
PACk: An Efficient Partition-based Distributed Agglomerative
Hierarchical Clustering Algorithm for Deduplication
Yue Wang

Microsoft Research

wang.yue@microsoft.com

Vivek Narasayya

Microsoft Research

viveknar@microsoft.com

Yeye He

Microsoft Research

yeyehe@microsoft.com

Surajit Chaudhuri

Microsoft Research

surajitc@microsoft.com

ABSTRACT
The Agglomerative Hierarchical Clustering (AHC) algorithm is

widely used in real-world applications. As data volumes continue

to grow, efficient scale-out techniques for AHC are becoming in-

creasingly important. In this paper, we propose a Partition-based

distributed Agglomerative Hierarchical Clustering (PACk) algorithm
using novel distance-based partitioning and distance-aware merg-

ing techniques. We have developed an efficient implementation of

PACk on Spark . Compared to the state-of-the-art distributed AHC

algorithm, PACk achieves 2× to 19× (median=9×) speedup across a

variety of synthetic and real-world datasets.

PVLDB Reference Format:
Yue Wang, Vivek Narasayya, Yeye He, and Surajit Chaudhuri. PACk: An

Efficient Partition-based Distributed Agglomerative Hierarchical

Clustering Algorithm for Deduplication. PVLDB, 15(6): 1132 - 1145, 2022.

doi:10.14778/3514061.3514062

1 INTRODUCTION
Agglomerative Hierarchical Clustering (AHC) is a widely-used clus-

tering algorithm. As noted in the survey article [40], AHC finds ap-

plications in different problems including deduplication and record

linkage [7, 37, 54, 57], recommender systems [47], bioinformatics

[11, 16, 52], computational chemistry [14], environmental science

[20], and astronomy [59]. Given an undirected weighted graph

𝐺 = (𝐶,𝑊), where 𝐶 is a set of items and𝑊 is a set of weighted

edges indicating the distances between pairs of items in 𝐶 , AHC

initializes each item into its own cluster and repeatedly merges

the next pair of clusters with the smallest distance until no pair of

clusters have a distance below a given threshold.

When two clusters are considered for merging in AHC, the dis-

tance between the clusters is defined by a linkage criterion. A com-

monly used [40, 62] linkage criterion in practice is the average
distance over all pairs of edges across items in the two clusters.

Other linkage criteria such as minimum (resp. maximum) distance

are also used and results in more aggressive (resp. conservative)

merging of clusters compared to average distance. Some specialized

and efficient algorithms [3, 25, 42, 45, 56] only focus on min-linkage

which reduces AHC to the simpler minimum spanning tree prob-

lem. For our primary motivating scenario of fuzzy deduplication,

average-linkage is the most appropriate criterion. Min-linkage is

too aggressive and leads to clustering very dissimilar items, and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.

doi:10.14778/3514061.3514062

C1 C2

C3C4

0.01

0.02

C12

C3C4
0.02

?… …

Figure 1: The merge of 𝐶1 and 𝐶2 determines the merge of
𝐶3.

max-linkage tends to be too conservative and results in detection

of too few duplicates. Thus, in this paper we focus on the case of

average-linkage, which is also a more challenging problem.

Due to increasing data volumes in real-world applications, the

need to support AHC on Big Data platforms such as Spark is grow-

ing. For example, the Microsoft Dynamics 365 service applies clus-

tering to find duplicates in their customer profile databases, which

can have 100s of millions of records. Centralized (aka single-node)

AHC algorithms, which work effectively on relatively small datasets

by operating on the data in-memory, are however impractical on

large datasets due to their high space complexity (𝑂 (|𝐶 |2)) and
time complexity (𝑂 (|𝐶 |2 log |𝐶 |)) that lead to memory and CPU

bottlenecks on a single machine.

A straightforward adaptation of the centralized AHC algorithms

to a scale-out, distributed setting does not perform well because

the cost of accessing edges to neighboring nodes in the algorithm

becomes excessively high. For example, when the AHC algorithm

merges a pair of clusters, it must update distances between the

newly merged cluster and all other clusters. In centralized AHC,

the update is achieved via a set of relatively cheap writes in mem-

ory. However, in a distributed setting with multiple compute nodes

(e.g., VMs) working on partitions of the data, this update requires

data shuffles across partitions, which is significantly slower. Further-

more, in the distributed setting, multiple iterations of re-partitioning

and clustering may be needed thereby amplifying the data shuffle

cost.

The natural idea of parallelizing the merge operations holds

promise, but is challenging to achieve since merges may have de-

pendencies as illustrated in Figure 1. After the merge of 𝐶1 and 𝐶2,

the distance between 𝐶12 and 𝐶3 determines whether 𝐶3 should

be merged with 𝐶12 or 𝐶4. In other words, the merge of 𝐶3 de-

pends on the merge of 𝐶1 and 𝐶2, thereby introducing difficulty in

parallelizing merges when the graph is distributed.

The state-of-the-art distributed AHC algorithm is based on [13].

The authors show that when the linkage criterion satisfies a prop-

erty called “cluster aggregate inequality” [38], we can concurrently

merge all mutual nearest neighbor pairs in the graph without affect-

ing correctness of the result. A mutual nearest neighbor pair is a

pair of nodes (A, B) such that A is B’s nearest neighbor and B is

A’s nearest neighbor. Importantly, they show that this property is

1132

https://doi.org/10.14778/3514061.3514062
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3514061.3514062

0m

20m

40m

60m

1 2 3 4 5 6 7 8 9 10 … 58

#M
er

ge
s

Iteration

MutualNN

PACk

...

(b)(a)

0

50

100

150

200

250

Ti
m

e
(m

in
u

te
)

MutualNN

PACk

Figure 2: An example real-world dataset with injected du-
plicates: (a) Our proposed PACk achieves 12× speed-up com-
pared to MutualNN. (b) PACk finishes in 5 iterations, while
MutualNN takes 58 iterations with a long tail of fewermerges.

satisfied by linkage criteria including average, max and min – and

hence is applicable for our motivating scenarios. An algorithm that

exploits this observation, which we refer to as MutualNN is rela-

tively straightforward to implement in a distributed, map-reduce

platform using traditional relational operators such as aggregation

and join. However, as we show in this paper, this algorithm is in-

efficient because the number of mutual nearest neighbors is often

limited in real-world datasets. Therefore, it often requires multiple

(10’s) of iterations, with only a few cluster merges possible per

iteration as shown in Figure 2. Consequently, MutualNN performs

many data scans and shuffles, which lead to large execution time.

In this paper we present the PACk algorithm that builds on the

above idea by introducing two novel techniques: distance-based

partitioning and distance-aware merging within a partition. Intu-

itively, the distance-based partitioning algorithm aims to include

a set of nearest neighbors in the same partition for each item. It

thereby allows more merges to happen within each partition. The

distance-aware merging algorithm computes distance bounds to

safely merge as many mutual nearest neighbors as possible inside

a partition. We show that PACk always produces the same result

as centralized AHC. In addition, PACk can perform merges having

dependencies in one iteration with guaranteed correctness, which

MutualNN cannot do. Our approach parallelizes merges much more

effectively and can sharply reduce the number of iterations required,

and therefore the overall running time – see Figure 2 for an example

on a real-world dataset.

The contributions of this paper are: (1) We present PACk, an
efficient distributed clustering algorithm for agglomerative hierar-

chical clustering. We prove the correctness of PACk, and we have

developed an efficient implementation of PACk on Spark. (2) We

provide an analytical performance analysis of PACk. We show that

PACk is more efficient and needs fewer iterations than MutualNN.
(3) We present extensive experimental results comparing the perfor-

mance and scalability of PACk with MutualNN on a variety of real-

world and synthetic graph datasets. PACk consistently outperforms

MutualNN with speed-ups ranging from 2× to 19× (median=9×). Its
compute resources including CPU and memory are comparable to

MutualNN and modestly higher. PACk also scales well to relatively

large graphs. For example, on a real-world graph evaluated by the

Dynamics 365 service in Microsoft for the task of fuzzy dedupli-

cation containing over 250 million items and 680 million edges,

PACk finishes in 40 minutes using 16 commodity eight-core VMs,

achieving 5× speed-up compared to MutualNN.

We organize the paper as follows: we present the background for

AHC in Section 2. We introduce PACk in Section 3. We present the

correctness proof and analytical performance analysis in Section 4.

We present our experimental evaluation result in Section 5. Finally,

we discuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND
2.1 Cluster Labeling and Distance Comparison
When two pairs of clusters have the same distance, we must break

ties deterministically to ensure that the result of clustering is de-

terministic regardless of whether a centralized or distributed AHC

algorithm is used. Therefore, in addition to the scalar distance be-

tween clusters, we take the cluster labels into comparison.

We assume each initial item 𝑐 ∈ 𝐶 has an associated label denoted

by 𝑙𝑎𝑏𝑒𝑙 (𝑐) (e.g., integer, string, etc.). The labels form a totally

ordered set.We further assume that the cluster label is themaximum

label of the cluster’s items:

𝑙𝑎𝑏𝑒𝑙 (𝐶) = max

𝑐∈𝐶

(
𝑙𝑎𝑏𝑒𝑙 (𝑐)

)
(1)

Let 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) be the scalar distance between cluster𝐶𝑖 and𝐶 𝑗 ,

so that we can define weight𝑤 (𝐶𝑖 ,𝐶 𝑗) as a three-element tuple:

Definition 1 (Cluster Pair Edge Weight).

𝑤 (𝐶𝑖 ,𝐶 𝑗) =
(
𝑑𝑖𝑠𝑡, 𝑙𝑎𝑏𝑒𝑙1, 𝑙𝑎𝑏𝑒𝑙2

)
where 𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗), 𝑙𝑎𝑏𝑒𝑙1 = min(𝑙𝑎𝑏𝑒𝑙 (𝐶𝑖), 𝑙𝑎𝑏𝑒𝑙 (𝐶 𝑗)), and
𝑙𝑎𝑏𝑒𝑙2 = max(𝑙𝑎𝑏𝑒𝑙 (𝐶𝑖), 𝑙𝑎𝑏𝑒𝑙 (𝐶 𝑗)).

When we compare two edges, we always compare the three-

element weight tuples𝑤 (𝐶𝑖 ,𝐶 𝑗) instead of only the scalar distances
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗).

Example 1 (Labeling). Assume we use integer labels in Figure 3
such as 𝑙𝑎𝑏𝑒𝑙 (𝐶1) = 1, 𝑙𝑎𝑏𝑒𝑙 (𝐶2) = 2, 𝑙𝑎𝑏𝑒𝑙 (𝐶13) = 3, and so on.
Two weight examples are 𝑤 (𝐶1,𝐶2) = (0.05, 1, 2) and 𝑤 (𝐶3,𝐶2) =
(0.05, 2, 3), so 𝑤 (𝐶1,𝐶2) < 𝑤 (𝐶3,𝐶2) because tuple (0.05, 1, 2) <

(0.05, 2, 3).

2.2 Agglomerative Hierarchical Clustering
Given an undirected weighted graph 𝐺 (𝐶,𝑊), where 𝐶 is a set of

items and𝑊 is a set of weights indicating the distances between

pairs of items in 𝐶 , and a threshold \ > 0, Agglomerative Hierar-

chical Clustering (AHC) algorithm starts by treating each item as a

singleton cluster, iteratively merges nearest cluster pairs, and stops

when no two clusters are less than distance \ . Algorithm 1 shows

the centralized AHC algorithm, which is straightforward when the

entire graph fits in memory.

There exist several linkage criteria to compute the distance func-

tion between clusters (Line 5) in AHC. Here we list a few:

• Max-linkage (complete-linkage) [12]:

𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) = max

(
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥), 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥)

)
• Min-linkage (single-linkage) [22, 48]:

𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) = min

(
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥), 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥)

)
• Average-linkage [50]:

𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) = 1

|𝐶𝑖 𝑗 | · |𝐶𝑥 | ·
∑

𝑐∈𝐶𝑖 𝑗 ,𝑐
′∈𝐶𝑥

𝑑𝑖𝑠𝑡 (𝑐, 𝑐 ′)

Given its suitability for the fuzzy deduplication problem as noted

earlier, in the rest of this paper, we focus on Average-linkage.

