A Near-Optimal Approach to Edge Connectivity-Based
Hierarchical Graph Decomposition

Lijun Chang
The University of Sydney
Lijun.Chang@sydney.edu.au

ABSTRACT

Driven by applications in graph analytics, the problem of efficiently
computing all k-edge connected components (k-ECCs) of a graph
G for a user-given k has been extensively and well studied. It is
known that the k-ECCs of G for all possible values of k form a
hierarchical structure. In this paper, we study the problem of ef-
ficiently constructing the hierarchy tree for G which compactly
encodes the k-ECCs for all possible k values in space linear to
the number of vertices n. All existing approaches construct the
hierarchy tree in O(8(G) X Tkecc(G)) time, where §(G) is the
degeneracy of G and Tggcc (G) is the time complexity of comput-
ing all k-ECCs of G for a specific k value. To improve the time
complexity, we propose a divide-and-conquer approach running
in O((log (G)) X Tkecc(G)) time, which is optimal up to a loga-
rithmic factor. However, a straightforward implementation of our
algorithm would result in a space complexity of O((m+n) log §(G)).
As main memory also becomes a scarce resource when process-
ing large-scale graphs, we further propose techniques to optimize
the space complexity to 2m + O(nlog §(G)), where m is the num-
ber of edges in G. Extensive experiments on large real graphs and
synthetic graphs demonstrate that our approach outperforms the
state-of-the-art approaches by up to 28 times in terms of running
time, and by up to 8 times in terms of main memory usage. As a
by-product, we also improve the space complexity of computing
all k-ECCs for a specific k to 2m + O(n).

PVLDB Reference Format:

Lijun Chang and Zhiyi Wang. A Near-Optimal Approach to Edge
Connectivity-Based Hierarchical Graph Decomposition. PVLDB, 15(6):
1146 - 1158, 2022.

doi:10.14778/3514061.3514063

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://lijunchang.github.io/ECo-Decompose/.

1 INTRODUCTION

Graphs have been widely used to model the relationships among
entities in real-world applications — such as social networks, collab-
oration networks, communication networks, E-commerce networks,
web search, and biology — where entities are represented by vertices
and relationships are represented by edges. With the proliferation

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
do0i:10.14778/3514061.3514063

1146

Zhiyi Wang
The University of Sydney
zwan9517@uni.sydney.edu.au

i U1 |
* R — . 2-ECC
2 Us' Vg vy !
! — | 4-EC 3-ECC
h I { I
| ¢ § . 3
I
U3 4) wp g,
"7 4%BCC T3lpcc V1 U2 U3 U4 Us Vg U7 Us Vg

(a) A toy graph (b) ECo-decomposition

Figure 1: A toy graph and its ECo-decomposition

of graph data, one of the fundamental problems in graph analytics
is to compute the set of all maximal k-edge connected subgraphs,
called k-edge connected components and abbreviated as k-ECCs, for
a user-given k [4, 10, 35, 38]. A graph is k-edge connected, if it re-
mains connected after removing any set of k — 1 edges. For example,
for the graph in Figure 1(a), the subgraphs induced by vertices
{v1,...,05} and {vg, . ..,v9} are the two 3-ECCs, while the former
is also a 4-ECC. Computing k-ECCs has many applications, such
as discovering cohesive blocks (communities) in social networks
(e.g., Facebook) [34], identifying closely related entities for social
behavior mining [3], measuring robustness of communication net-
works [10], and matrix completability analysis [12].

Specifying the appropriate k value for an application is however
not trivial and usually requires a trial-and-error process. Moreover,
different applications may specify different k values. Thus, it is
essential to pre-compute a data structure, such that k-ECCs for any
given k can be efficiently retrieved from the data structure. It is
known that the k-ECCs for all possible values of k form a hierar-
chical structure [37], as the k-ECCs for a specific k are disjoint and
each k-ECC is entirely contained in a (k — 1)-ECC [7]. For example,
Figure 1(b) depicts the hierarchy tree 7 for the k-ECCs of the graph
G in Figure 1(a), where leaf nodes are vertices of G and non-leaf
nodes correspond to k-ECCs of G. With the constructed tree 7, the
set of k-ECCs for any k can be extracted from 7 in time linear to
the size of the k-ECCs. Thus, it becomes a problem of efficiently
constructing the hierarchy tree for k-ECCs of all possible k values.
We term the problem as Edge Connectivity-based hierarchical graph
decomposition, abbreviated as ECo-decomposition.

Besides inheriting all the above applications, computing ECo-
decomposition (i.e., the hierarchy tree) also has a wide range of
other applications as follows.

e Hierarchical Organization and Visualization of Graphs. ECo-
decomposition constructs a hierarchical organization of
a graph. It can facilitate graph-topology analysis [6], and
assist users to visualize a graph in a multi-granularity man-
ner [24], i.e, zoom in and zoom out based on the edge
connectivities of subgraphs.

o Graph Sparsification. ECo-decomposition efficiently com-
putes the steiner connectivity for all edges (see Section 4.1).

https://doi.org/10.14778/3514061.3514063
https://lijunchang.github.io/ECo-Decompose/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3514061.3514063
https://www.acm.org/publications/policies/artifact-review-and-badging-current

It is shown in [5, 17] that independently sampling edges ac-
cording to their steiner connectivities can sparsify a graph
(i.e., reduce the number of edges) while preserving the val-
ues of all cuts with a small multiplicative error.

Steiner Component Search. ECo-decomposition is also an
inherent preprocessing step towards efficient online steiner
component search [7, 21], which is the problem of comput-
ing the subgraph with the maximum edge connectivity for
a user-given set of query vertices [7].

The state-of-the-art approaches compute the ECo-decomposition
(i.e., construct the hierarchy tree 77) either in a top-down manner (7]
or a bottom-up manner [37]. The top-down approach ECo-TD con-
structs the hierarchy tree by computing k-ECCs of G for all possible
k values in increasing order [7], while the bottom-up approach
ECo-BU computes k-ECCs of G for all possible k values in decreas-
ing order [37]. Computation sharing techniques are exploited in
ECo-TD and ECo-BU based on the observation that the working
graph in an iteration for computing k-ECCs could be smaller than
the input graph G, e.g., the working graph in ECo-TD for computing
k-ECCs is not G but the set of (k — 1)-ECCs of G which are the re-
sults of the previous iteration [7]. Nevertheless, the worst-case time
complexities of ECo-TD and ECo-BU are still O (8(G) x Tkecc (G)),
where Tkecc (G) is the time complexity of computing all k-ECCs
of G for a specific k and §(G) is the degeneracy of G which is
equal to the maximum value among the minimum vertex degrees
of all subgraphs of G [23]. It is interesting to observe that this time
complexity is the same as the straightforward approach that inde-
pendently computes k-ECCs of G for all possible k values, as the
largest k will be no larger than §(G).

Our Near-Optimal Approach. In this paper, we separate the com-
putation into two parts: we first compute the steiner connectivity
for all edges of G, and then construct the hierarchy tree 7 based on
the computed steiner connectivities. The steiner connectivity of an
edge (u,v), denoted as sc(u, v), is the largest k such that a k-ECC
of G contains (u, v). We show in the paper that the hierarchy tree
of the ECo-decomposition can be constructed in O(m) time given
the steiner connectivities of all edges of G, where m is the number
of edges of G. As a result, the main problem of ECo-decomposition
is to efficiently compute the steiner connectivity for all edges of G.
We propose a divide-and-conquer approach ECo-DC to compute
the steiner connectivities of all edges. The general idea is that
given the set Ef of edges of G whose steiner connectivities are
in the range [L, H], i.e, E{I ={(u,v) € E(G) | L < sc(u,v) < H},
we compute the exact steiner connectivity for all edges of EILLI as
follows. If L = H, then sc(u, v) = L for every edge (u,v) € Ef and
the problem is solved. Otherwise, let M = [%], we divide the
problem into two sub-problems, E’ and E”’, to be solved recursively;
here, E’ = E]LVI_1 = {(u,v) € E(G) | L < sc(u,v) < M —1} and
E" = Eﬁ {(u,v) € E(G) | M < sc(u,v) < H}. The critical
procedure is to efficiently divide a search problem E{I into two: E’
and E”’. We prove that E’ is exactly the set of edges of Ef that are
not in M-ECCs of the subgraph of G induced by E? and all edges of
G whose steiner connectivities are larger than H, and E” = ELH \E'.
In addition, computation sharing techniques are exploited to bound
the time complexity of ECo-DC by O((log §(G)) X Tkecc(G)).

1147

ECo-DC is optimal up to a logarithmic factor in terms of time
complexity, since the time complexity of an ECo-decomposition
algorithm is clearly lower bounded by Txgcc (G). However, a naive
implementation of ECo-DC would result in a space complexity of
O((n + m) log §(G)) which is infeasible for large graphs. We first
show that the space complexity can be reduced to O (m+nlog §(G)).
Although this is much lower than the naive implementation, it is
still too high to be applied to billion-scale graphs due to running
out-of-memory, as the constant hidden by the big-O notation is
large. In view of this, we further propose techniques to reduce the
space complexity to 2m + O (nlog §(G)) by explicitly bounding the
constant on m by 2, while not increasing the time complexity; our
space-optimized approach is denoted as ECo-DC-AA.

