimal
communication cost is critical in distributed query processing
[17, 43] and secure query processing [29]. Approximate query
processing over data federation [6, 14] is out of our scope because
applications such as contact tracing require accurate results. We
consider multiple silos as aligned with real-world applications.
Similar to existing federated query solutions [4, 57], the storage
efficiency, which mainly depends on silos themselves, is not our
primary concern.

• Security requirements. We target the scenario where input
queries are public to all silos yet neither the query user nor any
silo could deduce extra information from the final results. For
instance, in federated kNN query, the query user can only know
the final result (i.e. k nearest neighbors), and cannot infer the
ownership of these k nearest neighbors. Such requirements are
common in secure query processing [7].

Security is often of utmost priority due to laws (e.g., GDPR [44]
and CCPA [39]) on data protection. To satisfy the security require-
ment, existing systems [4, 57] rely on an honest broker to securely
collect the partial answers (which may have sensitive data) from
each silo. For other operations, they still rely on secure protocols
(e.g., summing the local counts from each silo to answer a range
counting). However, real-world brokers (e.g., Acxiom [1] and Expe-
rian [21]), which need to be paid a lot for data broker services, may
still leak sensitive data for profit or by accident [47]. Thus, we do
not assume an honest broker in Hu-Fu.

Formally, we define the federated spatial queries of interest below.
They are common in existing spatial data systems [16, 43, 64]. Here,
function 𝑑 (𝑝, 𝑜) is the distance between spatial objects 𝑝 and 𝑜 .
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Definition 1 (Federated Range Query/Counting). Given a federa-
tion 𝐹 = {𝐹1, · · · , 𝐹𝑛}, and a query range R, federated range query
returns all objects 𝑜 ∈ 𝐹 located in R; federated range counting

returns the number of these objects. These two queries should only
return the final results without revealing any information of 𝐹𝑖 (e.g.,
the ownership of objects, the number of objects) to 𝐹 𝑗 ( 𝑗 ≠ 𝑖).

Definition 2 (Federated kNN Query). Given a federation 𝐹 =
{𝐹1, · · · , 𝐹𝑛}, a query point 𝑝 and an integer 𝑘 , federated kNN query

returns a set kNN(𝐹, 𝑝, 𝑘) of 𝑘 spatial objects such that

∀𝑜 ∈ kNN(𝐹, 𝑝, 𝑘),∀𝑜 ′ ∈ 𝐹 − kNN(𝐹, 𝑝, 𝑘), 𝑑 (𝑝, 𝑜) ≤ 𝑑 (𝑝, 𝑜 ′)

without revealing information except the returned set to any 𝐹𝑖 .

Definition 3 (Federated Distance Join). Given an input dataset
of spatial objects 𝑅, a federation 𝐹 = {𝐹1, · · · , 𝐹𝑛} and a radius 𝑟 ,
federated distance join returns each 𝑜 ∈ 𝑅 with each 𝑜 ′ ∈ 𝐹 that
satisfies 𝑑 (𝑜, 𝑜 ′) ≤ 𝑟 as pairs, without revealing the ownership of
𝑜 ′ ∈ 𝐹𝑖 to 𝐹 𝑗 ( 𝑗 ≠ 𝑖).

𝑅 �𝑟 𝐹 = {(𝑜, 𝑜 ′) |𝑜 ∈ 𝑅, 𝑜 ′ ∈ 𝐹, 𝑑 (𝑜, 𝑜 ′) ≤ 𝑟 }

Definition 4 (Federated kNN Join). Given an input dataset of
spatial objects 𝑅, a federation 𝐹 = {𝐹1, · · · , 𝐹𝑛} and 𝑘 , federated
kNN join returns each 𝑜 ∈ 𝑅 with each 𝑜 ′ ∈ kNN(𝐹, 𝑜, 𝑘) as pairs,
without revealing information except the returned set to 𝐹𝑖 .

𝑅 �kNN 𝐹 = {(𝑜, 𝑜 ′) |𝑜 ∈ 𝑅, 𝑜 ′ ∈ kNN(𝐹, 𝑜, 𝑘)}

2.2 Challenges
Federated spatial queries can be realized by secure multi-party
computation (SMC) [7], as in prior studies for relational data [4,
57]. Nevertheless, our empirical study shows that they are highly
inefficient on spatial queries, as explained below.

2.2.1 Inefficiency on Federated Spatial Queries. As an illustrative
study, we perform federated kNN query by extending SMCQL [4]
and Conclave [57], two representative solutions to secure query
processing on (relational) data federations.

Overviewof Existing Solutions.The general framework to apply
SMC techniques for secure query processing over data federations
is to decouple query execution into first plaintext queries within
each silo and then secure computations of the final results across
silos [4, 57]. This is because SMC protocols are slow and such a
framework accelerates query processing without compromising
security. Existing solutions differ in the underlying SMC techniques
they apply for secure operations, where garbled circuit (GC) and
secret sharing (SS) are two mainstream SMC techniques [7]. Specifi-
cally, SMCQL [4], the first solution for secure query processing over
a data federation, uses ObliVM [35], a prevalent GC based library.
Since ObliVM only supports two silos, Conclave [57] adopts an SS
based technique (Sharemind [11]), which enables query processing
on three silos.

Setup. We extend SMCQL [4] and Conclave [57] to federated kNN
queries as follows. Following the “plaintext + secure” processing
pipeline, each silo first conducts a plaintext kNN query and returns
the 𝑘 nearest points (along with their distances) to the query point.
Then, the final k nearest neighbors are derived from these returned
points, which are securely sorted by their distances to the query
point and the k nearest ones are picked. We experiment with two
silos with 𝑘 = 16. Other implementations and experimental setup
details are in Sec. 7.1.

Table 1: Percentage of time spent for plaintext or SMC operations

for a federated kNN query via existing solutions.

System Plaintext SMC

SMCQL-GIS 0.14% 99.86%
Conclave-GIS 0.10% 99.90%

(a) Running time (b) Communication cost

Figure 1: Inefficiency of Conclave-GIS and SMCQL-GIS on federated

kNNquery,where SMCQL-GIS andConclave-GIS are our extensions

on SMCQL [4] and Conclave [57] to spatial queries (see Sec. 7.1).

Results. Fig. 1 plots the running time and communication cost to
process a single federated kNN query leveraging existing solutions.
The results are averaged over 50 queries. Compared with Public, i.e.
plaintext kNN query execution without the security requirement,
the secure counterpart incurs 142× to 212× longer running time and
1, 216× to 22, 510× higher communication cost. Although SMCQL-
GIS yields a shorter running time and a lower communication cost
than Conclave-GIS, SMCQL-GIS is only applicable to the scenario of

two silos for its usage of GC based SMC techniques. Yet it still takes
2.86 seconds for a single federated kNN query, which can hurt user
experiences in applications where time efficiency is critical.

2.2.2 Understanding the Efficiency Bottleneck. Prior studies are
inefficient on federated spatial queries for the following reasons.

• Excessive Secure Distance Operations. When processing a
federated kNN query, over 99% time is spent on SMC operations
(e.g., secure distance comparisons) as shown in Table 1. For ex-
ample, SMCQL-GIS and Conclave-GIS adopt sorting to find 𝑘
nearest neighbors among 𝑛𝑘 candidates by using 𝑂 (𝑛𝑘 log(𝑛𝑘))
secure distance comparisons, and a single secure distance com-
parison takes 209 ms in SMCQL-GIS and 248 ms in Conclave-GIS,
which equals to the time of at least 106 plaintext comparisons.