1133

Algorithm 1: Centralized AHC

Input: Cluster graph𝐺 = (𝐶,𝑊) ; Threshold \
Output: Clusters𝐶∗

1 while there exists 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) ≤ \ do
2 (𝐶𝑖 ,𝐶 𝑗) ⇐ 𝑎𝑟𝑔𝑚𝑖𝑛

𝐶𝑖 ,𝐶 𝑗 ∈𝐶∧𝐶𝑖≠𝐶 𝑗

(
𝑤 (𝐶𝑖 ,𝐶 𝑗)

)
3 𝐶𝑖 𝑗 ⇐ 𝐶𝑖 ∪𝐶 𝑗

4 𝐶 ⇐ 𝐶 ∪ {𝐶𝑖 𝑗 } −𝐶𝑖 −𝐶 𝑗

5 Compute 𝑤 (𝐶𝑖 𝑗 ,𝐶𝑥) for each𝐶𝑥 ∈ 𝐶

6 𝐶∗ ⇐ 𝐶

Iter. 1

C1

C2

C3 C4

C5

C6

0.03

0.04

0.05

0.08
0.06

0.060.05

0.05

C13

C2

C6

0.065

0.060.05

All unlabeled distances in the first graph are 0.1;
Edges with distance 0.1 are omitted in all graphs.

C4

C5

0.04

0.06

C13

C2

C6

0.065

0.06

0.05
C123 C6

0.077

0.06

C45

Iter. 4
C123 C456

0.09

❶ ❷

❸❺ ❹

Iter. 3
Ite

r. 2

C45

0.08

0.09

0.0950.097

Figure 3: An example that applies Algorithm 1 to six items.
\ = 0.08.

Example 2 (Centralized AHC). Figure 3 is an example that
applies Algorithm 1 to six items with threshold \ = 0.08. Edges are
labelled with distances. In the first graph, unlabeled distances are
all 0.1. In all the graphs, edges with distance≥0.1 are omitted. The
algorithm keeps merging nearest pairs until the remaining edges are
greater than 0.08.

2.3 Distributed AHC
Although the centralized AHC algorithm is straightforward, devel-

oping an efficient distributed AHC algorithm is challenging. The

efficiency of distributed depends primarily on two factors. The first

factor is the number of iterations. Similar to the centralized AHC,

a distributed AHC usually takes multiple iterations to finish. In

distributed AHC however, each iteration has certain costs such as

scanning the graph and writing the intermediate result to persistent

storage at the end of the iteration. The second factor is data shuffle.

In each iteration, every compute node (VM) works on a partition

of a large graph. Since edges can span across partitions, VMs have

to shuffle data to find neighbors and update distances. Therefore,

techniques that reduce number of iterations and data shuffle cost

can lead to greater efficiency and improved performance.

The state-of-the-art distributed AHC is MutualNN [13], which

parallelizes merges to reduce number of iterations and data shuffle.

MutualNN is based on the Cluster Aggregate Inequality property [13,

Algorithm 2: MutualNN
Input: Cluster graph𝐺 = (𝐶,𝑊) ; Threshold \
Output: Clusters𝐶∗

/* Compute in parallel */

1 while there exists 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) ≤ \ do
2 𝑁𝑁 ⇐ For each𝐶 in𝐺 , compute its nearest neighbor

3 𝑀𝑁𝑁 ⇐ Find mutual nearest neighbor pairs by self-join on

𝑁𝑁

4 𝐺 ⇐ Merge mutual nearest neighbors and their edges by join

and aggregation

38] that makes parallel merges possible. Specifically, in each itera-

tion, MutualNN merges all mutual nearest neighbor pairs (𝐶𝑥 ,𝐶𝑦)
where 𝐶𝑥 ’s nearest neighbor is 𝐶𝑦 and vice versa. MutualNN guar-
antees that its result is the same as the centralized AHC as long as

the linkage satisfies Cluster Aggregate Inequality:

∀𝐶𝑖 ,𝐶 𝑗 ,𝐶𝑥 : 𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) ≥ min

(
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥), 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥)

)
(2)

The intuition behind Cluster Aggregate Inequality is: if 𝐶𝑥
has a unique nearest neighbor 𝐶𝑦 , 𝑑𝑖𝑠𝑡 (𝐶𝑦,𝐶𝑥) must be smaller

than any other 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥) or 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥), i.e. 𝑑𝑖𝑠𝑡 (𝐶𝑦,𝐶𝑥) <

min

(
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥), 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥)

)
. Hence, merging any other clusters

𝐶𝑖 and 𝐶 𝑗 cannot generate a new cluster 𝐶𝑖 𝑗 whose distance to 𝐶𝑥
is closer than 𝑑𝑖𝑠𝑡 (𝐶𝑦,𝐶𝑥). Therefore, when 𝐶𝑥 and 𝐶𝑦 are mutual
nearest neighbors, we can safely merge them. The min-, max-, and

average-linkage all satisfy this inequality. The detailed proof of

MutualNN correctness can be found in [13]. We show why Average-

Linkage satisfies the inequality in [55].

Algorithm 2 shows how MutualNN works. In each iteration, it

finds all mutual nearest neighbor pairs, merges them, and computes

the new weights for newly merged clusters. However, MutualNN
is inefficient as we see in Figure 2, because the number of mu-

tual nearest neighbors is often limited in real-world datasets and

MutualNN still takes too many iterations. Therefore, we propose

a Partition-based distributed Agglomerative hierarchical Cluster-

ing (PACk) algorithm which significantly increases the number of

merges in each iteration to improve the efficiency.

3 PACk ALGORITHM FOR DISTRIBUTED AHC
3.1 Intuition
PACk achieves its efficiency using two novel algorithms: distance-

based partitioning of the graph, and distance-aware merging within

each partition. When partitioning the graph, PACk places clusters
with their top nearest neighboring clusters together. To limit the size

of each partition, for each cluster in a partition, we only include a list

of edges with the shortest distances to it, and represent all ignored

edges as a lower bound 𝑏𝐿 indicating that their distances are greater

than 𝑏𝐿 . The distance-aware merging algorithm works on each

partition and performs merges locally. Whenever it merges a cluster

pair, it always ensures that the two clusters are mutual nearest

neighbors by checking the distance bounds, which guarantees the

correctness of the result.
1
Compared to MutualNN, PACk performs

1
Similar to MutualNN, PACk also works for Max-, Min-, Average-, and any other linkage

criterion that satisfies Cluster Aggregate Inequality. The proof of correctness is in

Section 4.1.

1134

many more merges in each iteration, thereby reducing the total

number of iterations required. Although the shuffle cost for one

iteration of PACk could exceed that of MutualNN, since the number

of iterations are significantly reduced (Figure 2), the overall shuffle

cost of PACk is also much less compared to MutualNN.
Below we provide intuition on why performing more merges in

each iteration can improve performance. Observe that for a given

input graph, the total number of pair-wise merges done is the

same regardless of the specific AHC algorithm used. For instance,

given the input in Figure 3, we need four merges to get 𝐶13, 𝐶123,

𝐶45, and 𝐶456. Performing more merges in each iteration reduces

running time for three reasons: (1) Merges are performed in parallel,

which can take less time compared to sequential execution. (2) More

merges per iteration reduces the number of iterations, thereby

saving the fixed overheads incurred for each iteration. (3) More

merges in one iteration reduces the shuffle cost of intermediate

results in the following iterations. For example, assume a distributed

algorithm finishes in four iterations as shown in Figure 3. It has to

generate Graph 2 (resp. Graph 3 and 4) after Iteration 1 (resp. Iter. 2

and 3), and shuffle the graphs’ weights to compute nearest neighbor

etc. for the next Iteration 2 (resp. Iter. 3 and 4). In comparison,

PACk requires one iteration as shown in Figure 4, so we save the

shuffle cost of three intermediate graphs, Graph 2, 3, and 4, in

Figure 3. Note that the intermediate weights such as 𝑤 (𝐶13,𝐶2),
𝑤 (𝐶123,𝐶6), etc. are still generated locally within each partition,

but they are discarded once merging is done for each partition. So

these intermediate weights are never shuffled after local merging.

Figure 2b shows an example illustrating how PACk can perform

much more merges in one iteration than MutualNN does. It plots

the number of merges done by both algorithms on one of our exper-

imental datasets. In the first iteration, PACk completes 99% merges,

which is much more than MutualNN’s 32%. Moreover, in each of

the following iterations, PACk still completes the majority of the

remaining merges, while MutualNN does only a much smaller per-

centage. For instance, in the second iteration, PACk does 98% of its

remaining merges, while MutualNN does only 37% of its remaining

ones. PACk’s ability to perform the majority of remaining merges

in each iteration significantly reduces the number of iterations and

cost of data shuffle, which shortens the running time.

3.2 Overview
Algorithm 3 describes PACk. We assume the input is a graph 𝐺 =

(𝐶,𝑊) where 𝐶 is the initial item set and𝑊 is the weights defined

in Section 2.1
2
. PACk keeps merging clusters in iterations as long as

the graph has weights that are below the distance threshold. Each

iteration consists of four steps:

(1) Partitioning. We partition the graph by putting clusters with

their top nearest neighbors together, so that multiple merges have

a chance to happen within each partition.

(2) Distance-aware Merging. Within each partition, we merge as

manymutual nearest neighbor pairs as possible. For each merge, we

track the distance bounds between the newly merged clusters and

2
In practice,𝑊 usually contains only the pairs with meaningful distance (e.g., two

strings share at least one token) so that |𝑊 | ≪ |𝐶 |2 . Various indexing techniques are
used to efficiently retrieve close pairs in different scenarios (e.g., Locality Sensitive

Hashing for Jaccard distance, space-partitioning trees for Euclidean distance, n-gram

for edit distance, and so on). They are orthogonal to our contribution in this paper.

Algorithm 3: PACk
Input: Cluster graph𝐺 = (𝐶,𝑊) ; Threshold \
Output: Clusters𝐶∗

1 while there exists 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) ≤ \ do
2 𝑃 ⇐ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝐺) // Algorithm 5 or 6

3 𝐶′ ⇐ {𝐿𝑜𝑐𝑎𝑙𝑙𝑦𝑀𝑒𝑟𝑔𝑒 (𝑝) |𝑝 ∈ 𝑃 } // Algorithm 4

4 𝐶 ⇐ Integrate𝐶′

5 𝑊 ⇐ Merge weights based on𝐶

6 𝐶∗ ⇐ 𝐶

C1

C2

C3 C4

C5

C6

0.03

0.04

0.05

0.08

0.06

0.060.05

0.05

All unlabeled distances in the first graph are 0.1;
Edges with distance 0.1 are omitted in all graphs.

C123 C456

0.09

0.08

Partitioning
& Merging

Figure 4: An example that applies PACk to six items. \ = 0.08.
PACk finishes in one iteration.

the other clusters. By comparing the distance bounds, we guarantee

to always merge mutual nearest pairs.

(3) Integration. The output clusters of the distance-aware merg-

ing need to be integrated because there may be overlapping clusters.

Aswe prove in Theorem 2, every cluster in the output of Algorithm 4

is a correct merge of a mutual nearest pair. Therefore, if two clusters

in the output overlap, one must be the superset of the other. Then

the integration algorithm keeps the maximal clusters, i.e. those that

are not a strict subset of any other cluster.

(4) Graph Update. For each merged cluster, we assign the new

label to all its members using a join. Then we aggregate the edges

between any two clusters to calculate sum and average distances.

Figure 4 is an example that applies PACk to the same input of

Example 2. It finishes in one iteration as wewill see in the remainder

of Section 3.