Extensive empirical studies on large graphs demonstrate that our
approach ECo-DC-AA outperforms the state-of-the-art approaches
ECo-TD and ECo-BU by up to 28 times in terms of running time, and
by up to 8 times in terms of memory usage. Take the Twitter graph
that has 1.2 billion undirected edges as an example, ECo-DC-AA fin-
ishes in 78 minutes by consuming 15GB memory, while ECo-TD and
ECo-BU (as well as ECo-DC) run out-of-memory on a machine with
128GB memory; on the other hand, our space-optimized versions
of ECo-TD and ECo-BU finish in 13.9 and 36.8 hours, respectively.

Our main contributions are summarized as follows.

e We propose a near-optimal approach to ECo-decomposition,
which reduces the time complexity from O (§(G)xTkecc (G))
to O((log 8(G)) x Tkecc (G)).

e We propose techniques to reduce the space complexity of

our approach from O ((n+m) log §(G)) to 2m+O(nlog 5(G)),

such that billion-scale graphs can be processed in the main

memory of a commodity machine.

As a by-product, we significantly reduce the memory usage

of the state-of-the-art k-ECC computation algorithm pro-

posed in [10]. Moreover, our space optimization techniques
can be generally applied to other graph algorithms.

We conduct extensive empirical studies on large real and

synthetic graphs to evaluate the efficiency of our approaches.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 gives preliminaries of the studied problem, and Section 3
presents the existing algorithms. We propose a near-optimal ap-
proach in Section 4, and develop techniques to reduce the memory
usage of our algorithms in Section 5. Section 6 reports the results
of our experimental studies, and Section 7 provides an overview
of related works. Finally, Section 8 concludes the paper. Proofs are
omitted due to limit of space and can be found in the full version [1].

2 PRELIMINARIES

In this paper, we consider a large unweighted and undirected graph
G = (V,E), with vertex set V and edge set E. The number of vertices
and the number of undirected edges in G are denoted by n = [V| and
m = |E|, respectively. Given a vertex subset Vs C V, the subgraph
of G induced by vertices Vs is denoted by G[Vs] = (V, {(u,0) €
E | u,v € V5}). Given an edge subset Eg C E, the subgraph of G
induced by edges E;s is denoted by G[Es] = (U(y,0)eg, {10}, Es).
For an arbitrary graph g, we use V(g) and E(g) to, respectively,
denote its set of vertices and its set of edges.

Us

U6
U1 2
R = G = . v 3 Ug
P— g R : v 2-ECC (91 ® g2 D g3) vy 04 v vs
| U1 | 10y vg!
(Vg vy L L 92 3-ECC (g3) o
! ‘ i ! Vg
e
!) L vg__. V10 V11
! N vy 4 s 2 $1 V1o V11
D vs | v30 V11 Vg U7 Ug Vg VipV11 V12 V13 AL
NI N | y
7777777777 12 9 3 12 U13
\ 131 vy V2 U3 Uy Us V12 V13
isure 2: An example gra i i ; ; .. Figure 5: GS3(G) for
Figure 2: An example graph Figure 3: Hierarchy tree 7~ Figure 4: Steiner connectivi-]
ties the graph in Figure 2

A graph is k-edge connected if the remaining graph is still con-
nected after the removal of any k — 1 edges from it. Note that,
by definition, a graph with less than k edges (e.g., consisting of a
singleton vertex) is not considered to be k-edge connected. Then,
k-edge connected component is defined as follows.

Definition 2.1: (k-edge Connected Component [10]) Given
a graph G, a subgraph g of G is a k-edge connected component
(abbreviated as k-ECC) of G if (i) g is k-edge connected, and (ii) g
is maximal (i.e., any super-graph of g is not k-edge connected).

Consider the graph in Figure 2, the entire graph is a 2-ECC but
not a 3-ECC (since the graph will be disconnected after removing
edges (vs, v12) and (vg, v11)). The subgraph g is a 4-ECC, and g3 is
a 3-ECC. Note that g, although is 3-edge connected, is not a 3-ECC
since its super-graph g; @ g is also 3-edge connected (i.e., g2 is not
maximal). Here, g1 @ g2 denotes the union of g; and g2, which also
includes the cross edges between vertices of g1 and vertices of ga.

Hierarchy Tree of k-ECCs. It is shown in [7] that the k-ECCs of
a graph satisfy the following properties.

(1) Each k-ECC is a vertex-induced subgraph.
(2) Any two distinct k-ECCs for the same k value are disjoint.
(3) Eachk-ECCfork > 1isentirely containedina (k — 1)-ECC.

Thus, the k-ECCs of a graph G for all possible k values can be
compactly represented by a hierarchy tree 7, where leaf nodes of 7~
correspond to vertices of G and non-leaf nodes of 7~ correspond to
distinct k-ECCs of G. Note that, to distinguish vertices of 7~ from
that of G, we refer to vertices of 7~ as nodes. Figure 3 illustrates the
hierarchy tree for k-ECCs of the graph in Figure 2.

We call non-leaf nodes of 7 as ECC nodes, and each ECC node is
associated with a weight. An ECC node of weight k corresponds to
a k-ECC which is the subgraph of G induced by all leaf nodes in the
subtree of 7" rooted at the ECC node. For example, the left 3-ECC node
in Figure 3 corresponds to the 3-ECC g @ g3 in Figure 2, which is
the subgraph induced by vertices vy, . . ., v9. Note that, if a subgraph
g is both a k-ECC and a (k + 1)-ECC, it is only represented once in
the hierarchy tree by an ECC node of weight k + 1. For example, the
entire graph G is both a 2-ECC and a 1-ECC, and is represented by
the ECC node of weight 2. Thus, each non-leaf node will have at
least two children, and the size of the hierarchy tree T is linear to n.

It is worth pointing out that for any given k, the set of all k-ECCs
of G can be efficiently obtained from the hierarchy tree 7 in time
linear to the size of the k-ECCs.

Problem Statement. Given a large graph G, we study the problem
of efficiently constructing the hierarchy tree for the set of all k-ECCs

1148

of G. We term this problem as Edge Connectivity-based hierarchical
graph decomposition, and abbreviate it as ECo-decomposition.

In this paper, we will consider the algorithm for computing
all k-ECCs of g for a given k as a black-box, denoted KECC(g, k).
While any of the algorithms in [4, 10, 38] can be used to implement
KECC(g, k), we implement the state-of-the-art algorithm in [10] in
our experiments, and use Txgcc (G) to denote the time complexity
of KECC(g, k) when G is taken as the input graph.

3 EXISTING SOLUTIONS

In this section, we briefly review the two state-of-the-art approaches,
and discuss their time complexities. The existing approaches com-
pute the ECo-decomposition (i.e., the hierarchy tree) either in a
top-down manner [7] or in a bottom-up manner [37].

A Top-Down Approach: ECo-TD. The top-down approach con-
structs the hierarchy tree in a top-down manner, which is achieved
by explicitly computing k-ECCs of G for all k values in increasing
order [7]. The pseudocode is shown in Algorithm 1, denoted by
ECo-TD. Initially, the root ECC node r of weight 1, which corre-
sponds to the entire input graph G, is created for 7~ (Line 1); note
that, without loss of generality here G is assumed to be connected.
Then, it recursively adds the set of children to each ECC node in a
top-down fashion by invoking Construct-TD (Line 2).

Algorithm 1: ECo-TD(G)

1 Create the root ECC node r of 7~ with weight 1;
2 Construct-TD(r, 1,G);
3 return 7

Procedure Construct-TD(ecc, k, g)
4 ¢Prs1(g9) « KECC(g, k +1);
5 if Pr41(g) is the same as g (ie., g € Pr41(g)) then
6 Change the weight of ecc to k + 1;

7L Construct-TD(ecc, k + 1,9);

s else
9 for each vertex v of g that is not in subgraphs of ¢.41(g) do

10 L Create a leaf node for v to be a child of ecc in T

for each connected subgraph g’ € ¢r11(g) do
Create an ECC node ecc’ of weight k + 1 to be a child of
eccin T;
Construct-TD(ecc’, k + 1,¢4’);

11
12

13

Given an ECC node ecc of weight k whose corresponding graph
is g (i.e., g is a k-ECC of G), Construct-TD constructs the set of

Algorithm 2: ECo-BU(G)

1 Create one leaf node in 7 for each vertex of G;

2 Compute an upper bound kmax (G) of the largest k such that G has
a non-empty k-ECC;

3 for k « kmax (G) down to 1 do

$x(G) — KECC(G, k);

for each connected subgraph g € ¢ (G) do
Create an ECC node ecc in 7 with weight k;
Add the set of nodes of 7 that correspond to vertices of g

4

5
6

7
to be the children of ecc;
Contract g into a single super-vertex in G, to which ecc

corresponds;

9 return 7;

children of ecc. To do so, it first computes the set of (k + 1)-ECCs
of g (Line 4), denoted ¢y41(g). If Pr41(g) is the same as g which
means that g itselfis (k+1)-edge connected (Line 5), then the weight
of ecc is increased to k + 1 (Line 6) and the recursion continues for
g (Line 7). Otherwise, the set of children of ecc is added as follows:
(i) a leaf node is added for each vertex of g that is not in ¢z,;(g)
(Lines 9-10); (ii) an ECC node is added for each connected subgraph
g’ of $p11(g) (Lines 11-12). The recursion continues for each newly
added ECC node (Line 13).