• Reliance on General-Purpose Libraries. Existing methods
use general-purpose libraries to implement SMC operations (e.g.,
ObliVM [35] in SMCQL [4]). General-purpose libraries some-
times sacrifice efficiency for generalization or compatibility. For
example, the secure summation we used can be 16× faster than
that in ObliVM (see Sec. 7). As will be shown in Sec. 4, we can
process federated spatial queries with only a few secure oper-
ations. This facilitates acceleration with libraries dedicated to
such operations [11, 19, 28].

Takeaways.Our study shows that existing secure query processing
solutions (e.g., [4, 57]) for data federations are inefficient for spatial
queries. The inefficiency comes from (i) massive secure distance
operations, and is exacerbated by (ii) adopting general-purpose
libraries for these SMC operations. In response, we propose Hu-Fu,
a solution with (i) a novel execution plan for federated spatial
queries that involve notably fewer secure operations (see Sec. 4)
and (ii) each secure operator can be implemented in high efficiency
via dedicated algorithms (see Sec. 5). As next, we give an overview
of Hu-Fu and elaborate on its functional modules in the following.
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Drivers

Query Interface
Query Rewriter

Hu-Fu

Federated Spatial Queries

Plaintext Primitives
Secure Primitives

Federated kNN Join Federated Distance Join

Plaintext Range Query Plaintext Range Counting

Basic Operators
Secure Summation Secure Comparison Secure Set Union

…
Silo 1 Silo 2 Silo 3 Silo 4 Silo 5 Silo n

Federated Range Query

Sil 1

SpatiaLite

Federated Range CountingFederated kNN Query

Figure 2: Illustration of Hu-Fu architecture.

3 HU-FU OVERVIEW
Hu-Fu is a solution that enables efficient and secure spatial queries
over a data federation. It addresses the inefficiency of federated
spatial query processing (see Sec. 2.2.2) via two modules: (i) a novel
query rewriter that decomposes federated spatial queries into
plaintext and secure operators, with the former executed within each
silo and the latter across silos; (ii) drivers that implement these
operators as plaintext and secure primitives leveraging dedicated
algorithms and optimizations. Hu-Fu also contains a transparent
query interface to support federated spatial queries written in
native SQL. We briefly explain its architecture and workflow below.

3.1 Architecture
Fig. 2 illustrates the architecture of Hu-Fu, which consists of three
modules: the query interface, the query rewriter and drivers. From
a functional perspective, the query rewriter and drivers optimize
the efficiency of federated spatial queries, and the query interface
improves the usability of Hu-Fu.

Query Rewriter (Sec. 4). It decomposes federated spatial queries
into plaintext operators (executed within silos) and secure operators
(executed across silos). We define two plaintext operators (plaintext
range query and range counting) and three secure operators (secure
summation, comparison and set union) as the basic operators, upon
which we design novel execution plans that decompose mainstream
federated spatial queries (federated range query, range counting,
kNN query, distance join and kNN join) into these basic operators.

Drivers (Sec. 5). Hu-Fu’s drivers implement the basic operators
defined in the query rewriter as efficient primitives that can adapt
to heterogeneous spatial databases at the backend. Each operator is
implemented by a specific primitive. Specifically, secure operators
are implemented as secure primitives with dedicated optimizations
[11, 19, 28]. Plaintext operators are implemented as plaintext prim-

itives on top of the underlying spatial databases, which support
various systems, e.g., PostGIS [45], SpatiaLite [51], MySQL [61],
GeoMesa [27], Simba [64] and SpatialHadoop [16].

Query Interface (Sec. 6). This module (i) provides a transparent
and unified federation view to users, and (ii) supports federated
spatial queries written in SQL. We implement the query interface
by extending the schema manager and parser of Calcite [8]. We
also provide interfaces such as JDBC for easy integration of Hu-Fu
to users’ programs.

Fed ServerFed ServerFed ServerFed ServerUser Hu-Fu Query 
Interface & Rewriter

Federated 
Spatial Query

Parse Query

Rewrite and 
Optimize Query 

Basic Operators
Plaintext Primitives

Local Result
Secure 

Primitives
Final Result

Query Result

Systems
Hu-Fu
Drivers

Spatial
Silo 1

Silo 2
Silo n

Figure 3: Illustration of Hu-Fu workflow.

3.2 Workflow
Fig. 3 shows the workflow of Hu-Fu with a user querying a data
federation of 𝑛 silos. The query interface and query rewriter are
deployed on the user machine to provide a portal for spatial services.
Each silo runs an instance of Hu-Fu drivers to interact with its
underlying spatial databases.

Suppose the user’s spatial service issues a federated spatial query
written in SQL. When a federated spatial query comes in, it is first
parsed by the query interface. Then the query rewriter transforms
and optimizes the query into a sequence of plaintext and secure
operators. These operators are then sent to drivers for execution as
plaintext and secure primitives. First, the plaintext primitives are
executed on the underlying spatial databases at each silo to get the
local results. Afterward, the local results are collected to perform
the secure primitives for the final query result, which is returned
to the user by the query interface.

4 QUERY REWRITER
This section presents Hu-Fu’s query rewriter, which decomposes
federated spatial queries into multiple basic operators. We first
define the basic operators in Sec. 4.1 before explaining the overall
decomposition strategies in Sec. 4.2. Specifically, we categorize
the five federated spatial queries into radius-known and radius-

unknown queries, and elaborate on their decomposition in Sec. 4.3
and Sec. 4.4. We discuss other practical issues in Sec. 4.5.

4.1 Basic Operators
Our acceleration strategy is to decompose queries into basic operators

such that distance-related operations are restricted within silos in

plaintext, leaving only secure operations across silos. The selection
of basic operators is explained below.

4.1.1 Operator Selection Principles. We propose two categories
of basic operators: plaintext and secure operators. The plaintext
operators perform local queries within each individual silo, while
the secure operators securely collect the local query results from
different silos as the final output.

• Plaintext Operators. They can involve the distance-related op-
erations compulsory in spatial queries, but should be common
operations widely supported by diverse spatial databases.

• Secure Operators. They should avoid distance-related opera-
tions, and efficiently implemented operators are preferable.

Following these principles, we choose two plaintext operators
(plaintext range query, plaintext range counting) and three secure
operators (secure summation, secure comparison, secure set union).
We define each basic operator and justify our selections below.
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4.1.2 Plaintext Operators. Wedefine two plaintext operators: plain-
text range query and plaintext range counting. These operators are
performed within each silo 𝐹𝑖 . Hence, they can be conducted in
plaintext without compromising security.

Definition 5 (Plaintext Range Query/Counting). For a silo 𝐹𝑖 ,
given a query range R, the plaintext range query PRQ𝐹𝑖 (R) returns
in plaintext the spatial objects in 𝐹𝑖 withinR, and the plaintext range
counting PRC𝐹𝑖 (R) further returns the number of such objects.

The plaintext operators comply with the principles described in
Sec. 4.1.1, because (i) the returned results can be securely collected
without secure distance operations (see Sec. 4.1.3) and (ii) they are
supported by almost all spatial databases [43]. These operators are
implemented as plaintext primitives in Hu-Fu drivers, which we
defer to Sec. 5.1. The query range can be a circle, a rectangle or
other shapes. For ease of presentation, we focus on a circular range
in Sec. 4.2-4.4 and discuss extensions to other shapes in Sec. 4.5.

4.1.3 Secure Operators. Based on the secure multi-party computa-
tion techniques [11, 19, 28], we define three secure operators: secure
summation, secure comparison, and secure set union. These opera-
tors are performed across silos and responsible for secure result
collection from local query results returned by plaintext operators.
Definition 6 (Secure Summation). For a federation 𝐹 = {𝐹1, · · · ,
𝐹𝑛}, where each silo 𝐹𝑖 holds a number 𝛽𝑖 , this operator calculates
the sum

∑𝑛
𝑖=1 𝛽𝑖 , while avoiding leaking 𝛽𝑖 to 𝐹 𝑗 ( 𝑗 ≠ 𝑖).