Next, we start with the distance-aware merging in Section 3.3,

which is a natural extension of the centralized AHC algorithm and

allows us to do merge on a partial graph (i.e., a partition). Then, we

describe the partitioning algorithm to partition a given graph in

Section 3.4.

3.3 Distance-Aware Merging
We start with the distance-aware merging algorithm that takes

a partition as input and outputs merged clusters. It requires dis-

tance bounds as input for each partition, which will be explained

in Section 3.4. Developing a merging algorithm that works for a

partition and guarantees correctness is challenging because (a) a

partition is usually limited by size to fit into a VM’s memory, and

(b) in one iteration, each partition cannot know the change outside

this partition.

We develop a Distance-Aware Merging algorithm that tracks

distance bounds to address the above challenges. First, for each

cluster𝐶𝑖 in a partition, instead of requiring that all its edges reside

in memory, we only require its nearest neighbors to form an edge

list L(𝐶𝑖) defined below, so that the memory size per partition

1135

can be limited. Second, we convert each distance from a scalar to a

range, so that the edges outside the partition (i.e. ∉ L(𝐶𝑖)) can be

represented by a wildcard edge indicating the lower bound of their

distances to 𝐶𝑖 . By leveraging the bounds, we are able to safely

detect when two clusters are mutually nearest.

Specifically, we defineL(𝐶𝑖) as the list of nearest neighbors of𝐶𝑖 ,
whose size limit is a configurable parameter. For each 𝐶 𝑗 ∈ L(𝐶𝑖),
we define 𝑏𝐿 (𝐶𝑖 ,𝐶 𝑗) and 𝑏𝑈 (𝐶𝑖 ,𝐶 𝑗) as the lower and upper bounds
of 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) respectively. 𝑏𝐿 (𝐶𝑖 ,𝐶 𝑗) and 𝑏𝑈 (𝐶𝑖 ,𝐶 𝑗) are initial-

ized to 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗). In addition to the above bounds, we always

automatically attach a special wildcard 𝐶∗
𝑖
into L(𝐶𝑖). Its lower

bound 𝑏𝐿 (𝐶𝑖 ,𝐶∗
𝑖
) indicates that all remaining neighbors are beyond

distance 𝑏𝐿 (𝐶𝑖 ,𝐶∗
𝑖
). Its 𝑏𝑈 (𝐶𝑖 ,𝐶∗

𝑖
) is an application-specific large

value (e.g.,∞) indicating the upper bound.

By the definition of Average-linkage in Section 2.2, we can com-

pute the distance between 𝐶𝑖 𝑗 and any other 𝐶𝑥 as

𝑑𝑖𝑠𝑡 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥) · |𝐶𝑖 | |𝐶𝑥 | + 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥) · |𝐶 𝑗 | |𝐶𝑥 |(

|𝐶𝑖 | + |𝐶 𝑗 |
)
· |𝐶𝑥 |

=
𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑥) · |𝐶𝑖 | + 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑥) · |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

Similarly, we compute the bounds in three cases:

(1) If a neighbor 𝐶𝑥 exists in both L(𝐶𝑖) and L(𝐶 𝑗), we can

precisely compute the bounds as:

𝑏𝐿 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑏𝐿 (𝐶𝑖 ,𝐶𝑥) |𝐶𝑖 | + 𝑏𝐿 (𝐶 𝑗 ,𝐶𝑥) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

𝑏𝑈 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑏𝑈 (𝐶𝑖 ,𝐶𝑥) |𝐶𝑖 | + 𝑏𝑈 (𝐶 𝑗 ,𝐶𝑥) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

(2) If a neighbor 𝐶𝑥 exists in only one edge list, say, L(𝐶𝑖), we
use the wildcard 𝐶∗

𝑗
for 𝐶 𝑗 :

𝑏𝐿 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑏𝐿 (𝐶𝑖 ,𝐶𝑥) |𝐶𝑖 | + 𝑏𝐿 (𝐶 𝑗 ,𝐶

∗
𝑗
) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

𝑏𝑈 (𝐶𝑖 𝑗 ,𝐶𝑥) =
𝑏𝑈 (𝐶𝑖 ,𝐶𝑥) |𝐶𝑖 | + 𝑏𝑈 (𝐶 𝑗 ,𝐶

∗
𝑗
) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

(3) If a neighbor 𝐶𝑥 does not exist in any edge list, we use the

wildcard edge (𝐶𝑖 𝑗 ,𝐶∗
𝑖 𝑗
) to represent it. The bounds can be

derived from edge (𝐶𝑖 ,𝐶∗
𝑖
) and (𝐶 𝑗 ,𝐶

∗
𝑗
):

𝑏𝐿 (𝐶𝑖 𝑗 ,𝐶∗
𝑖 𝑗) =

𝑏𝐿 (𝐶𝑖 ,𝐶∗
𝑖
) |𝐶𝑖 | + 𝑏𝐿 (𝐶 𝑗 ,𝐶

∗
𝑗
) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

𝑏𝑈 (𝐶𝑖 𝑗 ,𝐶∗
𝑖 𝑗) =

𝑏𝑈 (𝐶𝑖 ,𝐶∗
𝑖
) |𝐶𝑖 | + 𝑏𝑈 (𝐶 𝑗 ,𝐶

∗
𝑗
) |𝐶 𝑗 |

|𝐶𝑖 | + |𝐶 𝑗 |

We keep merging clusters within the partition as long as (1)

we can find a pair of mutual nearest neighbor (𝐶𝑖 ,𝐶 𝑗); and (2)

the upper bound of 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) (i.e., 𝑏𝑈 (𝐶𝑖 ,𝐶 𝑗)) is no greater than

\ . Algorithm 4 shows more detail. It takes a partition 𝑃ℎ and a

threshold \ as input. 𝑃ℎ consists of a set of clusters Cℎ and the edge

lists of the clusters {L(𝐶𝑖) |𝐶𝑖 ∈ Cℎ}. It generates a set of clusters
𝐶𝑜𝑢𝑡 as output.

Algorithm 4: Distance-aware Merging for Each Partition

Input: Single partition 𝑃ℎ = (Cℎ, {L(𝐶𝑖) |𝐶𝑖 ∈ Cℎ }) ; Threshold \
Output: Clusters𝐶𝑜𝑢𝑡

/* Compute in memory */

1 𝐺 ⇐ Build a graph from 𝑃ℎ
2 for𝐶𝑖 ∈ Cℎ do
3 𝑁𝑁 (𝐶𝑖) ⇐𝐶𝑖 ’s nearest neighbor whose upper bound is smaller than

the lower bounds of other𝐶𝑖 ’s neighbors; 𝑛𝑢𝑙𝑙 if non-existent

4 while 𝑡𝑟𝑢𝑒 do
5 if

∃(𝐶𝑖 ,𝐶 𝑗) : (𝑁𝑁 (𝐶𝑖) = 𝐶 𝑗) ∧ (𝑁𝑁 (𝐶 𝑗) = 𝐶𝑖) ∧ (𝑏𝑈 (𝐶𝑖 ,𝐶 𝑗) ≤ \)
then

6 Merge𝐶𝑖 with𝐶 𝑗 , and update G and 𝑁𝑁 (·)
7 else
8 break

9 𝐶𝑜𝑢𝑡 ⇐Merged clusters in𝐺

Figure 5: Example of hub radius, in which 𝑟ℎ𝑢𝑏 (𝐶ℎ) = 𝑟 (𝐶𝑥1)+
𝑑𝑖𝑠𝑡 (𝐶𝑥1 ,𝐶ℎ).

3.4 Partitioning
In Section 3.3, we show how distance bounds work in distance-

aware merging. Next we show how to partition a graph and obtain

distance bounds. A partitioning algorithm such as a random par-

titioning, puts random clusters together in each partition, which

likely cannot be merged, thereby rendering it ineffective. Therefore,

an effective partitioning algorithm must be carefully designed to

let the distance-aware merging perform as many merges as possi-

ble for each partition. Intuitively, we want to place clusters with

their nearest neighbors together in the same partition, so that more

merges can happen locally within that partition. We show in Sec-

tion 4 that a carefully designed partitioning algorithm needs no

more than half the number of iterations of MutualNN, which signif-

icantly improves the efficiency. We first present the distance-based

partitioning Algorithm 5 to illustrate the key idea, and then we

present Algorithm 6 that refines Algorithm 5 to allow it to work in

practice with the memory constraint of a compute node.

Intuitively, Algorithm 5 puts clusters with their nearest neigh-

bors together to let the merging algorithm perform as many merges

as possible. Specifically, Algorithm 5 focuses on clusters that have

mutual nearest neighbors (i.e., hubs). It creates a partition for each

hub by choosing an appropriate radius that covers many nearest

neighbors but not overlaps other partitions too much.

Algorithm 5 describes the partitioning algorithm. First, it gets a

radius for each cluster𝐶𝑥 (Line 11 to 13). The radius is 10 times the

distance between 𝐶𝑥 and its second nearest neighbor (the number

10 helps us reduce number of iterations as we will see in Section 4.3).

Now, if we create a partition for each cluster with the radius, the

partitions may overlap heavily, and some merges may redundantly

1136

Algorithm 5: Distance-based Partitioning

Input: Cluster graph𝐺 = (𝐶,𝑊) ; Bivariate distance function 𝑑𝑖𝑠𝑡 (·, ·)
Output: Partitions 𝑃
/* Compute in parallel */

1 𝐻𝑢𝑏 ⇐ {𝐶ℎ |𝐶ℎ has a mutual nearest neighbor𝐶′
ℎ
and

𝑙𝑎𝑏𝑒𝑙 (𝐶ℎ) < 𝑙𝑎𝑏𝑒𝑙 (𝐶′
ℎ
) }

2 𝑟ℎ𝑢𝑏 (·) ⇐ CalcRadius (𝐺,𝐻𝑢𝑏,𝑑𝑖𝑠𝑡 (·, ·)) // Defined below

3 foreach𝐶ℎ ∈ 𝐻𝑢𝑏 do
4 Cℎ ⇐ {𝐶ℎ } ∪ {𝐶𝑥 |𝑤 (𝐶ℎ,𝐶𝑥) ∈𝑊 & 𝑑𝑖𝑠𝑡 (𝐶ℎ,𝐶𝑥) ≤ 𝑟ℎ𝑢𝑏 (𝐶ℎ) }
5 foreach𝐶𝑥 ∈ Cℎ do
6 L(𝐶𝑥) ⇐ {𝑤 (𝐶𝑦 ,𝐶𝑥) |𝑑𝑖𝑠𝑡 (𝐶𝑥 ,𝐶𝑦) ≤ 𝑟ℎ𝑢𝑏 (𝐶ℎ) } ∪ {wildcard

edge for𝐶𝑥 }
7 𝑃ℎ ⇐ (Cℎ, {L(𝐶𝑥) |𝐶𝑥 ∈ Cℎ })

// Each partition 𝑃ℎ is a tuple of cluster set and edge

list set

8 𝑃 ⇐ {𝑃ℎ |𝐶ℎ ∈ 𝐻𝑢𝑏 }
9 return 𝑃

10 Function CalcRadius (𝐺 = (𝐶,𝑊), 𝐻𝑢𝑏,𝑑𝑖𝑠𝑡 (·, ·))
11 foreach𝐶𝑥 ∈ 𝐶 do
12 𝐶𝑦 ⇐ the 2nd nearest neighbor of𝐶𝑥

13 𝑟 (𝐶𝑥) ⇐ 10 · 𝑑𝑖𝑠𝑡 (𝐶𝑥 ,𝐶𝑦)
14 foreach𝐶ℎ ∈ 𝐻𝑢𝑏 do
15 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐶ℎ) ⇐ {𝐶ℎ } ∪ {𝐶𝑥 |𝑤 (𝐶ℎ,𝐶𝑥) ∈𝑊 }
16 𝑟ℎ𝑢𝑏 (𝐶ℎ) ⇐ max

𝐶𝑥 ∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝐶ℎ)
&𝑑𝑖𝑠𝑡 (𝐶ℎ,𝐶𝑥)≤𝑟 (𝐶𝑥)

(
𝑟 (𝐶𝑥) + 𝑑𝑖𝑠𝑡 (𝐶𝑥 ,𝐶ℎ)

)

happen in many partitions. So we control the number of partitions

by focusing on the “hubs” (Line 1
3
). A hub is a cluster that has a

mutual nearest neighbor in 𝐺 , which will be merged because its

radius covers its nearest neighbor. In other words, a partition in-

cluding a hub and its mutual nearest neighbor ensures at least one

merge. Therefore, we keep only hubs’ partitions but increase the

hub radius to cover clusters in other partitions. Specifically, when

a hub 𝐶ℎ is covered by another cluster 𝐶𝑥 ’s radius, we increase the

hub’s radius to cover𝐶𝑥 ’s radius (Line 14 to 16). Then we can safely

ignore all non-hub’s partitions. Note that the hubs’ partitions may

still overlap, but the overlapping space is much smaller and will not

hurt efficiencymuch in practice. Figure 5 shows an example of calcu-

lating the hub’s radius, in which 𝑟ℎ𝑢𝑏 (𝐶ℎ) = 𝑟 (𝐶𝑥1) +𝑑𝑖𝑠𝑡 (𝐶𝑥1 ,𝐶ℎ)
turns out to be the maximum radius for𝐶ℎ . Finally from Line 3 to 7,

for each hub, we collect the clusters within its radius and those

clusters’ nearest neighbors to form their edge lists.

