
User-Defined Operators: E�iciently Integrating Custom
Algorithms into Modern Databases

Moritz Sichert
Technische Universität München

moritz.sichert@tum.de

Thomas Neumann
Technische Universität München

neumann@in.tum.de

ABSTRACT
In recent years, complex data mining and machine learning algo-
rithms have become more common in data analytics. Several spe-
cialized systems exist to evaluate these algorithms on ever-growing
data sets, which are built to e�ciently execute di�erent types of
complex analytics queries.

However, using these various systems comes at a price. Moving
data out of traditional database systems is often slow as it requires
exporting and importing data, which is typically performed using
the relatively ine�cient CSV format. Additionally, database systems
usually o�er strong ACID guarantees, which are lost when adding
new, external systems. This disadvantage can be detrimental to the
consistency of the results.

Most data scientists still prefer not to use classical database
systems for data analytics. The main reason why RDBMS are not
used is that SQL is di�cult to work with due to its declarative and
set-oriented nature, and is not easily extensible.

We present User-De�ned Operators (UDOs) as a concept to in-
clude custom algorithms into modern query engines. Users can
write idiomatic code in the programming language of their choice,
which is then directly integrated into existing database systems. We
show that our implementation can compete with specialized tools
and existing query engines while retaining all bene�cial properties
of the database system.

PVLDB Reference Format:
Moritz Sichert and Thomas Neumann. User-De�ned Operators: E�ciently
Integrating Custom Algorithms into Modern Databases . PVLDB, 15(5):
1119 - 1131, 2022.
doi:10.14778/3510397.3510408

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/tum-db/user-de�ned-operators.

1 INTRODUCTION
Modern data analytics has evolved to include complex algorithms
for data mining and machine learning. Specialized systems have
been designed that are able to handle ever-growing amounts of
data to solve a larger variety of problems. Unfortunately, traditional
systems, especially RDBMS, seem di�cult to adapt to state-of-the-
art data analytics [28].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 5 ISSN 2150-8097.
doi:10.14778/3510397.3510408

User-De�ned Operators

Spark
Hadoop

custom code

MADlib

UDFs
recursive CTEs

RDBMS
lambda functions

Timely Data�ow good usability
best performance
transactional

Figure 1: Comparison of approaches for modern data analyt-
ics. Systems with better usability usually have poor perfor-
mance. User-De�ned Operators can combine all three prop-
erties.

Still, most data that is eventually analyzed in special-purpose
systems is originally sourced from the RDBMS. Thus, a common
approach is to create ETL work�ows that can accommodate the
use of di�erent systems [31]. ETL work�ows usually collect data
in a data warehouse, which is built on top of the RDBMS that sup-
ports SQL. Next, the data is exported to be further processed by the
data analytics systems. This extraction process can be implemented
naively by exporting to a CSV �le from the data warehouse and
then importing the data into the analytics systems. Additionally,
some systems support more e�cient data transfer by directly com-
municating with the RDBMS. As the last step, the results of the
analysis are often transferred back to the data warehouse so that
they can be further processed, for example, the data displayed in
a dashboard. Exporting and importing data can often consume a
considerable amount of time, especially when the data must be
serialized to and parsed from a text format like CSV.

When data is extracted from an RDBMS, many bene�cial char-
acteristics of the system are lost. In particular, ACID properties can
no longer be guaranteed. One could argue that atomicity and isola-
tion may be of minor importance for systems that mainly process
read-only OLAP workloads. However, to provide near real-time
data analytics, data warehouses must be periodically updated. In
combination with longer-running analytics queries, this means
that the system must support proper transaction management to
provide accurate results.

An additional bene�t of modern database systems such as Um-
bra [23] or DuckDB [26] is their execution speed. The modern
database systems use techniques such as code-generation [22] or
vectorized execution [6], to be able to saturate the memory band-
width, thereby processing analytical queries very quickly.

In practice, the advantages of using RDBMS do not outweigh
the disadvantages. Data scientists often prefer using systems such
as Spark [29], TensorFlow [4], or systems using the MapReduce

1119

https://www.acm.org/publications/policies/artifact-review-and-badging-current

paradigm [8], even if they are not able to reach main-memory
performance. In these systems, algorithms can be formulated in
procedural programming languages such as Java, Scala, or Python.
In comparison to SQL – the primary query language for RDBMS –
those languages are better suited to formulate algorithms used in
modern data analytics. Such algorithms are often iterative and can
be expressed naturally by using code that contains assignments to
variables and control-�ow statements such as loops.

SQL, however, is declarative, set-oriented, and in general very
di�erent from most programming languages. Because of these dif-
ferences, SQL provides query engines with a lot of �exibility in
deciding how to execute a query. Query engines of RDBMS concep-
tually process streams of tuples. Each algebraic operator generates
a stream of tuples and takes the streams of any number of input
operators. The feature set of SQL is closely tied to this concept of
stream processing, which supports �ltering, several join types, and a
wide range of aggregation and window functions. However, adding
new functions is not easily possible. The execution of SQL queries
is tightly coupled to the speci�c query engine of each database
system, so adding new features to SQL requires deep knowledge of
database internals.

Database systems do o�er some extensibility of SQL. Imperative
control �ow can be formulated in SQL by using recursive CTEs [9,
14]. Also, some RDBMS o�er imperative extensions to SQL such
as T-SQL in Microsoft SQL Server [3] or PL/pgSQL in Postgres [1].
Imperative extensions allow users to write User-De�ned Functions
(UDFs), which can be called from standard SQL queries. The query
engine can directly execute queries containing calls to UDFs written
in this extended language. In theory, this functionality makes it
much easier to write more complex algorithms when compared
to recursive CTEs. However, the execution of functions written in
these imperative languages tends to be very slow [12].

Additionally, UDFs are usually not allowed to take streams as
arguments or return them. Instead, UDFs are applied to each tuple
of one particular stream, which is similar to how a map operation
works in other systems. Clearly, algorithms used in data analytics
are not often expressed only bymap-like operations. Thus, UDFs are
not suitable to e�ciently integrate custom algorithms in database
systems.

To summarize, we identify the following problems with modern
data analytics systems:

(1) Processing data is ine�cient due to costly import and export
processes between di�erent systems. Additionally, many
systems cannot use modern hardware to its full capacity.

(2) The most e�cient systems have poor usability, and use
SQL as a query language that is di�cult to extend for data
analytics.

(3) Data may not be consistent; especially when extracting
from an RDBMS, ACID properties can no longer be guar-
anteed.

Figure 1 shows an overview of the di�erent approaches for mod-
ern data analytics. SQL-based approaches can usually guarantee
consistency of the data but do not allow custom algorithms to be
easily implemented. Analytics frameworks like Spark or Timely
Data�ow [20] can automatically scale up user-written code but of-
ten do not reach the throughput of custom-written code or modern
RDBMS with main-memory speeds.

In this work, we present the concept and implementation of User-
De�ned Operators (UDOs). Our approach solves all three problems
with modern data analytics systems and can unify many bene�cial
properties in one system. As data is processed directly in the existing
RDBMS, the data can be analyzed very e�ciently within ACID
transactions. In addition, a simple API allows users to write code
in their language of choice.

This paper is structured as follows: In Section 2, we discuss re-
lated work in data analytics. In Section 3, we present our general
concept of UDOs. Section 4 describes our implementation of UDOs
in the code-generating database system Umbra [23] and Section 5
describes our implementation in Postgres. We present our evalua-
tion in Section 6 and conclude our work in Section 7.

2 RELATEDWORK
As mentioned above, imperative extensions to SQL can be used
to write UDFs, which enables easier implementation of iterative
algorithms and also allows the users to reuse existing database
functionality. Gupta et al. [12] show that the extensions tend to be
slow and cannot reach main-memory speeds. With their �ndings
they encourage more research to improve the execution of UDFs.

A very popular approach for large-scale data analytics is MapRe-
duce, which is often used for Big Data analytics but can also be
applied to UDFs. Friedman et al. present an approach to formulate
UDFs in MapReduce and integrate them into SQL queries [10].