SSM𝐹 (𝛽1, · · · , 𝛽𝑛) =
𝑛∑
𝑖=1

𝛽𝑖

Definition 7 (Secure Comparison). For a federation 𝐹 = {𝐹1, · · · ,
𝐹𝑛}, where each silo 𝐹𝑖 holds a number 𝛽𝑖 , and a value 𝑘 , this
operator compares

∑𝑛
𝑖=1 𝛽𝑖 with 𝑘 without leaking

∑𝑛
𝑖=1 𝛽𝑖 or 𝛽𝑖 to

any 𝐹 𝑗 ( 𝑗 ≠ 𝑖).

SCP𝐹 (𝛽1, · · · , 𝛽𝑛, 𝑘) = 𝑠𝑖𝑔𝑛
( 𝑛∑
𝑖=1

𝛽𝑖 − 𝑘
)

Definition 8 (Secure Set Union). For a federation 𝐹 = {𝐹1, · · · , 𝐹𝑛},
where each silo 𝐹𝑖 holds a set of spatial objects 𝑆𝑖 = {𝑜𝑖1, · · · , 𝑜

𝑖
𝑚𝑖

},
this operator computes the union of spatial objects from all silos,
without leaking the ownership of each 𝑜 ∈ 𝑆𝑖 to 𝐹 𝑗 ( 𝑗 ≠ 𝑖).

SSU𝐹 (𝑆1, · · · , 𝑆𝑛) =
𝑛⋃
𝑖=1

𝑆𝑖

The secure operators comply with the principles in Sec. 4.1.1
since (i) they do not involve distance operations and (ii) there are
dedicated techniques for efficient implementations (see Sec. 5.2).

4.2 Overall Decomposition Strategies
The principle of query rewriter is to decompose federated spatial
queries into as many plaintext operators and as few secure op-
erators as possible such that a large portion of the query can be
executed in plaintext without compromising security. At a high
level, a federated spatial query is first executed as plaintext opera-
tors in each silo, where the results are then securely assembled as
the final result. At the minimum, one secure operator is compul-
sory, and additional secure operators may be necessary if there are
extra interactions across silos. Given the basic operators defined in
Sec. 4.1, we classify federated spatial queries into two categories
and explain their decomposition strategies as follows (see Table 2).
• Radius-Known Queries. For a radius-known query, it needs
only one secure operator for result collection in the ideal case.

This is because our plaintext operators already support plain-
text range query and counting. For result collection, a secure
set union or summation operator is required. We introduce the
decomposition plans for radius-known queries in Sec. 4.3.

• Radius-UnknownQueries. For a radius-unknown query, e.g., a
federated kNN query, we convert the query into multiple rounds
of radius-known queries. There can be cross-silo communication
between rounds, and extra secure operators are necessary, which
is secure comparison in our case. We adopt binary search to
minimize the number of rounds and secure operators involved.
We explain the decomposition plans for radius-unknown queries
in Sec. 4.4.

4.3 Decomposing Radius-Known Queries
Among the five federated spatial queries, range query, range count-
ing, and distance join belong to radius-known queries.

Decomposition Plan. Federated range query can be decomposed
into 𝑛 plaintext range queries with radius 𝑟 , where each plaintext
range query retrieves the local result from each one of 𝑛 silos. Sim-
ilarly, federated range counting can be decomposed into 𝑛 plaintext
range counting. Observing that a distance join can be viewed as
|𝑅 | times of range queries with different query points but the same
radius, federated distance join is decomposed into |𝑅 | × 𝑛 plaintext
range queries with radius 𝑟 . For result collection across silos, fed-
erated range counting needs a secure summation to aggregate the
counts without revealing the count of any silo. For federated range
query, it needs a secure set union to assemble the result without
revealing the objects’ ownership. For federated distance join, it also
first assembles the results of the plaintext range query in each silo
and then executes only one secure set union across silos.

Complexity Analysis. For ease of presentation, we denote the
time complexity of plaintext range query/counting as 𝑇𝑞 and 𝑇𝑐 ,
respectively. For federated range query/counting, each silo executes
a plaintext range query/counting and a secure set union/summation.
Thus, their time complexities are 𝑂 (𝑇𝑞 + 𝑛 + |𝑆 |) and 𝑂 (𝑇𝑐 + 𝑛3),
where |𝑆 | is the size of returned set. The communication costs are
𝑂 (𝑛 + |𝑆 |) and𝑂 (𝑛2), respectively. For federated distance join, each
silo executes |𝑅 | plaintext range queries, resulting in a time cost
of 𝑂 ( |𝑅 |𝑇𝑞 + 𝑛 + |𝑆 |) with 𝑂 (𝑛 + |𝑆 |) communication cost. The
complexity analysis of secure operators is deferred to Sec. 5.2.

4.4 Decomposing Radius-Unknown Queries
Federated kNN query and kNN join are radius-unknown queries,
because there is no specific range in these queries. Thus, their
decomposition plan is to first get an appropriate range and then
filter the points in the range, as explained in detail below.

Decomposition Plan. Similar to the relation between federated
range query and federated distance join in Sec. 4.3, federated kNN
join can be viewed as |𝑅 | independent federated kNN queries. Hence,
we mainly explain how to decompose a federated kNN query.

• Basic Idea. Recall from Sec. 4.2, the strategy to decompose
radius-unknown queries is to convert them into multiple rounds
of radius-known queries. We first derive a radius (denoted by
𝑡ℎ𝑟𝑒𝑠) via a binary search and then retrieve the spatial objects
within this radius. Note that obtaining the exact counting result
during the binary search via secure summation may leak extra
information of silos. For example, the query user can get the
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Algorithm 1: Rewriter of the federated kNN query
kNN(𝐹, 𝑝, 𝑘) over a data federation 𝐹 = {𝐹1, · · · , 𝐹𝑛}

1 [𝑙, 𝑢] ← [0, 𝑣0], where 𝑣0 is a predefined upper bound;

2 while 𝑢 − 𝑙 ≥ 𝜖0 do
3 𝑡ℎ𝑟𝑒𝑠 ← (𝑙 + 𝑢)/2;

4 𝛽𝑖 ← plaintext range counting PRC𝐹𝑖 (circle(𝑝, 𝑡ℎ𝑟𝑒𝑠));

5 𝑠𝑔𝑛 ← secure comparison SCP𝐹 (𝛽1, · · · , 𝛽𝑛, 𝑘);

6 if 𝑠𝑔𝑛 = −1 then 𝑙 ← 𝑡ℎ𝑟𝑒𝑠;

7 else if 𝑠𝑔𝑛 = 1 then 𝑢 ← 𝑡ℎ𝑟𝑒𝑠;

8 else break;

9 𝑆𝑖 ← plaintext range query PRQ𝐹𝑖 (circle(𝑝, 𝑡ℎ𝑟𝑒𝑠));

