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ABSTRACT
Threshold queries are an important class of queries that only re-

quire computing or counting answers up to a specified threshold

value. To the best of our knowledge, threshold queries have been

largely disregarded in the research literature, which is surprising

considering how common they are in practice. In this paper, we

present a deep theoretical analysis of threshold query evaluation

and show that thresholds can be used to significantly improve the

asymptotic bounds of state-of-the-art query evaluation algorithms.

We also empirically show that threshold queries are significant in

practice. In surprising contrast to conventional wisdom, we found

important scenarios in real-world data sets in which users are inter-

ested in computing the results of queries up to a certain threshold,

independent of a ranking function that orders the query results.
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1 INTRODUCTION
Queries encountered in a wide range of data management applica-

tions, such as data interaction, data visualization, data exploration,

data curation and data monitoring [8, 41, 45], often require com-

puting or counting answers only up to a given threshold value. We

call such queries threshold queries.
Threshold queries for data exploration. Querying voluminous rich

data sources, such as Wikidata [67], may return more results than

are needed during exploratory analytics. Thus, users may specify

a threshold on the number of answers they want to see. Consider

the following LIMIT query which lists up to a threshold businesses,

total assets, and headquarter locations in the Wikidata dataset.

SELECT ?business ?assets ?city ?country

{ ?business <total_assets > ?assets .

?business <headquarters_location > ?city .

?city <country > ?country . }

LIMIT 10;
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Without LIMIT, this query would return 2,684,138 objects, amount-

ing to about 413MB in size, which is too large for human consump-

tion. Note that here the user is interested in unranked output (i.e.,

there is no ORDER BY clause), which is typical for data exploration

[8]. As we will see later in a deep-dive into real query logs (Sec-

tion 5), such queries on Wikidata are very common in practice.

Threshold queries for data curation. Threshold queries are also use-

ful in detecting violations of database constraints and identifying

data items requiring curation actions. As an example, consider the

following threshold query using grouping and aggregation in the

Nobel Prize database, requiring that every Nobel prize has at most

three laureates [4].

SELECT P.ID FROM NobelPrize P, Laureate L

WHERE P.ID = L.Prize_ID

GROUP BY P.ID HAVING COUNT (*) > 3;

Differenceswith other query answering paradigms.Although
threshold queries might look similar in spirit to top-𝑘 queries [35,

43, 59, 60], they are inherently different because they do not assume

that the results are ranked. They are also different from counting

queries [32, 63], since these aim at computing an exact value, rather

than only desiring exact values up to a given threshold. Therefore,

prior problems are either more specific or have different objectives.

We examine these differences in depth in Section 6.

Our contributions.We are motivated by the following question:

Can we exploit the fact that we only need to count or compute the

answers of a query up to a threshold? In this paper, we answer this

question positively. The starting point for our work is the obser-

vation that evaluating some queries with a threshold 𝑘 requires

storing not more than 𝑘 + 1 intermediate results [18, 51]. We show

that this idea can be fully integrated with state-of-the-art complex

join algorithms, leading to significant savings in the size of the

intermediate results as typically computed in query processing,

leading for some queries to improvements from �̃� (𝑛𝑓 ) to �̃� (𝑛 · 𝑘),
where 𝑓 is the free-connex treewidth of the query and 𝑘 is the value

of the threshold. Here, the free-connex treewith of a query mea-

sures its treewidth in connection with its output variables. It can

be large even if the query is acyclic.

In detail, the key contributions of our paper are as follows:

(1) New results explaining the interplay between different struc-

tural properties of conjunctive queries (i.e., select-project-

join queries) used in sophisticated evaluation algorithms

(Lemma 4.5), and the consequences for threshold query pro-

cessing (Theorem 4.7).
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(2) New evaluation algorithms for threshold queries (for com-

puting answers, counting answers, and sampling answers)

with improved asymptotic guarantees (Theorem 4.10).

(3) A comprehensive empirical study of threshold queries found

in the wild, which highlights their characteristics and shows

that they are quite common in important practical scenarios.

(4) An experimental evaluation of a proof-of-concept SQL im-

plementation of our algorithm against the current query

optimizer in PostgreSQL, showing speedups of several or-

ders of magnitude.

Our work provides the first in-depth theoretical treatment of thresh-

old queries. In addition, it also shows that these queries are impor-

tant in practical settings by means of an in-depth empirical study.

The paper is organized as follows. Section 2 contains basic defi-

nitions. In Section 3, we identify the problems of interest, explain

the complexity-theoretic limits, and explain some of our main ideas

in an example. Section 4 presents the algorithms for the problems

of interest. In Section 5, we present experiments and findings on

threshold queries that can be found in practice. In Section 6, we dis-

cuss related work. Finally, in Section 7 we summarize our findings

and outline further research directions. Because of space limitation,

detailed proofs as well as additional material are omitted and can

be found in an extended technical report [13].

2 PRELIMINARIES
Our results apply in both a relational database setting and a graph

database setting. We first focus on the relational database setting,

for which we loosely follow the preliminaries as presented in [1].

We assume that we have countably infinite and disjoint sets Rel of
relation names and Const of values. Furthermore, when (𝑎1, . . . , 𝑎𝑘 )
is a Cartesian tuple, we may abbreviate it as 𝑎. A 𝑘-ary database
tuple (henceforth abbreviated as tuple) is an element of Const𝑘

for some 𝑘 ∈ N. A relation is a finite set 𝑆 of tuples of the same

arity. We denote the set of all such relations by R. A database is
a partial function 𝐷 : Rel→ R such that Dom(𝐷) is finite. If 𝐷 is

a database and 𝑅 ∈ Rel, we write 𝑅(𝑎1, . . . , 𝑎𝑘 ) ∈ 𝐷 to denote that

(𝑎1, . . . , 𝑎𝑘 ) ∈ 𝐷 (𝑅). By Adom(𝐷) we denote the set of constants
appearing in tuples of 𝐷 , also known as the active domain of 𝐷 .

For defining conjunctive queries, we assume a countably infinite

set Var of variables, disjoint from Rel and Const. An atom is an

expression of the form 𝑅(𝑢1, . . . , 𝑢𝑘 ), where 𝑢𝑖 ∈ Var ∪ Const for
each 𝑖 ∈ {1, . . . , 𝑘}. A conjunctive query (CQ) is an expression 𝑞 of

the form

∃𝑦 𝐴1 (𝑢1) ∧ . . . ∧𝐴𝑛 (𝑢𝑛) ,
where 𝑦 = (𝑦1, . . . , 𝑦𝑚) consists of existentially quantified variables
and each 𝐴𝑖 (𝑢𝑖 ), with 𝑖 ∈ {1, . . . , 𝑛} is an atom. Each variable that

appears in 𝑦 should also appear in 𝑢1, . . . , 𝑢𝑛 . On the other hand,

𝑢1, . . . , 𝑢𝑛 can contain variables not present in 𝑦. For a tuple 𝑥 , we

write 𝑞(𝑥) to emphasize that 𝑞 is a CQ such that all variables in

𝑢1, . . . , 𝑢𝑛 appear in either 𝑥 or 𝑦. Unless we say otherwise, we

assume that the variables in 𝑢1, . . . , 𝑢𝑛 are precisely the variables

in 𝑥 and 𝑦. The arity of 𝑞(𝑥) is defined as the arity of the tuple

𝑥 . We denote by Var(𝑞) the set of all variables appearing in 𝑞 and

by FVar(𝑞) the set of so-called free variables of 𝑞, which are the

variables in Var(𝑞) that are not existentially quantified. A full CQ
is a CQ without existentially quantified variables.

Query Answers and Relational Algebra. We consider queries un-

der set semantics, i.e., each answer occurs at most once in the re-

sult. A binding of 𝑋 ⊆ Var is a function 𝜂 : 𝑋 → Const. We

say that bindings 𝜂 and 𝜂 ′ are compatible if 𝜂 (𝑥) = 𝜂 ′(𝑥) for all
𝑥 ∈ Dom(𝜂) ∩ Dom(𝜂 ′). For compatible bindings 𝜂1 and 𝜂2, the

join of 𝜂1 and 𝜂2, is the binding 𝜂1 ⊲⊳ 𝜂2 such that Dom(𝜂1 ⊲⊳ 𝜂2) =
Dom(𝜂1)∪Dom(𝜂2) and

(
𝜂1 ⊲⊳ 𝜂2

)
(𝑥) = 𝜂𝑖 (𝑥) for all 𝑥 ∈ Dom(𝜂𝑖 )

and 𝑖 ∈ {1, 2}. If 𝑃1 and 𝑃2 are sets of bindings, then the join of 𝑃1 and
𝑃2 is 𝑃1 ⊲⊳ 𝑃2 =

{
𝜂1 ⊲⊳ 𝜂2

�� 𝜂1 ∈ 𝑃1 and 𝜂2 ∈ 𝑃2 are compatible

}
.

For 𝑋 ⊆ Dom(𝜂), the projection of 𝜂 on 𝑋 , written as 𝜋𝑋 (𝜂), is the
binding 𝜂 ′ with Dom(𝜂 ′) = 𝑋 ∩ Dom(𝜂) and 𝜂 ′(𝑥) = 𝜂 (𝑥), for
every 𝑥 ∈ Dom(𝜂 ′). For a set 𝑃 of bindings, the projection of 𝑃 on
𝑋 is 𝜋𝑋 (𝑃) =

{
𝜋𝑋 (𝜂)

�� 𝜂 ∈ 𝑃}.
Amatch for 𝑞 in𝐷 is a binding of Var(𝑞) such that𝐴𝑖 (𝜂 (𝑢𝑖 )) ∈ 𝐷

for every 𝑖 ∈ {1, . . . , 𝑛}.1 The set of answers to 𝑞 on 𝐷 is 𝑞(𝐷) ={
𝜋FVar(𝑞) (𝜂)

�� 𝜂 is a match for 𝑞 in 𝐷
}
. We define answers as func-

tions instead of database tuples, as this simplifies the presentation

and as reasoning about their underlying domains is useful in further

sections, when dealing with query decompositions.

Threshold Queries. A threshold query (TQ) is an expression 𝑡 of

the form

𝑞(𝑥) ∧ ∃𝑎,𝑏𝑦 𝑝 (𝑥,𝑦)
where, from left to right, 𝑞(𝑥) is a CQ, 𝑎 ∈ N, 𝑏 ∈ N ∪ {∞}, and
𝑝 (𝑥,𝑦) is a CQ in which we do not require that every variable in

𝑥 appears in one of its atoms. Notice that a TQ only has a sin-

gle counting quantifier ∃𝑎,𝑏 , although further ordinary existential

quantifiers may occur inside 𝑞 and 𝑝 . We use ∃≥𝑎 and ∃≤𝑏 as

shorthands for ∃𝑎,∞ and ∃0,𝑏
, respectively, and the corresponding

threshold queries will be called at-least and at-most queries. Similar

to CQs, we usually denote the entire query as 𝑡 (𝑥) or even as 𝑡 when
𝑥 is clear from the context. When representing 𝑡 (𝑥) for decision
problems, we assume that the numbers 𝑎 and 𝑏 are given in binary.