In theory, Algorithm 5 might create very large partitions that

exceeds the memory available on a VM. In order to limit the size of

each partition, we use 𝑘𝑁 to limit the number of nearest neighbors

of hubs, and 𝑘𝐿 to limit the size of edge lists. As a result, we simplify

Algorithm 5 to get the version with size limit (Algorithm 6). For

each hub, it simply gets 𝑘𝑁 nearest neighbors and top 𝑘𝐿 edges.

Example 3 (Partitioningwith Size Limit). Assume 𝑘𝑁 = 𝑘𝐿 =

4 in Algorithm 6. Given the input graph in Figure 4, we find 2 hubs
{𝐶1,𝐶4}.

𝐶1 forms a partition 𝑃1 with its nearest 4 neighbors𝐶3,𝐶2,𝐶6, and
𝐶4. When 𝑃1 is passed to Algorithm 4, 𝐶1 and 𝐶3 are firstly merged

3
Hubs can be efficiently detected through a relational group-by query and then a

self-join. The group-by scans the graph whose size is |𝑊 |. Again, |𝑊 | ≪ |𝐶 |2 in
practice because users usually remove pairs with long distances. The self-join only

joins a table of nearest neighbors of size |𝐶 |.

Algorithm 6: Partitioning with Size Limit

Input: Cluster graph𝐺 = (𝐶,𝑊) ; Bivariate distance function
𝑑𝑖𝑠𝑡 (·, ·) ; Neighbor limit 𝑘𝑁 ; Edge list limit 𝑘𝐿

Output: Partitions 𝑃
/* Compute in parallel */

1 𝐻𝑢𝑏 ⇐ {𝐶ℎ |𝐶ℎ has a mutual nearest neighbor𝐶′
ℎ
and

𝑙𝑎𝑏𝑒𝑙 (𝐶ℎ) < 𝑙𝑎𝑏𝑒𝑙 (𝐶′
ℎ
) }

2 foreach𝐶ℎ ∈ 𝐻𝑢𝑏 do
3 Cℎ ⇐ {𝐶ℎ } ∪ {top 𝑘𝑁 neighbors in𝑊 }
4 foreach𝐶𝑥 ∈ Cℎ do
5 L(𝐶𝑥) ⇐ {top 𝑘𝐿 neighbors’ weights in𝑊 } ∪ {wildcard

edge for𝐶𝑥 }
6 𝑃ℎ ⇐ (Cℎ, {L(𝐶𝑥) |𝐶𝑥 ∈ Cℎ })

// Each partition 𝑃ℎ is a tuple of cluster set and

edge list set

7 𝑃 ⇐ {𝑃ℎ |𝐶ℎ ∈ 𝐻𝑢𝑏 }

to get 𝐶13. Then 𝐶13 and 𝐶2 become mutual nearest and are merged
into 𝐶123.

𝐶4 forms a partition 𝑃4 with its nearest 4 neighbors𝐶5,𝐶6,𝐶3, and
𝐶1. When 𝑃4 is passed to Algorithm 4,𝐶1 and𝐶3 are merged first and
𝑑𝑖𝑠𝑡 (𝐶13,𝐶6) are updated to 0.065. So 𝐶6’s nearest neighbor becomes
𝐶4 and is no longer blocked by𝐶1. Then𝐶4 and𝐶5 are merged to𝐶45.
Finally 𝐶6 and 𝐶45 are merged to 𝐶456.

In summary, Algorithm 6 creates two partitions 𝑃1 and 𝑃4, which
are passed to Algorithm 4 to generate 𝐶123 and 𝐶456 respectively. The
whole process ends in one iteration.

Discussion of 𝑘𝑁 and 𝑘𝐿 . In practice, moderate 𝑘𝑁 and 𝑘𝐿 in a

wide range like [50, 500] should work reasonably well as we will

see in experiments in Section 5.3. If 𝑘𝑁 and 𝑘𝐿 are too large, it can

adversely affect performance because too many distant neighbors

are scanned and shuffled without increasing the number of merges

in each iteration. Another benefit of using moderate 𝑘𝑁 and 𝑘𝐿
is to balance the load. For instance, when 𝑘𝑁 = 𝑘𝐿 = 500, the

worst-case space of each partition is only around 10 MB (𝑂 (𝑘𝑁𝑘𝐿 ·
𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒)), and the worst-case time to cluster a partition is only

around 10 milliseconds (𝑂 (𝑘𝑁𝑘𝐿 · log(𝑘𝑁𝑘𝐿))). In such case, no

partition can become a straggler.

4 ANALYSIS OF CORRECTNESS AND
PERFORMANCE

In this section we first prove the correctness of PACk and then ana-

lyze the performance of the algorithms. Specifically, We propose a

Cluster Directed Acyclic Graph (DAG) in Section 4.1 to prove the

correctness of PACk. In Section 4.2 and 4.3, we use the DAG to prove

that the number of iterations of PACk is half of MutualNN’s. In Sec-

tion 4.4, we use a simplified cost model to show the performance of

PACk is better than MutualNN in an example deduplication scenario.

4.1 Cluster DAG and Correctness
Intuitively, we prove the correctness by showing that every cluster

we generate must be a merge of two mutual nearest neighbors. It

is consistent with the Centralized AHC (Algorithm 1), which also

always merges two mutual nearest neighbors.

1137

We propose a Cluster Directed Acyclic Graph (DAG) that helps

usmodel the number of iterations, which is necessary for estimating

the data shuffle cost and running time. Note that our algorithm

never explicitly constructs the DAG during execution. The DAG

below is only conceptual and for our performance analysis.

Given the set of initial singleton clusters𝐶 , the function 𝑑𝑖𝑠𝑡 (·, ·),
and the threshold \ , the DAG 𝐷 = (C , 𝐸) is constructed based

on the execution of Algorithm 1. Specifically, we define Initial
Clusters as the clusters given in the input graph, define Merged
Clusters as those merged by Algorithm 1 in all iterations (i.e. 𝐶𝑖 𝑗 in

Line 3 of Algorithm 1), and define set C as the union of all Initial
Clusters and all Merged Clusters. We further define the following

functions to help our presentation below: (i) For eachMerged cluster

𝐶𝑥 , we denote its two direct subclusters by 𝐶𝐿 (𝐶𝑥) and 𝐶𝑅 (𝐶𝑥).
Also, we call 𝐶𝑥 as the “parent” 𝐶𝑃 (.) of its two direct subclusters.

E.g., 𝐶𝑃 (𝐶𝐿 (𝐶𝑥)) = 𝐶𝑥 and 𝐶𝑃 (𝐶𝑅 (𝐶𝑥)) = 𝐶𝑥 . (ii) If a cluster

is merged with another, we define them as “siblings” 𝐶𝑆 (.). For
example, 𝐶𝑆 (𝐶𝐿 (𝐶𝑥)) = 𝐶𝑅 (𝐶𝑥) and 𝐶𝑆 (𝐶𝑅 (𝐶𝑥)) = 𝐶𝐿 (𝐶𝑥). For
simplicity, we let 𝐶𝐿 (𝐶𝑥) = 𝐶𝐿

𝑥 , 𝐶
𝑅 (𝐶𝑥) = 𝐶𝑅

𝑥 , 𝐶
𝑃 (𝐶𝑥) = 𝐶𝑃

𝑥 ,

and 𝐶𝑆 (𝐶𝑥) = 𝐶𝑆
𝑥 hereafter when the context is clear. Also, we

abbreviate nested functions such as 𝐶𝐿 (𝐶𝑅 (𝐶𝑥)) = 𝐶𝐿𝑅
𝑥 hereafter.

The edge set 𝐸 captures all the dependencies of merges. Specif-

ically, a directed edge (𝐶𝑥 ,𝐶𝑦) means that 𝐶𝑥 must be generated

before 𝐶𝑦 is generated. There are two types of edges: “Subset De-

pendency” and “Weight Dependency”.

Definition 2 (Subset Dependency Edge). For eachMerged clus-
ter𝐶𝑥 , we define two subset dependency edges (𝐶𝐿

𝑥 ,𝐶𝑥) and (𝐶𝑅
𝑥 ,𝐶𝑥).

Intuitively, Subset Dependency means that 𝐶𝐿
𝑥 and 𝐶𝑅

𝑥 must be

the prerequisites of 𝐶𝑥 .

Definition 3 (Weight Dependency Edge). For each pair of
Merged clusters 𝐶𝑥 and 𝐶𝑦 that satisfies 𝐶𝑥 ∩𝐶𝑦 = ∅, we build an
edge (𝐶𝑥 ,𝐶𝑦) if and only if:

∃𝐶 ′
𝑦 ∈ {𝐶𝐿

𝑦,𝐶
𝑅
𝑦 },𝐶 ′

𝑥 ∈ {𝐶𝐿
𝑥 ,𝐶

𝑅
𝑥 } :

𝑤 (𝐶 ′
𝑦,𝐶

′
𝑥) < 𝑤 (𝐶𝐿

𝑦,𝐶
𝑅
𝑦)

Each Weight Dependency (𝐶𝑥 ,𝐶𝑦) means that 𝐶𝑦 cannot be

generated yet because 𝐶 ′
𝑦 ’s nearest neighbor is 𝐶

′
𝑥 instead of its

sibling 𝐶𝑆 (𝐶 ′
𝑦).

One can view the DAG as one or more binary trees (i.e. dendro-

grams) plus extra edges: all Initial/Merged clusters and the Subset

Dependency edges form one or more binary trees, and the Weight

Dependency are the extra edges.

Example 4 (Cluster DAG). Figure 6 is the Cluster DAG of Exam-
ple 2. 𝐶1 to 𝐶6 are the Initial singleton clusters. 𝐶13, 𝐶45, 𝐶123, and
𝐶456 are Merged clusters.

The solid lines represent Subset Dependency, which in fact form two
binary trees (i.e., dendrograms) of the clustering process. For instance,
𝐶𝐿 (𝐶13) = 𝐶1, 𝐶𝑅 (𝐶13) = 𝐶3, 𝐶𝑃 (𝐶13) = 𝐶123, and 𝐶𝑆 (𝐶13) = 𝐶2.

The dashed lines representWeight Dependency.Weight Dependency
(𝐶13, 𝐶456) is because 𝐶6’s nearest neighbor has been 𝐶1 until the
merge (i.e., generation) of 𝐶13.

Theorem 1. The constructed DAG 𝐷 does not have cycles.

In order to prove Theorem 1 and to facilitate our following anal-

ysis, we define a few concepts.