10 query answer 𝑟𝑒𝑠 ← secure set union SSU𝐹 (𝑆1, · · · , 𝑆𝑛);

number of objects within a range, which reveals the federation’s
data distribution. Hence, we only judge whether the counting
result is larger than 𝑘 and adopt a secure comparison instead. As

long as 𝑡ℎ𝑟𝑒𝑠 is between the 𝑘𝑡ℎ and the (𝑘+1)𝑡ℎ nearest distance,

the retrieved objects should be the 𝑘𝑡ℎ nearest neighbors.
• Algorithm Details. Alg. 1 illustrates decomposing a federated
kNN query. Lines 1-8 derive the radius. We initialize a lower
bound (𝑙 = 0) and upper bound (𝑢 = 𝑣0) of the radius, where 𝑣0
can be set as the diameter of the area or defined by the user. We
then perform a binary search in lines 2-8, where 𝜖0 is the precision
lower bound of distance, which can be set as the precision of the
locations’ coordinates. In each iteration, 𝑡ℎ𝑟𝑒𝑠 is set as (𝑙 + 𝑢)/2
in line 3. For the current radius 𝑡ℎ𝑟𝑒𝑠 , we perform a plaintext

range counting for each silo in line 4 and a secure comparison

between the sum of each silo’s count (𝛽𝑖 ) and the integer 𝑘 in
line 5. Lines 6-8 adjust the boundary of the searching radius. If
the total count is smaller than 𝑘 , the current radius is too short,
and we update 𝑙 to 𝑡ℎ𝑟𝑒𝑠 as the new lower bound (line 6). If the
total count is larger than 𝑘 , it means there are sufficient points
within 𝑡ℎ𝑟𝑒𝑠 and we update the upper bound 𝑢 as 𝑡ℎ𝑟𝑒𝑠 in line 7.
The binary search guarantees that 𝑡ℎ𝑟𝑒𝑠 is sufficiently close to

the 𝑘𝑡ℎ nearest distance. In the last round (lines 9-10), a plaintext
range query PRQ𝐹𝑖 (𝑐𝑖𝑟𝑐𝑙𝑒 (𝑝, 𝑡ℎ𝑟𝑒𝑠)) is performed on each silo
and we use a secure set union to get the final result.

Complexity Analysis. Alg. 1 takes at most 𝑂 (log 𝑣0
𝜖0
) rounds to

get the threshold (lines 2-8). In each round, the plaintext range
counting (line 4) takes𝑂 (𝑇𝑐 ) time, and the secure comparison (line
5) takes 𝑂 (𝑛) time. The adjustment of the binary search boundary
(lines 6-8) takes 𝑂 (1) time. After obtaining the final threshold, the
algorithm calls a plaintext range query in 𝑂 (𝑇𝑞) time to get local
results (line 9) and a secure set union in𝑂 (𝑛+𝑘) time to assemble the
results. Thus, the total time complexity is𝑂 (𝑇𝑞 +𝑘+ (𝑛+𝑇𝑐 ) log 𝑣0

𝜖0
).

In secure comparison (line 5), each silo communicates with the other
𝑛−1 silos. Thus, the communication cost for a single round is𝑂 (𝑛2)
and there are 𝑂 (𝑛2 log 𝑣0

𝜖0
) rounds in total. The communication

of secure set union (line 10) is 𝑂 (𝑛 + 𝑘). The time complexity of
federated kNN join is similar to federated kNN query, multiplied
by a factor |𝑅 |, i.e. 𝑂 ( |𝑅 |𝑇𝑞 + |𝑅 |𝑘 + |𝑅 | (𝑛 +𝑇𝑐 ) log 𝑣0

𝜖0
).

Example 3. We illustrate the execution of a federated kNN query
with query point (4, 4) and𝑘 = 4 over 3 silos in Fig. 4, and the objects
marked with the same color belong to the same silo. The query

rewriter decomposes this query into multiple rounds of radius-
known queries. In the 1st round, a plaintext range counting with
center (4, 4) and radius 4 is sent to each silo and a secure comparison
with 𝑘 is performed across silos. And we get 9 objects, which is
greater than𝑘 . Hence in the 2nd round, the radius decreases to 2 and
resent to silos for plaintext range counting and secure comparison.
There are 2 objects, which is smaller than 𝑘 . Thus in the 3rd round,
the radius increases to 3 and the procedure continues, where the
range counting result equals to 𝑘 and the search terminates. Finally,
a plaintext range query with center (4, 4) and radius 3 plus a secure
set union are performed to get the 4 objects.

4.5 Discussions
We highlight the following discussions on the query rewriter.

Security of Rewriter.We prove the security of our query rewriter
based on the composition lemma in [24] (Section 7.3.1). The idea
is to show the decomposition plans for radius-known queries and
radius-unknown queries will not reveal any extra information other
than the final result due to the usage of secure operators. We also
present a case study that proves it is hard for a semi-honest adver-
sary to attack Hu-Fu. Please refer to Appendix A of our full paper
[15] for the proof and case study due to the page limitation.

Differential Privacy toAccelerate Radius-UnknownQueries.

We exploit differential privacy [34] to further accelerate federated
kNN query and federated kNN join from two aspects.

• Tighten Predefined Upper Bound.We ask each 𝐹𝑖 to conduct

a local kNN query in plaintext and return the𝑘𝑡ℎ object’s distance

to the query point 𝑑𝑘𝑖 . Since directly returning such value may
expose the real distances of silos, we apply the truncated Laplace
mechanism [5] on it. That is, let each silo add a positive noise

and get the perturbed value 𝑑 ′𝑖
𝑘 . We can tighten the upper bound

as the smallest distance in all silos, i.e. 𝑣0 = min𝑖 𝑑
′
𝑖
𝑘 , since there

are at least 𝑘 points in this range.
• ReduceRunningTime andCommunicationCost in Secure

Comparison. The secure comparison in Alg. 1 compares
∑𝑛
1 𝛽𝑖

with 𝑘 , which incurs at least 𝑂 (𝑛2) running time and communi-
cation cost. It can be reduced to𝑂 (𝑛) when

∑𝑛
1 𝛽𝑖 notably differs

from 𝑘 . In this case, each silo can add a Laplacian noise [34] on
its local counting result to hide the real counts of each silo, and
then aggregate the perturbed results. If the perturbed result is
much smaller/larger than 𝑘 , we directly adjust the threshold.

Beyond Mainstream Spatial Queries. The decomposition plan
for radius-known queries applies to federated range query/count-
ing with other query range types (e.g., rectangle). This is because
the plaintext range query/counting with arbitrary shapes of query
ranges is supported in each silo’s underlying spatial data systems
(e.g., PostGIS). The query rewriter also supports aggregation queries,
e.g., the aggregate attribute on the result of kNN query or range
query. Specifically, the aggregation of kNN query can be decom-
posed the same as the federated kNN query, by only replacing the
last secure set union with a secure summation. The range aggregate
query can be decomposed similarly to a federated range counting.

5 DRIVERS
This section presents Hu-Fu’s drivers, which offer interfaces and
implementations on top of silos’ spatial databases for the unified and
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Figure 4: Running example of a federated kNN query (𝑘 = 4).

Table 2: The number of basic operators in the decomposition plans of federated spatial queries. Radius-known queries only involve one secure

operator (secure set union/summation) for secure result collection. Radius-unknown queries are executed in multiple rounds which require

extra secure operator (secure comparison) to ensure security. Here, 𝑛 is the number of silos.

Category Federated Spatial Query
Number of Plaintext Operator Number of Secure Operator

Range Query Range Counting Comparison Set Union/Summation

Radius-Known

Federated Range Query 𝑛 0 0 1/0

Federated Range Counting 0 𝑛 0 0/1

Federated Distance Join 𝑛 |𝑅 | † 0 0 1/0

Radius-Unknown
Federated kNN Query 𝑛 𝑂 (𝑛 log

𝑣0
𝜖0
) ‡ 𝑂 (log

𝑣0
𝜖0
) 1/0

Federated kNN Join 𝑛 |𝑅 | 𝑂 (𝑛 |𝑅 | log 𝑣0
𝜖0
) 𝑂 ( |𝑅 | log 𝑣0

𝜖0
) 1/0

† |𝑅 | is the size of the input dataset 𝑅 in the federated distance join and federated kNN join.
‡ 𝑣0 and 𝜖0 are user-defined parameters for processing the federated kNN query and federated kNN join.

efficient execution of decomposition plans generated by the query
rewriter. A driver, which consists of plaintext primitives and secure

primitives, is deployed on each silo. Upon receiving a decomposition
plan, plaintext operators are first executed at each silo with plaintext
primitives and then secure operators are performed via the secure
primitives for result assembling. As next, we elaborate on plaintext
primitives (Sec. 5.1) and secure primitives (Sec. 5.2) to efficiently
implement the basic operators defined in the query rewriter.