As an example, recall the Nobel Prize threshold query in Sec-

tion 1, and suppose that the schema isNobelPrize(id, year, category)
and Laureate(nid, name, country) with the foreign key constraint

Laureate[nid] ⊆ NobelPrize[id]. This threshold query can be for-

malized as follows.

𝑡 (𝑥) = ∃𝑥1, 𝑥2 . NobelPrize(𝑥, 𝑥1, 𝑥2) ∧ ∃≥4𝑦. ∃𝑧. 𝐿𝑎𝑢𝑟𝑒𝑎𝑡𝑒 (𝑥,𝑦, 𝑧) .

The set of answers of 𝑡 on 𝐷 , written 𝑡 (𝐷), is the set of answers
𝜂 of 𝑞(𝑥) on 𝐷 that have between 𝑎 and 𝑏 compatible answers of

𝑝 (𝑥,𝑦). Formally, 𝜂 ∈ 𝑡 (𝐷) iff 𝜂 ∈ 𝑞(𝐷) and 𝑎 ≤ |𝑝 (𝐷,𝜂) | ≤ 𝑏,

where 𝑝 (𝐷,𝜂) =
{
𝜂 ′ ∈ 𝑝 (𝐷)

�� 𝜂 ′ is compatible with 𝜂
}
.

If 𝑡 is a threshold query of the form above, we call 𝑥 the free
variables (or answer variables) of the query 𝑡 and we write FVar(𝑡)
for the set of these variables.We call𝑦 the tally variables of the query
𝑡 and we write TVar(𝑡) for the set of these variables. For the ease of
presentation we shall assume that the sets of existentially quantified

variables in 𝑞 and 𝑝 are disjoint; we shall write QVar(𝑡) for the
union of these sets. Thus, Var(𝑡) is the union of three disjoints sets:

FVar(𝑡), TVar(𝑡), and QVar(𝑡).
A threshold query 𝑡 can be intuitively expressed as a SQL query

defining 𝑞(𝑥) such that in the WHERE clause we additionally check

1
Notice that here we also denote by 𝜂 the extension of 𝜂 that is the identity on Const,
and its extension thereof to tuples of variables and constants.
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if the number of tuples returned by a correlated SELECT-FROM-

WHERE subquery defining 𝑝 (𝑥,𝑦) is at least 𝑎 and at most 𝑏.

Graph Databases. For the purposes of this paper, graph databases
can be abstracted as relational databases with unary and binary

relations. That is, a graph database can be seen as a database 𝐺

with a unary relation Node and binary relations 𝐴, 𝐵, . . . where

• Node(𝑎) ∈ 𝐺 if 𝑎 is a node of the graph database and

• 𝐴(𝑎1, 𝑎2) ∈ 𝐺 if (𝑎1, 𝑎2) is an edge with label 𝐴 in the graph

database.

An important feature that distinguishes graph database queries

from relational database queries are regular path queries (RPQs)
[14]. In a nutshell, a regular path query is an expression of the form

𝑟 (𝑥,𝑦), where 𝑟 is a regular expression over the set of edge labels

in the graph database. When evaluated over a graph database 𝐺 ,

the query returns all node pairs (𝑢, 𝑣) such that there exists a path

from 𝑢 to 𝑣 that is labeled with some word in the language of 𝑟 .

All results in the paper extend naturally to RPQs and therefore

to so-called conjunctive regular path queries (CRPQs) [14]. This

means that we can generalize CQs to CRPQs, which are defined

exactly the same as CQs, but we additionally allow RPQs at the level

of atoms. Generalizing threshold queries is analogous. If we want to

evaluate a threshold query with RPQs, we can pre-evaluate all RPQs

in the query and treat their result as a materialized view. We can

then treat the query as an ordinary threshold query in which each

RPQ becomes an atom, which is evaluated over the corresponding

materialized view.

3 EXPLOITING THRESHOLDS AT A GLANCE
Query evaluation is arguably the most fundamental problem in

databases and comes in many variants, such as:

(E1) Boolean evaluation, i.e., testing existence of an answer;

(E2) returning a given number of answers;

(E3) counting the total number of answers;

(E4) sampling answers with uniform probability; and

(E5) enumerating the answers with small delay.

An important reason why all these variants are considered is that

the set of answers to a query can be very large and one is not always

interested in the set of all answers.

The computational cost of these variants tends to increase as we

go down in the list, but already for CQs even the simplest problem

(E1) is intractable [1, Chapter 15]. Triggered by Yannakakis’ seminal

result on efficient evaluation of acyclic CQs [71], the literature

developed a deep understanding that teaches us that, essentially,

low tree-width is not only helpful but even necessary for polynomial-

time Boolean evaluation of CQs [39]. Intuitively, the tree-width of a

CQ measures the likeness of its graph structure to a tree. In essence,

this graph structure is obtained by taking the queries’ variables

as nodes and connecting variables with an edge iff they appear

in a common atom. Queries with low tree-width are tree-like and

queries with high tree-width are highly cyclic.

Example 3.1. Consider the following variant of the first query

from the introduction:

𝑞(𝑥,𝑦, 𝑧) ← Assets(𝑥,𝑦), Subsidiary(𝑤, 𝑥), Shareholder (𝑤, 𝑧) .

For the purpose of Boolean evaluation we can rewrite 𝑞 as

𝑞′() ← Assets(𝑥,𝑦),𝑈 (𝑥) ;
𝑈 (𝑥) ← Subsidiary(𝑤, 𝑥),𝑉 (𝑤) ;
𝑉 (𝑤) ← Shareholder (𝑤, 𝑧)

using views𝑈 and 𝑉 . It is clear that one can materialize the views

and answer 𝑞′ in time 𝑂
(
𝑛 · log𝑛

)
over databases of size 𝑛. The

tree-width of 𝑞 manifests itself as the number of variables used in

the definitions of the views. For CQs of tree-width 𝑑 , views in the

optimal rewriting will use up to 𝑑 variables and the data complexity

will be 𝑂
(
𝑛𝑑 · log𝑛

)
. ◁

For threshold queries, however, low tree-width is not sufficient.

The reason is that it is already hard to decide if the number of results

of an acyclic CQ is above a threshold (represented in binary).

Proposition 3.2. Given an acyclic conjunctive query 𝑞, a threshold
𝑘 in binary representation, and a database 𝐷 , testing if 𝑞 returns at
least 𝑘 tuples on 𝐷 is coNP-hard.

So, we cannot have a polynomial-time algorithm even for eval-

uating Boolean acyclic threshold queries of the form ∃𝑎,𝑏𝑦 𝑝 (𝑦),
unless P = NP. This is why one focus in the paper is on

pseudopolynomial-time algorithms

for threshold queries of low tree-width.

We call an algorithm pseudopolynomial, if it is a polynomial-time

algorithm assuming that the numerical values 𝑎 and 𝑏 in “∃𝑎,𝑏𝑦”
are represented in unary (instead of binary). For instance, a pseu-

dopolynomial algorithm can evaluate threshold queries of the form

∃𝑎,𝑏𝑦 𝑝 (𝑦) by keeping 𝑏 + 1 intermediate results in memory, which

is not possible in a polynomial-time algorithm.

Let us revisit Example 3.1 and rewrite the query in a suitable way

to produce its output. The next rewriting is inspired by research

on constant-delay enumeration and answer counting for CQs.

Example 3.3. The rewriting in Example 3.1 is not suitable for non-

Boolean evaluation because it projects out answer variables. The

only way to rewrite 𝑞 while keeping track of all answer variables is

𝑞′′(𝑥,𝑦, 𝑧) ←Assets(𝑥,𝑦),𝑈 (𝑥, 𝑧) ;
𝑈 (𝑥, 𝑧) ←Subsidiary(𝑤, 𝑥), Shareholder (𝑤, 𝑧) .

The standard approach for constant-delay enumeration algorithms

[5] first has a preprocessing phase, in which it materializes𝑈 and

groups Assets and𝑈 by 𝑥 . In the enumeration phase it iterates over

possible values of 𝑥 and, for each value of 𝑥 , over the contents of

the corresponding groups of Assets and 𝑈 . The complexity of the

preprocessing phase is then affected by the cost of materializing𝑈 ,

which can be quadratic in the worst case. Overall, the complexity

is 𝑂 (𝑛2 · log𝑛) over databases of size 𝑛. ◁

Evaluating a threshold query is closely related to constant-delay

enumeration and counting answers to CQs. Indeed, a threshold

query of the form ∃𝑎,𝑏𝑦 𝑝 (𝑦) can be evaluated by enumerating

answers to 𝑝 up to threshold 𝑏 + 1 or by counting all answers to 𝑝 .

For both these tasks, however, tractability relies on more restrictive

parameters of the query. For enumeration, tree-width needs to

be replaced with its free-connex variant [5], which treats answer

variables in a special way. For counting, the additional parameter

is the star-size [32]. Intuitively, it measures how many answer

1107



variables are maximally connected to a non-answer variable. The

query 𝑞 has star-size 2 because the existentially quantified variable

𝑤 is connected to two answer variables, 𝑥 and 𝑧.

Thus, in the general approaches to constant-delay enumeration

and counting, complexity is very sensitive to the interaction be-

tween answer and non-answer variables. Our key insight is that

in the presence of a threshold this is no longer the case and low

tree-width is sufficient.

Example 3.4. Consider again query 𝑞 from Example 3.1 and sup-

pose that we should return up to 𝑐 answers. We can rely on the

rewriting in Example 3.1, but we need to store additional informa-

tion when materializing the views. For each𝑤 in𝑉 we store up to 𝑐

witnessing values of 𝑧 such that Shareholder (𝑤, 𝑧) holds. Similarly,

for each 𝑥 in𝑈 we store up to 𝑐 values of 𝑧 that were stored as wit-

nesses for some𝑤 in 𝑉 with Subsidiary(𝑤, 𝑥). Now, we can obtain

up to 𝑐 answers to 𝑞 by taking the join of Assets(𝑥,𝑦) with 𝑈 (𝑥)
and iterating through the witnessing values of 𝑧 for each 𝑥 . Both

extended materialization steps, as well as the final computation of

answers, can be realized in time𝑂
(
𝑐 ·𝑛 · log(𝑐 ·𝑛)

)
. If we are to count

answers up to threshold 𝑐 , we can just count the ones returned by

the algorithm above. ◁

This idea allows evaluating low tree-width TQs of the form

∃𝑎,𝑏𝑦 𝑝 (𝑦) in pseudopolynomial-time. It is also crucial in our treat-

ment of general TQs of the form 𝑞(𝑥) ∧ ∃𝑎,𝑏𝑦 𝑝 (𝑥,𝑦) but, as the
following proposition shows, we cannot expect pseudopolynomial

evaluation algorithms even for acyclic threshold queries. Our proof

uses a reduction fromMINSAT [52].

Proposition 3.5. Boolean evaluation of acyclic at-least and at-most
threshold queries is NP-hard, even if thresholds are given in unary.

The reason is that acyclic queries can have arbitrarily high free-
connex tree-width, which is the actual source of hardness. For TQs of
bounded free-connex tree-width our approach will yield pseudopoly-

nomial evaluation algorithms for all variants (E1)–(E5). That is, our

results are tight in terms of combined complexity.