Furthermore, separating UDFs into calls to a few prede�ned
functions like map and reduce can be used to compile UDFs in the
database and integrate them into the query execution as shown by
Crotty et al. [7] who extend theMapReduce concept by adding more
functions such as selection, join, or loop so that UDFs can address
more di�erent use cases. To execute this functionality e�ciently,
they make use of the LLVM framework [17] to be able to apply
low-level optimization techniques to the generated queries.

Zou et al. [32] present an optimized approach to automatically
partition workloads that contain UDFs. This approach allows users
to develop highly scalable data analytics pipelines without in-depth
knowledge of writing scalable code.

Palkar et al. [24] propose the Weld framework for data analytics,
which combines code from di�erent systems, such as queries writ-
ten in SQL and programs written in Python. This framework uses
a novel intermediate representation that can be lowered to LLVM.

Timely Data�ow is a novel concept for scalable data analytics
presented in the Naiad system by Murray et al. [20]. This concept
provides a low-level interface to assemble computational graphs,
upon which high-level libraries and applications can be built. Mur-
ray et al. also present an implementation in the Rust programming
language [21].

Writing code manually for a speci�c problem can lead to rapid ex-
ecution but may not be easily combined with existing modern data-
base systems. Passing et al. [25] present lambda functions, which are
used to customize speci�c code-generating operators with greater
ease. Schüle et al. [27] show how this technique can be applied
to just-in-time compilation of user-written lambda functions in
Postgres.

MADlib is a library of data analytics presented by Hellerstein et
al. [13], which can extend database systems such as Postgres, and
contains several algorithms which can be used directly from SQL.

1120

UDO User Compiler

UDO Query Compiler

User Code SQL

Query ExecutionDebug Program

C++, Rust, etc. SQL with
function
calls

shared library,
low-level code

executable execution plan

U
se
r

Q
ue
ry

En
gi
ne

Ex
ec
ut
io
n

Figure 2: Architecture of the UDO User Compiler and UDO
Query Compiler

Techniques used in modern main-memory databases such as
code generation and vectorized execution can also be used for data
analytics. Zhang et al. [30] present a system that automatically ana-
lyzes code to dynamically generate optimal query plans at runtime.

Duta et al. and Hirn et al. [9, 14] describe an approach that al-
lows users to write code in the procedural programming language
PL/SQL. Such PL/SQL programs are transformed entirely to re-
cursive CTEs. This technique allows procedural programs to be
interpreted by any SQL engine that supports recursive CTEs, and
works well for many use cases. The result of the transformation
is standard SQL, which can theoretically be executed in a main-
memory database, provided it has an e�cient implementation of
recursive CTEs.

3 THE USER-DEFINED OPERATOR
To achieve good usability and performance while maintaining ACID
properties, we present the novel User-De�ned Operator (UDO),
which represents user-written algorithms as algebraic operators,
which extend the relational algebra utilized by existing RDBMS.
UDOs solve the problems in data analytics mentioned in Section 1
as follows:

Usability: Even though UDOs are deeply integrated into query
and execution engines of existing RDBMS as algebraic operators,
users can use a simple API in the programming language of their
choice. The complexity of writing e�cient query engines is en-
tirely hidden, and no knowledge of database internals is required.
As query engines treat UDOs as regular algebraic operators, they
can process arbitrary streams of tuples to generate a new output
stream. This approach also interacts nicely with SQL: The input
streams given to an UDO can be the result of arbitrary SQL queries
containing joins and aggregations. Similarly, the output of the UDO
can be further processed by using SQL.

Performance: Our implementation can optimize queries contain-
ing UDOs very e�ciently. When those queries are executed in our
code-generating database system Umbra, we can generate code
that is as e�cient as complex native operators written by database
experts. As UDOs are directly executed in the database, the costly
exporting and importing of data is not required.

Consistency: As UDOs are directly integrated into the query
engine of existing RDBMS, they preserve all the ACID properties
guaranteed by the system. User-written code is not required to
take any precautions regarding consistency or isolation; the tuple
streams utilized as input by UDOs follow the standard semantics
of the isolation levels in SQL.

3.1 Overview
Figure 2 shows the overview of our architecture to compile and
integrate UDOs into a query engine. The user writes a standard
SQL query, and the query uses the UDO given by the user as source
code of an imperative programming language, such as C++ or Rust.

First, the UDO code is processed and analyzed to detect errors in
the code. Next, the UDO must be translated into a representation
that the query engine can use. We call this part of the system the
UDO User Compiler ; as an additional feature it can directly generate
a debug program that allows �exible debugging of the user-code
independent of the database system.

In a second step, the query engine takes the processed user code
and integrates it into the query plan that is generated from the SQL
query. This part of the system is called the UDO Query Compiler,
which implements the representation of the UDO as an algebraic
operator.

Both compilers can be developed separately. Once a suitable
API for user-written code is de�ned, several implementations for
di�erent query execution models can be developed. Di�erent UDO
User Compilers can accept code written in di�erent programming
languages, while the UDO Query Compiler will usually be tightly
connected to the rest of the database system.

In the following, we explain the concepts of an UDO with the
help of the following example. A blog website uses a relational
database system to store its blog posts. The writer of the blog wants
to analyze the posts by category, and is interested in how many
blog posts of the category “lifestyle” were written and how many
posts of the other categories exist. Listing 1 shows a query that
uses a UDO written in C++ that can answer the writer’s questions.
The query uses existing SQL syntax; the create function statement
creates a new function with the name count_lifestyle C , which
takes a table as an input that must match the schema speci�ed by
InputTuple S . Thus, any subquery with a string attribute with the
name “word” can be used as an input to this UDO. The function also
returns a table, which means that it can be used like a relation in the
from part of a SQL query F . Because the language is set to UDO-
C++, the SQL parser knows that this function is an UDO written in
C++. The user-written code is included in the SQL statement (1 –
3) and will eventually be processed by the UDO User Compiler
and UDO Query Compiler.

3.2 The UDO User Compiler
In this section we introduce the UDO User Compiler. We de�ne a
high-level API that allows user-written code to be used by the User-
De�ned Operator. This API consists of only three functions, and it
is not speci�c to any particular programming language. Our imple-
mentation provides a C++ API (refer to Section 4) but it is general
enough to be implemented for most programming languages.

1121

create function count_lifestyle(table) C
returns table language 'UDO-C++' as $$
struct InputTuple { udo::String word; }; S
struct OutputTuple { udo::String word; uint64_t n; };
class CountLifestyle
: public UDOperator<InputTuple, OuptutTuple> {

uint64_t lifestyle = 0, other = 0;
public:
void accept(const InputTuple& tuple) { 1

if (tuple.word == "lifestyle") lifestyle++;
else other++;

}
bool process() { 2

vector<OutputTuple> output = {
{"lifestyle", lifestyle}, {"other", other}

};
for (auto& tuple : output)

emit(tuple); 3
return true;

}
};
$$, CountLifestyle;
select * from count_lifestyle(F

table (select category as word from blog_posts)
);

Listing 1: SQL syntax to de�ne and use UDOs: create function
de�nes a function of the language UDO-C++. The C++ code
is directly included in the statement, and the function can
be called like any other table function by using the table
keyword for table arguments.

Figure 3 shows the conceptual overview of the functions that an
UDO can implement and use. As the query execution progresses,
the user-written functions accept 1 and process 2 are executed.
There are no additional limitations with the implementation of
these functions. As such, the user can create arbitrary control �ow
by using conditionals and loops. The functions can also call the
function emit 3 as provided by the UDO User Compiler.

These functions are used to integrate the UDO into the tuple
stream of the query. To interoperate with other algebraic operators
of the query, the user-written code must:

(1) Optain tuples from its input(s), which are other relational
operators,

(2) Process the tuples, i.e., do the actual work, and
(3) Generate the tuples as output so that the parent operator

of the UDO can continue processing the query.

These requirements map nicely to the functions 1 , 2 , and 3
from above:

Accept, which takes a single tuple from an input and is called
repeatedly for each tuple of the input and implements per-tuple
processing. Accept can, for example, materialize the tuple by storing
it in a temporary data structure, or directly compute a (partial) result
as shown in 1 in Listing 1.