A Bottom-Up Approach: ECo-BU. The bottom-up approach con-
structs the hierarchy tree in a bottom-up fashion, which is achieved
by computing k-ECCs of G for all k values in decreasing order [37].
The pseudocode is shown in Algorithm 2, denoted ECo-BU.

Time Complexities. We first prove the following lemma.

Lemma 3.1: Let kmax(G) be the largest k such that G contains a
non-empty k-ECC, and 6(G) be the degeneracy of G which is equal
to the maximum value among the minimum vertex degrees of all

subgraphs of G [23]. Then, we have kmax(G) < 6(G).

We actually observe that kmax(G) = §(G) for all real and syn-
thetic graphs tested in our experiments. Thus, the largest k that is
input to Construct-TD of Algorithm 1 is §(G), and the time com-
plexity of ECo-TD is O(8(G) X Tkecc (G)).1 Note that, the time
complexity analysis of ECo-TD is tight: for example, consider an
input graph G that itself is §(G)-edge connected.

Following Lemma 3.1, the upper bound kmax (G) can be set as
d(G) at Line 2 of Algorithm 2. Thus, the time complexity of ECo-BU
is O(8(G)XTkecc (G)), 2 as the degeneracy of G can be computed in
O(m) time [23]. Note that, the time complexity analysis of ECo-BU
is also tight: for example, consider a graph that has no k-ECCs other
than a §(G)-ECC and G itself which is 2-edge connected.

The degeneracy §(G), although can be bounded by O(+/m) in
the worst case [31], may still be large, especially for large graphs.
For example, §(G) is more than 2, 000 for the largest graphs tested
in our experiments (see Table 1 in Section 6). As a result, ECo-BU

! Although the time complexity of ECo-TD is analyzed to be O(a(G) X Tkecc (G))
in [7] where a(G) is the arboricity of G, this is the same as O(&(G) X Tkecc (G))
since 2(G) < 8(G) < 2a(G) —1[31].

21t is worth pointing out that the original algorithm in [37] is designed for [/O-efficient
settings, and its time complexity cannot be bounded by O(8(G) X Tkecc (G)) as the

upper bound kmax (G) is set as the maximum degree of G in [37].

1149

and ECo-TD are taking excessively long time for processing large
graphs due to their high time complexity of O(6(G) x Tecc(G)),
not to mention their high space complexity (see Section 5).

Handling Dynamic Graphs. Techniques for handling dynamic
graphs have also been proposed in [7]. The general idea is based on
the fact that deleting an edge from a graph or inserting a new edge
into a graph will change the edge connectivity of the graph by at
most 1, and moreover most of the k-ECCs will remain unchanged.
These techniques can be directly adopted to maintain the hierar-
chy tree for dynamic graphs. We omit the details, as we focus on
speeding up the construction of the hierarchy tree in this paper.

4 A NEAR-OPTIMAL APPROACH

In this section, we propose an approach for ECo-decomposition that
runs in O((log 8(G)) X Tkecc (G)) time. To achieve this, we will
need to avoid the explicit computation and enumeration of k-ECCs
for all possible k values which would take O(8(G) X Txecc(G))
time. Instead, we use a two-step paradigm, which first computes
the steiner connectivity for all edges of G and then constructs the
hierarchy tree based on the steiner connectivities, as follows.

1 Step-I: Compute the steiner connectivity for all edges of G;
2 Step-II: Construct the hierarchy tree based on the computed steiner
connectivities;

In the following, we first in Section 4.1 propose an algorithm to
compute the steiner connectivities of all edges in O((log §(G)) X
Tkecc(G)) time, and then in Section 4.2 present an algorithm to
construct the hierarchy tree in O(m) time based on the computed
steiner connectivities.

4.1 Computing Steiner Connectivities

Definition 4.1: (Steiner Connectivity [7]) Given a graph G, the
steiner connectivity of an edge (u, v), denoted sc(u, v), is the largest
k such that a k-ECC of G contains both u and v.

For example, in Figure 4, the steiner connectivity of each edge is
computed as shown on the edge, e.g., sc(v1,v4) = 4. Given a graph
G, let ¢4 (G) be the set of k-ECCs of G, then all edges of ¢ (G)
have steiner connectivity at least k and all edges of G that are not
in ¢ (G) have steiner connectivity smaller than k. In this subsec-
tion, we propose a divide-and-conquer approach for computing the
steiner connectivities of all edges in a graph. Note that, although
the concept of steiner connectivity is borrowed from [7], all our
techniques in the following are new.

A Graph Shrink Operator GS]IZ (+). We first introduce a graph
shrink operator GSZ? (+) for k1 < ky. Given a graph G, the result of

GS’,Z (G) is still a graph. It is obtained from G by (1) removing all
vertices and edges that are not in k1-ECCs of G and (2) contracting
each (kz + 1)-ECC of G into a super-vertex. Note that, the resulting
graph of GS:T (-) may have parallel edges. For example, GS% (G) for
the graph G in Figure 2 is shown in Figure 5 which is obtained
by (1) removing edges (vs5,v12) and (v9,v11), and (2) contracting

subgraph g; into a super-vertex s;. There are two parallel edges
between s; and v7 in Figure 5.

The graph shrink operator GSI;2 () has several properties which
1
will be useful for computing steiner connectivities. Firstly, applying
the operator GSi2 () preserves the steiner connectivity for all edges
1
in the resulting graph.

Property 1: Given a graph G and two integers k1 < ky, the steiner
connectivity of each edge ofGS/Iz2 (G) when computed in GS’,EZ (G) is
1 1
the same as that computed in G.
Secondly, the steiner connectivity for all edges of GS]]:(G) is k.
For example, all edges in Figure 5 have steiner connectivity 3.

Property 2: Given a graph G and an integer k, every edge ofGSI]z(G)
has steiner connectivity k.

Thirdly, multiple operations of GS]]: () can be chained together.

Property 3: Given a graph G and four integers ky < ky and kz < ky4
such that max{ki, k3} < min{ko, k4}, we have GSZ;‘(GSQ? (G) =
stk o)

Our Divide-and-Conquer Approach: ECo-DC. From Property 2,
we know that the steiner connectivities of all edges of GS’IE(G)
are k. Moreover, from the definitions of steiner connectivity and
the graph shrink operator, we know that all edges whose steiner
connectivities are k will be in GS]]:(G). Thus, to compute steiner
connectivities of all edges of G, it suffices to compute GSﬁ(G) for
k € [1,5(G)]. Instead of naively computing GSI;(G) independently
for each k € [1,5(G)] which would take O(5(G) x Tkecc (G)) time,
we propose a divide-and-conquer approach based on the fact that
GSi(G) is entirely contained in GSE ifk; <k < k.

Algorithm 3: ECo-DC(G)
Compute the degeneracy §(G) of G;
2 Compute-DC(G,1,5(G));

3 ConstructHierarchy (G, sc(+,-));

4 return 7;

-

/* See Algorithm 4 =%/,

Procedure Compute-DC(g, L, H)

5 if L = H then

6 L for each edge (u,v) € E(g) do sc(u,v) « L;

7 else

8 Choose an integer M such that L < M < H;

9 ¢m(g) «— KECC(g,M); /* Compute M-ECCs of g */;
10 Let g; be the graph obtained from g by contracting each
connected subgraph of ¢a1(g) into a super-vertex, and gz be
Pm(9): /% g1 =651 (G), g2 =GSJ(G) */;

11 Compute-DC(g1, L, M — 1);
1z | Compute-DC (g2, M, H);

The pseudocode of our approach is shown in Algorithm 3, de-
noted ECo-DC. It first computes the degeneracy §(G) of G (Line 1),
and then invokes procedure Compute-DC with input (G, 1, §(G))
to compute the steiner connectivities of all edges (Line 2), while

1150

Line 3 constructs the hierarchy tree and will be discussed in Sec-
tion 4.2. The input to Compute-DC consists of a graph g and an
interval [L, H]. If L = H, then the steiner connectivities of all edges
of g are set as L (Lines 5-6). Otherwise, an integer M is chosen such
that L < M < H (Line 8), then the set ¢p;(g) of M-ECCs of g is
computed (Line 9) and two graphs g; and g, are obtained from g
based on ¢ps(g) (Line 10), and finally the algorithm continues on
g1 (Line 11) and on g3 (Line 12).

We prove by the following lemma that when initially invoking
Compute-DC with graph G and interval [1,5(G)], the graph g
being processed for each recursion with interval [L, H] is GSf(G).

Lemma 4.1: For Compute-DC, if the input graph g is GS{I(G), then
the two graphs g1 and g, obtained at Line 10 are exactly GSQ/I’1 (G)
and GS?A(G), respectively.

G =6s)'9G)

\

st H(@) i (e)

Figure 6: Recursion tree

Based on Lemma 4.1, the recursion tree of invoking Compute-DC
with input (G, 1, §(G)) is as shown in Figure 6.

The correctness and time complexity of Algorithm 3 are proved
by the two theorems below.

Theorem 4.1: Algorithm 3 correctly computes the steiner connectivity
for all edges of G.

Theorem 4.2: The time complexity of Algorithm 3is O (hXTkecc (G)),
where h is the height of the recursion tree in Figure 6.