In the remainder of the paper, we will analyze algorithms using

�̃�-notation. We will use this notation to reflect the data complexity
of the algorithms and to hide logarithmic factors. Essentially, using
�̃� allows us to freely use sorting and indexes such as B-trees. For

instance, if we say that something can be done in time �̃� (𝑛2) we
mean that its data complexity is in time 𝑂 (𝑛2

log𝑛).

4 THRESHOLD QUERIES IN THEORY
In this section we define the notions of widths and decompositions

informally discussed in Section 3, explore in depth the approach to

threshold queries via exact counting, develop the idea illustrated

in Example 3.4 to cover arbitrary CQs in a slightly more general

setting involving grouping, and employ the obtained algorithm

to construct a single data structure that supports constant-delay

enumeration, counting, and sampling answers to TQs.

4.1 Tree Decompositions and How to Find
Them

The rewritings discussed in Section 3 are guided by tree decompo-

sitions of queries. A tree decomposition of a conjunctive query 𝑞 is a

𝑇1 {𝑥, 𝑦 }

{𝑤,𝑥 }

{𝑤,𝑧 }

𝑇2 {𝑥, 𝑦, 𝑧 }

{𝑤,𝑥, 𝑧 }

𝑇3 {𝑥 }

{𝑥, 𝑦 }

{𝑦 }

{𝑦,𝑢 }

{𝑦, 𝑦′,𝑢 }

{𝑥, 𝑧 }

{𝑧 }

{𝑧, 𝑣 }

{𝑧, 𝑧′, 𝑣 }

𝑇4 {𝑥 }

{𝑥, 𝑦 }

{𝑦 }

{𝑦, 𝑦′ }

{𝑦′,𝑢 }

{𝑥, 𝑧 }

{𝑧 }

{𝑧, 𝑧′ }

{𝑧′, 𝑣 }

Figure 1: Tree decompositions.

finite tree 𝑇 with a set 𝑋𝑣 ⊆ Var(𝑞), called a bag, assigned to each

node 𝑣 of 𝑇 , satisfying the following conditions:

(1) for each atom 𝐴 of 𝑞 there exists a node 𝑣 of 𝑇 such that

Var(𝐴) ⊆ 𝑋𝑣 (we say that 𝑣 covers 𝐴);
(2) for each variable 𝑥 ∈ Var(𝑞), the set of nodes 𝑣 of 𝑇 such

that 𝑥 ∈ 𝑋𝑣 forms a connected subgraph of 𝑇 .

By the width of𝑇 we shall understand max𝑣∈𝑇 |𝑋𝑣 |.2 The tree-width
of query 𝑞, written as tw(𝑞), is the minimal width of a tree decom-

position of 𝑞. For example, 𝑇1 in Figure 1 is a tree decomposition

of width 2 for the query 𝑞 in Example 3.1. Since 𝑞 contains atoms

involving two variables, it does not admit a tree decomposition of

width 1. Hence, tw(𝑞) = 2.

A tree decomposition 𝑇 of a query 𝑞 is 𝑋 -connex for a set 𝑋 ⊆
Var(𝑞), if there exists a connected subset𝑈 of nodes of𝑇 , containing

the root of𝑇 , such that the union of bags associated to nodes in𝑈 is

precisely 𝑋 . Note that there is exactly one such𝑈 that is maximal:

it is the one that includes all nodes 𝑢 with 𝑋𝑢 ⊆ 𝑋 . We shall refer

to it as the maximal 𝑋 -connex set in 𝑇 . The 𝑋 -connex tree-width of

𝑞 is the minimal width of an 𝑋 -connex tree decomposition of 𝑞.

If 𝑋 = FVar(𝑞), we speak of free-connex decompositions and free-
connex tree-width; we write fc-tw(𝑞) for the free-connex tree-width
of 𝑞. For instance,𝑇2 in Figure 1 is a free-connex tree decomposition

of width 3 for the query 𝑞 of Example 3.1. It is not hard to see that

𝑞 has no free-connex decomposition of width 2. That is, tw(𝑞) = 2

but fc-tw(𝑞) = 3. This difference can be arbitrarily large, e.g., for

the CQs we used in the proof of Proposition 3.2.

A tree decomposition 𝑇 of 𝑞 is 𝑋 -rooted, for 𝑋 ⊆ Var(𝑞), if the
root bag of𝑇 is exactly𝑋 . The𝑋 -rooted tree-width of𝑞 is theminimal

tree-width of an 𝑋 -rooted tree decomposition. By analogy to free-

connex, if 𝑋 = FVar(𝑞), we speak of free-rooted decompositions and
free-rooted tree-width.

It is convenient to work with tree decompositions 𝑇 of a special

shape. A node 𝑢 of 𝑇 is: a project node if it has exactly one child

𝑣 and 𝑋𝑢 ⊊ 𝑋𝑣 ; a join node if it has exactly two children, 𝑣1 and

𝑣2, and 𝑋𝑢 = 𝑋𝑣1
∪ 𝑋𝑣2

. We say that 𝑢 is safe if each variable in 𝑋𝑢
occurs in an atom of 𝑞 that is covered either by𝑢 or by a descendant

of 𝑢. We say that 𝑇 is nice if each node of 𝑇 is either a leaf or a

project node or a join node, and all nodes of 𝑇 are safe.

Lemma 4.1. Each tree decomposition 𝑇 of a conjunctive query 𝑞

can be transformed in polynomial time into a nice tree decomposition
𝑇 ′ of the same width and linear size. Moreover, if 𝑇 is 𝑋 -rooted or
𝑋 -connex, so is 𝑇 ′.

2
It is customary to define the width of decomposition𝑇 as max𝑣∈𝑇 |𝑋𝑣 | − 1, to ensure

that tree-shaped queries have tree-width 1. For the purpose of this paper we prefer

not to do it, thus avoiding adjustments by 1 in multiple formulas.
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We now introduce some notions that will be useful later. With

each node𝑢 in a tree decomposition𝑇 of𝑞we associate the subquery

𝑞𝑢 obtained by taking all atoms of 𝑞 over the variables appearing

in the subtree of 𝑇 rooted at 𝑢, and quantifying existentially all

used variables except those in 𝑋𝑢 ∪ FVar(𝑞). Let 𝑞𝑢 be the full

CQ obtained by taking all atoms of 𝑞𝑢 that do not occur in 𝑞𝑣1
∧

𝑞𝑣2
∧ · · · ∧ 𝑞𝑣𝑘 , where 𝑣1, 𝑣2, . . . , 𝑣𝑘 are the children of 𝑢; we then

have Var(𝑞𝑢 ) = FVar(𝑞𝑢 ) ⊆ 𝑋𝑢 . For instance, for the query 𝑞

discussed in Section 3 and its tree decomposition 𝑇1 shown in

Figure 1 with nodes numbered 0, 1, 2 starting from the root, we have

𝑞0 = 𝑞 = ∃𝑤 Assets(𝑥,𝑦) ∧ Subsidiary(𝑤, 𝑥) ∧ Shareholder (𝑤, 𝑧),
𝑞0 = Assets(𝑥,𝑦), 𝑞1 = ∃𝑥 Subsidiary(𝑤, 𝑥) ∧ Shareholder (𝑤, 𝑧),
𝑞1 = Subsidiary(𝑤, 𝑥), and 𝑞2 = 𝑞2 = Shareholder (𝑤, 𝑧). In general,

if 𝑢 is a leaf then 𝑞𝑢 = 𝑞𝑢 and if 𝑢 is the root then 𝑞𝑢 = 𝑞. One

can evaluate 𝑞 on a database 𝐷 by computing 𝑞𝑢 (𝐷) bottom up, as

follows. Assuming that 𝑇 is nice, if 𝑢 is a leaf then

𝑞𝑢 (𝐷) = 𝑞𝑢 (𝐷) ,

if 𝑢 is a project node with child 𝑣 then

𝑞𝑢 (𝐷) = 𝜋FVar(𝑞𝑢 )
(
𝑞𝑣 (𝐷)

)
,

and if 𝑢 is a join node with children 𝑣1 and 𝑣2 then

𝑞𝑢 (𝐷) = 𝑞𝑢 (𝐷) ⊲⊳ 𝑞𝑣1
(𝐷) ⊲⊳ 𝑞𝑣2

(𝐷) .

If 𝑇 is free-rooted then FVar(𝑞𝑢 ) ⊆ 𝑋𝑢 for each 𝑢 and the above

computation can be performed in time �̃� ( |𝐷 |𝑑 ), where 𝑑 is the

width of 𝑇 . The following simple fact will also be useful.

Lemma 4.2. Let 𝑇 be a nice tree decomposition of a CQ 𝑞.

(1) For each node 𝑢 in 𝑇 it holds that 𝑋𝑢 ⊆ FVar(𝑞𝑢 ).
(2) If𝑇 is 𝑋 -connex and𝑈 is the maximal 𝑋 -connex set in𝑇 , then

each node in 𝑈 either has all its children in𝑈 or it is a𝑈 -leaf,
that is, it has no children in𝑈 .

Tree decompositions are not easy to find. Indeed, determining if

an arbitrary graph admits a tree decomposition of width at most𝑑 is

NP-hard [3]. However, the problem has been studied in great depth

and there is an ongoing effort of making these approaches practical

at large scale. For instance, computing tree decompositions of large

graphs was the topic of the PACE Challenge [29, 30] twice.

However, in the present context, we only want to compute tree
decompositions of queries, which are very small in practice. There are

libraries available [31, 36] that can find optimal tree decompositions

of queries very efficiently. Indeed, DetkDecomp [31] was used to

compute the tree-width of more than 800 million real-world queries

[15–17] and worked very efficiently. Importantly for us, the analysis

in [15–17] showed that real-life queries have very low tree-width.

Each algorithm for computing tree decompositions can be used

also to compute 𝑋 -rooted and 𝑋 -connex tree decompositions, with

quadratic overhead [5]. In our complexity estimations we rely on

Bodlaender’s algorithm [11], which allows computing optimal tree

decompositions in linear time (assuming bounded tree-width).

4.2 Threshold Queries via Exact Counting
Processing a threshold query

𝑡 (𝑥) = 𝑞(𝑥) ∧ ∃𝑎,𝑏𝑦 𝑝 (𝑥,𝑦)

involves counting, for each answer 𝜂 in 𝑞(𝐷), how many answers

in 𝑝 (𝐷) are compatible to 𝜂. Formally, this means that we need to

determine the size of 𝑝 (𝐷,𝜂) for each 𝜂 ∈ 𝑞(𝐷), where 𝑝 (𝐷,𝜂) is
the set of answers in 𝑝 (𝐷) that are compatible to 𝜂. So we need to

solve the following computational problem for 𝑝 .

Counting answers to 𝑝 grouped by 𝑋 ⊆ FVar(𝑝) over
database 𝐷 consists in computing all pairs (𝜂, 𝑘) such
that 𝜂 : 𝑋 → Adom(𝐷) and 𝑘 = |𝑝 (𝐷,𝜂) |.

