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ABSTRACT

While deep neural networks (DNNs) have shown to be successful
in several domains like computer vision, non-DNN models such
as linear models and gradient boosting trees are still considered
state-of-the-art over tabular data. When using these models, data
scientists often author machine learning (ML) pipelines: DAG of
ML operators comprising data transforms and ML models, whereby
each operator is sequentially trained one-at-a-time. Conversely,
when training DNNs, layers composing the neural networks are
simultaneously trained using backpropagation.

In this paper, we argue that the training scheme of ML pipelines
is sub-optimal because it tries to optimize a single operator at a time
thus losing the chance of global optimization. We therefore propose
WindTunnel: a system that translates a trained ML pipeline into a
pipeline of neural network modules and jointly optimizes the mod-
ules using backpropagation. We also suggest translation method-
ologies for several non-differentiable operators such as gradient
boosting trees and categorical feature encoders. Our experiments
show that fine-tuning of the translated WindTunnel pipelines is a
promising technique able to increase the final accuracy.
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1 INTRODUCTION

The recent decade has witnessed two distinct trends in Machine
Learning (ML). On one hand, the success of Deep Neural Networks
(DNNs) has been the driving force of many recent advances in ML,
pushing the limits of various tasks that use unstructured data such
as image recognition [15, 49, 55], machine translation [11, 14, 60],
and speech recognition [3, 16]. One of the key factors of this success
was the power of backpropagation, which allows the DNNs to
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Figure 1: An illustration of WindTunnel. The input to

WindTunnel is a ML pipeline and the output is its (par-

tially) differentiable counterpart.

learn and extract important higher-level features for the given task.
DNNs comprise multiple layers, which can be seen as multiple
cascaded operators. These layers are trained simultaneously using
backpropagation by which parameters can be globally estimated
end-to-end to reach better minima.

On the other hand, many real-world ML applications including
recommendation [1, 6, 46, 47], click prediction [12, 20, 21], and
malware prediction [19, 28, 38] use structured data, which is often
represented in a tabular form within RDBMSs. These applications
often use classical 1 machine learning pipelines composed of multiple
data transformations and ML models [2, 41, 51, 56] rather than a
single model. Such pipelines are Directed Acyclic Graphs (DAGs) of
operators and are enriched by domain knowledge from practitioners
and domain experts via feature engineering and model selection.
However, these pipelines are trained sequentially by following the
topological order specified in the DAG. They are not end-to-end
differentiable, thus cannot take advantage of backpropagation in
jointly optimizing the whole pipeline beyond a single model.

Inspired by these observations, in this paper we ask: Can we
combine the strength of backpropagation and ML pipelines? To an-
swer this question, we propose WindTunnel, a framework that
translates operators of a given ML pipeline into differentiable Neu-
ral Network (NN) modules. The translated NN modules are wired
together to form aWindTunnel pipeline (Figure 1), hence enabling
end-to-end training via backpropagation. This allows us to bypass
the greedy one-operator-at-a-time training scheme and boost the
accuracy of the pipeline. During the translation phase, we can
retain the information already acquired by training the original
ML pipeline and provide a useful parameter initialization for the
1The term “classical” is generally used to diversify this type of ML from DNN-based
approaches.
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translated NN modules, making further training of WindTunnel
pipeline more accurate and faster.

To demonstrate the benefits brought by WindTunnel, we con-
duct experiments on three large-scale real-world datasets with three
ML pipelines made up of multiple operators. The results show that
we can arrive at better accuracy by jointly training these opera-
tors. Furthermore, we find that WindTunnel provides informative
knowledge transfer from pre-trained pipelines, along with efficient
neural architecture that performs better than previous work [24].
WindTunnel currently supports several among data transforms
and ML models (the full list is contained in Table 1).
Comparison with the state of the art approaches.WindTun-
nel has the following benefits compared to other approaches.
(1) Compared with the original ML pipeline that cannot optimize

multiple operators in an end-to-end fashion, a WindTunnel
pipeline has higher accuracy because of its ability to jointly
fine-tune the pipeline with backpropagation. While jointly op-
timizing multiple operators, WindTunnel is also able to main-
tain the knowledge encoded in the structure of the original
pipeline by experts, such as how input features are wired to
operators and hyperparameters of the operators (how many
trees in a Gradient Boosting Decision Tree (GBDT) model, the
number of principal components for PCA, etc.).