C123 C456

C13 C45

C1 C3 C2 C4 C5 C6

Figure 6: The Cluster DAG
of Example 2. Solid lines
are subset dependency.
Dashed lines are weight
dependency.

•••

Figure 7: Illustration
of the proof of Theo-
rem 1. A cycle will lead to
𝑤 (𝐶𝐿

𝑥1
,𝐶𝑅

𝑥1
) < 𝑤 (𝐶𝐿

𝑥2
,𝐶𝑅

𝑥2
) < ...

< 𝑤 (𝐶𝐿
𝑥𝑚

,𝐶𝑅
𝑥𝑚

) < 𝑤 (𝐶𝐿
𝑥1
,𝐶𝑅

𝑥1
),

contradiction.

C123 C456

C13 C45

C1 C3 C2 C4 C5 C6

Frontier

C123 C456

C13 C45

C2 C6

Frontier

C123 C456

Frontier

Figure 8: The change of Frontier in Example 5.

Definition 4 (Generated/Ungenerated Clusters). At the
beginning of an algorithm’s iteration (i.e. Line 1 of Algorithm 1 or
Line 1 of Algorithm 3), a cluster in C is a Generated Cluster if it
is an initial cluster or is already generated through merging by the
algorithm. Otherwise, it is an Ungenerated Cluster.

Definition 5 (Frontier). At the beginning of an algorithm’s
iteration, a Frontier 𝐹 is the set of clusters such that each cluster
𝐶𝑥 ∈ 𝐹 satisfies both conditions below:

• 𝐶𝑥 is a Generated Cluster.
• 𝐶𝑥 does not have parent 𝐶𝑃

𝑥 , or 𝐶𝑃
𝑥 is an Ungenerated Cluster.

In other words, the frontier is the “snapshot” of the clusters at

the beginning of each iteration in the algorithm.

Example 5 (Generated/Ungenerated Clusters and Fron-

tier). Given Example 2, suppose a clustering algorithm finishes in
two iterations. The first iteration generates 𝐶13 and 𝐶45. The second
iteration generates 𝐶123 and 𝐶456.

Figure 8 shows how the frontier changes.
Initially, only {𝐶1,𝐶2, ...,𝐶6} are Generated, which form the fron-

tier. After the first iteration,𝐶13 and𝐶45 are Generated. So the frontier
becomes {𝐶13,𝐶2,𝐶45,𝐶6}. After the second iteration, all clusters are
Generated. The frontier becomes {𝐶123,𝐶456}.

Now we can prove Theorem 1 by contradiction (Figure 7). The

idea is to show that (1) Any cluster𝐶𝑥 in the cycle must be a Merged

cluster; (2) Each edge (𝐶𝑥 ,𝐶𝑦) in a cycle satisfy 𝑤 (𝐶𝐿
𝑥 ,𝐶

𝑅
𝑥) <

𝑤 (𝐶𝐿
𝑦,𝐶

𝑅
𝑦), leading to a contradiction that𝑤 (𝐶𝐿

𝑥 ,𝐶
𝑅
𝑥) < 𝑤 (𝐶𝐿

𝑥 ,𝐶
𝑅
𝑥)

as we go through the cycle. The detailed proof is in [55].

4.1.1 Correctness. After defining the set of all clusters C , we can

prove the correctness of our algorithm.

Theorem 2. The output of Algorithm 3 is the same as that of
Algorithm 1.

1138

Frontier

Figure 9: 𝑙𝑒𝑛(·, 𝐹) Examples:
𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1 and 𝑙𝑒𝑛(𝐶𝑦, 𝐹)
= 2.

…

Frontier

…

Figure 10: When 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) =
1, 𝐶𝐿

𝑥 and 𝐶𝑅
𝑥 must be mutual

nearest neighbors in 𝐹 .

Proof. (Sketch) We prove that (A) every Merged cluster in Algo-

rithm 3 is in the DAG, and that (B) every cluster with 0 out-degree

in the DAG is generated by Algorithm 3.

(A) All Merged clusters are generated in Line 6 of Algorithm 4,

which guarantees that 𝐶𝑖 and 𝐶 𝑗 are mutual nearest. Therefore, 𝐶𝑖
and 𝐶 𝑗 can be safely merged, because any merge of other clusters

won’t change the fact that 𝐶𝑖 and 𝐶 𝑗 are mutual nearest neighbors

[13, 38]. In addition, when integrating generated clusters (Line 4

in Algorithm 3), we only remove cluster and do not generate extra

clusters. So every Merged cluster in Algorithm 3 is in C .

(B) We prove by contradiction. Suppose there exists a cluster

with 0 out-degree in the DAG and it is not generated by Algorithm 3.

We check all its direct dependents. There are two cases:

(1) All its dependents are generated.

(2) At least one dependent is ungenerated. Let it be 𝐶𝑥 . Then

we check the dependents of 𝐶𝑥 .

We keep checking the dependents of the ungenerated cluster un-

til all dependents are generated. This process should always stop

because all Initial clusters are Generated by definition.

When we find the ungenerated𝐶𝑥 whose dependents are all gen-

erated, its direct children 𝐶𝐿
𝑥 and 𝐶𝑅

𝑥 must be mutual nearest in the

graph because 𝐶𝑥 ’s dependents are all generated (by Definition 3).

Then the partitioning algorithm should build a partition for 𝐶𝐿
𝑥

and 𝐶𝑅
𝑥 , and Line 6 of Algorithm 4 should generate 𝐶𝑥 = 𝐶𝐿

𝑥 ∪𝐶𝑅
𝑥 .

Contradiction.
So every cluster with 0 out-degree in the DAG is generated by

Algorithm 3. □

4.2 Number of Iterations of MutualNN
We define length to facilitate our proofs below. Note that length

is defined only on the DAG, which is irrelevant to the distance

function. We define 𝑙𝑒𝑛(𝐶𝑥) as the longest distance from any Initial
cluster to 𝐶𝑥 ∈ C , and 𝑙𝑒𝑛𝑚𝑎𝑥 = max𝐶𝑥 ∈C (𝑙𝑒𝑛(𝐶𝑥)).

Example 6 (Length from Initial Cluster). In the DAG in Fig-
ure 6, 𝑙𝑒𝑛(𝐶1) = 𝑙𝑒𝑛(𝐶2) = ... = 𝑙𝑒𝑛(𝐶6) = 0, 𝑙𝑒𝑛(𝐶13) = 𝑙𝑒𝑛(𝐶45) =
1, and 𝑙𝑒𝑛(𝐶123) = 𝑙𝑒𝑛(𝐶456) = 2. So 𝑙𝑒𝑛𝑚𝑎𝑥 = 2.

Given a frontier 𝐹 and an Ungenerated cluster 𝐶𝑥 , we define

𝑙𝑒𝑛(𝐶𝑥 , 𝐹) as the distance between 𝐹 to 𝐶𝑥 . Formally, let 𝑝𝑎 =

(𝐶𝑧 , ...,𝐶𝑥) be a valid path from𝐶𝑧 to𝐶𝑥 where only the first cluster
𝐶𝑧 is in 𝐹 (i.e. 𝐹 ∩ 𝑝𝑎 = {𝐶𝑧 }). Let 𝑃𝐴 be the set of such paths.

𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = max𝑝𝑎∈𝑃𝐴 (length of 𝑝𝑎), i.e., the maximum length of

these paths.

Example 7. Figure 9 is an example where Frontier 𝐹 =

{𝐶𝑧 ,𝐶𝐿
𝑥 ,𝐶

𝑅
𝑥 }.

C1

C2

C3 C4

C5

C6

0.03

0.04

0.05

0.08

0.06

0.060.05

0.05

All unlabeled distances in the first graph are 0.1;
Edges with distance 0.1 are omitted in all graphs.

C13

C2

C6

0.065

0.06

0.05

C45

C123 C456

0.09

0.08

0.095

Figure 11: An example that applies MutualNN to six items. \ =

0.08. MutualNN finishes in two iterations.

Regarding𝐶𝑥 , there are three valid paths in 𝑃𝐴: (𝐶𝑧 ,𝐶𝑥), (𝐶𝐿
𝑥 ,𝐶𝑥),

and (𝐶𝑅
𝑥 ,𝐶𝑥). So 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1. Note that (𝐶𝑧 ,𝐶𝐿

𝑥 ,𝐶𝑥) is not a valid
path in 𝑃𝐴 because the second cluster 𝐶𝐿

𝑥 is also in 𝐹 , violating the
definition.

Regarding 𝐶𝑦 , there are four valid paths in 𝑃𝐴: (𝐶𝑧 ,𝐶𝑦),
(𝐶𝑧 ,𝐶𝑥 ,𝐶𝑦), (𝐶𝐿

𝑥 ,𝐶𝑥 ,𝐶𝑦), and (𝐶𝑅
𝑥 ,𝐶𝑥 ,𝐶𝑦). So 𝑙𝑒𝑛(𝐶𝑦, 𝐹) = 2.

Theorem 3. Given a dataset, the number of iterations of MutualNN
is 𝑙𝑒𝑛𝑚𝑎𝑥 of the DAG.

The idea is to prove that each iteration of MutualNN generates
all clusters 𝐶𝑥 with 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1. Before that, we need to prove a

lemma:

Lemma 1. Given a Merged cluster𝐶𝑥 whose direct children are𝐶𝐿
𝑥

and 𝐶𝑅
𝑥 , if there exists a 𝐶𝑦 such that 𝑤 (𝐶𝑦,𝐶

𝐿
𝑥) < 𝑤 (𝐶𝐿

𝑥 ,𝐶
𝑅
𝑥) OR

𝑤 (𝐶𝑦,𝐶
𝑅
𝑥) < 𝑤 (𝐶𝐿

𝑥 ,𝐶
𝑅
𝑥), the DAG must have a path including two

edges (𝐶𝑦,𝐶
𝑃
𝑦) and (𝐶𝑃

𝑦 ,𝐶𝑥).

The lemma above means, if 𝐶𝑦 is closer to any of 𝐶𝑥 ’s children

than the child’s sibling, there must be a path from 𝐶𝑦 to its parent

𝐶𝑃
𝑦 to 𝐶𝑥 . The detailed proof is in [55].

Now we can prove Theorem 3.

Proof. In each iteration, given a 𝐶𝑥 that satisfies 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) =
1, 𝐶𝐿

𝑥 and 𝐶𝑅
𝑥 must be mutual nearest in 𝐹 . Otherwise, if there

exists a 𝐶𝑦 ∈ 𝐹 that is closer to 𝐶𝐿
𝑥 (or 𝐶𝑅

𝑥), there should be a path

(𝐶𝑦,𝐶𝑃
𝑦 ,𝐶𝑥) according to Lemma 1. Since 𝐶𝑦 ∈ 𝐹 , 𝐶𝑃

𝑦 must be

Ungenerated, resulting in 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) ≥ 2, violating 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1,

contradiction. So 𝐶𝑥 will be generated when 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1.

So after iteration 𝑡 , MutualNN generates all the clusters with

𝑙𝑒𝑛(𝐶𝑥) ≤ 𝑡 . Therefore, MutualNN generates the whole DAG after

𝑙𝑒𝑛𝑚𝑎𝑥 iterations, which is the length of the longest paths. □

Example 8 (MutualNN). Figure 11 is an example that applies
MutualNN to six items. It takes two iterations, which equals the length
of the longest paths in Cluster DAG in Figure 6.

4.3 Number of Iterations of PACk
In this section, we assume metric space in which the distance func-

tion satisfies triangle inequality, then we can prove that our algo-

rithm takes much fewer iterations than MutualNN. But note that
metric space is not a requirement of the correctness of PACk.

First we prove that, if the 𝑑𝑖𝑠𝑡 (·, ·) between individual items

satisfy triangle inequality, the 𝑑𝑖𝑠𝑡 (·, ·) between clusters also satisfy
triangle inequality in Average-Linkage.