Near-Optimal Time Complexity. Algorithm 3 correctly com-
putes the steiner connectivities of all edges regardless of the choice
of M at Line 8, as long as L < M < H. Yet, the time complexity of
Algorithm 3 would vary for different choices of M. For example, if
M is always set as L + 1 or always set as H, then the height of the
recursion tree would be §(G) and thus the time complexity of Algo-
rithm 3 would be O(5(G) X Tgecc (G)) on the basis of Theorem 4.2.
To make the time complexity as low as possible, we will need to
reduce the height of the recursion tree. Thus, we propose to set M as
{%I] and prove in the following theorem that the time complexity
of Algorithm 3 then becomes O((log §(G)) X Tkecc (G)).

Theorem 4.3: By setting M = {#I] the time complexity of Algo-
rithm 3 is O((log 8(G)) X Tkecc (G))

Following the above theorem, we set M = {#I] in Algorithm 3.
The time complexity of ECo-DC, which is O ((log §(G))XTkecc (G)),
is optimal up to a logarithmic factor log §(G). This is because
the time complexity of ECo-decomposition cannot be lower than
Tkecc (G), as ECo-decomposition also implicitly computes the k-ECCs
of G; specifically, the k-ECCs of G can be obtained from the hierar-
chy tree in time linear to the sizes of the k-ECCs.

Figure 7: Running example of ECo-DC

Example 4.1: Here, we apply ECo-DC on the graph G in Figure 2
as an example. Figure 7 indicates the whole running process of
ECo-DC on G, where the top-most part is G itself. The degeneracy
is 8(G) = 4. Then, we compute the steiner connectivities of all edges
of G by invoking Compute-DC with input G and [L, H] = [1,4].
Here, GS;‘(G) is the same as G. As L # H and {#] = 3, we
compute the 3-ECCs of G and obtain the subgraphs induced by
S1 ={v1,02,...,09} and Sy = {v10, .. .,v13}, respectively. Thus, we
obtain the two graphs GS%(G) and GS;‘(G) as shown in the middle
layer of Figure 7. The computation continues on these two graphs
with intervals [1, 2] and [3, 4], respectively.

The graph GS;‘(G) is composed of the two 3-ECCs of G as shown
in right part of the middle layer of Figure 7. We compute the
4-ECCs of GS;‘(G), and obtain the subgraph induced by vertices
{v1,02,...,05}. Thus, all edges among vertices {v1, vz, ..., 05} have
steiner connectivities 4 as indicated in GSi(G), while the other
edges have steiner connectivities 3 as demonstrated in GS% (G).

The graph GS%(G) is obtained by contracting each of S and S
into a super-vertex as shown in the left part of the middle layer of
Figure 7. In GS%(G), there are two parallel edges between s; and
sz, corresponding to edges (v9, v11) and (vs, v12), respectively. As
GS%(G) is 2-edge connected, the steiner-connectivities of (v9, v11)
and (vs, v12) are 2. O

1151

4.2 Constructing the Hierarchy Tree

Given the steiner connectivities of all edges of a graph G, Algo-
rithm 4 constructs the hierarchy tree of ECo-decomposition of G
in a bottom-up manner. The main idea is as follows. First, the hier-
archy tree 7 is initialized as a forest of singleton nodes. Then, for
each edge (u,v) € E(G) in non-increasing order regarding sc(-, -),
we identify the tree in 7~ (specifically, the root r, of the tree) con-
taining u and the tree (specifically, the root r, of the tree) containing
v.If u and v are already in the same tree (i.e., r;, = ry), then we do
nothing. Otherwise, we merge the two trees into one in 7, with
the root of this newly formed tree having weight sc(u, v).

Algorithm 4: ConstructHierarchy

Input: A graph G with sc(u, v) for each edge (u, v)
Output: The hierarchy tree of ECo-decomposition of G

1 Initialize an empty hierarchy tree 7;

2 for each vertex u € V(G) do Insert a singleton node u into 7;

3 for each edge (u,v) € E(G) in non-increasing sc(u, v) order do

Let ry, (resp ry) be the root of the tree in 7~ containing u (resp
v);

if r,, = r, then continue;

4

else if both r, and ry are ECC nodes with weight sc(u, v) then
L Merge ry, and r,, into a single ECC node;

else if none of ry, orry is an ECC node with weight sc(u, v) then
L Create a new ECC node in 7~ with weight sc(u, v), and add

else

L

The pseudocode of constructing the hierarchy tree is illustrated
in Algorithm 4, denoted by ConstructHierarchy. The input of the
algorithm is a graph G with sc(u,v) precomputed for each edge
(u, v). It first initializes an empty hierarchy tree (Line 1), and creates
a single-node tree in 7~ for each vertex of G (Line 2). Then, the trees
in 7 will be merged with each other to form ECC nodes in the
hierarchy tree. For each edge (u,0) € E(G) sorted by sc(u,v) in
non-increasing order (Line 3), the roots of the trees in 7~ containing
node u and node v are found, represented by r,, and r, respectively
(Line 4). If ry; = ry, it implies that vertices u and v have already been
merged into the same tree so that the algorithm skips the current
edge (Line 5); otherwise, the algorithm merges r,, and r, into a
single tree based on the following three cases. (1) If both r;, and r,
are ECC nodes with weight sc(u, v), it merges r, and r,, into a single
ECC node (Lines 6-7). (2) If neither ry, nor r, is an ECC node with
weight sc(u, v), it creates a new ECC node in 7~ with weight sc(u, v)
whose children are r, and r, (Lines 8-9). (3) The last situation is
that one of r, or ry is an ECC node with weight sc(u,v) and the
other is not; note that, if the other one is an ECC node, then its
weight must be larger than sc(u, v). Assume that ry, is the one with
weight sc(u,v), r, would be added as a child of r,. Similar steps
would be applied to the situation where ry, is the one with weight
sc(u,v) (Lines 10-11).

The most time-consuming operation in Algorithm 4 is Line 4,
which aims to find the root of the tree that contains a node u

ry and ry, as its children;

10
11 Without loss of generality, assume ry, is an ECC node with

weight sc(u, v), and add r, as a child of r, in T

in a forest 7. A naive implementation of this operation would
take O(n) time by tracing the parent pointers starting from node
u in the tree, and then the total time complexity of Algorithm 4
would be O(n x m). This can be improved to O(m) by resorting
to the disjoint-set data structure. Recall that, a disjoint-set data
structure D partitions a universe of elements into a collection
of sets, and each set is represented by one of its element (called
representative) [15]. There are two operations supported by the data
structure D: find the set that contains a specific element; merge two
sets into one. In our case, the universe of the data structure O is the
set of leaf nodes of the hierarchy tree 77, and there is a one-to-one
correspondence between sets in D and trees in 7. Whenever we
merge two trees in 77, we also union the two corresponding sets
in D. Moreover, we point each set (specifically, the representative
element of the set) of D to the root of the tree in 7 to which the
set corresponds. This pointer is used for efficiently identifying the
root of the tree that contains a node (i.e., Line 4). As each of the two
operations on 9 takes amortized constant time [15] 3 and sorting
the edges at Line 3 can be achieved in linear time by counting
sort [15], the time complexity of Algorithm 4 is O(m).

5 OPTIMIZING THE SPACE USAGE

A straightforward implementation of Algorithm 3 would result in
a space complexity of O((m + n) log 6(G)), i.e., each level of the
recursion tree of Figure 6 would require storing a separate copy
of the input graph G. This space complexity is too high for large
graphs. In this section, we focus on optimizing the space usage of
ECo-DC. We first in Section 5.1 discuss how to implement ECo-DC
in O(m+nlog §(G)) space by using doubly-linked list-based graph
representation, where the constant hidden by the big-O notation is
large. Then, in Section 5.2 we further optimize the space usage of
ECo-DC by using adjacency array-based graph representation and
other nontrivial optimizations; this results in our space-efficient al-
gorithm ECo-DC-AA that has space complexity 2m+O(nlog §(G)).
As a result, we can process billion-scale graphs with an ordinary
PC. For example, experiments in Section 6 show that our adjacency
array-based algorithms can process twitter-2010 and com-friendster,
which have 1.2 and 1.8 billion undirected edges, respectively, with
at most 15GB and 24GB main memory. In contrast, the linked list-
based algorithms run out-of-memory even with 128GB memory.

5.1 Doubly-Linked List-based Implementation

In this subsection, we discuss how to implement ECo-DC by using
doubly-linked list-based graph representation, which is also the
representation used by the state-of-the-art KECC algorithm [10]
and the two state-of-the-art ECo-decomposition algorithms [7, 37].
The main reason for the existing approaches to choose this repre-
sentation is that KECC iteratively modifies the graph — i.e., contract
two (super-)vertices into one and remove (super-)vertices of degree
less than k [10] — which can be easily implemented by using the
linked list-based graph representation. We abstract these two graph
modification operations as vertex contraction and vertex removal,

3To be more precise, the amortized time complexity of each operation on D is the
inverse of the Ackermann function of n [15]. As this function grows very slowly and
is bounded by 4 for all practical values of n, we consider it as a constant.

1152

respectively. Note that ECo-TD also uses the vertex removal opera-
tion (see Lines 11-13 of Algorithm 1), and ECo-BU uses the vertex
contraction operation (see Line 8 of Algorithm 2).