(2) Compared with DNNs,WindTunnel leads to a higher accuracy
because ML pipelines are often better than DNNs for handling
tabular data, and WindTunnel successfully leverages such ad-
vantage in the translation. For example, Ke et al. [24] compared
the performance of ML pipelines with various DNNs developed
for tabular data including Wide&Deep [8], DeepFM [13], and
PNN [45], and showed that theML pipeline with LightGBM [23]
outperforms all the DNNs for every dataset. Rendle et al. [48]
also showed that Matrix Factorization [30] can outperform re-
cent DNN-based approaches. One can try to manually design
a DNN that matches the neural architecture of the WindTun-
nel pipeline, however, the DNN should be trained from scratch
whileWindTunnel provides an informative initialization point
by transferring weights from the original ML pipeline.

Multi-operator pipeline vs. Single model. At this point, the
readers might wonder:What’s the difference between composing a
ML pipeline with multiple operators and a single model? Can’t we
just replace the multi-operator pipeline with a single model? We have
evidence that this is not the current trend in data science. For in-
stance, in [44] we crawled 6 million python notebooks on GitHub
and joined this information with telemetry data on the internal
usage within Microsoft of ml.net [2]. The analysis suggested that
the majority of Scikit-learn [41] pipelines used in public notebooks
contain 2 or more operators (with a max length of 43), whereas in
ml.net telemetry the distribution is even more tail-skewed, with
few pipelines having even up to hundreds of operators. This ev-
idence suggests that multi-operator pipelines are widely used in
practice both in the open-source domain and in industry. We at-
tribute such trend to the additional information encoded by experts
in the structure of the pipeline, including how to featurize the input
data and how to wire the connection between operators.
Challenges of translating non-differentiable operators. Nev-
ertheless, noticeable challenges arise when the pipeline involves

operators that are intrinsically non-differentiable, such as decision
trees or word tokenization. This requires us to develop newmethods
in translating non-differentiable operators into differentiable NN
modules. To address this challenge, we develop translation methods
for a selected set of non-differentiable operators. First, we propose
a translation method that translates tree ensemble (e.g., GBDT)
into a batch of Multi-Layer Perceptrons (MLPs), where each MLP
corresponds to a tree in the ensemble. The translated NN module
(i.e., batch of MLPs) directly inherits the decision procedure of the
original tree ensemble, thus the learning capacity of the NNmodule
varies according to hyperparameters of the ensemble like number
of trees. Leveraging this additional knowledge infused by the ML
experts relieves the burden of laborious neural architecture tuning.
We also suggest multiple parametrization levels when optimizing
the translated module to balance good fit and inductive bias.

For categorical features, we translate categorical feature encoders
(e.g., one-hot encoding) into embedding lookup modules. By doing
so,WindTunnel learns the dense representations of sparse cate-
gorical features by exploiting the information propagated from the
final loss function. The translated embedding module inherits the
data transformation procedure of the original encoder, following
the same principle as GBDT translation. Conversely, the original ML
pipeline uses a fixed encoding logic regardless of the final prediction
result. To the best of our knowledge, this is the first work that pro-
poses joint optimization of categorical encoders and downstream
operators (e.g., GBDT) in ML pipelines. Although the embedding
technique itself is well-recognized in ML community especially in
the context of deep learning [42], combining classical ML models
with the embedding technique were not possible without explicit
use of models with latent parameters [46]. This is because the ML
models did not allow backpropagating gradients to upstream oper-
ators, while the neural translation unlocks this capability.
Practical impact. WindTunnel will be open sourced as part of
Hummingbird [31, 37]: a tool recently released [57] by Microsoft
enabling inference of classical ML pipelines over hardware acceler-
ators (e.g., GPUs). Hummingbird converts ML pipelines into non-
differentiable tensor computations and thus can directly leverage
the capabilities of DNN runtimes [7, 40].Hummingbird is part of the
PyTorch ecosystem [59], and is integrated with ONNXMLTools [58].
WindTunnel extends Hummingbird by enabling conversion of
pipelines into differentiable modules, and therefore allowing the
fine-tuning of pipelines along with fast inference. Enabling training
of ML pipelines over DNN runtimes and hardware accelerators has
been suggested as one of the important extension to Hummingbird
both from the open-source community2 and internal conversations
with product partners within Microsoft.
Limitations. As one of the first systems that focus on the differ-
entiable translation of ML pipelines, WindTunnel by no means
provides a complete solution to this challenging problem. Onemajor
limitation is that there are some operators that we cannot translate
into a differentiable format yet. Word tokenization, data cleans-
ing, and imputation are such examples. These operators require
sophisticated algorithms that are too difficult to parametrize.