Theorem 4. 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶𝑘) ≤ 𝑑𝑖𝑠𝑡 (𝐶𝑖 ,𝐶 𝑗) + 𝑑𝑖𝑠𝑡 (𝐶 𝑗 ,𝐶𝑘)

1139

Frontier

Distance Subset Dep. Weight Dep.

Figure 12:When 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 2,𝐶𝑥 ’s children are not in 𝐹 , and
𝐶𝐿𝐿
𝑥 ’s nearest neighbor in 𝐹 is 𝐶𝑦 , Algorithm 3 will generate

𝐶𝑥 . (Double lines indicate distances.)

We prove it by enumerating the distances (detail in [55]).

Theorem 5. Algorithm 3 finishes in ⌈𝑙𝑒𝑛𝑚𝑎𝑥/2⌉ iterations when
it uses the Distance-based Partitioning (Algorithm 5) and 𝑑𝑖𝑠𝑡 (·, ·) is
a metric.

Similar to the proof for MutualNN, we can prove that each itera-

tion in Algorithm 3 generates all clusters 𝐶𝑥 with 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) ≤ 2.

Lemma 2. In each iteration, Algorithm 3 generates all clusters 𝐶𝑥
that satisfy 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) ≤ 2 where 𝐹 is the frontier.

Now we can prove Lemma 2 as the following proof sketch. More

detail is in [55].

Proof. (Sketch) When 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 1 (Figure 10), similar to the

proof of MutualNN, 𝐶𝐿
𝑥 and 𝐶𝑅

𝑥 must be mutual nearest neighbors

in 𝐹 . Then 𝐶𝑥 will be generated in the iteration.

When 𝑙𝑒𝑛(𝐶𝑥 , 𝐹) = 2, depending on whether 𝐶𝑥 ’s children are

in 𝐹 , there are three cases. In each case, we will prove that 𝐶𝑥 ’s de-

pendents will be in𝐶𝑥 ’s partition so that𝐶𝑥 ’s children will become

mutual nearest and be merged. The detailed proof is in [55].

Here we briefly present one situation in Case (3), which shows

why we set the radius to 10 times the distance between𝐶𝐿𝐿
𝑥 and its

second nearest neighbor. In Case (3), when 𝐶𝐿𝐿
𝑥 ’s second nearest

neighbor is not𝐶𝑅
𝑥 ’s child. Let𝐶

𝐿𝐿
𝑥 ’s second nearest neighbor be𝐶𝑦 ,

and 𝑑𝑖𝑠𝑡 (𝐶𝐿𝐿
𝑥 ,𝐶𝑦) = 𝑑 . Then we can bound many distances as in

Figure 12. The longest distance is 𝑑𝑖𝑠𝑡 (𝐶𝐿𝐿
𝑥 ,𝐶𝑆

𝑖
) ≤ 10𝑑 , where𝐶𝑆

𝑖
is

a cluster whose parent 𝐶𝑃
𝑖
has a weight dependency (𝐶𝑃

𝑖
,𝐶𝑥). □

Using Lemma 2, we now prove Theorem 5.

Proof. (Sketch)We can prove by induction that, in 𝑖-th iteration,

Algorithm 3 generates clusters 𝐶𝑥 with 𝑙𝑒𝑛(𝐶𝑥) ≤ 2𝑖 . So in the

⌈𝑙𝑒𝑛𝑚𝑎𝑥/2⌉-th iteration, all clusters are generated. □

We now derive the following corollary for Algorithm 6.

Corollary 1. If 𝑑𝑖𝑠𝑡 (·, ·) is a metric, and 𝑘𝑁 and 𝑘𝐿 are large
enough that every |Cℎ | and |L(𝐶𝑥) | in Algorithm 6 are no less than
the corresponding |Cℎ | and |L(𝐶𝑥) | in Algorithm 5 respectively, Al-
gorithm 3 using Partitioning with Size Limit (Algorithm 6) finishes in
⌈𝑙𝑒𝑛𝑚𝑎𝑥/2⌉ iterations.

4.4 Simplified Cost Model
In this section, we develop a simplified cost model for the running

time 𝜏 in the distributed system, and then compare the cost of

MutualNN and PACk.
We define 𝜏 as the sum of running time of all iterations:

𝜏 =
∑
#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝑖=1 (𝜏𝑠 (𝐺𝑖) + 𝜏𝑐 (𝐺𝑖))

In Iteration 𝑖 , where𝐺𝑖 is the input graph, the running time consists

of two main parts: data shuffle time 𝜏𝑠 (𝐺𝑖), and cpu time 𝜏𝑐 (𝐺𝑖).
Following the cost models for distributed systems like Spark [2]

and Hadoop [23, 24] that assume almost uniform distribution of

data
4
, we further define:

𝜏𝑠 (𝐺𝑖) =
𝑠𝑖𝑧𝑒 (𝐺𝑖)

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑝𝑒𝑒𝑑 · #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

where 𝑠𝑖𝑧𝑒 (𝐺𝑖) is the size of the graph in bytes, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑝𝑒𝑒𝑑 is

the number of bytes the system can shuffle in every unit time, and

#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠 is the number of executors; and

𝜏𝑐 (𝐺𝑖) =
𝑜𝑝𝑒𝑟 (𝐺𝑖) · 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

where 𝑜𝑝𝑒𝑟 (𝐺𝑖) is the number of cpu operations to process the

graph and 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the time for each cpu operation. In

practice, #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠 is much less than the number of partitions.

Example Deduplication Scenario. Now we present the cost in

a simplified scenario. Assume a set of original items 𝑆 , each of

which has 𝑑𝑢 duplicates. In practice, each item is very similar to its

duplicates (e.g., distance ≤ 0.05), but its duplicates are less similar

to each other (e.g., distance > 0.05). This is a “hub-spoke” graph

where each original item is a hub and its duplicates are spokes. Each

item and its duplicates can be viewed as a group. To simplify the

analysis, further assume that groups are very different from one

another, which means no edge across groups as their distances are

above the threshold. Let the input graph be𝐺1 with initial singleton

clusters𝐶 (𝐺1) and edge weights𝑊 (𝐺1). So |𝐶 (𝐺1) | = |𝑆 | · (𝑑𝑢 + 1),
and |𝑊 (𝐺1) | = |𝑆 | · (𝑑𝑢+1)𝑑𝑢

2
.

Next, we use the Big Theta (Θ) notation to represent the asymp-

totic complexity.

MutualNN. In each iteration, all duplicates find their nearest

neighbor (NN) as the original item, but the original item’s NN

is only one duplicate. So MutualNN merges only one pair within

each group. Therefore, for the 𝑖-th iteration,𝐶 (𝐺𝑖) = |𝑆 | · (𝑑𝑢+2−𝑖),
and |𝑊 (𝐺𝑖) | = |𝑆 | · (𝑑𝑢+2−𝑖) (𝑑𝑢+1−𝑖)

2
. It takes 𝑑𝑢 iterations to finish.

Each iteration has 3 steps: (1) Find NN through an aggregation. (2)

Find mutual NN through a join of the NN pairs. (3) Merge mutual

NN and their edges. More detailed cost is in [55], and we only

present the total costs here due to space limit:

𝑠𝑖𝑧𝑒 (𝐺𝑖) = Θ((𝑑𝑢 + 2 − 𝑖)2 |𝑆 |) · 𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒
𝑜𝑝𝑒𝑟 (𝐺𝑖) = Θ((𝑑𝑢 + 2 − 𝑖)2 |𝑆 |)

4
We empirically evaluate the performance on skewed data in Section 5.1.

1140

Therefore,

𝜏 =

#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠∑
𝑖=1

(𝜏𝑠 (𝐺𝑖) + 𝜏𝑐 (𝐺𝑖))

=Θ(𝑑𝑢3) |𝑆 | ·
(

𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑝𝑒𝑒𝑑 · #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠 + 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

)
Intuitively, the 𝜏 contains Θ(𝑑𝑢3) |𝑆 | because the graph has

Θ(𝑑𝑢2) |𝑆 | edges initially and has Θ((𝑑𝑢 − 𝑖)2) |𝑆 | edges after the
i-th iteration. The algorithm stops after 𝑑𝑢 iterations, resulting in∑𝑑𝑢
𝑖=1 Θ((𝑑𝑢 − 𝑖)2) |𝑆 | = Θ(𝑑𝑢3) |𝑆 | complexity.

PACk. In practice, since identical items (like “Seattle” vs “Seat-

tle”) are usually aggregated together before clustering happens,

so the number of different duplicates (like “Seattle” vs misspelled

“Seatttle”) is usually very small (e.g., 𝑑𝑢 ≤ 100). Thus, 𝑘𝑁 and 𝑘𝐿
are very likely ≥ 𝑑𝑢, meaning each item and its duplicates end up

in the same partition. So the algorithm finishes in only 1 iteration.

The only iteration has 3 major steps on 𝐺1 (due to space limit,

the detailed minor steps are in [55]): partitioning, distance-aware

merging, and cluster integration with graph update. The total cost

of all steps is:

𝑠𝑖𝑧𝑒 (𝐺1) =Θ(𝑑𝑢2 · |𝑆 |) · 𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒
𝑜𝑝𝑒𝑟 (𝐺1) =Θ(|𝑆 | · (𝑑𝑢2 log𝑑𝑢))

Therefore,

𝜏 =𝜏𝑠 (𝐺1) + 𝜏𝑐 (𝐺1)

=Θ(𝑑𝑢2) |𝑆 | · 𝑠𝑖𝑧𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒

𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑝𝑒𝑒𝑑 · #𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

+ Θ(𝑑𝑢2 log𝑑𝑢) |𝑆 | · 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

#𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

Comparison. PACk is less expensive than MutualNN in both data

shuffle and CPU time in this example. In data shuffle, which is

usually orders of magnitude slower than CPU computation, PACk’s
Θ(𝑑𝑢2) term in complexity saves much more time than MutualNN’s
Θ(𝑑𝑢3). In CPU computation, PACk’s Θ(𝑑𝑢2 log𝑑𝑢) is also better

than MutualNN’s Θ(𝑑𝑢3). The Θ(log𝑑𝑢) term is usually very small

in practice (e.g., ≤ 10), because it is bounded by 𝑘𝑁 and 𝑘𝐿 . So PACk
is more efficient in this example.

In other real-world graphs, the graph structure is more complex

than this example scenario. There could be random edges with long

distances across different groups, which are difficult to be captured

by the cost model. So we present experimental evaluations on the

real-world data to compare the performance. As we will see in

the evaluation, PACk still notably out-performs the state-of-the-art

MutualNN on real-world datasets.

5 EVALUATION
In this section we evaluate PACk’s (1) performance, (2) scalability

and (3) sensitivity to key parameters of the algorithm and compare

it with the state-of-the-art algorithm MutualNN.

Dataset. We evaluated PACk (Section 3) on six real, five modified-

real and one synthetic datasets shown in Table 1.

The six real datasets are Song, Cite, LiveJ, Wiki, Urban, and

Bright. Song and Cite use Jaccard distance and are from the Mag-

ellan Data Repository [8]. Song has the titles, releases, and artist

Table 1: Datasets. Numbers in parentheses are of skewed
data.

Data Type #Items #Edges

Song

Real

1.0M 1.1M

Cite 4.3M 1.9M

LiveJ 4.8M 69.0M

Wiki 1.8M 28.5M

Urban 0.4M 6.5M

Bright 0.8M 24.0M

Real1

Modified-

Real

258.4M (35.4M) 680.4M (20.9M)

Real2 76.8M (10.5M) 358.3M (34.9M)

Real3 19.7M (2.7M) 107.7M (3.2M)

USPS 99.5M (13.6M) 427.4M (39.4M)

IMDB 11.4M (1.6M) 41.0M (1.2M)

FEBRL Synthetic 10.0M (10.0M) 124.7M (11.6M)

names of 1.0M songs. We tokenize each string into a set of tokens,

and then keep the pairs of sets with Jaccard distances ≤ 0.4 to

get 1.1M edges. Cite is the union of Citeseer and DBLP paper ti-

tles containing 4.3M items. Similar to Song, we also tokenize and

keep the pairs with Jaccard distance ≤ 0.4 to get 1.9M edges. LiveJ

and Wiki are large graphs from Stanford Large Network Dataset

Collection [29]. We assign random distances following uniform

distribution in (0, 1] for the edges. LiveJ [1, 30] is an online social

network with 4.8M items and 69.0M edges. Wiki [27, 58] is the

hyperlink network between articles in the most popular categories.