5.1 Plaintext Primitives
The plaintext primitives implement plaintext range query and plain-
text range counting. They are implemented as an interface on top
of the underlying spatial databases for portability and to harness
existing range query and range counting implementations.

Primitive Implementation.The implementation of plaintext prim-
itives is dependent on the underlying spatial databases.

• For databases where range query and range counting are avail-
able, e.g., Simba [64] and PostGIS [45], we directly call the corre-
sponding functions for plaintext range query or counting. For
example, in PostGIS, a plaintext range counting on silo 𝐹𝑖 with
the center 𝑝 and radius 𝑟 of a circular range can be implemented
by calling the SQL below.

SELECT COUNT (*) FROM 𝐹𝑖
WHERE ST_DWithin(p, 𝐹𝑖 .location , r);

• For databases without such queries, drivers provide a default
implementation of range query and range counting. For example,
GeoMesa [27] only provides an interface of range query. Thus,
we implement range counting by first running a range query,
and then counting the cardinality of the returned set.

Time Complexity. The time complexity of plaintext primitives
depends on the native implementation in spatial databases. For
example, plaintext range counting takes𝑂 (log𝑚) time with spatial
indices [46], where 𝑚 is the data size. Yet plaintext range query
may need 𝑂 (log𝑚 + |𝑆 |) time, where 𝑆 is the query result.

Discussions. We make two notes on the plaintext primitives.

• To support the differential privacy based acceleration for feder-
ated kNN query (see Sec. 4.5), Hu-Fu drivers provide an optional
plaintext kNN query interface. The plaintext kNN is implemented
by a function call on spatial databases with native kNN query
(e.g., PostGIS [45] and Simba [64]).

• Since the time complexity of plaintext primitives varies, the
efficiency of federated spatial queries can be limited by the slow-
est plaintext primitive if silos are using heterogeneous spatial
databases (see Sec. 7.4). Thus, more efficient plaintext range
query/counting is out of our scope.

5.2 Secure Primitives
The Secure primitives implement secure summation, comparison,
and set union, which are independent of the underlying spatial
databases. Recall that secure primitives take the local results from
plaintext primitives as inputs. To avoid idle waiting for slow silos
and to reuse local results across silos, each silo buffers its local
results of plaintext primitives executed on itself. We implement
secure primitives on top of such a buffer, as explained next.

Primitive Implementation. Each secure primitive is implemented
with a dedicated secure protocol for higher efficiency than the cor-
responding operation in general-purpose SMC libraries. We present
the details of each secure primitive below.

Secure Summation. The implementation of secure summation
is based on Ref. [19]. First, all of the 𝑛 silos first agree on 𝑛 different
public parameters 𝑈 = {𝑢1, 𝑢2, · · · , 𝑢𝑛}. Then, each silo 𝐹𝑖 chooses

a random 𝑛 − 1 degree polynomial 𝑡𝑖 (𝑥) = (
∑𝑛−1
𝑘=1 𝑎𝑖𝑘𝑥

𝑘 ) + 𝑣𝑖 and
calculates 𝑛 values of the polynomial, 𝑡𝑖 (𝑢1), · · · , 𝑡𝑖 (𝑢𝑛). Specially,
𝑎𝑖𝑘 indicates the random coefficient independently generated by silo
𝐹𝑖 , and 𝑣𝑖 denotes the local counting result of silo 𝐹𝑖 . These variables
are held by silo 𝐹𝑖 only and kept secret from others. Afterward, each
silo 𝐹𝑖 sends the value of polynomial 𝑡𝑖 (𝑢 𝑗 ) to all other 𝐹 𝑗 (𝑖 ≠ 𝑗).
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When any silo 𝐹 𝑗 receives all {𝑡𝑖 (𝑢 𝑗 ) |𝑖 ≠ 𝑗} from the other silos, it

sums up those values 𝑆 (𝑢 𝑗 ) =
∑𝑛
𝑖=1 𝑡𝑖 (𝑢 𝑗 ) = (

∑𝑛−1
𝑘=1 (𝑢

𝑘
𝑗

∑𝑛
𝑖=1 𝑎𝑖𝑘 )) +∑𝑛

𝑖=1 𝑣𝑖 and sends the summations 𝑆 (𝑢 𝑗 ) to the query user. The

user can regard 𝑆 (𝑢 𝑗 ) as a linear equation 𝑆 (𝑢 𝑗 ) =
∑𝑛−1
𝑘=1 𝑢

𝑘
𝑗 𝑧𝑘 + 𝑧𝑛 ,

where 𝑛 unknown variables are 𝑧𝑘 =
∑𝑛
𝑖=1 𝑎𝑖𝑘 (for 𝑘 = 1, · · · , 𝑛−1)

and 𝑧𝑛 =
∑𝑛
𝑖=1 𝑣𝑖 . Moreover, the user knows {𝑢1, 𝑢2, · · · , 𝑢𝑛} and

the values {𝑆 (𝑢1), 𝑆 (𝑢2), · · · , 𝑆 (𝑢𝑛)}. Thus, the user can solve the
𝑛 unknown variables by Gauss elimination and get the value of∑𝑛

𝑖=1 𝑣𝑖 (i.e. the unknown variable 𝑧𝑛).
Secure Comparison. The primitive compares a user given con-

stant𝑘 with the sum of each silo’s local result (e.g., {𝛽𝑖 }) and ensures
that either 𝛽𝑖 or

∑𝑛
𝑖=1 𝛽𝑖 is confidential to any silos 𝐹 𝑗 ( 𝑗 ≠ 𝑖) and the

query user. The main idea is calculating 𝑋 (
∑𝑛
𝑖=1 𝛽𝑖 − 𝑘) instead of∑𝑛

𝑖=1 𝛽𝑖 −𝑘 , where𝑋 is a random and positive real number, because
the latter result discloses the value of

∑𝑛
𝑖=1 𝛽𝑖 . Accordingly, we re-

duce our secure comparison into the classic secure multiplication
and hence adopt the existing secure multiplication protocol [11]
to ensure security. Specifically, the secure multiplication protocol
requires two multipliers 𝑥 and 𝑦 are both divided into 𝑛 shares
𝑋 =

∑𝑛
𝑖=1 𝑥𝑖 , 𝑌 =

∑𝑛
𝑖=1 𝑦𝑖 and each share is distributed into 𝑛 silos,

e.g., 𝑥𝑖 and 𝑦𝑖 for silo 𝐹𝑖 . This protocol can protect the values of
𝑋,𝑌, 𝑥𝑖 , 𝑦𝑖 from the attackers in all𝑛 silos. In our reduction,𝑌 equals∑𝑛
𝑖=1 𝛽𝑖 − 𝑘 and 𝑦𝑖 = 𝛽𝑖 −

𝑘
𝑛 . Since each silo has already known its

local result 𝛽𝑖 , the user only sends 𝑘
𝑛 to all silos. After that, each

silo randomly generates a positive real number 𝑥𝑖 and calculates

𝑋𝑌 = (
∑𝑛
𝑖=1 𝑥𝑖 ) (

∑𝑛
𝑖=1 (𝛽𝑖 −

𝑘
𝑛 )) by using the secure multiplication

protocol (see [11] for more details), then returns 𝑋𝑌 to the user.
Finally, the user derives the final result of our secure comparison
by the sign of 𝑋𝑌 without leaking any sensitive information.