Figure 8: Doubly-linked list-based graph representation

Recall that, the linked list-based graph representation stores the
adjacent edges of each vertex in a linked list [15]. For example,
Figure 8 illustrates the linked lists for the adjacent edges of v; and
v;. In addition, a cross pointer is constructed in the implementation
for each edge (v;,vj) which points to its reverse direction (v}, ;),
as each undirected edge will have two copies in the representation,
one copy for each direction. Vertex removal can be implemented
efficiently as follows. Suppose we are removing vertex v; from the
graph; note that we also need to remove all edges ending at v; which
scatter across the linked lists. To achieve this, we iterate through all
the adjacent edges of v;, and for each edge (v;, v;), we first locate its
reverse edge (vj,v;) via the cross pointer and then remove (v}, v;)
from the doubly-linked list of v; which can be achieved in constant
time. When it comes to vertex contraction, the process becomes
slightly more complicated. Suppose we are contracting v; and v;.
We use one of the vertices (e.g., v;) to represent the resulting super-
vertex, and the process is divided into two parts: the edges starting
from v should start from v;; the edges end at v; ought to end at v;.
For the first part, we could simply connect the head of the linked list
of v to the tail of the linked list of ;. For the second part, we iterate
through all the adjacent edges of v}, and for each edge (v}, vy), we
first locate its reverse edge (v, v;) via the cross pointer and then
update the edge to be (v, v;).

Based on the linked list-based graph representation, ECo-DC
(i.e, Algorithm 3) can be implemented fairly easily. Specifically,
to construct g; = GSQ/I’1 (9) and g2 = Gsﬁ(g) = dpm(g) from
g= GS{I(G) at Line 10 of Compute-DC, we first split each linked
list (that corresponds to the adjacent edges of a vertex) into two,
one to be used in g; and the other in g, as g; and g2 have disjoint
sets of edges. We then apply the contraction operation for the edges
in g1. In this way, we do not create any new edges in Compute-DC;
note however that, the number of vertices may double (i.e., one
copy in g1 and one in g3). Overall, ECo-DC has a space complexity
of O(m + nlog §(G)), by noting that it traverses the recursion tree
of Figure 6 in a depth-first manner.

5.2 Adjacency Array-based Implementations

Although the space complexity of ECo-DC has been reduced from
O((m + n)log§(G)) to O(m + nlog §(G)) in Section 5.1, this is
still too high to be applied to large graphs (see our experimental
results in Section 6) as the constant hidden by the big-O notation
is large. Firstly, for each edge in the linked lists, three pointers and
one number (where the number indicates the other end-point of
the edge) need to be stored. Thus, the graph representation will
consume at least 8m integers, by noting that each undirected edge

is stored twice. Secondly, the graph may be stored three times
(i.e., simultaneously have three copies in main memory) during
the computation, i.e., once in Compute-DC and twice in KECC
as KECC will modify the graph that is input to it [10]. In this
subsection, we propose an adjacency array-based implementation
to explicitly bound the constant on m by 2 such that the space
complexity becomes 2m+ O (nlog §(G)), and at the same time keep
the time complexity unchanged which is challenging. Note that, we
do not optimize the constant on nlog §(G), as real-world graphs
usually have much more edges than vertices, i.e., m usually is the
dominating factor.

U7 Us Uy

Us
Figure 9: Adjacency array-based graph representation

The adjacency array-based graph representation is also known as
the compressed sparse row (CSR) representation. It uses two arrays
to represent a graph, and assumes that the vertices are taking ids
from {0, ...,n — 1}. We denote the two arrays by pstart and edges.
The set of adjacent edges (specifically, neighbours) of each vertex
is stored consecutively in an array, and then all such arrays are
concatenated into the large array edges. The start position of the
set of adjacent edges of vertex i in edges is stored in pstart[i], and
thus the set of adjacent edges of vertex i is stored consecutively
in the subarray edges[pstart[i],..., pstart[i + 1] — 1]. Figure 9
demonstrates such a representation for the subgraph g, of Figure 2;
please ignore the part of “pend” for the current being. The array
pstart is of size n + 1, while the array edges is of size 2m.

Efficient Implementation of Vertex Removal and Contraction.
To achieve the space complexity of 2m+ O (nlog §(G)), we will not
be allowed to create any new copies of edges, even if temporarily.
This makes it challenging to efficiently implement vertex removal
and vertex contraction which are the two primitive operations used
by the algorithms. In the following, we discuss how to implement
these two operations efficiently with the help of some additional
data structures of size O(n).

Vg U7 Ug g

pstart

0 |3 |6| 9| u‘

Us
Figure 10: After removing vertex v;

Vertex removal in the adjacency array-based graph represen-
tation can be implemented by marking the vertex as “removed”.
Recall that, when vertex i is “removed”, the edge (j, i) that ends
at i should also be removed from the adjacent edges of j for each
neighbor j of i. This cannot be implemented efficiently without

1153

cross pointers, but storing cross pointers is not affordable for achiev-
ing the space complexity of 2m + O(nlog 6(G)). To circumvent this,
we propose to remove (j, i) from the adjacent edges of j in a lazy
way, ie., delay it to the moment when we actually need to traverse
all adjacent edges of j. Thus, we introduce another array, named
pend, of size n, where the entry pend|j] explicitly stores the last
position of the adjacent edges of vertex j in edges and is initialized
with pstart[j + 1] — 1; see Figure 9. When we need to traverse all
the adjacent edges of j, we loop through all the index values idx
from pstart[j] to pend|j]: if the edge edges[idx] should have been
removed (i.e., the other end-point of this edge is “removed”), we first
swap edges|idx]| with edges[pend[j]] and then decrement pend| j]
by one. In this way, all the remaining (i.e., active) adjacent edges
of vertex j would be consecutive in edges starting from position
pstart[j] and ending at pend|j], while the edges in edges whose
indices are between pend|[j] + 1 and pstart[j+1] — 1 are “removed”.
Thus, the amortized time of removing an edge is constant. For ex-
ample, the result of removing vertex vy from the graph of Figure 9
is shown in Figure 10; here, for illustration purpose, we assume that
the graph has been traversed once such that edges is reorganized.

When contracting vertex i and vertex j, following the same
ideas as Section 5.1 we also use v; to represent the resulting super-
vertex and divide the process into two parts: the edges starting
from v; should start from v;; the edges ending at v; ought to end
at v;. For the first part, instead of moving adjacent edges around
which would create temporary copies of edges and furthermore
increase the time complexity, we use two additional arrays, su_next
and sv_last, each of size n to represent the super-vertices. That
is, sv_next chains together all vertices that belong to the same
super-vertex, implicitly represented as a singly-linked list; specif-
ically, su_next[i] stores the id of the next vertex (i.e., after i) in
the super-vertex. To efficiently merge two super-vertices (that are
represented as singly-linked lists), we also store in sv_last[i] the
id of the last vertex in the super-vertex i. For example, Figure 11(a)
shows the values of sv_next and sv_last for the graph of Figure 9;
note that, the part in the dotted rectangle illustrates the linked
lists that represent the super-vertices, and is not physically stored.
When contracting (super-)vertex i with (super-)vertex j, we first
update sv_next[sv_last[i]] to j to connect the two linked lists into
one, and then update sv_last[i] to sv_last[j]; this can be conducted
in constant time. Note that, sv_last[i] is only useful and up-to-date
if i is the first vertex in a linked list, i.e., su_last[-] for all other
vertices are not updated and will not be used. Figure 11(b) shows
the result of contracting vs and vg; notice that v and vg are now
linked together. To iterate over all edges adjacent to (super-)vertex
i, we use a pointer p which is initialized as i and is then iteratively
updated by su_next[p] until reaching the end of the linked list.
These p values correspond to ids of the vertices that are contracted
into (super-)vertex i. Thus, the edges adjacent to (super-)vertex i are
edges|pstart[p],..., pend[p]] for all p values along the iterations.

For the second part of vertex contraction (i.e., edges ending at v;
ought to end at v;), explicitly modifying the edge end-points without
maintaining cross pointers would be time consuming. To tackle this
issue, we propose to use an additional disjoint-set data structure of
size O(n) to represent the super-vertices. The universe of the data
structure is the vertex set V, and each super-vertex corresponds to a
set in the data structure that consists of the vertices contained in the

svnext] vg | vr | vs | vg

svmnext] vg | vr | vs | vg

sv_last| vs | vr | vs | vg

Disjoint Set @

(b) After contraction

sv last| vg | vr | vs | vg

Disjoint Set@

(a) Before contraction

Figure 11: Example of contracting v and vg

super-vertex. When we contract two super-vertices, we also union
their corresponding sets in the data structure. In addition, we point
the representative of a set in the data structure to the vertex that
represents the corresponding super-vertex, in the same way as that
in constructing the hierarchy tree in Section 4.2. The last row of
Figure 11 illustrates the disjoint sets, where the representative of a
set is shown in bold, e.g., vs and vg are in the same set in Figure 11(b)
with vg being the representative.

Our Space-Optimized Algorithms. With the ideas presented
above, we first optimize the space usage of KECC by using the
adjacency array-based graph representation, as it is an essential
procedure used in ECo-DC. We denote our space-optimized ver-
sion of KECC as KECC-AA. Note that, with the above implementa-
tions of vertex removal and vertex contraction, the input graph to
KECC-AA is always represented by pstart and edge which are not
changed, although the order of the adjacent edges for each vertex
may change. Thus, we do not need to store another copy of the
input graph, and the space complexity of KECC-AA is 2m + O(n).