Counting answers can leverage low star-size [32]. While the

original notion is designed to fit hypertree decompositions, we

shall work with a slightly faster growing variant that fits tree de-

compositions better and is much easier to define; the two variants

coincide for queries using at most binary atoms. The star-size of a
conjunctive query 𝑞, written ss(𝑞), is the least positive integer 𝑓
such that by grouping atoms and pushing quantifiers down, we can

rewrite 𝑞 as 𝑞1 ∧𝑞2 ∧ · · · ∧𝑞ℓ with |FVar(𝑞𝑖 ) | ≤ 𝑓 or QVar(𝑞𝑖 ) = ∅
for all 𝑖 . The following is a routine generalization of the result on

counting answers [32].

Proposition 4.3. Counting answers grouped by 𝑋 for conjunctive
queries of 𝑋 -rooted tree-width 𝑑 and star-size 𝑓 over databases of size
𝑛 can be done in time �̃�

(
𝑛𝑑 ·𝑓

)
.

When we consider (constant-delay) enumeration algorithms, we
see that the state-of-the-art approaches, e.g., [5, 42], use a different

parameter of the query. Instead of bounded star-size, these rely

on bounded free-connex tree-width. At first sight, this difference
is not surprising, because in the absence of a threshold, counting

and enumeration cannot be reduced to each other. But a closer

look reveals that both parameters play a similar role: limiting them

allows to reduce the problem to themuch simpler case of full CQs by

rewriting the input query as a join of views of bounded arity. This is

readily visible for the star-size method, where the views correspond

to the queries 𝑞𝑖 in the definition of star-size of 𝑞, but it is also true

for the free-connex method: there, the views correspond to subtrees

of the decomposition rooted at the shallowest nodes holding an

existentially quantified variable. Hence, the methods can be used

interchangeably and we can replace star-size with free-connex tree-

width in Proposition 4.3. Below, the 𝑋 -rooted free-connex tree-width
of a query is the minimal width of a tree decomposition of the query

that is both 𝑋 -rooted and free-connex.

Proposition 4.4. Counting answers grouped by 𝑋 for conjunctive
queries of 𝑋 -rooted free-connex tree-width 𝑑 over databases of size 𝑛
can be done in time �̃�

(
𝑛𝑑

)
.

In particular, all answers to 𝑝 can be counted in �̃�
(
𝑛tw(𝑝) ·ss(𝑝)

)
by Proposition 4.3 or in �̃�

(
𝑛fc-tw(𝑝)

)
by Proposition 4.4. The fol-

lowing lemma shows that the latter bound is tighter, so we shall

rely on Proposition 4.4.

Lemma 4.5. For each conjunctive query 𝑝 ,

ss(𝑝) ≤ fc-tw(𝑝) ≤ tw(𝑝) ·max

(
1, ss(𝑝)

)
.

The same holds for the 𝑋 -rooted variant and the 𝑋 -connex variant,
for every 𝑋 ⊆ FVar(𝑝). Moreover, there exist CQs 𝑝 with arbitrarily
large fc-tw(𝑝) that satisfy fc-tw(𝑝) ≤

√
tw(𝑝) · ss(𝑝) + 1.
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𝑎1

𝑏1 𝑏2

𝑐1

𝑐2 𝑏3

𝑑1 𝑑2

𝑒1 𝑒2 𝑒3

𝐵
𝐵

𝐶
𝐶

𝐵

𝐷 𝐷 𝐷 𝐷
𝐷 𝐷

𝐸 𝐸 𝐸

Figure 2: Database from Example 4.6.

Let us now come back to the threshold query 𝑡 . By a tree de-

composition of 𝑡 we shall mean a tree decomposition of the as-

sociated CQ 𝑞 ∧ 𝑝 . Based on this, we define all variants of tree-

width for threshold queries just like for CQs. Importantly, free-

connex refers to FVar(𝑡)-connex, not FVar(𝑞∧𝑝)-connex. Applying
Proposition 4.4 requires an FVar(𝑝)-connex decomposition; that is,

FTVar(𝑡)-connex in terms of 𝑡 , where FTVar(𝑡) = FVar(𝑡)∪TVar(𝑡).
Moreover, to avoid manipulating full answers, we need to factorize

the evaluation of 𝑞 and counting answers to 𝑝 grouped by FVar(𝑡)
in a compatible way. This can be done if our decomposition is

also FVar(𝑡)-connex. Putting it together, we arrive at free-connex

FTVar(𝑡)-connex decompositions of 𝑡 .

Example 4.6. Consider an at-least query

𝑡 (𝑥,𝑦, 𝑧) = 𝐵(𝑥,𝑦) ∧𝐶 (𝑥, 𝑧) ∧ ∃≥3 (𝑢, 𝑣) 𝑟 (𝑦,𝑢) ∧ 𝑠 (𝑧, 𝑣)
for 𝑟 (𝑦,𝑢) = ∃𝑦′𝐷 (𝑦,𝑦′) ∧𝐸 (𝑦′, 𝑢), 𝑠 (𝑧, 𝑣) = ∃𝑧′𝐷 (𝑧, 𝑧′) ∧𝐸 (𝑧′, 𝑣).
Figure 1 shows a free-connex FTVar(𝑡)-connex tree decomposition

𝑇3 of 𝑡 of minimal width, which is 3. The subqueries 𝑟 (𝑦,𝑢) and
𝑠 (𝑧, 𝑣) correspond to bags {𝑦} and {𝑧}, respectively, and the subtrees
rooted at these bags are {𝑦}-rooted (resp. {𝑧}-rooted) free-connex
tree decompositions for these subqueries. Consider the input data-

base in Figure 2. Let us count the answers to 𝑟 (𝑦,𝑢) grouped by

𝑦 and the answers to 𝑠 (𝑧, 𝑣) grouped by 𝑧 (using Proposition 4.4)

and store the resulting pairs in sets 𝑅{𝑦 } and 𝑅{𝑧 } , respectively. We

get 𝑅{𝑦 } = 𝑅{𝑧 } =
{
(𝑏1, 1), (𝑏2, 1), (𝑏3, 2), (𝑐1, 3), (𝑐2, 2)

}
, where

a pair (𝑏, 𝑘) in 𝑅{𝑦 } means that for 𝑦 = 𝑏 there are 𝑘 witness-

ing values of 𝑢, and similarly for 𝑅{𝑧 } . This is the initial informa-

tion that we shall now propagate up the tree. In the set 𝑅{𝑥,𝑦 }
we put triples (𝑎, 𝑏, 𝑘) such that 𝐵(𝑎, 𝑏) and for 𝑦 = 𝑏 there are 𝑘

witnessing values of 𝑢; analogously for 𝑅{𝑥,𝑧 } . We get 𝑅{𝑥,𝑦 } ={
(𝑎1, 𝑏1, 1), (𝑎1, 𝑏2, 1), (𝑎1, 𝑏3, 2)

}
, 𝑅{𝑥,𝑧 } =

{
(𝑎1, 𝑐1, 3), (𝑎1, 𝑐2, 2)

}
.

These sets can be computed based on 𝑅{𝑦 } and 𝑅{𝑧 } , respectively.
The set 𝑅{𝑥 } stores pairs (𝑎, 𝑘) such that 𝑘 is the maximal number of

witnessing pairs of values for𝑢 and 𝑣 that any combination of 𝑦 = 𝑏

and 𝑧 = 𝑐 with 𝐵(𝑎, 𝑏) and 𝐶 (𝑎, 𝑐) can provide. In our case, 𝑅{𝑥 } ={
(𝑎1, 6)

}
. Because 𝑏 and 𝑐 can be chosen independently from each

other, we have 𝑘 = 𝑚 · 𝑛, where𝑚 = max𝑎

{
ℓ
�� (𝑎, 𝑏, ℓ) ∈ 𝑅{𝑥,𝑦 }}

and 𝑛 = max𝑏

{
ℓ
�� (𝑎, 𝑐, ℓ) ∈ 𝑅{𝑥,𝑧 }}. That is, the only information

that needs to be passed from {𝑥,𝑦} to {𝑥} is the set 𝑅′{𝑥,𝑦 } of pairs
(𝑎,𝑚) with𝑚 defined as above, and similarly for {𝑥, 𝑧}. In our case,

𝑅′{𝑥,𝑦 } =
{
(𝑎, 2)

}
and 𝑅′{𝑥,𝑧 } =

{
(𝑎, 3)

}
. We return YES iff 𝑅{𝑥 }

contains a pair (𝑎, 𝑘) with 𝑘 ≥ 3. In our case, it is so. ◁

Theorem 4.7. Boolean evaluation of an at-most or at-least query 𝑡
of free-connex FTVar(𝑡)-connex tree-width 𝑑 over databases of size 𝑛
can be done in time �̃� (𝑛𝑑 ). The combined complexity of the algorithm
is polynomial, assuming 𝑑 is constant.

In terms of combined complexity, Theorem 4.7 is optimal as both

conditions imposed on tree decompositions are needed. Indeed, the

Algorithm 1 Answers to 𝑝 grouped by 𝑋 up to threshold 𝑐

1: 𝑇 ← a nice 𝑋 -rooted tree decomposition of 𝑝

2: loop through nodes 𝑢 of 𝑇 bottom-up

3: if 𝑢 is a leaf then 𝐴𝑢 ← 𝑝𝑢 (𝐷)
4: if 𝑢 is a project node with child 𝑣 then
5: 𝐴𝑢 ← prune 𝑐

𝑋𝑢

(
𝜋FVar(𝑝𝑢 ) (𝐴𝑣)

)
6: if 𝑢 is a join node with children 𝑣1, 𝑣2 then
7: 𝐴𝑢 ← prune 𝑐

𝑋𝑢

(
𝐴𝑣1

⊲⊳ 𝐴𝑣2
⊲⊳ 𝑝𝑢 (𝐷)

)
hard TQs used in Proposition 3.5 have FTVar(𝑡)-connex tree-width
2; and the hard Boolean TQs stemming from Proposition 3.2 have

free-connex tree-width 2.

4.3 Threshold Problems for CQs
In terms of data complexity, however, we can improve Theorem 4.7.

Here we exploit the presence of thresholds to handle queries with

unbounded FTVar(𝑡)-connex tree-width. We will cover not only

at-least and at-most queries, but arbitrary TQs, and we will solve

not only Boolean evaluation, but also constant-delay enumeration,

counting answers, and sampling, all based on a single data structure.

The small price we have to pay is pseudopolynomial combined

complexity. Our starting point is again the problem of counting

grouped answers, but this time up to a threshold.

Counting answers to 𝑝 grouped by 𝑋 ⊆ FVar(𝑝) up to a threshold
𝑐 over database 𝐷 consists in computing the set of pairs (𝜂, 𝑘)
such that 𝜂 : 𝑋 → Adom(𝐷) and 𝑘 = min(𝑐, |𝑝 (𝐷,𝜂) |).

In the presence of a threshold, it is not impractical to solve counting

by enumerating answers. This is what we shall do.