It has 1.8M items and 28.5M edges. Urban and Bright use Euclidean

distance. Urban is a dataset of road accidents within Great Britain ur-

ban areas from the UCI Machine Learning Repository [15]. We keep

pairs within 0.5 km to get a graph with 0.4M items and 6.5M edges.

Bright [5] is a location-based social network dataset from [29]. We

retrieve the distinct locations and keep pairs within 0.5 km to get a

graph with 0.8M items and 24.0M edges.

We additionally use six datasets to freely vary the number of

duplicates, making the task more challenging. They include five

modified-real datasets (Real1, Real2, Real3, USPS, and IMDB) and

one synthetic dataset (FEBRL). The Real1, Real2, and Real3 are pro-

prietary datasets used by three different applications in Microsoft.

They include names, addresses and other contact information of

organizations. USPS is a dataset of addresses in the United States,

from which we extract distinct concatenation of street address,

city, state and zip code. IMDB contains movie data from the Inter-

net Movie Data Base, in particular the Title, Directors and Genres

columns. FEBRL [6] is a synthetic dataset generated using an open

source tool. We extract person name, address, suburb, state, and

postcode columns from it.

We generate duplicates for these six datasets following uniform

and skewed distributions. In the uniform setting, we create 9 similar

items for each original item by inserting or deleting random char-

acters. Then we perform a self-join on the data and keep the pairs

with Jaccard distance ≤ 0.4. As shown in Table 1, the input graphs

has 10.0 to 258.4 million items, with 41.0 to 680.4 million edges. In

the skewed setting, we make the number of duplicates follow the

Zipfian distribution where the exponent= 3. Then we again keep

the pairs with Jaccard distance ≤ 0.4. As shown in the parentheses

in Table 1, the input graphs has 1.6 to 35.4 millions items, with

1.2 to 39.4 million edges. (We also evaluate the performance when

Jaccard distance ≤ 0.2 in the uniform setting in [55].)

1141

0

100

200

300

400

500

600

Song Cite LiveJ Wiki Urban Bright

Ti
m

e
(m

in
u

te
)

Dataset

MutualNN

PACk

*

0

5

10

15

20

Song Cite LiveJ Wiki Urban Bright

Sp
ee

d
-u

p

Dataset

*

Figure 13: PACk is much more efficient than MutualNN on
real datasets; The speed-up ranges from 2.2× to 18.9×. (*:
MutualNN exceeds 10 hours on Bright, meaning the speed-up
on Bright ≥ 14.8×.)

0

50

100

150

200

250

Real1 Real2 Real3 USPS IMDB FEBRL

Ti
m

e
(m

in
u

te
)

Dataset

MutualNN

PACk

0

5

10

15

20

Real1 Real2 Real3 USPS IMDB FEBRL

Sp
ee

d
-u

p

Dataset

Figure 14: PACk is much more efficient than MutualNN on
modified-real and synthetic datasets when number of du-
plicates follows uniform distribution; The speed-up ranges
from 4.4× to 17.4×.

0

50

100

150

200

250

Real1 Real2 Real3 USPS IMDB FEBRL

Ti
m

e
(m

in
u

te
)

Dataset

MutualNN

PACk

0

5

10

15

20

Real1 Real2 Real3 USPS IMDB FEBRL

Sp
ee

d
-u

p

Dataset

Figure 15: PACk is much more efficient than MutualNN on
modified-real and synthetic datasets when number of du-
plicates follows Zipfian distribution; The speed-up ranges
from 6.4× to 19.8×.

Baseline. We compare with the state-of-the-art algorithm that

merges mutual nearest neighbors (MutualNN in Section 2.3) in each

iteration. The idea was proposed in [38] and later simplified and

implemented in [13].

Setting. We conduct experiments on Azure Databricks Spark clus-

ters. The cluster has 16 D8s_v3 virtual machines. Each VM has 8

cores and 32 GB memory, running Apache Spark 2.4.3 and Scala

2.11. The default values of 𝑘𝑁 and 𝑘𝐿 are 500.

5.1 Performance
Our algorithm is more efficient than the state-of-the-art MutualNN
on various datasets. Specifically, we see 2.2× to 18.9× speed-up on

the six real datasets (Figure 13), 4.4× to 17.4× speed-up on the six

modified-real and synthetic datasets in uniform setting (Figure 14),

6.4× to 19.8× speed-up on the modified-real and synthetic datasets

in Zipfian setting (Figure 15).

0

10

20

30

40

50

60

Real1 Real2 Real3 USPS IMDB FEBRL

#I
te

ra
ti

o
n

s

Dataset

MutualNN

PACk

(a)

0E+0

2E+5

4E+5

6E+5

8E+5

Real1 Real2 Real3 USPS IMDB FEBRL

Sh
u

ff
le

 D
at

a
(M

B
)

Dataset

MutualNN

PACk

(b)

Figure 16: PACk is more efficient than MutualNN because (a)
PACk takes fewer iterations; (b) PACk shuffles less data.

0

50

100

150

200

250

300

350

2 4 8 16

Ti
m

e
(m

in
u

te
)

#VM

Real1 Real2 Real3

USPS IMDB FEBRL

Figure 17: PACk scales well to the number of VMs.

(a) (b)

0

10

20

30

40

50

60

2X 4X 6X 8X 10X

Ti
m

e
(m

in
u

te
)

Size (Inreasing #Duplicates)

Real1 Real2 Real3

USPS IMDB FEBRL

0

10

20

30

40

50

60

20% 40% 60% 80% 100%

Ti
m

e
(m

in
u

te
)

Size (Inreasing #Groups)

Real1 Real2 Real3

USPS IMDB FEBRL

Figure 18: PACk scales almost linearly with the size of data in
terms of (a) #duplicates per group; (b) #groups.

PACk is more efficient than MutualNN because PACk finishes in
fewer iterations and shuffles less data. For example, on the six

modified-real and synthetic datasets in uniform setting, PACk takes

only 8.6% to 22.2% of iterations in MutualNN (Figure 16a), and PACk
shuffles 45.2% to 88.2% of the data in MutualNN (Figure 16b).

5.2 Scalability
In this experiment we evaluate the scalability of PACk. We vary the

number of VMs from 2 to 16. As Figure 17 illustrates, PACk scales
well when we vary the number of VMs. For example, on Real1

dataset, the running time using 4 VMs is roughly half the time

using 2 VMs. As we increase the VMs, the curve of running time

flattens. It is because the merges within each iteration are almost

exhaustively parallelized, while the data shuffle between iterations

gradually dominates the running time.

Next, we vary the number of items per duplicate group from 2

to 10 (i.e. duplicates from 1 to 9). As Figure 18a shows, PACk scale
almost linearly with the number of duplicates.

Next, we vary the number of duplicate groups from 20% to 100%

of the original input (fixing the number of items per group at 10).

PACk scale almost linearly with the number of groups (Figure 18b).

5.3 Parameter Sensitivity
In this experiment we study how parameters in PACk impact per-

formance. Recall that, in Algorithm 6, 𝑘𝑁 controls the size of each

1142

(a) (b)

0

20

40

60

80

5 50 500

Ti
m

e
(m

in
u

te
)

kN

Real1 Real2 Real3

USPS IMDB FEBRL

0

50

100

150

200

5 50 500

Ti
m

e
(m

in
u

te
)

kL

Real1 Real2 Real3

USPS IMDB FEBRL

Figure 19: (a) When 𝑘𝐿 = 500, time slightly decreases as 𝑘𝑁
grows because more neighbors are included in a partition;
but increases for overly large 𝑘𝑁 = 1000. (b) When 𝑘𝑁 = 500,
time decreases as 𝑘𝐿 grows because more edges are included
in a partition; but increases for overly large 𝑘𝐿 = 1000.

partition, and 𝑘𝐿 controls the size of each edge lists. We begin by

varying the parameters to see how running time changes.

We first fix 𝑘𝐿 = 500 and vary 𝑘𝑁 in {5, 10, 50, 100, 500, 1000}.
As Figure 19a shows, the running time decreases slightly as 𝑘𝑁
grows, because more neighbors are included in a partition and more

merges can be done. The time then increases slightly for overly

large 𝑘𝑁 = 1000 as too many neighbors only adds the shuffle cost.

We then fix 𝑘𝑁 = 500 and vary 𝑘𝐿 in {5, 10, 50, 100, 500, 1000}. As
Figure 19b shows, the running time decreases as 𝑘𝐿 grows, because

more edges are included in a partition and more merges can be

done. The time then increases slightly for overly large 𝑘𝐿 = 1000

because too many edges only adds the shuffle cost.

6 RELATEDWORK
The study of Agglomerative Hierarchical Clustering (AHC) dates

back to 1950s with a focus on centralized algorithms [21, 26, 28,

39, 40, 49]. The idea is to initially treat each node as a singleton

cluster, and then iteratively merge small clusters into bigger clus-

ters based on their pair-wise distances. When two clusters are

merged, their distance to a third cluster is updated according to

their individual distances. There exist several strategies. For exam-

ple, Single-linkage [22, 48] takes the minimum distance; Complete-

linkage [12] takes the maximum distance; Average-linkage [50]

uses the unweighted or weighted average distance. Others strate-

gies include Minimax [4]. These papers assume a centralized AHC

that stores the graph in memory. They do not scale to large datasets

since they are limited by the compute resources (CPU and memory)

available on a single machine.

Researchers have also developed distributed AHC algorithms. In

2005, Ding and He [13] proposed multi-level hierarchical clustering

(MutualNN), which merges mutually nearest cluster pairs concur-

rently. They proved that MutualNN generates the same result as

centralized AHC as long as the distance function satisfies Cluster

Aggregate Inequality, which is a stronger version of “reducibility

property” [38] proposed in 1980s. Sun et al. [51] implemented AHC

using Map-Reduce. Their algorithm collects top K edges with maxi-

mal weights from worker nodes to the driver node and merges as

many pairs as possible in the centralized driver node. Its scalability

is limited to the data size that can fit in the driver node. As a com-

parison, PACk performs clustering distributedly in worker nodes,

which has better scalability. Zhang et al. [60, 61] solved AHC under

Euclidean distance. They utilize a quad-tree or kd-tree to partition

vertices in the Euclidean space, cluster them within each partition,

and finally merge clusters. Their technique cannot be generalized

to other distance functions like cosine, Jaccard, etc.

Some approximate algorithms reduce the running time by sac-

rificing accuracy. Ma et al. [35] merge multiple clusters in each

iteration as long as their distances are within a predefined thresh-

old. A few papers [9, 10, 31] merge edges whose distances are less

than an increasing threshold in iterations. Tanaseichuk et al. [52]

applies K-means to group items into clusters first and then uses

AHC within each cluster. Gilpin et al. [17] group items in Euclidean

space into buckets and then apply AHC within each bucket. These

approximate algorithms produce different clustering results than

conventional AHC does.

Another line of work focuses on special cases of AHC or spe-

cial computational settings. Single-linkage as a special case of

AHC is similar to the typical minimum spanning tree problem.

Several efficient distributed single-linkage algorithms have been

proposed [3, 25, 42, 45, 56]. Dash et al. [10] proposed an algorithm

using shared memory architecture. Some researchers developed a

parallel AHC on shared-memory [43] or SIMDmachines [32, 33, 46].