With KECC-AA, we are now ready to present our space-optimized
version of ECo-DC. It is worth pointing out that directly replacing
KECC with KECC-AA in Algorithm 3 will not achieve our desired
space complexity. The main idea is still based on the fact that g; and
g2 in Algorithm 3 have disjoint sets of edges. But now, we cannot
afford to first construct g; and g2 from g, and then release the mem-
ory of g, as this will double the intermediate memory consumption.
To tackle this issue, we always expand the right child of a node
in the recursion tree (see Figure 6) before expanding the left child.
This is based on the observation that, for a non-leaf node in the
recursion tree, the graph processed by its right child is always a
subgraph of the current graph while the graph processed by the left
child is obtained by contracting each connected component (of the
graph of the right child) into a super-vertex in the current graph.
Thus, to process the right child, we can directly work on pstart and
edges by rearranging the adjacent edges of each vertex and using a
local array of size n to bookmark the number of adjacent edges of
each vertex in the subgraph. After expanding the right child (and
its descendants) and to process the left child, we further create a
local copy of sv_next, sv_last and the disjoint-set data structure,
which are all of size O(n), to implement the contraction operation.

The pseudocode of the adjacency array-based implementation
of ECo-DC is illustrated in Algorithm 5, denoted by ECo-DC-AA.
It is generally similar to Algorithm 3, with three differences. Firstly,
it invokes KECC-AA instead of KECC at Line 10. Secondly, it ex-
pands the right child first (Lines 11-13). Thirdly, it interleaves the
execution of Algorithm 4 with Construct-DC-AA (Lines 2, 3, 7).

1154

Algorithm 5: ECo-DC-AA(G)

1 Compute the degeneracy §(G) of G;
2 Execute Lines 1-2 of Algorithm 4;

3 Construct-DC-AA(G, 1,5(G));

4 return 7

Procedure Construct-DC-AA(g, L, H)
5 if L = H then
6 for each edge (u,v) € E(g) do
7 L Execute Lines 4-11 of Algorithm 4 with sc(u, v) equal to L;

s else

o | MR

10 dm(g) — KECC-AA(g, M);

1 for each connected subgraph g’ € ¢pr(g) do
12 L Construct-DC-AA(g’, M, H);

13 Contract ¢’ into a super-vertex in g;

4 | Construct-DC-AA(g, L,M — 1);

The reason of interleaving is that explicitly storing the steiner con-
nectivities of all edges would increase the space consumption by
at least 2m + O(n), and interleaving eliminates the requirement
of storing the steiner connectivities. This interleaving is correct
because the right child is always expanded before the left child
for each node in the recursion tree (Figure 6), and thus the steiner
connectivities are computed in non-increasing order. Note that, we
also exploit this interleaving to reduce the memory consumption for
ECo-DC, ECo-TD and ECo-BU in our experiments.

The correctness of ECo-DC-AA directly follows from the cor-
rectness of ECo-DC and the discussions in the above two para-
graphs, and the time complexity of ECo-DC-AA remains the same
as ECo-DC since our adjacency array-based implementation does
not increase the time complexity of vertex removal and contraction.
The space complexity of ECo-DC-AA becomes 2m + O (nlog 5(G)),
as it conducts a depth-first traversal of the recursion tree (Figure 6)
and each level of the recursion tree only requires a local data struc-
ture of size O(n).

With the same idea as ECo-DC-AA, we can also implement
ECo-TD and ECo-BU by using the adjacency array-based graph
representation such that their space complexities become 2m+0(n)
while their time complexities remain unchanged. We denote our
space-optimized versions of ECo-TD and ECo-BU by ECo-TD-AA
and ECo-BU-AA, respectively.

6 EXPERIMENTS

In this section, we conduct extensive performance studies to evalu-
ate the efficiency and effectiveness of our techniques. Specifically,
we evaluate the following ECo-decomposition algorithms:

e ECo-TD (Algorithm 1): the existing top-down approach
proposed in [7] that uses the doubly-linked list-based graph
representation.

e ECo-BU (Algorithm 2): an adaptation of the existing bottom-
up approach proposed in [37] that uses the doubly-linked
list-based graph representation.

e ECo-DC (Algorithm 3): our near-optimal approach (Algo-
rithm 3) that uses the doubly-linked list-based graph repre-
sentation and has a space complexity of O(m + nlog §(G)).

Table 1: Statistics of graphs (d: average degree, 6: degeneracy)

D Dataset m n d S
D1 ca-CondMat 91,286 21,363 8.55 25
D2 soc-Epinions1 405,739 75,877 10.69 67
D3 Web—Google 3,074,322 665,957 9.23 44

D4 as-Skitter 11,094,209 1,694,616 13.09 111
D5 cit-Patents 16,518,947 3,774,768 8.75 64
D6 soc-pokec 22,301,964 1,632,803 27.32 47
D7 wiki-topcats 25,444,207 1,791,489 28.41 99
D8 com-lj 34,681,189 3,997,962 17.35 360
D9 soc-LiveJournall 42,845,684 4,843,953 17.69 372
D10 com-orkut 117,185,083 3,072,441 76.28 253
D11 uk-2002 261,556,721 18,459,128 2834 943
D12 webbase 854,809,761 115,554,441 14.79 1,506

D13 twitter-2010
D14 com-friendster

1,202,513,344
1,806,067,135

41,652,230 57.74 2,488
65,608,366 55.06 304

e ECo-TD-AA, ECo-BU-AA and ECo-DC-AA: space-optimized
versions of ECo-TD, ECo-BU and ECo-DC by using the ad-
jacency array-based graph representation (Section 5.2).

In addition, we also evaluate two k-ECC computation algorithms:

e KECC: the state-of-the-art algorithm proposed in [10] that
uses the doubly-linked list-based graph representation.

o KECC-AA: our space-optimized version of KECC that uses
the adjacency array-based graph representation (Section 5.2).

All algorithms are implemented in C++ and compiled with GNU
GCC with the -O3 optimization. All experiments are conducted on
a machine with Intel(R) Xeon(R) 3.6GHz CPU and 128GB memory
running Ubuntu. We evaluate the performance of all algorithms on
both real and synthetic graphs as follows.

Real Graphs. We evaluate the algorithms on fourteen real graphs
from different domains, which are downloaded from the Stanford
Network Analysis Platform # and the Laboratory of Web Algorith-
mics J. Statistics of the graphs are shown in Table 1, where the
second last column and the last column respectively show the aver-
age degree and the degeneracy. The graphs are ranked regarding
their numbers of edges. We denote the graphs by D1, ..., D14.

Synthetic Graphs. We evaluate the algorithms on power-law
graphs that are generated by the graph generator GTGraph °. A
power-law graph is a random graph in which edges are randomly
added such that the degree distribution follows a power-law distri-
bution. Firstly, we generate fourteen power-law graphs, PL1, ...,
PL14, where the number of vertices varies from 16 thousand to
133 million with an increasing factor of 2. The average degree of
the power-law graphs are around 24.5; as a result, the number of
undirected edges of the power-law graphs varies from 198 thousand
to 1.6 billion. The degeneracy of these graphs varies from 18 to 25.
Secondly, we further generate six power-law graphs fixing the
number of vertices to be the same as PL7 (i.e., around one million),
PL7_1, ..., PL7_6, where the number of edges increases with a
factor of 2. The resulting degeneracy of these graphs increases from
21 (for PL7) to 1,380 (for PL7_6), also roughly with a factor of 2.

Evaluation Metrics. For all the evaluations, we record both the
processing time and the peak main memory usage. Each testing is

4http://snap.stanford.edu/
Shttp://law.di.unimi.it/datasets.php
Shttp://www.cse.psu.edu/~madduri/software/GTgraph/

1155

run three times, and the average results are reported. All algorithms
are run in main memory and use a single thread. For the reported
processing time, we exclude the I/O time that is used for loading
a graph from disk to main memory. The peak memory usage of a
program is recorded by /usr/bin/time 7.

6.1 Results for ECo-decomposition

In this subsection, we evaluate the six ECo-decomposition algo-
rithms regarding their processing time and main memory usage.

Results on Real Graphs. We first evaluate the algorithms on real
graphs. The results are illustrated in Figure 12. For better com-
parison, we separate the algorithms into two groups: linked list-
based algorithms (i.e., ECo-TD, ECo-BU, and ECo-DC), and space-
optimized algorithms (i.e., ECo-TD-AA, ECo-BU-AA, and ECo-DC-AA).
The processing time of the three linked list-based algorithms is il-
lustrated in Figure 12(a). We can see that our near-optimal approach
ECo-DC consistently runs faster than the two state-of-the-art ap-
proaches ECo-TD and ECo-BU, which is inline with our theoretical
analysis that the former has a lower time complexity than the lat-
ter two. However, all the three algorithms fail to process the two
billion-scale graphs D13 and D14, due to running out-of-memory.
On the other hand, our space-optimized algorithms are able to pro-
cess these billion-scale graphs as shown in Figure 12(b), due to their
reduced main memory usage. The overall trend is similar to their
counterparts in Figure 12(a), i.e., ECo-DC-AA consistently performs
the best. When comparing the top-down approach ECo-TD-AA
with the bottom-up approach ECo-BU-AA, there is no clear win-
ner despite of having the same time complexity, as their practical
performance is sensitive to the graph topology. For example, the
processing time of ECo-TD-AA, ECo-BU-AA, and ECo-DC-AA on
D13 are respectively 13.9hrs, 36.8hrs and 1.3hrs, while that on D14
are respectively 29.4hrs, 13.3hrs and 3.3hrs.