Computing answers to query 𝑝 grouped by 𝑋 ⊆ FVar(𝑝) up to a
threshold 𝑐 over database 𝐷 consists in computing a subset 𝐴 of

𝑝 (𝐷) that is complete for𝑋 and 𝑐 ; i.e., for each𝜂 : 𝑋 → Adom(𝐷)
either 𝑝 (𝐷,𝜂) ⊆ 𝐴 and |𝑝 (𝐷,𝜂) | ≤ 𝑐 , or |𝑝 (𝐷,𝜂) ∩𝐴| = 𝑐 .

Consider a CQ 𝑝 , a set 𝑋 ⊆ FVar(𝑝) of grouping variables, and
a database 𝐷 . We will use the term group to refer to the set of

answers to 𝑝 that agree on the grouping variables 𝑋 ; that is, a

subset of 𝑝 (𝐷) of the form 𝑝 (𝐷,𝜂) for some 𝜂 : 𝑋 → Adom(𝐷). If
the 𝑋 -rooted tree-width of 𝑝 is 𝑑 , then |𝑋 | ≤ 𝑑 and the number of

groups is 𝑂 ( |𝐷 |𝑑 ). Consequently, if we can compute answers to 𝑝

grouped by 𝑋 up to threshold 𝑐 in time �̃� (𝑐 · |𝐷 |𝑑 ), then we can

also count them within the same time, because we will get at most

𝑐 answers per group. Additionally, for each 𝜂 : 𝑋 → Adom(𝐷)
with 𝑝 (𝐷,𝜂) = ∅, we need to include (𝜂, 0) into the result; this does
not affect the complexity bound. Hence, it suffices to show how to

compute answers grouped by 𝑋 up to threshold 𝑐 . Having seen an

illustrating example in Section 3, we are ready for the full solution.

Theorem 4.8. Computing answers grouped by 𝑋 up to a threshold
𝑐 for conjunctive queries of 𝑋 -rooted tree-width 𝑑 over databases of
size 𝑛 can be done in time �̃� (𝑐 · 𝑛𝑑 ).

Proof sketch. Consider Algorithm 1. We begin by computing

a nice 𝑋 -rooted tree decomposition 𝑇 of minimal width 𝑑 , as de-

scribed in Section 4.1. That is, each bag of 𝑇 has size at most 𝑑 and

the root bag is 𝑋 . Consider the queries 𝑝𝑢 associated to nodes 𝑢
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of 𝑇 . By Lemma 4.2, 𝑋𝑢 ⊆ FVar(𝑝𝑢 ). By analogy to the evaluation

algorithm described in Section 4.1, for each 𝑢 we solve the problem

of computing answers to 𝑝𝑢 grouped by 𝑋𝑢 up to threshold 𝑐 over

𝐷 ; that is, we compute a subset 𝐴𝑢 ⊆ 𝑝𝑢 (𝐷) that is complete for

𝑋𝑢 and 𝑐 . The final answer is then the set obtained in the root.

If 𝑢 is a leaf, then 𝑋𝑢 = FVar(𝑝𝑢 ) = Var(𝑝𝑢 ) and 𝑝𝑢 (𝐷) it-
self is the only subset of 𝑝𝑢 (𝐷) complete for 𝑋𝑢 and 𝑐 . Because

|Var(𝑝𝑢 ) | ≤ 𝑑 , one can compute 𝑝𝑢 (𝐷) in time �̃�
(
|𝐷 |𝑑

)
.

Consider a project node 𝑢 and its unique child 𝑣 . Then 𝑋𝑢 ⊊ 𝑋𝑣 .

To compute 𝐴𝑢 the algorithm projects 𝐴𝑣 on FVar(𝑝𝑢 ) and then,

using the operation prune 𝑐
𝑋𝑢

, it groups the resulting set of bindings

by 𝑋𝑢 and keeps only 𝑐 bindings from each group. It is clear that

this can be done in time �̃� (𝑐 · |𝐷 |𝑑 ).
Finally, consider a join node 𝑢 with children 𝑣1, 𝑣2. As explained

in Section 4.1, the set 𝑝𝑢 (𝐷) is then the join of 𝑝𝑣1
(𝐷), 𝑝𝑣2

(𝐷), and
𝑝𝑢 (𝐷). We compute 𝐴𝑢 in exactly the same way, except that for

each binding 𝜂 of variables in 𝑋𝑢 we only keep the first 𝑐 bindings

extending 𝜂 and discard the remaining ones. Naive implementation

takes time �̃�
(
𝑐2 · |𝐷 |𝑑

)
, but it is easy to modify the standard merge-

join algorithm to achieve this in time �̃�
(
𝑐 · |𝐷 |𝑑

)
.

It is routine to check that each 𝐴𝑢 is complete for 𝑋𝑢 and 𝑐 . □

Recall that 𝑑 is very small in practice and most queries can be

expected to be acyclic [16]. If we are just interested in returning

answers up to a threshold 𝑐 (no grouping), then the algorithm under-

lying the present theorem improves the state-of-the-art algorithm

from �̃� (𝑛𝑓 ) to �̃� (𝑐 ·𝑛) for acyclic queries, where 𝑓 is the free-connex
treewidth of the query, which can be large even for acyclic queries.

4.4 Processing Threshold Queries
We now turn to processing general threshold queries. We give a

unified approach to constant-delay enumeration, counting, and

sampling, based on a single data structure that can be computed

using the methods presented in Section 4.3.

Example 4.9. Consider again the database from Figure 2 and the

query 𝑡 from Example 4.6. This time we shall work with the free-

connex tree decomposition𝑇4 of 𝑡 shown in Figure 1; it has smaller

width than 𝑇3. Like before, the subqueries 𝑟 (𝑦,𝑢) and 𝑠 (𝑧, 𝑣) corre-
spond to bags {𝑦} and {𝑧}, respectively, and the subtrees rooted at

these bags are {𝑦}-rooted (resp. {𝑧}-rooted) tree decompositions

for these subqueries, but they are not free-connex. We count the

answers to 𝑟 grouped by 𝑦 and the answers to 𝑠 grouped by 𝑧, up

to threshold 3, as described in Section 4.3, and store the results in

sets 𝑅{𝑦 } and 𝑅{𝑧 } , respectively. Because the counts obtained in

Example 4.6 were all below 3, 𝑅{𝑦 } and 𝑅{𝑧 } are just like before.
Sets 𝑅{𝑥,𝑦 } and 𝑅{𝑥,𝑧 } are also computed like before. For Boolean

evaluation we would now put into 𝑅′{𝑥,𝑦 } all pairs (𝑎,𝑚) such that

𝑚 is the maximal number of witnessing values 𝑢 that any 𝑦 = 𝑏

with 𝐵(𝑎, 𝑏) can provide. To support constant-delay enumeration

we need to pass more information up the tree: we include all pairs

(𝑎, 𝑘) such that some 𝑦 = 𝑏 with 𝐵(𝑎, 𝑏) can provide 𝑘 witnesses

(up to threshold 3); that is, we forget the values 𝑏, but we keep

all values 𝑘 (up to 3), not only the greatest of them. In our case,

𝑅′{𝑥,𝑦 } =
{
(𝑎1, 1), (𝑎1, 2)

}
and𝑅′{𝑥,𝑦 } =

{
(𝑎1, 2), (𝑎1, 3)

}
. In the root

we store the set 𝑅{𝑥 } of values 𝑎 such that some combination of

Algorithm 2 Record sets 𝑅𝑢 for nodes 𝑢 ∈ 𝑈 of decomposition 𝑇

1: loop through nodes 𝑢 ∈ 𝑈 of 𝑇 bottom-up

2: if 𝑢 is a𝑈 -leaf of 𝑇 then
3: 𝑅𝑢 ←

(
𝑞𝑢 (𝐷) × {1}

)
⊲⊳ 𝑝𝑢 (𝐷, FVar(𝑝𝑢 ) ∩ FVar(𝑡), 𝑐)

4: if 𝑢 is a project node of 𝑇 with child 𝑣 ∈ 𝑈 then
5: 𝑅𝑢 ← 𝛾witnessCount, 𝑋𝑢 ; sum(multiplicity)

(
𝑅𝑣

)
6: if 𝑢 is a join node of 𝑇 with children 𝑣1, 𝑣2 ∈ 𝑈 then
7: 𝑅𝑣1,𝑣2,𝑢 ← 𝑅𝑣1

𝑐
⊲⊳ 𝑅𝑣2

⋉ 𝑞𝑢 (𝐷)
8: 𝑅′𝑣1,𝑣2,𝑢

← 𝑅𝑣1,𝑣2,𝑢 ⋉ 𝑝𝑢 (𝐷) ⊎ 𝑅𝑣1,𝑣2,𝑢 ⊲ 𝑝𝑢 (𝐷)
9: 𝑅𝑢 ← 𝛾witnessCount, 𝑋𝑢 ; sum(multiplicity)

(
𝑅′𝑣1,𝑣2,𝑢

)
10: if 𝑢 is the root of 𝑇 then 𝑅𝑢 ← 𝜎𝑎≤witnessCount≤𝑏

(
𝑅𝑢

)
𝑦 = 𝑏 and 𝑧 = 𝑐 with 𝐵(𝑎, 𝑏) and 𝐶 (𝑎, 𝑐) can provide at least 3 wit-

nessing pairs of values for 𝑢 and 𝑣 . The set 𝑅{𝑥 } can be obtained by

taking all 𝑎 such that there exist (𝑎,𝑚) ∈ 𝑅′{𝑥,𝑦 } and (𝑎, 𝑛) ∈ 𝑅
′
{𝑥,𝑧 }

with𝑚 · 𝑛 ≥ 3. In our case, 𝑅{𝑥 } = {𝑎1}.
In the enumeration phase, we iterate over all combinations

of (𝑎,𝑚) ∈ 𝑅′{𝑥,𝑦 } and (𝑎, 𝑛) ∈ 𝑅′{𝑥,𝑧 } with 𝑎 ∈ 𝑅{𝑥 } . For each

such combination we iterate over corresponding (𝑎, 𝑏,𝑚) ∈ 𝑅{𝑥,𝑦 }
and (𝑎, 𝑐, 𝑛) ∈ 𝑅{𝑥,𝑧 } and return (𝑎, 𝑏, 𝑐). In our case this gives

(𝑎1, 𝑏1, 𝑐1), (𝑎1, 𝑏2, 𝑐1), (𝑎1, 𝑏3, 𝑐1), and (𝑎1, 𝑏3, 𝑐2). To access rele-

vant (𝑎, 𝑏,𝑚) and (𝑎, 𝑐, 𝑛) directly, we use an index that can be built

while constructing 𝑅′{𝑥,𝑦 } and 𝑅
′
{𝑥,𝑧 } from 𝑅{𝑥,𝑦 } and 𝑅{𝑥,𝑧 }

To support counting and sampling, we add multiplicities to the

pairs stored in the nodes of the decomposition. Specifically, for

each (𝑎,𝑚) ∈ 𝑅′{𝑥,𝑦 } we also store the number of values 𝑏 with

𝐵(𝑎, 𝑏) that provide 𝑛 witnesses (up to 3). In our case, the mul-

tiplicity of (𝑎1, 1) in 𝑅′{𝑥,𝑦 } is 2, and all other multiplicities in

𝑅′{𝑥,𝑦 } and 𝑅′{𝑥,𝑧 } are 1. Similarly, for each 𝑎 ∈ 𝑅{𝑥 } we store

the number of combinations of 𝑏 and 𝑐 with 𝐵(𝑎, 𝑏) and 𝐶 (𝑎, 𝑐)
that provide at least 3 pairs of witnesses. In our case, the multi-

plicity of 𝑎1 in 𝑅{𝑥 } is 4: the witnessing combinations are (𝑏1, 𝑐1),
(𝑏2, 𝑐1), (𝑏3, 𝑐1), and (𝑏3, 𝑐2). The number of answers to 𝑡 is the the

sum of all multiplicities in the root. In our case it is 4. To sample

an answer, we first sample 𝑎 ∈ 𝑅{𝑥 } with weights given by the

multiplicities. In our case we choose 𝑎1 with probability 1. Then

we sample

(
(𝑎,𝑚), (𝑎, 𝑛)