Other partitioning strategies exist in some graph systems. For

example, Pregel [36] performs message passing between vertices

to perform computation on a graph. Each vertex and its neighbors

can be viewed as a trivial partition, and its message passing can be

supported as data shuffle on Spark using GraphX [19]. In addition,

Distributed GraphLab [34] performs edge-cut and PowerGraph [18]

performs vertex-cut to partition graphs. These strategies do not

leverage the domain knowledge for AHC such as mutual nearest

neighbors and distance bounds. In comparison, PACk is particularly
designed for AHC and has better performance both analytically

and in practice.

Many academic and industrial tools support centralized AHC.

The examples include MATLAB, R [41], ScikitLearn [44] and

SciPy [53] in Python, etc. Similar to the centralized AHC in the

papers above, the scalability of these tools is limited to the size of

data that can fit in a single node.

7 CONCLUSION
We propose an efficient, distributed agglomerative hierarchical clus-

tering (AHC) algorithm PACk that scales well to large data sets. PACk
derives its efficiency from novel distance-based partitioning and

distance-aware merging techniques that enable significantly more

merges to be performed in parallel, thereby reducing the number of

iterations required as well as the data shuffle cost. We implement

PACk on Spark, and compare it to the state-of-the-art approach. Our

evaluation on several synthetic and real-world datasets including

Microsoft Dynamics 365 shows that PACk achieves consistently

large speedups ranging from 2× to 19× with a median of 9×.

ACKNOWLEDGMENTS
We thank Silu Huang, Wentao Wu, Chi Wang, and Arnd Christian

König for their insightful comments on the paper, and Swapna

Akula, Katchaguy Areekijseree, Meiyalagan Balasubramanian, and

Lengning Liu for their design, implementation, and optimization in

Microsoft Dynamics 365 Customer Insights.

1143

REFERENCES
[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large

social networks: Membership, growth, and evolution. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’06, page 44–54, New York, NY, USA, 2006. Association for Computing

Machinery.

[2] L. Baldacci and M. Golfarelli. A cost model for spark sql. IEEE Transactions on
Knowledge and Data Engineering, 31(5):819–832, 2019.

[3] M. Bateni, S. Behnezhad, M. Derakhshan, M. Hajiaghayi, R. Kiveris, S. Lattanzi,

and V. Mirrokni. Affinity clustering: Hierarchical clustering at scale. In Advances
in Neural Information Processing Systems, pages 6864–6874, 2017.

[4] J. Bien and R. Tibshirani. Hierarchical clustering with prototypes via minimax

linkage. Journal of the American Statistical Association, 106(495):1075–1084, 2011.
[5] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement

in location-based social networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1082–
1090, 2011.

[6] P. Christen. Febrl - an open source data cleaning, deduplication and record

linkage system with a graphical user interface. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, page
1065–1068, 2008.

[7] W. W. Cohen and J. Richman. Learning to match and cluster large high-

dimensional data sets for data integration. In Proc. SIGKDD, page 475–480,

2002.

[8] S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda, Y. Govind, and D. Paulsen.

The magellan data repository. https://sites.google.com/site/anhaidgroup/useful-

stuff/data.

[9] M. Dash, H. Liu, P. Scheuermann, and K. L. Tan. Fast hierarchical clustering and

its validation. Data Knowl. Eng., 44(1):109–138, Jan. 2003.
[10] M. Dash, S. Petrutiu, and P. Scheuermann. Ppop: Fast yet accurate parallel

hierarchical clustering using partitioning. Data Knowl. Eng., 61(3):563–578, June
2007.

[11] Daxin Jiang, Chun Tang, and Aidong Zhang. Cluster analysis for gene expression

data: a survey. IEEE Transactions on Knowledge and Data Engineering, 16(11):1370–
1386, 2004.

[12] D. Defays. An efficient algorithm for a complete link method. The Computer
Journal, 20(4):364–366, 1977.

[13] C. Ding and X. He. Cluster aggregate inequality and multi-level hierarchical

clustering. In Knowledge Discovery in Databases: PKDD, pages 71–83, 2005.
[14] G. M. Downs and J. M. Barnard. Clustering methods and their uses in computa-

tional chemistry. Reviews in computational chemistry, 18:1–40, 2002.
[15] D. Dua and C. Graff. UCI machine learning repository, 2017.

[16] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and

display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences, 95(25):14863–14868, 1998.

[17] S. Gilpin, B. Qian, and I. Davidson. Efficient hierarchical clustering of large high

dimensional datasets. In Proc. CIKM, page 1371–1380, 2013.

[18] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Dis-

tributed graph-parallel computation on natural graphs. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 12), pages 17–30,
2012.

[19] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.

Graphx: Graph processing in a distributed dataflow framework. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages
599–613, 2014.

[20] P. Govender and V. Sivakumar. Application of k-means and hierarchical clustering

techniques for analysis of air pollution: A review (1980–2019). Atmospheric
Pollution Research, 11(1):40–56, 2020.

[21] J. C. Gower. A comparison of some methods of cluster analysis. Biometrics,
23(4):623–637, 1967.

[22] J. C. Gower and G. J. Ross. Minimum spanning trees and single linkage cluster

analysis. Journal of the Royal Statistical Society: Series C (Applied Statistics),
18(1):54–64, 1969.

[23] H. Herodotou. Hadoop performance models. Technical report, http://www.cs.

duke.edu/starfish/files/hadoop-models.pdf, 2011.

[24] H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization

of mapreduce programs. Proc. VLDB Endow., 4(11):1111–1122, Aug. 2011.
[25] C. Jin, R. Liu, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary. A scalable

hierarchical clustering algorithm using spark. In Proc. BIGDATASERVICE, page
418–426, 2015.

[26] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254,
1967.

[27] C. Klymko, D. F. Gleich, and T. G. Kolda. Using triangles to improve community

detection in directed networks. In The Second ASE International Conference on
Big Data Science and Computing, BigDataScience, 2014.

[28] G. N. Lance and W. T. Williams. A General Theory of Classificatory Sorting

Strategies: 1. Hierarchical Systems. The Computer Journal, 9(4):373–380, 1967.

[29] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-

tion. http://snap.stanford.edu/data, June 2014.

[30] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community Structure

in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined

Clusters. Internet Mathematics, 6(1):29 – 123, 2009.

[31] K. Li, Y. He, and K. Ganjam. Discovering enterprise concepts using spreadsheet

tables. In SIGKDD, page 1873–1882, 2017.
[32] X. Li. Hierarchical clustering on simd machines with alignment network. In

Proceedings CVPR ’89: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 660–665, 1989.

[33] X. Li. Parallel algorithms for hierarchical clustering and cluster validity. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12(11):1088–1092, 1990.

[34] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.

Distributed graphlab: A framework for machine learning and data mining in the

cloud. Proc. VLDB Endow., 5(8):716–727, Apr. 2012.
[35] X.-L. Ma, H.-F. Hu, S.-F. Li, H.-M. Xiao, Q. Luo, D.-Q. Yang, and S.-W. Tang. Dhc:

Distributed, hierarchical clustering in sensor networks. Journal of Computer
Science and Technology, 26:643–662, 07 2011.

[36] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: a system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data, pages
135–146, 2010.

[37] A.-A. Mamun, T. Mi, R. Aseltine, and S. Rajasekaran. Efficient sequential and

parallel algorithms for record linkage. Journal of the American Medical Informatics
Association, 21(2):252–262, 2014.

[38] F. Murtagh. Complexities of hierarchic clustering algorithms: state of the art.

Computational Statistics Quarterly, 1(2):101–113, 1984.
[39] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97,
2012.

[40] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview,

ii. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
7(6):e1219, 2017.

[41] D. Müllner. fastcluster: Fast hierarchical, agglomerative clustering routines for r

and python. Journal of Statistical Software, Articles, 53(9):1–18, 2013.
[42] V. Olman, F. Mao, H. Wu, and Y. Xu. Parallel clustering algorithm for large data

sets with applications in bioinformatics. IEEE/ACMTransactions on Computational
Biology and Bioinformatics, 6(2):344–352, 2009.

[43] C. F. Olson. Parallel algorithms for hierarchical clustering. Parallel Computing,
21(8):1313 – 1325, 1995.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
[45] S. Rajasekaran. Efficient parallel hierarchical clustering algorithms. IEEE Trans-

actions on Parallel and Distributed Systems, 16(6):497–502, 2005.
[46] E. M. Rasmussen and P. Willett. Efficiency of hierarchic agglomerative clustering

using the icl distributed array processor. Journal of Documentation, 45:1–24, 1989.
[47] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke. Personalized recommenda-

tion in social tagging systems using hierarchical clustering. In Proceedings of the
2008 ACM Conference on Recommender Systems, RecSys ’08, page 259–266, New
York, NY, USA, 2008. Association for Computing Machinery.

[48] R. Sibson. SLINK: An optimally efficient algorithm for the single-link cluster

method. The Computer Journal, 16(1):30–34, 1973.
[49] P. H. Sneath. The application of computers to taxonomy. Microbiology, 17(1):201–

226, 1957.

[50] R. Sokal and C. Michener. A Statistical Method for Evaluating Systematic Rela-
tionships. University of Kansas science bulletin. University of Kansas, 1958.

[51] T. Sun, C. Shu, F. Li, H. Yu, L. Ma, and Y. Fang. An efficient hierarchical clustering

method for large datasets with map-reduce. In 2009 International Conference on
Parallel and Distributed Computing, Applications and Technologies, pages 494–499,
2009.

[52] O. Tanaseichuk, A. Hadj Khodabakhshi, D. Petrov, J. Che, T. Jiang, B. Zhou,

A. Santrosyan, and Y. Zhou. An efficient hierarchical clustering algorithm for

large datasets. Austin Journal of Proteomics, Bioinformatics, 2(1):1–6, 2015.
[53] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,

J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,

C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,

R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.

Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272, 2020.

[54] F. Wang, J. Li, J. Tang, J. Zhang, and K. Wang. Name disambiguation using atomic

clusters. In Proc. WAIM, pages 357–364, 2008.

[55] Y. Wang, V. Narasayya, Y. He, and S. Chaudhuri. An efficient partition-based

distributed agglomerative hierarchical clustering algorithm for deduplication.

1144

https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data
http://www.cs.duke.edu/starfish/files/hadoop-models.pdf
http://www.cs.duke.edu/starfish/files/hadoop-models.pdf
http://snap.stanford.edu/data

Technical report, https://www.microsoft.com/en-us/research/publication/tech-

report-pack/, 2021.

[56] C.-H. Wu, S.-J. Horng, and H.-R. Tsai. Efficient parallel algorithms for hierarchical

clustering on arrays with reconfigurable optical buses. J. Parallel Distrib. Comput.,
60(9):1137–1153, Sept. 2000.

[57] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach

to integrating source query interfaces on the deep web. In Proc. SIGMOD, page
95–106, 2004.

[58] H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich. Local higher-order graph

clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, page 555–564, New York, NY,

USA, 2017. Association for Computing Machinery.

[59] V. Zappala, A. Cellino, P. Farinella, and Z. Knezevic. Asteroid families. i-

identification by hierarchical clustering and reliability assessment. The Astro-
nomical Journal, 100:2030–2046, 1990.

[60] W. Zhang, G. Zhang, X. Chen, Y. Liu, X. Zhou, and J. Zhou. Dhc: A distributed

hierarchical clustering algorithm for large datasets. Journal of Circuits, Systems
and Computers, 28(04):1950065, 2019.

[61] W. Zhang, G. Zhang, Y. Wang, Z. Zhu, and T. Li. Nnb: An efficient nearest

neighbor search method for hierarchical clustering on large datasets. In IEEE
ICSC 2015, pages 405–412, 2015.

[62] Y. Zhao, G. Karypis, and U. Fayyad. Hierarchical clustering algorithms for

document datasets. Data mining and knowledge discovery, 10(2):141–168, 2005.

1145

https://www.microsoft.com/en-us/research/publication/tech-report-pack/
https://www.microsoft.com/en-us/research/publication/tech-report-pack/