The main memory usage of the six algorithms is demonstrated
in Figure 12(c). It is evident that our space-optimized algorithms
(ECo-TD-AA, ECo-BU-AA, ECo-DC-AA) consume much less mem-
ory than the linked list-based algorithms (ECo-TD, ECo-BU, ECo-DC),
where ECo-TD and ECo-BU are the two state-of-the-art approaches.
For example, the peak memory usage of our space-optimized al-
gorithms is at most 15GB for D13 and is at most 24GB for D14,
while the linked list-based algorithms run out-of-memory even
with 128GB memory. There are two things worth mentioning for
Figure 12(c). Firstly, it appears that ECo-TD consumes more mem-
ory than ECo-DC. This is due to implementation differences, i.e.,
we used the original implementation of ECo-TD from [7] while
our implementations of ECo-BU and ECo-DC slightly optimized
the constant on m in the space complexity. We do not optimize
the code of ECo-TD, as linked list-based implementations, which
are outperformed by their space-optimized counterparts, are not
our main focus. Secondly, the linked list-based algorithm consume
more memory on D13 than on D12, while for our space-optimized
algorithms, the situation is the opposite. This is because (1) D13
has more edges but less vertices than D12, (2) the memory usage
of linked list-based algorithms is mainly dominated by the part on

https://man7.org/linux/man-pages/man1/time.1.html

http://snap.stanford.edu/
http://law.di.unimi.it/datasets.php
http://www.cse.psu.edu/~madduri/software/GTgraph/
https://man7.org/linux/man-pages/man1/time.1.html

% ECO-TD % 10°{ - ECO-TD-AA
@ 10%4 -»-- ECo-BU ../ o) 100 -+4-- ECo-BU-AA
S * < —e— ECO-DC-AA = 104
3 101 g =
ki & 10° P
&
g 2 g © 3
g 10 £ 102 810 , g
F g 10 3 ECo-TD
2 10'4 o b -3-- ECo-BU
= £ 10! S
@ @ € 102 —r— ECo-DC
S 1004 g 100 2 X ECO-TD-AA
2 g -4-- ECo-BU-AA
1004 1001 10! —e— ECO-DC-AA
NNV DY o 0N 20 O O N A, Y NNV DY 0 0N DO O NN,
TP IQIAIIFIFEFSS FAIIIQCIIIFFESS

(a) Processing time of linked list-based algorithms

(b) Processing time of space-optimized algorithms

(c) Memory usage of all algorithms

Figure 12: Results of ECo-decomposition on real graphs (best viewed in color)

g 10 10°4 .k ECoTD % Z 1034 -4 KECC
o c
S 107 @ 3=+ ECo-BU § | - KecCaA
g 1073 £ 10y —— ECo-DC 8 0%
v 107] & % ECOTDAA | . 2 0l
_E 2102 - ECo-BU-AA k= [N o S
2 101 z 2 10
@ € 1024 @
¢ 1004 8 10011
§ 2 § 10
& 10014 10'y = R I 2 :
SO YO 0N D9SN
YYD YO 6N DO SN,y VUV QQVV0VNEFIFITITI
FXIISITILITITL
(a) Processing time (vary n and m, fix average degree) (b) Memory usage (vary n and m, fix average degree) (a) Processing time (k-ECC computation)
1054 4. AA
%104 ~#- ECoTD il -4 ECOTD _ A~ KECC ...‘,..A
g -3-- ECo-BU & -3>—- ECo-BU 2. —@- KECC-AA :
8 10¢] — ECo-DC . Z .| = Eco-nc b
> X ECOTD-AA . 10%1 5 ECoTD-AA T 8.0
E] -+ ECoBU-AA 2 -+ ECo-BU-AA —_.-~" E)
‘5 10°7 —— ECo-DC-AAT > ECo-DC-AA g
2 o 5 210
a £ 10° [}
1024 5] 2
I = o= 10!
T TEaa ———
AN
~ ~ v ~ >) © A ~ v m - “© © 5'5»5»3570(000%00’5?5555
7 N A7 N4 NG NG NG INd NG N N4 NG NG N
R A R A DA AR A VAR

(c) Processing time (vary m, fix n)

Figure 13: Results of ECo-decomposition on power-law graphs

m in the space complexity, while the memory usage of our space-
optimized algorithms is also affected by the part on n. This is also
observed for k-ECC computation algorithms in Figure 14(b).

Results on Synthetic Graphs. The processing time and mem-
ory usage of the six algorithms on power-law graphs are shown
in Figure 13. The overall trend is similar to that on real graphs
in Figure 12. That is, our divide-and-conquer algorithms ECo-DC
and ECo-DC-AA run the fastest, and our space-optimized algo-
rithms consume much less memory than the linked list-based al-
gorithms, e.g., the latter run out-of-memory on PL14 which has
1.6 billion undirected edges. It is interesting to observe that our
space-optimized bottom-up approach ECo-BU-AA also perform
quite well on power-law graphs that have small degeneracy (i.e.,
at most 25), see Figure 13(a). The results on power-law graphs by
varying m and fixing n are shown in Figure 13(c) and Figure 13(d);
note that the degeneracy of these graphs also increases with m. We
can see that ECo-BU-AA now runs slower than ECo-DC-AA when
the degeneracy becomes large, e.g., the degeneracy of PL7_5 and
PL7_6 are 705 and 1, 380, respectively. From Figure 13, we can also
observe that ECo-DC-AA scales almost linearly to large graphs for
both the processing time and the memory usage.

(d) Memory usage (vary m, fix n)

1156

(b) Memory usage (k-ECC computation)
Figure 14: Results of k-ECC on real graphs

Table 2: Compare KECC-AA with NetworkX (k = 8)

Dataset NetworkX KECC-AA
Time (s) Memory (MB) | Time (s) Memory (MB)
D1 768.89 164.66 0.021 5.73
D2 1412.99 772.74 0.022 23.16

6.2 Results for k-ECC Computation

In this subsection, we evaluate our space-optimized algorithm
KECC-AA for k-ECC computation. We first compare KECC-AA
with the linked list-based counterpart KECC that is proposed in [10].
The results on real graphs for k = 8 are shown in Figure 14. We can
observe that KECC-AA significantly reduces the memory usage
compared with KECC. For example, KECC consumes 78GB and
119GB memory respectively for processing D13 and D14, while
KECC-AA only consumes 11GB and 17GB memory for these two
graphs. It is also interesting to see that KECC-AA is slightly faster
than KECC. This is because KECC-AA benefits from increased
cache hit-rate by using adjacency array-based graph representation.

We also compare KECC-AA with the k-ECC computation algo-
rithm in NetworkX, a popular Python module for graph analytics.
The results on the two smallest real graphs D1 and D2 for k = 8
are shown in Table 2; we do not test NetworkX on larger graphs as

8100 810"
8 2 b
g T 102 §
g 10° g 10
7 @ 1010
g 10° 3
o @ 10°
x 7 x
s 10 S 108
8 8 —
@ 408 @ g0t
g 0 200 400 600 800 1000 1200 % 0 20 40 60 80 100 120 140
= k = k
(a) Netflix (b) Amazon_reviews

Figure 15: Matrix completability analysis

it is too slow. We can see that KECC-AA significantly outperforms
NetworkX for k-ECC computation, e.g., on D2, KECC-AA is more
than 60, 000 times faster and consumes 32 times less memory than
NetworkX. Although there are factors of programming language
difference (i.e., C++ vs. Python), it is clear that KECC-AA has signif-
icant advantages over the implementation in NetworkX. It will be
an interesting future work to implement KECC-AA in NetworkX.

6.3 Applications

In this subsection, we illustrate applying our ECo-decomposition
algorithms in applications. Firstly, our algorithms directly speed
up the index construction for steiner component search studied
in [7, 21], which use the hierarchy tree as an index structure for
efficiently processing online queries. Secondly, our algorithms can
facilitate matrix completability analysis, where matrix completion
is typically used for recommendation [12]. Specifically, a matrix can
be represented as a bipartite graph G = (UU L, E) withUNL =0
and E C U X L. Each row of the matrix corresponds to a vertex of U,
each column corresponds to a vertex of L, and each non-zero entry
at position (i, j) corresponds to an undirected edge between i € U
and j € L. The problem of matrix completion is to predicate values
for the entries of the matrix that currently have value 0 (i.e., with
value missing). It has been shown in [12] that the higher the edge
connectivity of the corresponding bipartite graph, the more accu-
rate the low-rank matrix completion. Thus, the higher the value
of k such that i and j are contained in the same k-ECC, the more
accurate the predicated value of the (i, j)-th entry of the matrix.
The hierarchy tree constructed by our algorithms can be used to
efficiently obtain the largest k such that i and j are contained in
the same k-ECC, and thus to estimate the accuracy of the matrix
completion for the (i, j)-th entry. Also, the hierarchy tree can be
used to efficiently retrieve the submatrices, whose corresponding
bipartite graphs are k-edge connected, to run the matrix comple-
tion algorithm and can be used to provide a guide on choosing
the appropriate k. For example, Figures 15(a) and 15(b) show the
total size of the submatrices whose corresponding bipartite graphs
are k-edge connected, for datasets Netflix and Amazon_reviews;
here, the size of a submatrix is #rows X #columns. Netflix & has
|U| = 480,189, |L| = 17,770, |E| = 100, 480, 507, kmax = 1,076,
and Amazon reviews ? has |U| = 6,643,669, |L| = 2,441,053,
|[E| = 29,928,296, kmax = 140. We can see that Netflix is much
denser than Amazon_reviews and can be completed more accu-
rately than Amazon_reviews. In particular, the total size of the
submatrices whose corresponding bipartite graphs are 200-edge

Shttps://www.kaggle.com/netflix-inc/netflix-prize-data
“http://snap.stanford.edu/data/web- Amazon-links.html

1157

connected is more than 10% of the entire matrix size for Netflix,
while there is no such submatrix for Amazon_reviews.