Since we currently do not handle these operators, WindTunnel
does not translate them and keep them as they are. Nevertheless, in

2https://github.com/microsoft/hummingbird/issues/165
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Table 1: WindTunnel’s currently supported ML operators.

Supported Operators

linear models normalizers categorical encoders
SVM PCA LDA KMeans

naive bayes random forest gradient boosting trees
matrix factorization factorization machine

all the cases we studied, these non-translatable operators are placed
at the beginning of the pipeline and do not affect backpropagation
through the rest of the translated pipeline. Hence, we can still
compute gradients and jointly optimize the downstream operators,
which are the more essential parts of the ML pipeline.

Another notable limitation is that WindTunnel requires more
training time than classical ML pipelines. In particular, the fine-
tuning stage is more than an order of magnitude slower than the
training of the original ML pipeline. This is due to the large amount
of computation required for optimizing the NN modules. One can
consider using recent hardware that enables faster GEMM [53] or
applying distributed training techniques for sparse parameters [26]
to mitigate this problem.We leave these directions as a future work.

2 PIPELINE TRANSLATION

A classical machine learning pipeline is defined as a DAG of data-
processing operators, and these operators are mainly divided into
two categories: (1) the arithmetic operators and (2) the algorithmic
operators. Arithmetic operators are typically described by a single
mathematical formula. These operators are, in turn, divided into
two sub-categories of parametric and non-parametric operators.
Non-parametric operators define a fixed arithmetic operation on
their inputs; for example, the logistic sigmoid function can be seen
as a non-parametric arithmetic operator. In contrast, parametric
operators involve numerical parameters on the top of their inputs in
calculating the operators’ outputs. For example, an affine transform
is a parametric arithmetic operator where the parameters consist
of the affine weights and biases. The parameters of these operators
can be potentially tuned via some training procedure.

The algorithmic operators, on the other hand, are those whose
operation is not described by a single mathematical formula but
rather by an algorithm. For instance, the one-hot encoder that
converts categorical features into one-hot vectors is an algorithmic
operator that mainly implements the look-up operation. Given
a DAG of arithmetic and algorithmic operators, we propose the
following procedure for translating it into a differentiable format:
(1) For an arithmetic operator, translate the mathematical formula

into a neural network (NN) module. In the case of parametric
operator, copy the values of the operator’s parameters into the
resulting NN module.

(2) For an algorithmic operator, translate the operator by rewriting
the algorithm as a differentiable operation.

(3) Compose all the resulting modules into aWindTunnel pipeline
by following the dependencies in the original pipeline.
The final output of the above translation process is a pipeline of

NNs that provides the same prediction results (unless the translation
includes approximation described in Section 2.2) as the original
pipeline. Note that Step 1 and 2 in the above procedure are where
the actual translation happen, and will be described in details next.