)
∈ 𝑅{𝑥,𝑦 } × 𝑅{𝑥,𝑧 } such that 𝑚 · 𝑛 ≥ 3

with weights given by the product of the multiplicities of (𝑎,𝑚) in
𝑅′{𝑥,𝑦 } and (𝑎, 𝑛) in 𝑅′{𝑥,𝑧 } . In our case,

(
(𝑎1, 1), (𝑎1, 3)

)
is chosen

with probability
1

2
, and both

(
(𝑎1, 2), (𝑎1, 3)

)
and

(
(𝑎1, 2), (𝑎1, 2)

)
with probability

1

4
. Finally, we sample (𝑎, 𝑏,𝑚) and (𝑎, 𝑐, 𝑛) uni-

formly among relevant triples in 𝑅{𝑥,𝑦 } and 𝑅{𝑥,𝑧 } , respectively,
and we return (𝑎, 𝑏, 𝑐). In our case, for

(
(𝑎1, 1), (𝑎1, 3)

)
we choose

either

(
(𝑎1, 𝑏1, 1), (𝑎1, 𝑐1, 3)

)
or

(
(𝑎1, 𝑏2, 1), (𝑎1, 𝑐1, 3)

)
with proba-

bility
1

2
, and for

(
(𝑎1, 2), (𝑎1, 3)

)
and

(
(𝑎1, 2), (𝑎1, 2)

)
there is only

one choice; overall, each answer is returned with probability
1

4
. ◁

Theorem 4.10. For TQs of free-connex tree-width 𝑑 , over databases
of size 𝑛, one can: count answers in time �̃� (𝑛𝑑 ); enumerate answers
with constant delay after �̃� (𝑛𝑑 ) preprocessing; and sample answers
uniformly at random in constant time after �̃� (𝑛𝑑 ) preprocessing.
Assuming 𝑑 is constant, the combined complexity of each of these
algorithms is pseudopolynomial.
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Compared to [5, 32], this theorem provides the same complexity

guarantees as for counting answers and enumerating answers for

conjunctive queries, but we are able to generalize these to thresh-
old queries (and add sampling). This generalization comes at the

small cost of dependence on the value of the threshold. The results

in [5, 32] can be strengthened to more refined measures such as

hypertreewidth, but we believe that this is also true here.

Proof sketch. Consider a database 𝐷 and a threshold query

𝑡 (𝑥) = 𝑞(𝑥) ∧ ∃𝑎,𝑏 𝑦 𝑝 (𝑥,𝑦) .

We write 𝑐 for the threshold up to which we will be counting

witnesses: if 𝑏 < ∞, we let 𝑐 = 𝑏 + 1; if 𝑏 = ∞, we let 𝑐 = 𝑎. Let 𝑇

be a nice free-connex tree decomposition of 𝑡 , of width 𝑑 , and let𝑈

be the maximal free-connex set in 𝑇 .

Being a tree decomposition of 𝑟 (𝑥,𝑦) = 𝑞(𝑥) ∧ 𝑝 (𝑥,𝑦), up to

dropping unused variables, 𝑇 is a tree decomposition of both 𝑝 (𝑥)
and 𝑞(𝑥,𝑦). Let 𝑞𝑢 and 𝑝𝑢 be the corresponding subqueries asso-

ciated to node 𝑢. With each node 𝑢 ∈ 𝑈 we associate the set 𝑅𝑢
of records that will provide information necessary to enumerate,

count, and sample answers to 𝑡 . A record for𝑢 ∈ 𝑈 is a triple (𝜂, 𝑛, 𝑘)
consisting of a binding 𝜂 : 𝑋𝑢 → Adom(𝐷), a multiplicity 𝑛 > 0,

and a witness count 𝑘 ∈ {0, 1, . . . , 𝑐} such that there are exactly 𝑛

extensions 𝜂 ′ of 𝜂 to FVar(𝑞𝑢 ) ∪
(
FVar(𝑝𝑢 ) ∩ FVar(𝑡)

)
such that

𝜋FVar(𝑞𝑢 ) (𝜂 ′) ∈ 𝑞𝑢 (𝐷) and 𝑘 = min

(
𝑐, |𝑝𝑢 (𝐷,𝜂 ′) |

)
. We can inter-

pret a record (𝜂, 𝑛, 𝑘) as a binding extending𝜂 to two fresh variables,
multiplicity and witnessCount, with values 𝑛 and 𝑘 .

By Lemma 4.2, each node in 𝑢 either is a 𝑈 -leaf or has all its

children in𝑈 . Consequently, we can compute 𝑅𝑢 for 𝑢 ∈ 𝑈 bottom-

up, as in Algorithm 2. In 𝑈 -leaves, we use Theorem 4.8 to get a

solution 𝑝𝑢
(
𝐷, FVar(𝑝𝑢 ) ∩ FVar(𝑡), 𝑐

)
to the problem of counting

answers to 𝑝𝑢 grouped by FVar(𝑝𝑢 ) ∩ FVar(𝑡) up to threshold 𝑐

over 𝐷 ; the set 𝑞𝑢 (𝐷) of all answers to 𝑞𝑢 over 𝐷 is computed

as explained in Section 4.1. Higher up the tree, we compute 𝑅𝑢
based on the values obtained for the children of 𝑢, by means of

standard relational operators with multiset semantics, including

grouping (𝛾 ) and antijoin (⊲), as well as the 𝑐-join 𝑅𝑣1

𝑐
⊲⊳ 𝑅𝑣2

defined

as the multiset of records

(
𝜂1 ⊲⊳ 𝜂2, 𝑛1 ·𝑛2,min(𝑐, 𝑘1 ·𝑘2)

)
such that

(𝜂1, 𝑛1, 𝑘1) ∈ 𝑅𝑣1
, (𝜂2, 𝑛2, 𝑘2) ∈ 𝑅𝑣2

, and 𝜂1 is compatible with 𝜂2.

Each 𝑅𝑢 is computed in �̃� (𝑐 · |𝐷 |𝑑 ). With all 𝑅𝑢 at hand, we can

enumerate, count, and sample answers to 𝑡 as in Example 4.9. □

5 THRESHOLD QUERIES IN THEWILD
In this section we give evidence that threshold queries are indeed

common and useful in practice. Furthermore, we present an experi-

mental evaluation of our algorithm.

5.1 Quantitative Study on Query Logs
We first present some analytical results on large-scale real-world

query logs from Wikidata’s SPARQL query service [69]. Our study

considers a corpus of more than 560M queries. (Previous work has

considered a subset in the order of 200M queries [15].) These logs

contain a massive amount of real-life queries, which are classified

into (1) robotic (high-volume, single-source bursts) and organic
(human-in-the-loop) [58]. Furthermore, the logs distinguish be-

tween successful (“OK”) and timeout (“TO”) requests.

41.4%

20.2%

24.8%

7.4%

6.3%

≥ 10000
1000 – 9999

100 – 999

10 – 99

1 – 9

63.4%

12.0% 9.2%

15.3%

organic Threshold value robotic

Figure 3: Threshold value occurrence ratio in organic and
robotic CRPQ logs.

Occurrences of Threshold Queries. We first report on the usage of

the keywords LIMIT and ORDER BY in the Wikidata logs, which

contain∼563Mwell-formed queries, amongwhich∼74M are unique

(Table 1). Since our algorithms apply to CRPQs, we focus on those.

As can be seen in the table, these still constitute 45.2% of the queries

and 56.4% of the unique ones. In the remainder of this part, when-

ever we write a percentage as X% (Y%), then X refers to all and Y to

the unique queries i.e., the set of queries after removing duplicates.

If we simply investigate how many CRPQs use LIMIT (columns

All and Unique), these numbers are not so spectacular. Indeed,

around 6% (4.5%) of the CRPQs use the LIMIT operator. What is

remarkable though, is that almost all these queries that use LIMIT,
do not use an ORDER BY operation (bottom line of Table 1).

By looking at the data more closely, we discovered that many of

these queries are rather trivial in the sense that they only use one

atom (or, equivalently, just one RDF triple pattern), which means

that they do not even perform a join. For this reason, we decided

to zoom in on the queries with at least two atoms, see the columns

All (≥ 2) and Unique (≥ 2). It turns out that the numbers change

significantly: around 14.9% (45.3%) of the CRPQs with at least two

triples use LIMIT, which is a significant amount. Again, we see that

almost all the queries that use LIMIT, do not use ORDER BY.
This is remarkable, because a commonly held belief is that LIMIT

is most often used in combination with ORDER BY, i.e., as a means

to express top-𝑘 queries. But, in this major real-world query log,

this is not the case. Indeed, almost all non-trivial queries using

LIMIT are threshold queries, seeking to return just an arbitrary

unranked sample of results. In fact, we have run the same analysis

on a broader class of queries (CRPQ𝑓 , which extend CRPQ with

unary filter conditions) and the percentages were very similar.

LIMIT Values. We now investigate the values of the thresholds
of queries in the logs. To this end, we considered the subset of

CRPQs in the raw logs that use the keyword LIMIT (∼15.2M queries,

including duplicates). To gain deeper insight, we break down the

logs into robotic (∼15.2M) and organic (∼44k) queries. Fig. 3 shows
the relative shares of threshold values with varying numbers of

digits. The figure shows that threshold values between 1 and 9 are

the most common. Still, in both organic and robotic queries, we

see that large threshold values (≥ 10K) are not uncommon. Since

robotic logs can have large bursts of similar queries, we see that

the distribution is not as smooth as for organic logs. For instance,

only 0.08% of queries in the robotic logs have three-digit limit

values (depicted in blue), whereas there are much more (9.2%) with

four-digit values (depicted in green). The largest value we found in
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Table 1: Statistics of Wikidata query logs. Percentages in the top half are relative to the total number of queries. Percentages
in the bottom half are relative to the number of CRPQs.

Query Class All Unique All (≥ 2) Unique (≥ 2)

All Queries 563,066,025 100.0% 74,060,492 100.0% 254,802,446 100.0% 30,502,206 100.0%

CRPQ 254,241,512 45.2% 41,778,884 56.4% 88,390,479 34.7% 3,346,280 11.0%

With Limit CRPQ 15,225,933 6.0% 1,896,811 4.5% 13,205,975 14.9% 1,514,221 45.3%

With Limit, no Order CRPQ 15,214,527 6.0% 1,894,879 4.5% 13,195,363 14.9% 1,512,629 45.2%

robotic logs had 9 digits. In organic logs, however, we found three

limit values containing 11, 14, and 17 digits, respectively.