7 RELATED WORK

Besides the existing works on ECo-decomposition as discussed in
Sections 1 and 3, we categorize other related works as follows.

k-ECC Computation. In the literature, there are three approaches
for computing all k-ECCs of a graph for a given k: cut-based ap-
proach [26, 35, 38], decomposition-based approach [10], and ran-
domized approach [4]. In this paper, we adopted the decomposition-
based approach [10] for k-ECC computation — which is the state
of the art — and further optimized its memory usage.

Edge Connectivity Computation. Computing the edge connec-
tivity between two vertices has been studied in graph theory [18],
which is achieved by maximum flow techniques [15]. The state-of-
the-art algorithms compute the maximum flow exactly in O(n X m)
time [25] and approximately in almost linear time [22, 30]. Index
structures have also been developed to efficiently process vertex-to-
vertex edge connectivity queries [2, 20]. However, steiner connectiv-
ity as computed in this paper, which measures the connectivity in a
subgraph, is different from edge connectivity as computed in [2, 20],
which measures the connectivity in the input graph. Thus, these
techniques cannot be applied. Moreover, it is worth mentioning
that none of our algorithms involve maximum flow computation.

Cohesive Subgraph Computation. Extracting cohesive subgraphs
from a large graph has also been extensively studied in the literature
(see [9] for a recent survey). Here, the cohesiveness of a subgraph
usually is measured by the minimum degree (aka, k-core) [29, 36],
the average degree (aka, edge density) [8, 11, 19], the minimum num-
ber of triangles each edge participates in (aka, k-truss) [14, 27], and
the vertex connectivity [33]. For some of the measures, the cohesive
subgraphs for different cohesiveness values also form hierarchical
structures and efficient algorithms have been proposed to construct
these hierarchical structures, e.g., core decomposition [13], truss de-
composition and its higher-order variants [28], and density-friendly
graph decomposition [16, 32]. However, due to inherently different
problem natures, these techniques are inapplicable to computing
ECo-decomposition of a graph.

8 CONCLUSION

In this paper, we proposed a near-optimal algorithm ECo-DC-AA
for constructing the hierarchy tree of k-ECCs for all possible k
values. ECo-DC-AA has both a lower time complexity and a lower
space complexity compared with the state-of-the-art approaches
ECo-TD and ECo-BU. Extensive experimental results on large graphs
demonstrate that ECo-DC-AA outperforms ECo-TD and ECo-BU
by up to 28 times in terms of running time and by up to 8 times
regarding memory usage. As a result, ECo-DC-AA makes it possible
to process billion-scale graphs in the main memory of a commodity
machine. As a by-product, we also significantly reduced the mem-
ory usage of the state-of-the-art k-ECC computation algorithm.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council Fund-
ings of FT180100256 and DP220103731.

https://www.kaggle.com/netflix-inc/netflix-prize-data
http://snap.stanford.edu/data/web-Amazon-links.html

REFERENCES

(1]
(2]

[3

=

[10]

[11]
[12]

[13

[14]
[15]

[16]

[17

[18]
[19]

[n.d.]. full version: https://lijunchang.github.io/pdf/2022-ecd-tr.pdf.

Charu C. Aggarwal, Yan Xie, and Philip S. Yu. 2009. GConnect: A Connectivity
Index for Massive Disk-resident Graphs. PVLDB 2, 1 (2009), 862-873.

Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan Srikant, and Yirong Xu.
2003. Mining newsgroups using networks arising from social behavior. In Proc.
of WWW’03. 529-535.

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Linear-time enumer-
ation of maximal K-edge-connected subgraphs in large networks by random
contraction. In Proc. of CIKM’13. 909-918.

Andras A. Benczur and David R. Karger. 2002. Randomized Approximation
Schemes for Cuts and Flows in Capacitated Graphs. CoRR ¢s.DS/0207078 (2002).
Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir.
2007. A model of Internet topology using k-shell decomposition. Proceedings of
the National Academy of Sciences of the United States of America 104, 27 (2007),
11150—-11154.

Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. 2015. Index-
based Optimal Algorithms for Computing Steiner Components with Maximum
Connectivity. In Proc. of SIGMOD’15.

Lijun Chang and Miao Qiao. 2020. Deconstruct Densest Subgraphs. In Proc. of
WWW’20. 2747-2753.

Lijun Chang and Lu Qin. 2018. Cohesive Subgraph Computation over Large Sparse
Graphs. Springer Series in the Data Sciences.

Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.
2013. Efficiently computing k-edge connected components via graph decomposi-
tion. In Proc. of SIGMOD’13. 205-216.

Moses Charikar. 2000. Greedy approximation algorithms for finding dense
components in a graph. In Proc. of APPROX’00. 84-95.

Dehua Cheng, Natali Ruchansky, and Yan Liu. 2018. Matrix completability
analysis via graph k-connectivity. In Proc. of AISTATS’18. 395-403.

James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Ozsu. 2011. Efficient core
decomposition in massive networks. In Proc. of ICDE’11. 51-62.

Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.
National Security Agency Technical Report (2008), 16.

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
2001. Introduction to Algorithms. McGraw-Hill Higher Education.

Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large Scale
Density-friendly Graph Decomposition via Convex Programming. In Proc. of
WWW’17. 233-242.

Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Pani-
grahi. 2011. A general framework for graph sparsification. In Proc. of STOC’11.
71-80.

Alan Gibbons. 1985. Algorithmic Graph Theory. Cambridge University Press.
A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report.
Berkeley, CA, USA.

1158

[20]

[21

(33]

[34

(35]

R. E. Gomory and T. C. Hu. 1961. Multi-Terminal Network Flows. J. Soc. Indust.
Appl. Math. 9, 4 (1961). http://dx.doi.org/10.2307/2098881

Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. 2017.
On Minimal Steiner Maximum-Connected Subgraph Queries. IEEE Trans. Knowl.
Data Eng. 29, 11 (2017), 2455-2469.

Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. 2013.
An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and its Multicommodity Generalizations. In Proc. of SODA’13.

David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and clustering
and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417-427.

An Nguyen and Seok-Hee Hong. 2017. k-core based multi-level graph visualiza-
tion for scale-free networks. In Proc. of PacificVis’17. 21-25.

James B. Orlin. 2013. Max flows in O(nm) time, or better. In Proc. of STOC’13.
765-774.

Apostolos N. Papadopoulos, Apostolos Lyritsis, and Yannis Manolopoulos. 2008.
SkyGraph: an algorithm for important subgraph discovery in relational graphs.
Data Min. Knowl. Discov. 17, 1 (Aug. 2008), 20. https://doi.org/10.1007/s10618-
008-0109-y

Kazumi Saito and Takeshi Yamada. 2006. Extracting Communities from Complex
Networks by the k-dense Method. In Proc. of ICDMw’06. 300-304.

Ahmet Erdem Sariytice and Ali Pinar. 2016. Fast Hierarchy Construction for
Dense Subgraphs. PVLDB 10, 3 (2016), 97-108.

Stephen B. Seidman. 1983. Network structure and minimum degree. Social
Networks 5, 3 (1983), 269 — 287.

Jonah Sherman. 2013. Nearly Maximum Flows in Nearly Linear Time. In Proc. of
FOCS’13.

Manuel Sorge and et al. 2013. The graph parameter hierarchy.

Bintao Sun, Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2020.
KClist++: A Simple Algorithm for Finding k-Clique Densest Subgraphs in Large
Graphs. Proc. VLDB Endow. 13, 10 (2020), 1628-1640.

Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Ling Chen. 2019. Enumerating

k-Vertex Connected Components in Large Graphs. In Proc. of ICDE’19. 52-63.
Douglas R. White and Frank Harary. 2001. The cohesiveness of blocks in social

networks: Node connectivity and conditional density. Sociological Methodology
31 (2001).

Xifeng Yan, X. Jasmine Zhou, and Jiawei Han. 2005. Mining closed relational
graphs with connectivity constraints. In Proc. of KDD’05 (Chicago, Illinois, USA).
10. https://doi.org/10.1145/1081870.1081908

Kai Yao and Lijun Chang. 2021. Efficient Size-Bounded Community Search over
Large Networks. Proc. VLDB Endow. 14, 8 (2021), 1441-1453.

Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2017. I/O
efficient ECC graph decomposition via graph reduction. VLDB 7. 26, 2 (2017).
https://doi.org/10.1007/s00778-016-0451-4

Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin
Li. 2012. Finding Maximal k-Edge-Connected Subgraphs from a Large Graph. In
Proc. of EDBT’12.

http://dx.doi.org/10.2307/2098881
https://doi.org/10.1007/s10618-008-0109-y
https://doi.org/10.1007/s10618-008-0109-y
https://doi.org/10.1145/1081870.1081908
https://doi.org/10.1007/s00778-016-0451-4