Secure Set Union. We implement this primitive as a random
shares based two-phase union method [28]. Specifically, each silo
adds its results and some fake records to a global set in the first
phase and removes them from the set in the second phase. We
use differential privacy to reduce the number of fake records and
thus the communication cost. Observing that adding and removing
fake records can be done independently, we split the global set into
batches to allow parallel execution. Then each silo can add and
remove noise data from each batch independently, resulting in a
shorter latency.
ComplexityAnalysis. For secure summation, the time complexity
to solve the linear equations is 𝑂 (𝑛3), with 𝑂 (𝑛2) communication
cost [19]. For secure comparison, the time complexity of the secure
multiplication is 𝑂 (𝑛). It also has a communication cost of 𝑂 (𝑛2)
[11]. The time complexity and communication cost of secure set
union are both 𝑂 (𝑛 + |𝑆 |), where 𝑆 is the final global set [28].

6 QUERY INTERFACE
This section presents the query interface of Hu-Fu. For easy usabil-
ity, the interface offers a unified federation view to users (Sec. 6.1)
and supports federated spatial queries in SQL (Sec. 6.2).

6.1 Unified Federation View
Hu-Fu’s query interface provides a federation view to the query
user, while the detailed information of silos is hidden. This allows
the user to send queries without worrying about the silo organiza-
tion and also protects the data security of individual silos.

We implement the unified federation view by extending the
schema manager of Calcite [8], a popular query processing frame-
work. In Calcite’s schema manager, each table is independent and
indivisible. We add silo as an abstraction layer below the table of
schema manager. Thus each table contains multiple silo objects, and
each object records the identity information of the corresponding
silo. The silo identity information is used when executing secure
primitives. Specifically, the query rewriter will attach the identi-
fying information of all silo-level tables in the table of schema
manager when distributing secure operators. Each silo only exe-
cutes the corresponding secure primitives if the attached identity
information matches the one locally stored.

6.2 Federated Spatial Queries in SQL
Based on the unified federation view, Hu-Fu query interface sup-
ports federated spatial queries in SQL by extending the SQL parser
of Calcite. The semantics are almost the same as regular SQL queries.
Specifically, we add two keywords: DWithin and kNN.

For example, a federated range counting on a circular range
centered at the point 𝑝 with radius 𝑟 can be written in SQL as

SELECT COUNT (*) FROM F WHERE DWithin(p, F.location , r);

where DWithin(𝑝, 𝐹 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑟 ) returns whether the distance be-
tween 𝑝 and an object 𝑜 ∈ 𝐹 is shorter than 𝑟 . A federated kNN join
on a dataset 𝑅 and federation 𝐹 with 𝑘 can be written in SQL as

SELECT R.id, F.id FROM R JOIN F

ON kNN(R.location , F.location , k);

where kNN(𝑅.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐹 .𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑘) indicates whether a spatial ob-
ject 𝑜 ′ ∈ 𝐹 is in the kNN set of query point 𝑜 ∈ 𝑅. Other queries
can be written as SQL similarly with these two keywords.

7 EVALUATION
This section presents the evaluations of Hu-Fu. We first introduce
the experimental setup (Sec. 7.1), and then present the overall perfor-
mance (Sec. 7.2), scalability (Sec. 7.3) and results with heterogeneous
spatial databases across silos (Sec. 7.4).

7.1 Experimental Setup

Datasets. We conduct experiments on the following two datasets,
where each spatial object has a location and a unique ID.

• Multi-company Spatial Data in Beijing (BJ). This dataset
was collected by 10 companies in Beijing, in June 2019, which has
1, 029, 081 spatial objects in total. The locations of these objects
fall into an area from 39.5◦N ∼ 42.0◦N and 115.5◦E ∼ 117.2◦E.
We use the dataset to simulate a real-world federation, where
each company can be naturally regarded as a silo. We do not alter
the distributions of spatial objects across silos, and only vary the
silo number 𝑛 or query-specific parameters (e.g., 𝑘 for federated
kNN query) during the evaluation.

• OpenStreetMap (OSM). This is a popular open dataset to eval-
uate large-scale spatial analytics [16, 43, 64]. We mainly use this
dataset in the scalability test, where we sample 104-109 spatial
objects from the Asia dataset in the OpenStreetMap [40]. Specif-
ically, to simulate the spatial overlaps as in the BJ dataset, we
assign a random silo ID for each point in the dataset and make
each silo have the same number of data points.

Baselines.We compare Hu-Fu with the following baselines.
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• Public. It directly collects local results from each silo without
any secure operation, and serves as the upper bound of query
processing efficiency.

• SMCQL-GIS & SMCQL-GISext. It adopts the principles of SM-
CQL [4], a garbled circuit (GC) based solution for relational
data, to support spatial queries. We implement SMCQL-GIS and
SMCQL-GISext with ObliVM [35], which is also used in SMCQL
and only supports two silos. So we only provide the results of
SMCQL-GIS and SMCQL-GISext over two silos. And SMCQL-
GISext is a variant of SMCQL-GIS without assuming an honest
broker, and uses our secure set union to assemble results.

• Conclave-GIS & Conclave-GISext. It adopts the principles of
Conclave [57], the state-of-the-art secret sharing (SS) based feder-
ation solution for relational data, to support spatial queries. Note
that we implement Conclave-GIS and Conclave-GISext with a
different SS based library, MP-SPDZ [29], rather than Sharemind
[11] in the original Conclave. Because Sharemind is devised for
only three silos [7] and it is a commercial library. In contrast,
MP-SPDZ is a popular open-source library that supports more
than three silos based on secret sharing. And Conclave-GISext is
a variant of Conclave-GIS without assuming an honest broker,
and uses our secure set union to assemble results.

These secure baselines implement federated spatial queries by
exploiting similar queries for relational data in SMCQL or Con-
clave. Our extensions follow the strategy of having plaintext spatial
queries within each silo’s database and securely computing the
final results. Specifically, for federated range query, these baselines
execute plaintext range query in each silo and collect the partial
results by either the honest broker or our secure set union. For
federated range counting, they execute plaintext range counting and
use secure summation to compute the final result. For federated kNN
query, we regard it as a top-k query with a user-defined function
(UDF). For example, each silo runs plaintext kNN query to compute
𝑘 candidate neighbors along with their distances to the query object.
Then, all 𝑛 silos securely find the 𝑘 nearest neighbors among 𝑛𝑘
candidates. For federated distance join/kNN join, we refer to their
query plans for join queries and regard a federated distance/kNN
join as multiple federated range/kNN queries.

Metrics.We assess the query processing efficiency by two metrics.

• Running time. It is the time cost from receiving the query from
a user to returning the query result to the user.

• Communication cost. It is the total network communication
among the user and all silos for this query.

All the experimental results are the average of 50 repetitions.

Environment.We run all experiments on a cluster of 11 machines.
Eachmachine has 32 Intel(R) Xeon(R) Gold 5118 2.30GHz processors
and 64GB memory with Ubuntu 18.04 LTS. The network bandwidth
between machines is up to 10 GB/s. Among the 11 machines, one
is as the user and the honest broker for SMCQL-GIS and Conclave-
GIS, and the other 10 are data silos. We use PostgreSQL 10.15 with
PostGIS extension as the default spatial database for all silos. To
show the support of heterogeneous spatial database systems by
Hu-Fu, we also use MySQL 5.7 [61], Sqlite3 with SpatiaLite exten-
sion [51], GeoMesa 3.0.0 [27], Simba 1.0 [64] and SpatialHadoop
2.4.3 [16] as different silos, as will be explained in Sec. 7.4. They all
use spatial indexes (R-Tree in PostGIS, Simba, SpatialHadoop and
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Figure 5: Performance of federated kNN query.
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Figure 6: Performance of federated kNN join.
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(b) Running time and communication cost of varying the query area

Figure 7: Performance of federated range counting.