Process, which takes no arguments and is executed after all tuples
from the input were seen. It can be used to post-process the input,
such as aggregating or sorting it. As the user-written functions
can contain arbitrary code and thus arbitrary control �ow, more

UDO progress

accept 1 process 2

emit 3 emit 3

op
er
at
or

st
ar
t

en
tir
e
in
pu

ts
ee
n

op
er
at
or

�n
is
he
d

for every input tuple

Figure 3: The UDO User Compiler: A user can write code in
the accept and process functions and call the provided emit
function. Conceptually, accept is called once for each input
tuple, and process is called after the entire input was seen.

complex data analytics algorithms that require the entire input to
be available upfront can be implemented as well.

Iterative algorithms, for example, can be easily implemented by
using the accept and process functions. The user code in the accept
function should store all tuples of the input. The implementation of
the process function should then use a loop to iteratively compute
the result by repeatedly accessing the stored tuples.

Emit, which takes a single tuple as a parameter. This function
is provided by the UDO User Compiler and can be called by the
accept and process functions to generate a tuple of the output of an
UDO. Conceptually, this tuple is then passed to the parent operator
of the UDO.

In the example shown in Listing 1, only process 2 calls emit 3
because the tuples for the output can only be computed once the
entire input was seen. The example also shows that inputs and
outputs do not have to be equal in their schema or their cardinality.
The code only uses a string attribute of the input with an unknown
number of tuples while it generates exactly two tuples with a string
and an integer attribute as its output.

3.2.1 Usability and Debugging. As the execution of UDFs is usually
interleaved with the rest of the query and runs in the same process
as the database system, it is not obvious how to enable debugging of
the user code. This either requires the database system to implement
a debugger itself, e.g., [5], or the user requires access to the database
process to use common debugging tools. Both approaches are not
optimal. With the former approach users are forced to use DBMS-
speci�c debugging tools instead of their own, and with the latter
approach users need low-level privileged access to the database
process.

For UDOs there is a more elegant solution: The accept and pro-
cess functions are implemented by the user as separate functions
in the programming language of their choice. Thus, a test program
can be written in that language that provides a tuple stream and
calls those functions. Additionally, the test program is required
to implement the emit function, which is usually provided by the
UDOUser Compiler. For debugging purposes, the provided function
could print its argument, for example.

Our implementation provides a standalone program for C++. It
is completely independent from the database system and therefore

1122

1 fn Γ.produce():

2 genCode("ht := initialize ht")
3 child.produce()

4 genCode("for r, aggr in ht:")

5 parent.consume("r⊕aggr")
6 fn Γ.consume(t):
7 genCode("ht.update("+t+")")

8 fn f?.produce():

9 child.produce()

10 fn f?.consume(t):

11 genCode("if p("+t+"):")
12 parent.consume(t)

13 fn R.produce():

14 genCode("for r in R:")
15 parent.consume("r")

Listing 2: Implementation of the produce and consume func-
tions to demonstrate an aggregation (Γ), a selection (f?), and
a table scan (R) in the produce-consume model.

can be used for any UDO independent of the system the UDO will
eventually be used in. To match the characteristics of the execution
in a database system more closely, our standalone programs also
run multi-threaded and concurrently call the accept and process
functions.

3.3 The UDO Query Compiler
The UDO Query Compiler is the part of the system that takes the
artifacts generated by the User Compiler, such as a shared library,
an object �le, or a program of some low-level intermediate language,
and integrates it into existing query plans. Additionally, the UDO
Query Compilermust implement a standard algebraic operator. This
operator must behave just like any other operator in the database
system, such as selection, aggregation, or join, so that it can be used
in conjunction with other operators in arbitrary queries. As such,
the operator must be directly implemented by the query engine
of the database system and by design requires the use of database
internals.

There are three points where the UDO interfaces with the query
engine, which are the three functions accept, process, and emit.
The �rst two functions are implemented by the user, but the emit
function must be provided by the UDO Query Compiler. Concep-
tually, this function takes a tuple that was generated by the UDO
and passes it on to the parent operator of the UDO. Depending on
the actual execution engine used by the database system, di�er-
ent strategies may be used to implement this function so that it
e�ciently interacts with the existing engine.

Modern code-generating database systems based on the produce-
consume model [22], for example, do not need to implement this
function at all. They could replace all functions calls to emit by the
actual code that is generated in the parent operator. We provide
a detailed description of an implementation of UDOs in a code-
generating query engine in Section 4.

Database systems that employ the iterator model [11, 19] such
as Postgres can implement the emit function by storing the emitted
tuples in a temporary bu�er. When the execution of the UDO is
�nished, the bu�er can be used to return the tuples to the parent
operator of the UDO. The same strategy can be used in vectorized
query engines that are used in systems like MonetDB [6], Vector-
wise [33], or DuckDB [26].

Materializing all tuples in a temporary bu�er in the iterator
model may add signi�cant runtime overhead. This overhead can be

Γ

f?

R

1 ht := initialize ht
2 for r in R:

3 if p(r):

4 ht.update(r)

5 for r, aggr in ht:
6 output r⊕aggr

Γ.produce():

R.produce():

f?.consume(r):

Γ.consume(r):

Γ.produce():

Figure 4: Code generated by a query compiler in the produce-
consume model. The code generated by the algebraic opera-
tors is interleaved which leads to better data locality.

avoided by interrupting the user code as soon as it calls the emit
function. Then, the single generated tuple can be passed to the
parent operator. When the UDO should generate more tuples, the
interrupted code must be continued. We explain how this approach
can be implemented in more detail in Section 5.

4 USER-DEFINED OPERATORS IN
CODE-GENERATING QUERY ENGINES

In this section we present our implementation of UDOs in our
database system Umbra [23]. Umbra is a main-memory �rst system,
which is geared towards working primarily in memory but also
supports storing relations on disks or preferably fast SSDs. After
translating SQL to relational algebra, Umbra uses the produce-
consume model [22] to generate e�cient code for the query. As
code generation can be relatively expensive, especially for ad-hoc
queries that complete quickly, Umbra does not directly generate
machine code but uses the intermediate representation Umbra IR.
This low-level language that was inspired by LLVM [17] can then be
executed in multiple ways: A virtual machine that interprets the IR,
a direct translation from Umbra IR to x86 assembly called the Flying
Start backend [15], and a more sophisticated translation that uses
LLVM to generate optimized machine code. Umbra uses adaptive
execution [16] to dynamically switch between all three approaches
to achieve low latency for short queries and high throughput for
long-running analytical queries. Finally, to enable good scalability
across many CPU cores and even NUMA nodes, our execution
engine employs morsel-driven parallelism [18].

4.1 UDO User Compiler
The goal of our implementation is for queries containing UDOs to
run as fast as “native” queries that consist of only Umbra IR. To
achieve this goal, our implementation supports C++ as the pro-
gramming language for user code. As a systems language, it can be
directly compiled to e�cient native machine code. The second rea-
son why we chose C++ speci�cally is that it can also be compiled to
LLVM IR with the Clang compiler. As our compilation framework
can use LLVM IR as well, this makes it possible to completely inline
user code into the generated machine code, thus enabling native
query speed.

Our UDO User Compiler for C++ provides some de�nitions of
classes and functions that can be used. The conceptual accept and
process functions are realized as member functions of a base class
which the user must derive. The emit function is another prede�ned
member function of this class. As the functions that the user writes
are member functions of a class, the UDO code can also make use of

1123

1 fn UDO0.produce():

2 child.produce()

3 if UDO has process:
4 genCode("process()")

5 genCode("fn emit_helper(t):")
6 parent.consume("t")

7 fn UDO0.consume(t):
8 genCode("accept("+t+")")

Listing 3: Implementation of UDO0 in the produce-consume
model.

member variables to manage state across invocations of the accept
and process functions. To enable parallelism within the UDO, our
system potentially calls accept and process concurrently. Therefore,
users must ensure that those functions are thread-safe.