Conclusion of Quantitative Study. Threshold queries are indeed

quite common, e.g., in querying knowledge bases such as Wikidata.

Since the actual values of the thresholds are typically small, our

empirical study confirms the utility in practice of our pseudopoly-

nomial algorithm (Theorem 4.10) that, in order to evaluate queries

with a threshold 𝑘 , solely needs to maintain up to 𝑘 +1 intermediate

results per each candidate answer tuple. This is in contrast with

traditional query plans where the number of intermediate results

per candidate answer tuple is determined by the input data and

therefore potentially orders of magnitude larger.

5.2 Qualitative Study
To demonstrate further the usefulness of threshold queries in prac-

tice across diverse contemporary domains, we also performed a

qualitative study on two real-world graph datasets.

Covid-19 Dataset. The Covid-19 Knowledge Graph [26] is a con-

tinuously evolving dataset, with more than 10M nodes and 25M

edges, obtained by integrating various data sources, including

gene expression repositories (e.g., the Genotype Tissue Expres-

sion (GTEx) and the COVID-19 Disease Map genes), as well as

article collections from different scientific domains (ArXiv, BioRxiv,

MedRxiv, PubMed, and PubMed Central). The inferred schema of

this graph exhibits more than 60 distinct node labels and more than

70 distinct edge labels [54]. Such typing information is, however,

not sufficient to express the domain-specific constraints that can

be found in these real-life graph datasets. Non-trivial constraints

expressible with threshold queries can be naturally crafted in order

to complement the schema, as we showcase in our study.

Wikidata Dataset. Wikidata is a collaborative knowledge base

launched in 2012 and hosted by the Wikimedia Foundation [67]. By

the efforts of thousands of volunteers, the project has produced a

large, open knowledge base with numerous applications. Wikidata

can be seen as a graph database with a SPARQL endpoint that lets

users and APIs run queries on its massive knowledge graph. The

query logs collected along the years on this endpoint [53] constitute

a useful resource for the qualitative analysis of threshold queries.

Working Method. We have manually inspected the Covid-19

Knowledge Graph schema in search of constraints that can be

validated with threshold queries. We have also found a number of

threshold queries by sieving through a large sample of Wikidata

query logs. We analyzed the structural properties of the collected

threshold queries. Below we discuss our findings with the help of
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Figure 4: Structural diagrams of selected threshold queries.

five selected threshold queries from the two datasets. The queries

are depicted in Figure 4. We focus on the structure of the underlying

graph patters, omitting most of the labels. Constants are in quotes,

variables are in rounded rectangles, and output variables have a

double edge. Wavy edges represent path expressions in the original

query. For readability, we sometimes change the labels of nodes.

Selected Queries. The first example comes from theWikidata logs

and appears to be a data exploration query.

TQ1 Return all given names with more than 1000 occurrences.
SELECT ?name WHERE { ?person <given_name > ?name }

GROUP BY ?name HAVING ( ( COUNT (*) > 1000 ) );

A structurally similar query can help detect integrity violations
in the Covid-19 Knowledge Graph. Namely, the latest release (June

2021) of the Gene Ontology (GO) contains 43917 valid terms [24,

25]. Therefore, in the Covid-19 Knowledge Graph one can check

whether a protein is suspicious if it exhibits more than this number

of GO terms associated to it.

TQ2 Find each protein that has more than 43917 associated gene
ontology terms.

A formulation of this query in Cypher-like syntax follows.
3

MATCH (p:Protein) -[:MAPS* . :HAS_ASSOCIATION .

(:IS_A*| PART_OF *)]->(t:GOTerm)

WITH p, COUNT(DISTINCT t) AS count_go

WHERE count_go > 43917 RETURN p;

Notice the large threshold and the complex regular expression.

As another example, reporting coverage in the Covid-19 Knowl-

edge Graph demands that for each age group, in each country,

there should be at least three reports for the current number of

Covid cases (one for females, one for males, and one for the total).

Deviations can be identified with the following threshold query.

3
Note that Cypher does not currently support concatenation (:A . :B).
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TQ3 Find each country that does not have three reports for some
age group.

This query can be expressed in Cypher-like syntax as follows.

MATCH (c:Country)-[e:CURRENT_FEMALE|CURRENT_MALE

|CURRENT_TOTAL]->(a:AgeGroup)

WITH c, a, COUNT(type(e)) AS ecount

WHERE ecount < 3 RETURN c, a;

We point out that this query although acyclic is not free-connex.

We also discovered that graph patterns in limit-𝑘 queries can be

quite large, as in the following query from the Wikidata logs.

TQ4 Return 1000 tuples containing names (x1) and UniProt IDs (x2)
for genes with domains (x3) referenced in “Science”, “Nature,”
or “Cell” articles, as well as their indirect domain label (x4)
and class (x5), the article name (x6), and its PubMed ID (x7).

Conclusion of Qualitative Study. Our qualitative study discovered
several interesting and realistic uses of threshold queries that we

illustrated here. Connecting these to our algorithms, it is interest-

ing to note that all these queries are acyclic, but only TQ1-TQ2

are free-connex (Fig. 4). For instance, TQ4 has star size 3 (due to

𝑥3, which has 3 neighboring nodes that propagate to the output)

and free-connex tree-width 4. Evaluation of such queries with ex-

isting querying approaches may incur significant cost while our

algorithms handle them very efficiently. For instance, TQ4 can be

evaluated in linear time by Algorithm 1 (up to logarithmic factors),

while the approach via enumeration [5] requires at least cubic time.

5.3 Experimental Study
As a proof-of-concept, we implemented the algorithm in Theo-

rem 4.8 in SQL and compared it with the optimizer of a popular

DBMS engine, namely the PostgreSQL 13.4 optimizer. Using SQL

windowing functions, our implementation can mimic some impor-

tant aspects of our query evaluation algorithm (like internal infor-

mation passing up to a threshold), but we note that SQL does not

allow to capture our algorithm precisely. As shown in the remain-

der, the results of this comparison already show the superiority of

our algorithm for threshold queries compared to naive evaluation.

All the experiments were executed on an Intel Core i7-4770K

CPU @ 3.50GHz, 16GB of RAM, and an SSD. We used PostgreSQL

13.4 in Linux Mint 20.2 and built our own micro-benchmark [12]

consisting of the following three types of query templates:

(q1) 𝑘-path selects up to 10 pairs of nodes linked by a 𝑘-hop path;

(q2) 𝑘-neigh selects all nodes with ≥ 10 𝑘-hop neighbors;

(q3) 𝑘-conn selects all pairs of nodes linked by ≥ 10 𝑘-hop paths.

Assuming that the database consists of a single binary relation 𝑅,

then these queries for 𝑘 = 2 can be naturally formulated in SQL as:

SELECT DISTINCT R1.A, R2.B FROM R AS R1, R AS R2

WHERE R1.B = R2.A LIMIT 10;

SELECT R1.A FROM R AS R1, R AS R2 WHERE R1.B = R2.A

GROUP BY R1.A HAVING COUNT(DISTINCT R2.B) >= 10;

SELECT X0, X2 FROM

(SELECT DISTINCT R1.A AS X0, R1.B AS X1, R2.B AS X2

FROM R AS R1, R AS R2 WHERE R1.B = R2.A) AS SUB

GROUP BY X0, X2 HAVING COUNT (*) >= 10;

In the following, we will refer to these formulations as the baseline
formulations of the queries.

We compared these queries with alternative formulations in SQL

that mimic crucial aspects of our evaluation algorithm and that can

be understood as follows. A simple decomposition for 𝑘-path is a
tree with a single branch and one node per each joined copy of table

R. For this decomposition and 𝑘 = 2 the algorithm in Theorem 4.8

amounts to evaluating the following query:

WITH J1 AS (SELECT DISTINCT A AS X1, B AS X2 FROM R),

W1 AS (SELECT X1, X2, ROW_NUMBER () OVER

(PARTITION BY X1) AS RK FROM J1),

S1 AS (SELECT X1, X2 FROM W1 WHERE RK <= 10),

J2 AS (SELECT DISTINCT R.A AS X0, X2

FROM R, S1 WHERE R.B = S1.X1),

W2 AS (SELECT X0, X2, ROW_NUMBER () OVER

(PARTITION BY X0) AS RK FROM J2),

S2 AS (SELECT X0, X2 FROM W2 WHERE RK <= 10)

SELECT X0, X2 FROM S2 LIMIT 10;

For 𝑘-neigh we can use the same decomposition and the corre-

sponding query is the same except for the last line which is

SELECT X0 FROM S1 GROUP BY X0 HAVING count (*) >=10;

For 𝑘-conn we can also use the same decomposition but the corre-

sponding query is a bit different, as we need to collect the whole

paths, not just their endpoints. We refer to these alternative im-

plementations as the windowed versions of the queries. Natural

query plans for the windowed versions have worst-case complexity

�̃� (𝑘 · 𝑛) for 𝑘-path and 𝑘-neigh, and �̃� (𝑘 · 𝑛2) for 𝑘-conn.

Datasets. We considered two kinds of data sets:

(1) The real-world IMDb data set used in JoinOrder Benchmark [55],

which contains information about movies and related facts

about actors, directors, production companies, etc. In our ex-

periments, we focused on the movie_link relation, which has a

graph-like structure, so that finding paths is meaningful.

(2) Barabási-Albert graphs [7], which are synthetic data sets that

model the structure of social networks, with varying parameters

of 𝑛 (total number of nodes to add) and𝑚0 (the number of edges

to attach from newly added nodes to existing nodes).

We repeated each experiment several times and report the median.

First Experiment. We compared the running time of the base-

line and windowed versions of (q1–q3) for varying values of 𝑘

on both the IMDb and synthetic data sets, both on fully indexed

and non-indexed databases. Table 2 shows the results for the non-

indexed case. We see that our approach (windowed) outperforms

the baseline with speedups up to three orders of magnitude, while

the baseline times out (T/O) for higher values of 𝑘 . The running

times of the windowed versions reflect the good theoretical bounds,

while the baseline clearly shows exponential dependence on 𝑘 . For

the indexed case, leveraging the DBMS’s default indexes, the base-

line ran only marginally faster (∼5%), remaining three orders of

magnitude slower than our algorithm.

Second Experiment. In this second experiment, we wanted to

assess the impact of the structure and size of the data on the run-

times of our algorithm. To this purpose, we have employed the

Barabási-Albert synthetic graphs with varying outdegree (𝑚0) and

number of nodes (𝑛) and considered query q2 with 𝑘 = 3. Table 3

shows the different speedups that the windowed approach offers,

when compared to the baseline. We varied 𝑚0 from 5 to 25, us-

ing increments of 5, and varied 𝑛 from 32 to 1M in a logarithmic
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Table 2: Experimental evaluation for the baseline (b) and windowed (w) versions of (q1–q3) on the IMDb database (left) and on
Barabási-Albert graphs (right) with𝑚0 = 10 and 𝑛 = 3000. Time is measured in ms. Better running time is depicted in bold.