MySQL, R*-Tree in SpatiaLite, and Z-Curve in GeoMesa) to speed
up plaintext primitives by up to 2042× (in Appendix F [15]).

7.2 Results on Real Dataset
This series of experiments compare the efficiency of different meth-
ods for all five federated spatial queries on the real dataset BJ. All
the query points are randomly sampled from the dataset. We vary
the number of silos from 2 to 10, and also test the impact of query-
specific parameters. We set 𝑘 to 16 for federated kNN query and
kNN join, and the default query area of federated range query, range
counting and distance join as 0.001%, and vary them from 4 to 64
and 0.00001% to 0.1% respectively. The range of these query-specific
parameters is aligned with previous study [64]. When evaluating
the query-specific parameters, we use 6 silos by default.

7.2.1 Performance of Federated kNN Query. Fig. 5a shows the run-
ning time and communication cost of federated kNN query. Hu-Fu
is 109.6× to 7, 198.8× faster than SMCQL-GIS and Conclave-GIS,
and has 2 to 5 orders ofmagnitude lower communication cost.When
the number of silos increases from 2 to 10, the running time and
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Figure 8: Performance of federated range query.
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Figure 9: Performance of federated distance join.

communication cost of Hu-Fu only increase by up to 2.9× and 13.9×,
while those of Conclave-GIS drastically increase by up to 153.3×
and 1, 884.3×. Both metrics of Hu-Fu increase because the secure
comparison and secure set union used in this query grow linearly
with the silo number. Compare with Conclave-GIS and SMCQL-GIS,
the running time and communication cost of Conclave-GISext and
SMCQL-GISext increase marginally (less than 20 ms and 200 KB,
respectively), which shows that our secure set union can efficiently
assemble query results without an honest broker.

We also vary 𝑘 from 4 to 64 and plot the running time and com-
munication cost in Fig. 5b. As 𝑘 increases from 4 to 64, the running
time and communication cost of Hu-Fu only increase by 0.1× and
1.1×, while those of Conclave-GIS increase by 51.3× and 50.7×. The
impact of 𝑘 is less obvious than the silo number on Hu-Fu, because
only the secure set union is linearly dependent on 𝑘 . Again, the
efficiency of Conclave-GISext is similar to that of Conclave-GIS.
The drastic increase in running time and communication cost of
Conclave-GIS and Conclave-GISext is expected because it involves
many secure primitives that are time-consuming.

Recall that we apply differential privacy (DP) to accelerate kNN
queries (see Sec. 4.5). To prove the gain of the optimization, we list
the running time and communication cost with and without DP
in Table 3. With DP, the running time is reduced by up to 19.6%,
and the communication cost by up to 47.7%. Compared with the
improvement, the overhead of injecting the DP noise is very mar-
ginal, which takes 2 𝜇𝑠 time cost and less than 1 KB communication
cost when processing one federated kNN query. Such a notable im-
provement is because the complexity of DP noise injection is 𝑂 (1)
and the summation only requires for transmission of 𝑛 integers,
while a secure comparison has 𝑂 (𝑛) time complexity and 𝑂 (𝑛2)
communication cost.

7.2.2 Performance of Federated kNN Join. Fig. 6 shows the per-
formance of federated kNN join. The results of Conclave-GIS and

Table 3: Ablation of DP optimization for federated kNN query.

Silo Number 2 4 6 8 10

Hu-Fu 26.1 45.1 58.6 89.6 100.5
Running

Time (ms)
Hu-Fu

without DP
26.9 50.3 72.9 107.0 116.9

Hu-Fu 39.4 160.8 357.7 475.1 588.3
Comm.

(KB)
Hu-Fu

without DP
58.5 234.8 493.0 784.0 1125.2

Conclave-GISext with over 8 silos are omitted since they incur over
6 hours for a single query. Hu-Fu is still the most efficient, which is
up to 360.2×/15, 814.2× faster than SMCQL-GIS/Conclave-GIS with
247.8×/185, 151.0× lower communication cost. The running time
and communication cost of SMCQL-GISext and Conclave-GISext
slightly increase over SMCQL-GIS and Conclave-GIS. The impact
of 𝑘 is similar to federated kNN query (see Appendix B [15]).

7.2.3 Performance of Federated Range Counting. Fig. 7 shows the
results of federated range counting. This query only returns the
counting result and thus does not need a secure set union to protect
data ownership. Hence, we exclude SMCQL-GISext and Conclave-
GISext since they only differ from SMCQL-GIS and Conclave-GIS
with an extra secure set union, which is unnecessary in this query.
Hu-Fu is up to 15.2× faster than SMCQL-GIS with a slightly higher
communication cost (within 7 KB). Considering the increasing net-
work bandwidth, the gap in communication cost is acceptable. Com-
pared with Conclave-GIS, Hu-Fu is up to 10.8× faster with 17.9×
lower communication cost. The running time and communication
cost of Hu-Fu increase by 0.6× and 13.2× respectively when silo
number increases to 10, mainly due to the secure summation.

We also demonstrate the impact of the query area on query
efficiency in Fig. 7b. As is shown, the running time of all methods
is relatively stable. It is expected because secure operations are
the bottleneck of running time whereas the larger query area only
increases the running time of plaintext operations.

7.2.4 Performance of Federated Range Query. Fig. 8 illustrates the
results of federated range query. The efficiency of SMCQL-GIS and
Conclave-GIS is the same as Public (i.e. the non-secure baseline),
because they both rely on an honest broker to securely collect
partial answers in each silo without leaking them to any others.
Under this assumption, all systems can be reduced to Public, which
uses a server (e.g., an honest broker in SMCQL-GIS and a center
server in Public) to directly collect local range query result from
each silo. For example, Hu-Fu with an honest broker also has the
same efficiency as Public (see Appendix D [15]). Under a more
general setting without this assumption, Hu-Fu, SMCQL-GISext
and Conclave-GISext have the same efficiency because they all use
our secure set union for results assembling. The use of secure set
union only leads to a marginal increase in running time (within 250
ms) and communication cost (lower than 3.1 MB) over Public. Note
that the order of increase in running time and communication cost
matches the complexity analysis for the secure set union in Sec. 5.2,
which grows linearly with the silo number and the amount of data
returned. As shown in Fig. 8b, when the query area expands, all
methods have a higher running time and communication cost, due
to the increase of the number of spatial objects in the final result.
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(a) Running time and communication cost of federated kNN query
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(b) Running time and communication cost of federated kNN join
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(c) Running time and communication cost of federated range counting
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(d) Running time and communication cost of federated range query
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(e) Running time and communication cost of federated distance join

Figure 10: Scalability test of federated spatial queries.

7.2.5 Performance of Federated Distance Join. Fig. 9 presents the
performance of federated distance join. Note that all the methods
treat federated distance join as multiple independent federated
range queries, where the total number of these range queries is
|𝑅 | = 100 in this test. Thus, it is reasonable that the ranking of all
the methods is similar to that in federated range query (see Fig. 8).
The impact of query area is similar to federated range query (see
Appendix B [15]).

Takeaways. Overall, Hu-Fu is up to 15, 814.2× faster than SMCQL-
GIS and Conclave-GIS, with up to 5 orders of magnitude lower
communication cost. The efficiency gain of Hu-Fu over the base-
lines is more notable in federated kNN query, kNN join, and range
counting, which is at least 2.4× faster in running time and 4.9×
lower in communication cost than Conclave-GIS. SMCQL-GIS and
Conclave-GIS are more efficient in federated range query and dis-
tance join, because these baselines are reduced to Public and need
no secure operation with the honest broker. Note that for federated
range query and distance join, Hu-Fu achieves the same efficiency
as SMCQL-GISext and Conclave-GISext, the variants of SMCQL-GIS
and Conclave-GIS without an honest broker.