The example in Listing 1 shows C++ code that our UDO User
Compiler can use. The user-written class CountLifestyle is a sub-
class of UDOperator, which uses two member variables that track
the number of occurrences of the word “lifestyle” and all other
words. The variables are updated in accept 1 and used for the
generated output in process 2 . The emit function is called with a
single output tuple as an argument 3 .

For the UDO Query Compiler our User Compiler generates two
artifacts generated from the C++ code: An object �le and an LLVM
module. The object �le uses the ELF format and could theoretically
also be generated by any other C++ compiler that supports ELF.
The LLVM module is speci�c to the Clang compiler. The module is
generated, so that the UDO Query Compiler can potentially inline
the UDO code with the rest of the query code generated by the
database system.

Even completely di�erent programming languages that do not
use LLVM at all could be used. Our UDO Query Compiler in Umbra
can work with any code that can be compiled to ELF object �les.
Some optimizations are not possible when the LLVM module is not
available, nevertheless the UDO can be executed.

4.2 UDO Query Compiler
Our UDO Query Compiler takes the object �le and the LLVM mod-
ule from the UDO User Compiler and integrates it into a query
plan. In the query, the UDO is represented as a relational algebra
operator, which we will call UDO0 . The implementation of UDO0

is not speci�c to one particular UDO. UDO0 can take any UDO
that was processed by the UDO User Compiler and integrate it into
existing queries.

Because it is treated like any other existing algebraic operator,
UDO0 integrates seamlessly with all DBMS components, such as
the optimizer. While general optimizations across UDO0 are not
possible since the optimizer does not have any information about
its semantics, the subtree that represents the input of UDO0 and
the subtree that contains UDO0 can still be optimized.

4.2.1 Produce-Consume Model. Umbra uses the produce-consume
model [22] to generate code for a relational algebra tree. In this
model, every algebraic operator implements the two functions pro-
duce and consume that generate code. Listing 2 shows how these
functions could be implemented for an aggregation that uses hash
tables (Γ), a selection with a predicate ? (f?) and a table scan for

the relation R. In general, the produce function is called when an
operator should start generating its output. For Γ, this function �rst
generates code to initialize a hash table, and then calls the produce
function on its input. When an operator wants to pass a tuple of
its output to its parent, it calls the consume function of the parent.
The Γ operator generates code to update the hash table with the
new tuple in its consume function. The remainder of Γ.produce()
then iterates over the hash table and calls the consume function of
its parent with the aggregated result. The implementation of the
f? operator is simpler; the selection does not need to initialize any
data structures, so it only calls the produce function of its input in
f? .produce(). f? .consume() generates code to evaluate the predi-
cate and calls the consume function of its parent that will generate
code in the true-branch of the predicate.

Figure 4 shows a query that uses those three operators and the
generated code. Code from di�erent operators tends to be inter-
leaved. This approach leads to good data locality and very e�cient
execution on modern hardware but makes it di�cult to integrate
“foreign” code.

4.2.2 Generating Code for UDOs. To integrate the functions 1 –
3 of an UDO into a query plan, the UDO Query Compiler must
generate code that acts as an interface between the user code and
the code generated by built-in operators. As we model UDO0 like
any other algebraic operator, there are two choices to emit code:
the produce function and the consume function.

Integrating accept is straightforward; the consume functionmust
generate code to call accept. Conceptually, the consume function
generates code that processes a single tuple and we de�ned accept
as a function that takes a single tuple, so they are a perfect match.
Similarly, the process function must be called in the code generated
by produce. Only then, UDO0 can make sure that the entire input
was seen and acceptwas called with all tuples from the input before
the process function is called for the �rst time.

Listing 3 shows the implementation of UDO0 in the produce-
consume model. In addition to calling accept and process in con-
sume and produce, respectively, UDO0 .produce() also generates
code that de�nes a new, separate function emit_helper(). This func-
tion is used by the UDO Query Compiler to implement emit.

Every call to emit in the user code means that a new tuple of its
output is generated. This tuple must eventually reach the parent of
UDO0 so that the query processing can continue. In the produce-
consume model, the parent receives an input tuple in the consume
function. To bridge the gap between the user code and generated
code, UDO0 emits the code of its parent into the separate function
emit_helper(). Then, the UDO Query Compiler replaces all calls to
emit in the user code by calls to emit_helper().

With this approach, the UDO is entirely transparent both to
the user code and the other relational algebra operators; they do
not require any implementation details about the other. Built-in
operators can call produce and consume of UDO0 as usual, and the
user code uses the API functions 1 – 3 .

Figure 5 shows the algebra tree and the generated code for a
query that contains an UDO. This query is similar to the query
from Figure 4; only the selection was replaced by an UDO. For this
example, we assume that the UDO only calls the emit function
in accept and does not implement process. While the generated

1124

Γ

UDO0

R

1 ht := initialize hash table
2 for r in R:

3 accept(r)

4 for r, aggr in R:

5 output r⊕aggr
6 fn emit_helper(r):
7 ht.update(r)

Γ.produce():

R.produce():

UDO0.consume(r):

Γ.produce():

Γ.consume(r):

calls to emit

Figure 5: Code generated by the UDO Query Compiler
and UDO0 for an UDO that behaves like a selection (i.e.,
“pipelined operator”). Calls to emit in the user code are re-
placed by calls to the generated emit_helper function.

code de�nes the function emit_helper(), it does not contain calls to
emit_helper(), because emit_helper() is only indirectly called every
time the UDO code calls emit.

Figure 6 shows another algebra tree and its generated code.
Again, the query from Figure 4 is shown but we replaced the aggre-
gation with an UDO. Additionally, the UDO now calls emit only in
the process function. Writing UDOs that call emit only in process is
useful for algorithms that can only generate their output once the
entire input is seen. The generated code contains a call to process
after the loop of the table scan. Thus, the process function will only
be called after the UDO received all tuples of its input.

4.3 UDO Function Inlining
The examples in Figures 5 and 6 show that, initially, UDO0 in-
troduces several low-level function calls that will be executed for
each tuple of the input and output; The accept function is called
in line 3 for every tuple and the user code calls emit and indirectly
emit_helper for every tuple of its output. When UDOs are executed
in main-memory systems running on modern hardware, the best
performance can only be achieved when the number of function
calls is reduced. As data can be processed so quickly, every function
call adds noticeable overhead. To solve this issue, we use a very
common approach used in compiler optimization; We inline the
function calls to eliminate them.

This approach is possible in our implementation because we can
compile the user code written in C++ to LLVM. Umbra supports
di�erent execution modes, which includes LLVM, as well. Hence,
we generally compile the user code to native machine code, which
is stored as object �les. To prepare the UDO code to be eventually
inlined, the C++ code is compiled to LLVM.

When the query is executed, the object �le is loaded into memory
and the code generated by UDO0 uses real low-level function calls
into the functions that are located in the object �le. Since the object
�le is generated only once when the user runs create function, this
compilation incurs no compilation overhead from the high-level
compiler, which for languages like C++ could take up to several
seconds. In fact, since the object �le is generated only once for every
UDO, we can a�ord running all available compiler optimizations
on the user code. This means that even though the compiled query
code will execute lots of function calls to accept, process, and emit,
the UDO code is very e�cient.

UDO0

f?

R

1 for r in R:

2 if p(r):

3 accept(r)

4 process()

5 fn emit_helper(r):
6 output r

R.produce():

f?.consume(r):

UDO0.consume(r):

UDO0.produce():
calls to emit

Figure 6: Code generated by the UDO Query Compiler and
UDO0 for anUDO that behaves like an aggregation (i.e., “pipe-
line breaker”). The generated code also calls accept and ad-
ditionally makes sure that process is called only after the
entire input is seen.

When our framework for adaptive execution [16] detects a long
running query, our compilation engine generates LLVM code for
the entire query plan. When that happens, we search for all call
instructions that call the accept, process, or emit functions from
the object �le and replace them by their LLVM representation.