2.1 Translating Arithmetic Operators

Arithmetic operators comprise non-parametric and parametric op-
erators, and it is straightforward to translate the former into a NN
module: the mathematical function of the operator can in fact be
directly rewritten using the math API provided by a DL framework
like PyTorch [40]. On the other hand, parametric operators are often
implicitly derived from ML models3, which are not straightforward
to translate. ML models typically consist of three key components:
(1) the prediction function, (2) the loss function, and (3) the learn-
ing algorithm. While the prediction function defines the functional
form of the model, the learning algorithm and the loss function
define how it is trained toward what objective, respectively. Take
the popular linear Support Vector Machine (SVM) as an example:
the prediction function is a linear combination of input features;
the loss function is the Hinge loss, and the learning algorithm is
gradient descent in the dual space.

A crucial observation is that once the training is complete, the
data-processing logic of any ML model can be completely defined
by the prediction function regardless of the loss function and the
learning algorithm. Hence, we can translate a parametric operator
derived from a ML model by applying the translation method for
non-parametric operators to the model’s prediction function and
properly initializing the parameters. For example, a linear SVM can
be translated into a linear NN module of one output unit having
the weights transferred from the trained SVM. It is worth noting
that the translation of a ML pipeline into a pipeline of NN modules
is uniquely done starting from the data-processing logic (i.e., pre-
diction function in case of parametric operator derived from ML
model), independently on how different parts of the ML pipeline
have been trained. This enables us to translate different operators
of a pipeline using the same formalism even though they might
have been obtained via different learning algorithms or objectives.

2.2 Translating Algorithmic Operators: GBDT

While most ML models correspond to arithmetic operators that
can be directly translated, some do not. One prominent example
is GBDT whose prediction function is not differentiable. Instead,
each prediction of a GBDT model is made by executing a sequence
of if-else statements for each tree and computing the mean over
the trees. In that respect, GBDT’s prediction function is an algo-
rithmic operator rather that an arithmetic one, which means we
cannot use backpropagation. In order to jointly optimize GBDT
with other operators, we should rewrite its prediction function as
a differentiable function of tunable parameters. We use GBDT as
a running example here because they are widely used in practical
data science [44]. Naturally, the same approach applies over any
tree-based model (e.g., decision trees, random forests, etc.).

We introduce parameters that fully determine GBDT’s prediction
function, and smooth the non-differentiable points of the function
so that it can be differentiated. At a given internal node 𝑛 of a binary
decision tree of GBDT, the prediction function evaluates a boolean-
valued function 𝑛(𝑥) = 𝑥𝑖 (𝑛) > 𝜃𝑛 , where 𝑥 is a vector representing
the input of the tree, 𝑖 (𝑛) is the index of the feature examined at

3Some parametric operators are not derived from ML models (e.g., normalizer). Still,
these operators can be translated using the same mechanism for parametric operators
derived from ML models.
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Figure 2: Translating a decision tree into a multi-layer perceptron.

node 𝑛, and 𝜃𝑛 is the decision threshold at node 𝑛. We smooth this
non-differentiable function by making the function output a real
number, 𝑛̃(𝑥) = 𝑡𝑎𝑛ℎ( 1𝜏 (𝑥

𝑇 𝑒𝑖 (𝑛) −𝜃𝑛)), where 𝑒𝑖 (𝑛) is the canonical
basis vector along the 𝑖 (𝑛)-th dimension of the feature space and
𝜏 is a temperature parameter. If 𝑛(𝑥) is true, 𝑛̃(𝑥) is close to 1,
otherwise 𝑛̃(𝑥) is close to −1. We set 𝜏 as 1 throughout this paper.
As we employ smaller 𝜏 , the differentiable approximation becomes
steeper and degenerates into the original boolean-valued function.

Next, we note that the value of a leaf node is outputted as the
final value of a tree if and only if the path from the root node to that
leaf node is traversed. For example, in Figure 2a, the tree will output
30 (i.e. the value of leaf 𝑙3) iff 𝑛1 (𝑥) is false, 𝑛2 (𝑥) is true, and
𝑛3 (𝑥) is true. As such, we denote the leaf activation function of 𝑙3
as a conjunction of 𝑙3’s ancestors: 𝑙3 (𝑥) = ¬𝑛1 (𝑥) ∧ 𝑛2 (𝑥) ∧ 𝑛3 (𝑥).
To get a differentiable approximation of the logical conjunction, we