7.3 Results on Scalability Test
In this experiment, we scale the total number of spatial objects
from 104 to 109 over OSM dataset to assess the scalability of Hu-Fu.
Other parameters are set to the default values as in Sec. 7.2. For
example, the number of silos is 6, 𝑘 = 16 for federated kNN query
and kNN join, and the query area for federated range query, range
counting and distance join is 0.001%. Recall that SMCQL-GIS and
SMCQL-GISext only support two silos and are excluded since 6
silos are used in this test. The running time and communication
cost on the five spatial queries are shown in Fig. 10.

For a fixed data size, we observe that Hu-Fu is notably more
efficient than Conclave-GIS and Conclave-GISext on federated kNN
query, kNN join and range counting (see Fig. 10a-10c). For federated
range query and distance join, Conclave-GIS behaves the same as
Public due to the honest broker, while Hu-Fu achieves the same
efficiency as Conclave-GISext, which requires no honest broker.

We are more interested in the efficiency with the increase of
data size. We observe that the efficiency of federated kNN query,
kNN join and range counting is insensitive to the increase of the
data size. This is because the increase of data size mainly affects the
time cost of plaintext primitives, which only accounts for a small
portion (due to efficient indexes in each silo) in the running time.
In contrast, the running time and communication cost of federated
range query and distance join notably increase with the increase
of the data size because more spatial objects are retrieved in each
silo, which leads to a higher cost for both plaintext range query
and secure set union.

Takeaways. Hu-Fu trivially scales with data size for federated
kNN query, kNN join and range counting because these queries are
relatively insensitive to data size. Both metrics of Hu-Fu increase
with the data size for federated range query and distance join, yet
Hu-Fu is still reasonably efficient for them on large-scale data. For
example, in Hu-Fu, a federated range query takes 250 ms running
time and 2.6 MB communication cost on the data size of 109.

7.4 Results on Heterogeneous Silos
This experiment aims to demonstrate the feasibility of Hu-Fu on
heterogeneous spatial databases. Specifically, we use 6 different
databases for each silo on the BJ dataset: PostGIS [45], MySQL [61],
SpatiaLite [51], Simba [64], GeoMesa [27], and SpatialHadoop [16].
Other parameters are set as the default values as in Sec. 7.2.

Fig. 11 plots the running time breakdown i.e. plaintext vs. se-
cure primitives for radius-unknown (i.e. federated kNN query) and
radius-known (i.e. federated range counting) queries (see Appen-
dix C [15] for more results). We make the following observations.

• Given homogeneous underlying spatial databases (PostGIS), our
Hu-Fu significantly reduces the running time of secure primi-
tives e.g., 3, 935.4× compared with Conclave-GIS for federated
kNN query. Such acceleration in secure primitives is the primary
contributor to Hu-Fu’s gain in running time.

• Heterogeneous underlying spatial databases affect the running
time. Specifically, the running time of plaintext primitives is
limited by the slowest spatial database, which may increase the
overall query processing time. In this experiment, the running
time of plaintext primitives notably increases from 4ms to 579 ms
when replacing PostGIS with heterogeneous databases (where
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Figure 11: Running time breakdown.

SpatiaLite and MySQL are the slowest), which takes even longer
than the secure primitives in Hu-Fu. The running time of secure
primitives also marginally increases due to idle waiting for the
local results from the slowest silo.

Takeaways. Hu-Fu functions with silos running heterogeneous
databases. Although Hu-Fu dramatically speeds up the secure prim-
itives in a federated spatial query, the efficiency of plaintext primi-
tives in each silo’s databases may affect the overall running time.
Particularly, the time cost of plaintext primitives can be limited by
the slowest database in the federation. To unleash the full potential
of Hu-Fu, fast spatial databases in each silo are recommended.

8 RELATEDWORK
Distributed spatial database systems are popular solutions to query
processing on big spatial data. These systems improve query pro-
cessing via data partition and indexing techniques (e.g., R-tree [46])
in Hadoop (e.g., SpatialHadoop [16] and Hadoop-GIS [2]) or Spark
(e.g., Simba [64], GeoSpark [69], and LocationSpark [52]). However,
the data partition techniques are inapplicable in a data federation
since the entire data is held by the autonomous data silos. Moreover,
security is not the major concern in these systems.

Past studies of secure spatial query processing mainly focus on
encrypted databases [25], where data is encrypted and stored in
a third-party platform (e.g., a cloud platform) to process queries
securely. For example, existing work [18, 30, 62, 67] study the se-
cure kNN query on encrypted databases and prior studies [59, 63]
focus on securely processing range queries. In these studies, a data
owner outsources its data and hence the sensitive data is encrypted
before being uploaded to a third party. Intuitively, homomorphic
encryption techniques (e.g., Paillier [42] and SEAL [37]) are used to
guarantee security. Different from this setting, in a data federation,
data silos autonomously manage their own data and hence do not
need to encrypt their own data and upload it to a third party.

Rather than the general distributed databases or outsourced
databases, our work is more aligned with the problem settings of
federated databases and data federation, where the entire dataset is
held in multiple autonomous databases. The research on federated
databases dates back to 1979 (see surveys [26, 48]). Early efforts
focused on finding solutions to access data in autonomous databases
[41], while recent studies on federated databases support diverse
data types, e.g., on federated graph databases [58]. Note that the
autonomous database here means that data can be only managed by
its held silo which is different from a self-driving database [32, 33].

Data federation is an emerging concept developed from federated
databases. It shares a similar architecture with federated databases.
Yet, the major difference is that a data federation imposes certain
secure requirements during query processing, while a federated
database does not. For example, SMCQL [4] is the first secure query

processing solution over a data federation and Conclave [57] is the
state-of-the-art solution. Wang et al. [60] explored join-aggregate
queries over a data federation of two silos and Ge et al. [23] stud-
ied secure functional dependency discovery in a data federation.
All these studies adopt SMC techniques to achieve secure query
processing for relational data with exact results.

Other studies investigate approximate query processing over a
relational data federation. For example, Shrinkwrap [5], SAQE [6]
and Crypt𝜖 [14] use differential privacy to trade off between accu-
racy and efficiency in query processing. In contrast, we focus on
exact query processing, since accurate results can be crucial for
spatial applications like contact tracing [22].

In short, our work is inspired by the emerging trend of secure
query processing over a data federation, yet focuses on spatial
queries with exact results. Our Hu-Fu significantly improves the
efficiency of federated spatial queries over the extensions of SM-
CQL [4] and Conclave [57], the state-of-the-arts for relational data.

9 CONCLUSION
In this paper, we propose the first system Hu-Fu for efficient and
secure spatial queries over a data federation. Existing solutions are
inefficient to process such queries due to excessive secure distance
operations and the usage of general-purpose secure multi-party
computation (SMC) libraries for implementing secure operators.
To overcome the inefficiency, we design a novel query rewriter to
decompose the spatial queries into as many plaintext operators
and as few secure operators as possible. In particular, our secure
operators involve no distance operation and have dedicated im-
plementations faster than general-purpose SMC libraries. More-
over, Hu-Fu supports heterogeneous spatial databases (e.g., PostGIS,
Simba, GeoMesa, and SpatialHadoop), as well as query input in
native SQL. Finally, extensive experiments show that Hu-Fu is up to
4 orders of magnitude faster and takes 5 orders of magnitude lower
communication cost than the state-of-the-arts. In the future study,
we plan to support more spatial queries and analytics in Hu-Fu, e.g.,
spatial keyword search.
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