Note that in Umbra, switching to the LLVM mode is not a static
decision that must be made before executing the query. This deci-
sion is made by the execution engine at runtime. The execution of
the UDO code is transitioned smoothly with no downtime from the
unoptimized implementation, which uses real functions calls into
the object �les, to the optimized and inlined LLVM code.

Listing 4 shows a part of the LLVM code, which is generated by
our UDO Query Compiler. This code was generated from the SQL
query shown in Listing 1 that selects from a relation and uses an
UDO. The part shown here contains the table scan and the code for
accept. The resulting LLVM code has no clear boundaries between
the user code and the code generated for the table scan and thus
has good locality. The �rst part of the code loads the string value
from the column of the relation. This code is directly generated by
the query engine for the table scan. It is followed by the inlined
UDO code which �rst checks if the string has exactly 9 characters,
because it compares it with the word “lifestyle”. If it does, it then
actually compares the string by using the memcmp function and
increments the corresponding counter. The rest of the code, again
generated for the table scan, increases the tuple index, and repeats
the loop if any tuples are left.

Independent from the actual implementation, the concept of
function inlining can quickly lead to an increase in code size es-
pecially when inlined functions contain calls to other functions
that are inlined. In the UDO Query Compiler, this issue can occur
when a single query contains multiple UDOs. To avoid any code
explosion caused by inlining, we strictly allow the UDO code to
call emit only exactly once syntactically. As a result, there is no
potential for code to be duplicated; therefore, code explosion can
be avoided. This does not mean that it is impossible to call that
function multiple times semantically. Wrapping the call to emit in a
loop, for example, still satis�es our requirement but at runtime the
function is called multiple times. In general, this restriction could
be lifted automatically by a compiler. Multiple calls to emit could
be replaced by a goto statement that jumps to one common code
location where, again, emit is called only once.

1125

scan_loop_head:
%tuple_index = phi i64 [i64 0, %start_scan],

[%next_index, %string_eq_block]
%attr_ptr = getelementptr { i64, i64 },

{ i64, i64 }* %column_ptr, i64 %tuple_index,
i32 0

%str_header = load i64, i64* %attr_ptr, align 8
%str_body = getelementptr inbounds i64,

i64* %attr_ptr, i64 1
%str_offset = load i64, i64* %str_body, align 8
%str_len = trunc i64 %str_header to i32
%is_long_str = icmp ugt i32 %str_len, 12
%str_raw_ptr = select i1 %is_long_str,

i64 %str_data, i64 0
%str_ptr = add i64 %str_raw_ptr, %str_offset
store i64 %str_header,

i64* %local_var_str_header, align 8
store i64 %str_ptr,

i64* %local_var_str_body, align 8
%has_len_9 = icmp eq i32 %str_len, 9
br i1 %has_len_9, label %cmp_str_block,

label %else_block
cmp_str_block:
%string_cmp = call @memcmp(i8* %local_var_str,

i8* @str_literal, i64 9)
%string_eq = icmp eq i32 %string_cmp, 0
br i1 %string_eq, label %string_eq_block,

label %string_ne_block
string_ne_block:
br label %string_eq_block

string_eq_block:
%var = phi i8* [%dbs_var, %string_ne_block],

[%nondbs_var, %cmp_str_block]
%counter = bitcast i8* %var to i64*
atomicrmw add i64* %counter, i64 1 monotonic
%next_index = add i64 %tuple_index, 1
%at_end = icmp eq i64 %next_index, %relation_size
br i1 %at_end, label %finish_scan,

label %scan_loop_head

Listing 4: LLVM code generated by the UDO Query Com-
piler after inlining the UDO from Listing 1. The user code
is directly interleaved with the rest of the query code which
removes all potential function call overhead.

ta
bl
e
sc
an

U
se
r-
D
e�

ne
d
O
pe

ra
to
r

ta
bl
e
sc
an

4.4 Parallel Execution
Generally, Umbra generates code that processes all queries concur-
rently on all available CPU cores. To achieve the best performance,
UDO0 must also generate code that can be executed concurrently.

Our code generation framework and the morsel-driven sched-
uler ensure that code generated by the consume function of any
relational algebra operator is called concurrently. As our implemen-
tation of consume for UDO0 generates a call to accept, this means
that the user-written code in accept is executed concurrently as
well. Similarly, we generate code that calls the process function
concurrently on all available CPU cores.

For this approach to work, the functions accept, and process
should be thread-safe. Therefore, the user must ensure that those
functions can be called in parallel. Only thread-safe data structures

or common idioms for synchronization such as mutexes or atomic
operations should be used. Furthermore, since these functions may
contain calls to emit, our UDO Query Compiler ensures that emit is
thread-safe, as well. When functions are implemented as UDOs to
compete with code-generating operators directly implemented in
Umbra, the user code must be written very well and use state-of-the
art synchronization.

4.5 Implementation Considerations
In this section we discuss some additional technical details and
considerations for our implementation. While they do not extend
the theoretical framework of the UDO User Compiler and UDO
Query Compiler, they are still useful to obtain a full picture of our
implementation.

4.5.1 Global State and Concurrent �eries. As user code can be
arbitrary code, it can also make use of global variables. While it is
generally considered bad practice to rely heavily on global state,
especially when global state is mutated, it is sometimes useful or
even necessary to use. The standard library of C++, for example,
uses global state to implement some functions more e�ciently.
Another use of global state are thread-local variables, which are
often used to make parallel implementations of algorithms more
e�cient.

As we allow users to write arbitrary code, our UDO User Com-
piler does not prohibit the use of (thread-local) global variables.
Because we also want to maintain the isolation of separate que-
ries running concurrently to not violate ACID properties, our UDO
Query Compiler maintains entirely separate global and thread-local
states for every instance of an UDO that is being executed. Thus,
when a new query that contains an UDO starts, its global state will
always re�ect a clean state and is not a�ected by any other queries
that use the same UDO.

4.5.2 Linking of Runtime Dependencies. Executing C++ and even
C code requires several dependencies to be loaded at runtime. Most
notably the C standard library, also called libc, and the C++ standard
library must be loaded so that the user code can use all features
provided by the language. The trivial approach of loading them
as shared libraries into the database process is not feasible as this
would interfere with the rest of the system. Additionally, this ap-
proach does not allow separating the global states of those libraries.
Just like global variables explicitly written by the user, we also want
to provide full isolation of all runtime dependencies so that two
UDOs running concurrently can never interfere with each other.

To solve this issue, our system contains a custom runtime linker,
which can load the required runtime libraries as object �les or static
libraries, and load them into the existing database process. This
linker also takes the object �le that is generated from the UDO code
and links it with the runtime dependencies. Finally, the linker also
supports allocating global and thread-local state which allows us
to implement the strict separation for global states of concurrent
UDOs.

4.5.3 Security. The code generated by the built-in relational op-
erators is written by experts and is carefully tested. This means
that bugs tend to be rare so that arbitrary SQL queries can be
safely executed. UDOs, however, are potentially written by users

1126

less familiar with the system or even malicious users. Especially
in Umbra, where the generated code is inlined directly into the
remaining query code, it has the same capabilities and privileges.
Therefore, bugs in an UDO can crash the entire database system,
and malicious actors can use this as an easy privilege escalation. To
prevent memory bugs, the Rust language [2] can be used. The Rust
compiler uses LLVM, and can guarantee memory-safety. Solving
the issue with malicious code is not trivial, especially if the same
performance characteristics should be maintained. For now, UDOs
in our implementation must not be used with untrusted code.

5 USER-DEFINED OPERATORS IN THE
ITERATOR MODEL

The concept of UDOs is not limited to being implemented in code-
generating databases. Query engines based on the iterator model
can achieve very e�cient execution of UDOs, as well. This approach
allows the e�cient execution of custom algorithms in traditional
disk-based database systems. In this section, we present our imple-
mentation of UDOs in Postgres.

In the iterator model, every algebraic operator de�nes a next
function. This function generates a single tuple of the output of the
operator. It is called repeatedly until the entire output is generated,
which establishes a pull-based control �ow, that is, the parent oper-
ator decides when the child operator should generate the next tuple.
This stands in contrast to the architecture of UDOs; the user code
can decide by itself when to generate a new tuple of the output
and call emit. Thus, UDOs have a push-based control �ow; children
operators push their outputs to their parents. An implementation of
UDOs in a query engine based on the iterator model must bridge the
gap between the push-based user code and the pull-based execution
of the query in which the UDO is contained.