write 𝑙3 (𝑥) = 𝑡𝑎𝑛ℎ

(
1
𝜏

(
−𝑛̃1 (𝑥)+𝑛̃2 (𝑥)+𝑛̃3 (𝑥)−𝐶𝑙3 +1

) )
, where𝐶𝑙 is

the total number of literals in the conjunction (the path length from
the root to the leaf node 𝑙 ; e.g., 𝐶𝑙3 = 3). Figure 2b visualizes this
approximation for 2 inputs. The equation 𝑛1 +𝑛2 = 1 is a maximum-
margin hyperplane between true and false evaluations of 𝑛1 ∧𝑛2.
In the case of no approximation (i.e., 𝜏 → 0), one and only one of
the leaf activation functions 𝑙 (𝑥) evaluates to 1 for any given input
𝑥 , while the rest are −1.

Having translated the function of internal and leaf nodes into
the smooth functions described above, any decision tree 𝑇 (𝑥) can
be translated into a MLP 𝑇 (𝑥) with two hidden layers. Figure 2c
shows an example of this translation procedure. The first hidden
layer implements a hidden unit 𝑛(𝑥) per each internal node. The
second hidden layer allocates a hidden unit 𝑙 (𝑥) for each leaf node.
Finally, the output layer is defined as a linear layer with one unit,
𝑇 (𝑥) = ∑

𝑙𝑖 ∈𝐿
𝜈𝑖
2 (1 + 𝑙𝑖 (𝑥)), where 𝐿 is the set of all leaf nodes and

𝜈𝑖 is the value of the leaf node 𝑙𝑖 . Translation of GBDT or Random
Forest follows directly by computing the average of 𝑇 (𝑥) over the
trees. We batch the computation of multiple MLPs using variants of
gemm such as baddbmm and addbmm. Since each MLP only has tens
(or one to two hundred) of hidden units, we cannot fully utilize the
computation power of modern GPUs without batching them.

Note that when smoothing boolean-valued functions, we map
false evaluation of 𝑛(𝑥) and 𝑙 (𝑥) to a real number close to −1, not
0. Suppose we map false to a value close to 0 and use dropout [52]
when training the translated module. In this case, dropping a true
neuron by zeroing its output can be seen as flipping the evaluation

from true to false, introducing unintended bias. Instead of using
the logistic sigmoid function to map false to a number close to
0, we use 𝑡𝑎𝑛ℎ for smoothing the boolean functions to make the
dropped neurons unbiased, meaning neither true nor false.

Once the translation is complete, the question is which of the
parameters should be declared as trainable. We suggest four levels
of parametrization to balance good fit and inductive bias:
L1: The weights and biases for computing the output layer 𝑇 ,

initialized using leaf node values 𝜈 , are declared as trainable.
L2: In addition to L1, the biases for computing the first hidden

layer 𝑛̃, initialized using the decision threshold values 𝜃 ’s at
the internal nodes, are declared as trainable.

L3: In addition to L2, the weights for computing the first hidden
layer 𝑛̃, initialized using the canonical basis vectors 𝑒𝑖 (𝑛) in
the equation of 𝑛̃(𝑥), are declared as trainable.

L4: In addition to L3, the weights (including the non-existing zero
weights) and biases for computing the second hidden layer 𝑙
are declared as trainable.

As level number increases, we declare more parameters as train-
able and as such increase the capacity of the MLP to fit to data better.
While L1 and L2 can only change the leaf and the decision threshold
values in the tree, L3 can additionally lead to examining a linear
combination of features at each internal node rather than a single
feature. Up to L4, the decision structure that determines whether or
not to activate a leaf node by examining internal nodes on the path
from the root to the leaf is preserved; whereas, at L4, we let this
decision structure change. That is, L4 gives us a fully-connected
and fully-trainable MLP initialized by a decision tree. This level can
be disabled if, for example due to some governance constraints, the
decision structure must be maintained for explainability.