𝑘 1 2 3 4 5 6 7 8 9 10

q1/b 39 277 5,157 103,449 T/O T/O T/O T/O T/O T/O

q1/w 39 58 69 88 97 115 132 148 162 176

q2/b 50 349 5,742 134,970 T/O T/O T/O T/O T/O T/O

q2/w 44 63 74 93 104 119 137 150 167 180

q3/b 94 652 11,568 267,176 T/O T/O T/O T/O T/O T/O

q3/w 146 690 2,695 5,266 10,679 18,400 31,020 48,942 74,795 103,054

1 2 3 4 5 6 7 8 9 10

74 549 3,364 19,161 106,741 601,279 T/O T/O T/O T/O

80 196 298 404 537 665 1,260 1,478 1,547 1,675

138 1,296 11,207 90,199 644,860 T/O T/O T/O T/O T/O

152 282 399 506 579 653 1,235 1,390 1,540 1,667

273 2,423 18,670 122,894 T/O T/O T/O T/O T/O T/O

420 4,201 23,903 57,555 109,764 189,893 301,510 390,968 510,171 576,009

Table 3: Experimental evaluation of the speedup factor (the
ratio of baseline to windowed) for q2 on Barabási-Albert
graphs for varying 𝑛 and𝑚0.

𝑚0\𝑛 32 100 316 1k 3.2k 10k 32k 100k 316k 1M

5 0.6 1.8 3.0 3.6 4.6 5.7 6.7 7.7 8.7 10.0

10 1.4 6.8 13.8 22.8 29.7 37.1 40.0 73.5 T/O T/O

15 2.1 16.3 46.6 66.2 90.5 120.4 T/O T/O T/O T/O

20 1.1 35.4 96.0 149.1 192.8 404.3 T/O T/O T/O T/O

25 0.6 55.2 184.7 272.5 351.7 T/O T/O T/O T/O T/O

scale with increment factor of

√
10 ≈ 3.16. In the table, we see that

the speedup factor of the windowed approach increases by up to

three orders of magnitude as the size of the data and out-degree

𝑚0 increase. T/O means that the baseline approach timed out (>

30 minutes). For all entries in Table 3, the windowed algorithm

terminated under 15 minutes. These results show the robustness of

our algorithm to variations of dataset size and outdegree as well as

its superiority with respect to the baseline.

6 RELATEDWORK
Top-𝑘 and Any-𝑘 . The potential of predefined thresholds to speed

up query processing was first noticed by Carey and Kossmann [18],

who explored ways of propagating thresholds down query plans,

dubbed LIMIT pushing. This early study only considered applying

the thresholds directly to subplans, which made joins a formidable

obstacle. In contrast, we first group the answers to subqueries by

variables determined based on the structure of the whole query,

and then apply thresholds within groups; this way we can push

thresholds down through multi-way joins, guided by a tree decom-

position of the query. Most follow-up work concerns the ranked

scenario, where the goal is to compute top-𝑘 answers according to

a specified preference order. The celebrated Threshold Algorithm

[33] solves the top-𝑘 selection problem: it operates on a single

vertically-partitioned table, with each partition being managed by a

different external service that only knows the scores of base tuples

in its own partition, and produces 𝑘 tuples with the highest score

while minimizing the number of reads. There are also multiple

approaches to the more general top-𝑘 join problem. J* [60] is based

on the A* search algorithm: it maintains a priority queue of partial

and complete join combinations ordered by the upper bounds of

their scores. Rank-Join [43] maintains scores for complete join com-

binations only, and stops when new combinations cannot improve

the current top-𝑘 . LARA-J* [59] offers improved handling of multi-

way joins. FRPA [35] keeps the number of reads within a constant

factor of the optimal. Overall, the focus and the main challenge in

top-𝑘 processing is ordering the answers according to their ranking

scores [44]. In the unranked case, when this challenge is absent,

the rich body of work on top-𝑘 processing does not go beyond the

initial observations made by Carey and Kossmann [18]. NeedleTail

[50, 51] specifically focuses on providing any-𝑘 answers to queries

without ORDER BY clauses, but it only handles key-foreign key joins,
which dominate in the OLAP scenarios. In contrast, we support

arbitrary CQs (i.e., select-project-join queries), allowing the com-

plexity to grow with the tree-width (Theorem 4.8). Moreover, any-𝑘

evaluation of CQs is just a building block of the processing of much

more general threshold queries.

Runtime optimization. A large body of research on query pro-

cessing led to powerful optimization techniques, such as aggregate
pushing [20, 21, 40, 70] and sideways information passing [10, 22, 46,
57, 62]. These techniques aim to speed up the execution of a given

join plan and rely on a cost model to heuristically approximate

instance-optimal plans. Our focus is on reducing the search space

of the heuristic methods by identifying plans with good worst-case

guarantees. Such plans can be further improved towards instance-

optimality, using classical techniques. For LIMIT queries the combi-

nation of sideways information passing and LIMIT pushing might

be beneficial. Indeed, if we can ensure that each tuple produced by

the subplan extends to a full answer, then we can stop the execution

of the subplan when the desired number of tuples is output. For

general threshold queries, the potential for such optimization is less

clear. There, instead of a global limit on the number of answers we

have a per-group limit. Consequently, the execution of the subplan

can be stopped only when each group has sufficiently many tuples.

The level of savings depends on the order in which the subplan

produces its results. Such optimization goes beyond the scope of

our paper, but is a promising direction for future work.

Quantified Graph Patterns. Fan et al. [34] introduced quantified
graph patterns (QGP) that allow expressing nested counting proper-

ties like having at least 5 friends, eachwith at least 2 pets. In contrast

to threshold queries, QGPs are unable to count 𝑘-hop neighbours

for 𝑘 ≥ 2, nor can they count tuples of variables. Moreover, QGPs

adopt isomorphism matching, while threshold queries follow the

standard semantics of database queries.

Aggregate Queries. In the context of factorized databases, Bak-

ibayev et al. [6] observed that pushing aggregation down through

joins can speed up evaluating queries. These results can be reinter-

preted in the context of tree decompositions [61], but they optimize

different aggregates in isolation and do not investigate the interplay
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between counting and existential quantification. AJAR (aggrega-

tions and joins over annotated relations) [47] and FAQs (functional

aggregate queries) [49] are two very general sister formalisms cap-

turing, among others, CQs enriched with multiple aggregate func-

tions. Because different aggregate functions are never commutative,

the evaluation algorithms for both these formalisms require decom-

positions consistent with the order of aggregating operations. For

example, when applied to counting answers to CQs, this amounts to

free-connex decompositions, as in our Proposition 4.4. In contrast,

we remove the free-connex assumption by showing that counting

up to a threshold and existential quantification can be reordered at

the cost of keeping additional information of limited size.

Counting Answers. For projection-free CQs, the complexity of

counting answers is tightly bound to tree-width [27, 37], just like

in the case of Boolean evaluation [38, 39], but the presence of

projection makes counting answers intractable even for acyclic
CQs [63]. Efficient algorithms for counting answers require not

only low tree-width but also low star-size [32]. However, when the

problem is relaxed to randomized approximate counting, low tree-

width is enough [2], just like for Boolean evaluation. Our results

imply that for a different relaxation — counting exactly, but only up

to a given threshold — CQs of low tree-width can also be processed

efficiently. However, we go far beyond CQs and show how to count

answers to threshold queries (which themselves generalize counting

answers to CQs up to a threshold).

Enumerating Answers. Also in the context of constant-delay

enumeration low tree-width is not enough to guarantee efficient

algorithms: the query needs to have low free-connex tree-width
[5]. Importantly, even acyclic queries can have very large free-

connex tree-width. Tree-width with can be replaced with fractional

hypertree-width [28, 48, 61] or submodular width [9] but always in

the restrictive free-connex variant. Tziavelis et al. [64, 65] partially

lift these results to the setting of ranked enumeration, where query
answers must be enumerated according to a predefined order; the

lifted results allow enumeration with logarithmic delay and handle

projection-free CQs of low submodular width as well as free-connex

acyclic CQs (but not general CQs). In this work, we show that if the

number of needed answers is known beforehand, general CQs of

low tree-width can be processed efficiently even if they have large

free-connex tree width. Moreover, this result is only the starting

point for processing general threshold queries, for which we also

provide constant-delay enumeration algorithms.

Sampling Answers. Sampling query answers was identified as an

important data management task by Chaudhuri at al. [19], who pro-

posed a simple algorithm for sampling the join 𝑆 ⊲⊳ 𝑇 by sampling

a tuple 𝑠 ∈ 𝑆 with weight |𝑇 ⋉ {𝑠}| and then uniformly sampling

a tuple 𝑡 ∈ 𝑇 ⋉ {𝑠}. Using the alias method for weighted sampling

[66, 68], this algorithm can be implemented in such a way that

after a linear preprocessing phase, independent samples can be

obtained in constant time. This approach was generalized to acyclic

projection-free CQs [72]. We extend the latter result in three ways:

we handle non-acyclic CQs, allowing the complexity to grow with

the tree-width; we can allow projection, at the cost of replacing

tree-width with its faster growing free-connex variant; and we han-

dle threshold queries, rather than just CQs. A different approach

to non-acyclic projection-free CQs [23] provides a uniform sam-

pling algorithm with guarantees on the expected running time; this

is incomparable to constant-time sampling after polynomial-time

preprocessing, offered by our approach. Finally, Arenas et al. [2]

show that efficient almost uniform sampling is possible for CQs

of low tree-width. Here, almost uniform means that the algorithm

approximates the uniform distribution up to a multiplicative error;

this is a weaker notion than uniform sampling. Let us also reiterate

that the all these papers only consider CQs, not threshold queries.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have embarked on a deep theoretical study of a

newly identified class of threshold queries. Our extensive empirical

study shows that threshold queries are highly relevant in practice as

witnessed by their utility in real-world knowledge graphs and their

presence in massive query logs. Our theoretical investigation shows

that threshold queries occupy a distinctive spot in the landscape of

database querying problems. Indeed, our complexity analysis proves

that threshold queries allow for a more efficient evaluation than

solutions for closely related problems of counting query answers,

constant-delay query answer enumeration, and top-𝑘 querying.

As one of the first future steps, we intend to gauge thoroughly

the performance of the proposed algorithms. Designing adequate

protocols for experimental evaluation requires a deep understand-

ing of the relationships between evaluation of threshold queries

and the related querying problems, which we have already accom-

plished in the present paper. We intend to carry out a comprehen-

sive implementation of threshold queries in an existing database

system similarly to how algorithms of top-k queries have been im-

plemented and evaluated [56]. More precisely, we will implement

dedicated threshold-aware variants of relational operators and then

we will introduce them in the query planning stage.

Our work has led us to identify remarkable similarities in the

query answering methods tackling counting and enumerating an-

swers: they rely on various techniques for compiling out existen-

tially quantified variables. We plan to pursue this discovery further

and give full treatment to the emerging question: is there a unifying

framework for assessing threshold queries and the related prob-

lems? Further theoretical results about threshold queries can be

envisioned, such as establishing a dichotomy of evaluation complex-

ity and identifying a condition under which evaluation is strongly

polynomial, rather than pseudopolynomial.
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