5.1 UDO User Compiler
As the UDO User Compiler can generally be independent of the
actual query engine of the existing database, it does not have to be
reimplemented for every database. Our Postgres implementation
uses the exact same UDO User Compiler as our implementation in
Umbra (refer to Section 4.1). As such, it supports user-written C++
code. The UDO User Compiler in Umbra can also make use of the
LLVM IR to further optimize the code generated for queries that
contain UDOs. Postgres does not generate code for entire queries,
so it only uses the object �les generated by the UDO User Compiler.

5.2 UDO Query Compiler
As mentioned above, the main problem that the UDO Query Com-
piler, which is integrated into the iterator model, must solve is the
mismatch between the pull-based query engine and the push-based
user code. Conceptually, the implementation of the algebraic op-
erator UDO0 must �rst call accept with all tuples of the input and
then call process. In the context of the iterator model, this is in
implemented in the next function of UDO0 .

Listing 5 shows how the functions of the UDO are called in the
iterator model. The next function must call the accept function for
every tuple of its child operator. These tuples are fetched by calling
the next function of the child in the loop in lines 9 and 10. After all
tuples are fetched, the process function is called in line 11.

1 fn UDO0.next():

2 if UDO not �nished:
3 if state is empty:
4 state = init next_coro()
5 resume state
6 if state is suspended:
7 return state.tuple

8 coro UDO0.next_coro():

9 while child has tuples:
10 accept(child.next())
11 process()

the user code is
suspended when
it calls emit

Listing 5: Implementation of UDO0 in the iterator model.

The iterator model mandates that the next function should return
a single tuple. To avoidmemory and runtime overhead,UDO0 .next()
should not store any intermediate results in temporary bu�ers.
However, the user code can decide arbitrarily when to call emit ei-
ther in accept or process. Hence, the implementation of UDO0 .next()
does not have control over when a new tuple is generated. To solve
this issue, our implementation suspends the execution of the user
code as soon as it calls emit. It saves the execution state, such as the
stack and the instruction pointer, of the user code and jumps back
to where the execution of the user code was �rst started in line 5.
It also remembers the tuple argument that the user code passed to
emit so that it can return the tuple in line 7.

Conceptually, we treat the next_coro function (lines 8 to 11) as
a coroutine. Instead of calling it once and getting a result value
once, we �rst initialize it in line 4. This sets up the execution state
for the coroutine but does not yet execute the function. In line 5,
the coroutine is resumed, which means that the execution starts
(for a new coroutine) or continues (for an old coroutine that was
suspended before). The execution continues until the coroutine is
suspended. In our implementation, this happens precisely when the
user code calls emit.

Note that the coroutine is an implementation detail of the UDO
Query Compiler in the iterator model. The user code is not mod-
i�ed in any way to enable the execution of the coroutine. As our
implementation in Postgres uses the same UDO User Compiler as
in Umbra, the exact same user code can be used in both systems.

6 EVALUATION
To evaluate our implementation, we implemented several di�erent
functions as UDOs and executed them in Umbra and Postgres. We
compared their runtime with equivalent queries implemented in
standard SQL or “native” operators of Umbra that generate code.
We also ran some queries on Spark, a data analytics engine, and
DuckDB, an in-memory database system that uses vectorized ex-
ecution. Our results show that the runtime of queries containing
UDOs is always similar to or faster than all competing approaches
while allowing the user to write standard C++ code.

We ran all our benchmarks on a NUMAmachine with two Intel®
Xeon® E5-2680 CPUs with 14 cores and 28 hyper-threads each and
128GiB of DRAM per node. Unless otherwise noted, we ran all
benchmarks on all 56 hyper-threads.

We ran all queries 10 times and reported the median. We ensured
that the data sets were loaded into the �le system caches before
running the queries. Postgres is con�gured to use 128GiB of DRAM.
Spark is con�gured to use 64GiB of main memory each in the driver
and executor.

1127

DuckDB Postgres Spark UDO Standalone Umbra UDO Umbra native SQL / Spark

0

0.5

1

1.5

0 2.5 5 7.5 10
number of tuples (millions)

th
ro
ug

hp
ut

pe
r
th
re
ad

(M
tu
pl
es
/s
)

Figure 7: Throughput per thread of k-
Means: Postgres runs single-threaded
but can reach a reasonable throughput
on that thread by using a UDO.

SMT

0
20
40
60
80

8 16 24 32 40 48 56
number of threads

to
ta
lt
hr
ou

gh
pu

t
(M

tu
pl
es
/s
)

Figure 8: Total throughput of k-Means
with varying number of threads: The
UDO can scale just as well as the na-
tive code-generating implementation
in Umbra.

0

25

50

75

250 500 750 1000
number of tuples (millions)

th
ro
ug

hp
ut

pe
r
th
re
ad

(M
tu
pl
es
/s
)

Figure 9: Throughput per thread for
di�erent implementations of simple
linear regression. For aggregation-like
algorithms, code-generation surpasses
all other approaches.

6.1 Complex Iterative Algorithm: k-Means
One of the main use cases of UDOs is to integrate complex data
analytics algorithms that are written in imperative code into the
database system. We want to show that implementing such an al-
gorithm as an UDO can achieve the same performance as if it were
implemented directly into the database by generating code. For
nonexperts of our database system, it is not feasible to implement a
new operator on the relational algebra level, especially for complex
algorithms. To be able to understand the performance character-
istics of UDOs, however, it is best to have a direct comparison of
UDO vs. native code-generating code.

For this we chose the comparatively simple k-Means algorithm
and implemented it both as a C++ UDO and as a native operator
directly into Umbra. Conceptually, both implementations follow
this simpli�ed algorithm:

(1) Initialize cluster centers by randomly sampling : points.
(2) For each point select the cluster center with the smallest

distance and update the point’s cluster id.
(3) For each cluster �nd all points with the same cluster id and

calculate the new cluster center.
(4) Repeat steps (2) and (3) 10 times.

Usually, the iteration is stopped when a cancellation criterion is met,
such as a required minimum movement of the cluster centers. As
this depends heavily on the initialization of cluster centers, which
is random in our implementation, instead we always iterate exactly
10 times to ensure that the runtimes of all approaches are directly
comparable.

We use synthetically generated two-dimensional points that are
clustered in eight clusters as the data-set for our benchmarks. The
points within each cluster are drawn from a normal distribution
where each cluster has separate means and variances. As the num-
ber of iterations is �xed to ten, all executions always must scan all
points exactly ten times and compare them to the current cluster
centers of all eight clusters.

The implementation e�ort required for both approaches – one
natively in Umbra, using code-generating code and database in-
ternals, and the other as a self-contained UDO – highlights the
qualitative advantage of using UDOs. The Umbra implementation
extends the relational algebra by adding a new algebraic operator

that implements k-Means. Adding a new operator requires modify-
ing several parts of the system such as the SQL parser, the optimizer,
and of course the query engine. In its core, the implementation con-
sists of about 500 lines of code of which many generate one or
more instructions. The UDO implementation has 300 lines of self-
contained C++ code. This code only uses features from the C++
standard library and some auxiliary data structures. As the UDO
does not use any database-speci�c code, it can easily be compiled
into a standalone executable program which also makes debugging
much easier.

Spark allows for even more straightforward implementation of
data analytics algorithms such as k-Means as they are directly built-
in into the system. At its core, the Spark code consists of only one
call to the existing k-Means clustering function and a few more
lines to set up the experiment. When compared to writing C++
code for UDOs, Spark enables users without in-depth knowledge of
programming languages such as C++ or Rust to do data analytics.
However, Spark cannot reach the performance of queries using
UDOs.

The main advantage of using UDOs in existing database systems
instead of specialized data analytics systems like Spark is their exe-
cution speed. Figure 7 shows the throughput per thread of di�erent
implementations of the k-Means algorithms as described above
for data sets containing up to 10 million tuples. We ran the C++
UDO in our UDO implementations for Umbra (multi-threaded) and
Postgres (single-threaded). Additionally, we tested the performance
of the standalone executable that is mainly used for debugging
(refer to Section 3.2.1).

As a comparison, we provide measurements of a native k-Means
operator of Umbra, which generates e�cient code and makes heavy
use of database internals to achieve good parallelization. Interest-
ingly, the UDO executed in Umbra almost reaches the performance
of the native operator. Even though the k-Means UDO uses stan-
dard C++ constructs, the UDO User Compiler and the UDO Query
Compiler can generate code for it and optimize it to match the
specialized code-generated implementation.

To demonstrate the scalability of the UDO implementation onto
many threads, we compare the runtime of the k-Means query that
processes 500 million tuples while varying the number of threads.
Figure 8 shows the total throughput for this query for the native
and the UDO implementations in Umbra. As long as not more than

1128

SMT
0

2000

4000

6000

0

25

50

75

8 16 24 32 40 48 56
number of threads

throughput(G
iB/s)

to
ta
lt
hr
ou

gh
pu

t
(M

tu
pl
es
/s
)

UDO Native reg_slope/intercept

Figure 10: Total throughput of simple linear regression in
Umbrawith varying number of threads. The faded lines show
the raw throughput without compilation overhead. The UDO
query reaches over 70 GiB/s but its compilation overhead
brings down the total throughput.

half the threads are used so that no SMT must be used, the UDO
can outperform the native operator.

The reasonwhy the UDO implementation can outperform custom-
written code-generating code is that it uses a standard high-level
language compiler. The C++ code is compiled by using the Clang
compiler, thereby enabling all available optimizations. Umbra gen-
erates the low-level code directly without going through a higher-
level language �rst and uses fewer expensive optimizations than the
Clang compiler. For UDOs, spending more time on compiling C++
is not a performance issue as this is only done once when the create
function statement is executed. A code-generating database must
balance the trade-o�s between spending more time to generate
faster code.

The �gure also includes the throughput of an equivalent k-Means
query executed in Spark. Our implementation warms up Spark by
loading the input data into main-memory and executing the cluster-
ing once without measurement. As for the other implementations, it
randomly selects points to initialize the cluster centers and iterates
10 times.

The throughput of both Umbra and the UDO implementations
is almost 50 times higher than in Spark. There are several reasons
for this increased throughput. Spark runs in the JVM which does
support JIT compilation to native machine code but must compete
with ahead-of-time compiled, optimized C++ code. Furthermore,
Spark is designed to work on multi-node clusters which means that
its single-node performance may not be optimal. Its parallelization
and synchronization model is also designed to make it easy to scale
out to many servers but cannot easily bene�t from intraprocess
synchronization.

6.2 Linear Regression
To benchmark another algorithm used in data analytics, we tested
simple linear regression using least squares. We implemented it as
an UDO, natively in Umbra, Spark, and SQL. SQL o�ers the func-
tions regr_slope and regr_intercept, which can be used for simple
linear regression on a linear function. All Non-SQL implementa-
tions use a polynomial of degree 2 as a target function to highlight
the use case for hyperparameter tuning, which often requires slight
changes to existing algorithms.

Our implementations solve the following problem: For given
pairs of values G,~ choose 0, 1, and 2 while minimizing the error

0

0.5

1

0 0.25 0.5 0.75 1
number of tuples (millions)

th
ro
ug

hp
ut

pe
r
th
re
ad

(M
tu
pl
es
/s
)

UDO SQL unnest Recursive CTE

DuckDB Postgres Umbra

Figure 11: Throughput of a query that splits comma-
separated values into individual tuples. When the inherent
imperative control-�ow is simulated by using recursive CTEs
in SQL, e�cient code cannot be generated.

term
∑
8 (0 +1G8 +2G28 −~8)

2. This problem has the following closed-
form solution:

©«
0

1

2

ª®¬ = ©«
∑
1

∑
G

∑
G2∑

G
∑
G2

∑
G3∑

G2
∑
G3

∑
G4

ª®¬
−1

· ©«
∑
~∑
G~∑
G2~

ª®¬
To compute this e�ciently, �rst, all sums need to be calculated.
Calculating the sums requires little synchronization and should
scale very well. The values for 0, 1, and 2 can be determined at the
end by calculating the inverse of the matrix.

Figure 9 shows the throughput per thread for all implementa-
tions. As this algorithm is essentially an aggregation, the very fast
code-generating query engine used in Umbra surpasses all other
approaches. This result, of course, is not due to the use of UDOs but
because generating code is the most e�cient approach to compute
this algorithm. Still, the throughput of the UDO implementation in
Umbra is very similar to the native, code-generating operator.

We tested the di�erent implementations in Umbra in more detail,
as can be seen in Figure 10. We ran the query on the data set with
109 tuples (16GB) and varied the number of threads. The plot shows
that the maximal throughput is reached well before all threads are
used, because Umbra can saturate the memory bandwidth with all
three approaches when using only half of the threads.

Figure 10 also shows one negative e�ect of using UDOs: When
the total throughput (green lines) is compared to the throughput
excluding compilation overhead (faded lines), the query using the
UDOperforms theworst. This result is because the compilation time
for a query containing an UDO (≈180ms) is signi�cantly higher
than for queries without UDOs (≈37ms). When an UDO is inlined,
the resulting query plan generally contains more LLVM instructions
as they are generated by a high-level C++ compiler. Umbra’s native
operators directly generate more concise code, which does not
require many optimizations.

6.3 Imperative Programming
To highlight the advantages of using an imperative language to
process queries, we tested a query that generates multiple output
tuples for every input. The input contains a string that is a comma-
separated list of numbers and words. The UDO parses this string,
takes out all the numbers, and generates a new tuple for each
number.

1129

with recursive split_arrays(name, value, tail) as (
select c.name, NULL, c.values as tail
-- schema: array_values(name text, values text)
from array_values c
union all
select s.name,

case when comma = 0 then s.tail
else left(s.tail, comma - 1)
end as value,
case when comma = 0 then ''
else right(s.tail, -comma)
end as tail

from (
select s.*, position(',' in s.tail) as comma
from split_arrays s

) s where s.tail != ''
)
select name,

case when value similar to '[0-9]+'
then cast(value as bigint)
else null end as value

Listing 6: Splitting comma-separated strings into individual
integer tuples using recursive CTEs in SQL.

While the C++ code for this algorithm is only a few lines, im-
plementing this query in SQL is very tedious. Listing 6 shows how
recursive CTEs can be used to formulate this conceptually simple
query. Every input tuple can generate an arbitrary number of out-
puts; however, since SQL does not support loop statements, recur-
sion must be used instead. To ensure that the cast is not evaluated
for invalid strings, a case when statement must be used. Moving the
similar to expression to the where clause would allow the database
to reorder the expressions which could lead to runtime errors when
the cast is evaluated before the similar to expression.

In DuckDB, this recursion can be prevented by using the special
function unnest(), which directly converts an array of values into
multiple tuples. Postgres has a similar function called string_to_ta-
ble(), which splits a string by a given separator into multiple tuples.

For such an algorithm that is inherently imperative, the UDO can
easily outperform the SQL versions for larger data sizes. Figure 11
shows the throughput for ad-hoc queries, so it includes the compila-
tion time. When the control �ow from the imperative C++ program
must be simulated by using a recursive CTE, even Umbra is not
able to generate e�cient tight loops. This leads to slow executions
that cannot compete even for small input sizes where the runtime
of the UDO is dominated by its compilation time.

6.4 Data Generation
Our implementation does not require UDOs to have any inputs.
Therefore, it is possible to write “output-only” functions that can
take scalar arguments and then return a stream of tuples, that
behave similar to functions like generate_series() in SQL.

When writing benchmarks, it is very common to synthetically
generate all data that is used by the test queries. Such data gen-
erators are usually written in an imperative language. Examples
for this are C for the widely used benchmarks TPC-H and TPC-DS,
and Python, which has a broad range of libraries for that purpose.

Table 1: Runtimes to generate and insert di�erent benchmark
data sets by using UDOs.

Data Set Tuples Size Insert Generate
points (double, integer) 10M 354MiB 5 s 0.4 s
points (double, integer) 100M 3.5GiB 52 s 2 s
comma-separated (text) 10M 700MiB 15 s 13 s
comma-separated (text) 100M 7GiB 148 s 123 s

The disadvantage of this approach is that the data is generated �rst
by a program and then it must be inserted into a database. With
UDOs this can now be implemented directly in the database. No
extra steps to export and import data are required.

All test data for our benchmarks was created by using UDOs
which were directly used in INSERT statements. Table 1 shows
the runtime of some insert statements for di�erent data sets. The
sizes shown in the table refer to the size the generated data set
would have if exported as a CSV �le. For the “words” and “comma-
separated” data sets, which contain only strings, insert queries
using an UDO as a source can process around 40MiB/s to 50MiB/s.
This result is mainly a limitation caused by the insert statement,
not by the UDOs themselves. The “Generate” column shows how
long it takes to just generate the tuples and immediately discard
them. The two UDOs that make heavy usage of string operations
can reach up to 80MiB/s. The points dataset that does not use any
strings reaches about 1.7GiB/s which means it can keep up with
modern SSDs and the runtime of the data generation will most
likely be dominated by the actual insertion of tuples into a physical
relation.

All cases have in common that they do not require writing any
intermediate �les to disk that must then be read again by the data-
base system. Especially for larger data sets, this approach prevents
wasting space and time to store data on disk that is quickly dis-
carded. This approach yields no disadvantages for the user as this
data generation can be written in standard, imperative code.

7 CONCLUSION
In this work, we presented User-De�ned Operators (UDOs) – a novel
framework to e�ciently integrate and execute custom algorithms
in modern databases. UDOs can achieve very high throughput,
which is competitive with main-memory databases. Furthermore,
because UDOs are integrated into query engines of existing RDBMS,
all ACID properties can be preserved. Nevertheless, users are not
required to know any database internals. Instead, they are provided
with an easy-to-use API.

We implemented UDOs in Postgres andUmbra – a code-generating
database. Our evaluation shows that queries containing UDOs can
achieve throughputs similar to main-memory databases. Even in
disk-based systems such as Postgres, the execution of UDOs is very
e�cient. Thus, UDOs enable users to integrate custom algorithms
for data analytics directly into databases very e�ciently.

ACKNOWLEDGMENTS
This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 725286).

1130

REFERENCES
[1] 2022. PL/pgSQL – SQL Procedural Language. Retrieved January 14, 2022 from

https://www.postgresql.org/docs/14/plpgsql.html
[2] 2022. Rust Programming Language. Retrieved January 14, 2022 from https:

//www.rust-lang.org/
[3] 2022. Transact-SQL Reference. Retrieved January 14, 2022 from https://docs.

microsoft.com/en-us/sql/t-sql/language-reference
[4] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Gregory S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin, San-
jay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. CoRR abs/1603.04467 (2016).

[5] Yanif Ahmad and Christoph Koch. 2009. DBToaster: A SQL Compiler for High-
Performance Delta Processing in Main-Memory Databases. Proc. VLDB Endow.
2, 2 (2009), 1566–1569.

[6] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR. www.cidrdb.org, 225–237.

[7] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig,
Ugur Çetintemel, and Stan Zdonik. 2015. An Architecture for Compiling UDF-
centric Work�ows. Proc. VLDB Endow. 8, 12 (2015), 1466–1477.

[8] Je�rey Dean and Sanjay Ghemawat. 2008. MapReduce: simpli�ed data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[9] Christian Duta, Denis Hirn, and Torsten Grust. 2020. Compiling PL/SQL Away.
In CIDR. www.cidrdb.org.

[10] Eric Friedman, Peter M. Pawlowski, and John Cieslewicz. 2009. SQL/MapReduce:
A practical approach to self-describing, polymorphic, and parallelizable user-
de�ned functions. Proc. VLDB Endow. 2, 2 (2009), 1402–1413.

[11] Goetz Graefe and William J. McKenna. 1993. The Volcano Optimizer Generator:
Extensibility and E�cient Search. In ICDE. IEEE Computer Society, 209–218.

[12] Surabhi Gupta and Karthik Ramachandra. 2021. Procedural Extensions of SQL:
Understanding their usage in the wild. Proc. VLDB Endow. 14, 8 (2021), 1378–1391.

[13] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library or MAD Skills,
the SQL. Proc. VLDB Endow. 5, 12 (2012), 1700–1711.

[14] Denis Hirn and Torsten Grust. 2021. One WITH RECURSIVE is Worth Many
GOTOs. In SIGMOD Conference. ACM, 723–735.

[15] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: fast compilation and fast execution of relational queries in Umbra. VLDB
J. 30, 5 (2021), 883–905.

[16] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In ICDE. IEEE Computer Society, 197–208.

[17] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO. IEEE Computer Society,
75–88.

[18] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
driven parallelism: a NUMA-aware query evaluation framework for the many-
core age. In SIGMOD Conference. ACM, 743–754.

[19] Raymond A. Lorie. 1974. XRM - An Extended (N-ary) Relational Memory. Re-
search Report / G / IBM / Cambridge Scienti�c Center G320-2096 (1974).

[20] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. 2013. Naiad: a timely data�ow system. In SOSP. ACM,
439–455.

[21] Derek Gordon Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul
Barham, and Martín Abadi. 2016. Incremental, iterative data processing with
timely data�ow. Commun. ACM 59, 10 (2016), 75–83.

[22] Thomas Neumann. 2011. E�ciently Compiling E�cient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.

[23] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

[24] Shoumik Palkar, James J. Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman P. Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating
End-to-End Optimization for Data Analytics Applications in Weld. Proc. VLDB
Endow. 11, 9 (2018), 1002–1015.

[25] Linnea Passing, Manuel Then, Nina Hubig, Harald Lang, Michael Schreier,
Stephan Günnemann, Alfons Kemper, and Thomas Neumann. 2017. SQL- and
Operator-centric Data Analytics in Relational Main-Memory Databases. In EDBT.
OpenProceedings.org, 84–95.

[26] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In SIGMOD Conference. ACM, 1981–1984.

[27] Maximilian E. Schüle, Jakob Huber, Alfons Kemper, and Thomas Neumann. 2020.
Freedom for the SQL-Lambda: Just-in-Time-Compiling User-Injected Functions
in PostgreSQL. In SSDBM. ACM, 6:1–6:12.

[28] Lujia Yin, Yiming Zhang, Zhaoning Zhang, Yuxing Peng, and Peng Zhao. 2021.
ParaX: Boosting Deep Learning for Big Data Analytics on Many-Core CPUs.
Proc. VLDB Endow. 14, 6 (2021), 864–877.

[29] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In NSDI. USENIX Association, 15–28.

[30] Wangda Zhang, Junyoung Kim, Kenneth A. Ross, Eric Sedlar, and Lukas Stadler.
2021. Adaptive Code Generation for Data-Intensive Analytics. Proc. VLDB Endow.
14, 6 (2021), 929–942.

[31] Yuhao Zhang, Frank Mcquillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna,
Orhan Kislal, Domino Valdano, and Arun Kumar. 2021. Distributed Deep Learn-
ing on Data Systems: A Comparative Analysis of Approaches. Proc. VLDB Endow.
14, 10 (2021), 1769–1782.

[32] Jia Zou, Amitabh Das, Pratik Barhate, Arun Iyengar, Binhang Yuan, Dimitrije
Jankov, and Chris Jermaine. 2021. Lachesis: Automated Partitioning for UDF-
Centric Analytics. Proc. VLDB Endow. 14, 8 (2021), 1262–1275.

[33] Marcin Zukowski, Mark van de Wiel, and Peter A. Boncz. 2012. Vectorwise: A
Vectorized Analytical DBMS. In ICDE. IEEE Computer Society, 1349–1350.

1131