2.3 Translating Algorithmic Operators for

Categorical Features

Classical ML pipelines often convert categorical features into nu-
merical values using non-differentiable, algorithmic operators. The
simplest yet most popular technique is one-hot encoding [35],
which generates sparse one-hot vectors out of categorical inputs.
This operator is intrinsically non-differentiable since its inputs lie
on discrete spaces such as integer or string.

Our observation is that one-hot encoding consumes raw cate-
gorical inputs, which means that we do not have to backpropagate
further through its discrete inputs due to the absence of upstream
operators. We adopt the embedding technique that has been studied
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intensively by the machine learning community. As shown in Fig-
ure 3, one-hot encoding can be seen as an embedding vector lookup
operation with the embedding dimension matching the cardinality
of categories. We can declare this embedding matrix as trainable in
order to replace sparse one-hot vectors with dense representations
and learn relationship between different categorical features, which
is not possible with one-hot encoding. The same statement holds
for hash encoding [34], except that data scientists can control the
size of embedding dimension explicitly. Although in the original
hash encoding we may have collisions between different categories,
we have one row in the embedding matrix for each input category
after translation. This means that even if the resulting vectors are
equivalent, the “collision information” is actually stored into the em-
bedding matrix. For example, the hash encoder in Figure 3 initially
maps the first and fourth category to equivalent one-hot vectors,
but they are in two different rows of the embedding matrix, and
therefore they will be eventually trained differently.

By translating categorical encoders into embedding modules,
we can use the well-recognized embedding technique along with
arbitrary ML operators, which was not possible before. There in-
deed exist ML algorithms such as Matrix Factorization [30] and
Factorization Machine [21, 46] that learn latent factors, which are
conceptually equivalent to embedding parameters. Yet, the adoption
of latent factors using these algorithms requires the ML operator
to use a specific form of prediction function that explicitly mod-
els two-way interaction between features [46], which may not be
desirable for certain type of tasks. In contrast,WindTunnel can
combine embedding modules with arbitrary ML models, allowing
data scientists to use any prediction function they want without
restriction.

2.4 Fine-Tuning

After translating the operators into NN modules, one can jointly
optimize the trainable parameters of the translated pipeline via
backpropagation. We refer to this training process as fine-tuning.
There are many scenarios for which this fine-tuning step can be
useful. First, by fine-tuning the resulting pipeline on the original
training data, we can potentially improve the generalization of the
model since we are now jointly optimizing all the operators of the
pipeline toward the final loss function. We empirically demonstrate
this in Section 4. Second, as we discussed in Section 2.1, the trans-
lation process does not depend on the loss functions that different
operators have been trained toward before. This means that once

the translation is complete, the resulting pipeline can be fine-tuned
toward a completely different objective that is more suitable for
a given application. Third, fine-tuning can be used to adapt the
model to new data that were not available before, which is not
straightforward without re-training the original ML pipeline with
the old and new data [24]. It is worth noting that other methods
for fine-tuning such as boosting may increase the model size and
complexity, whileWindTunnel does not. Also, the ensemble model
obtained by boosting can be seen as a pipeline containing multiple
models that were not jointly optimized, so it can also benefit from
our translation approach.

3 IMPLEMENTATION

Based on the translation mechanism described in Section 2, we
have implemented prototypes of WindTunnel on different classi-
cal ML libraries (i.e., scikit-learn and ml.net).WindTunnel design
is in fact simple, flexible, and easy to extend. The main compo-
nent of WindTunnel is a pre-defined mapping table between the
supported operators (listed in Table 1) and neural network mod-
ules implemented in PyTorch [40]. On top of the mapping table,
WindTunnel provides a set of converters for extracting information
from the trained ML operator and materialize the information into
parameters of the corresponding NN module. We have different
converters based on the ML framework the input pipeline was au-
thored in. For the experiments in Section 4, we use scikit-learn [41]
and PyTorch [40] for implementing ML pipelines.

During the translation process,WindTunnel refers to the proper
converters and mapping table entries, and replaces the operator
in the original pipeline with its differentiable counterpart. For the
operators that we do not support, we either (1) cache the operators’
outputs and reuse them in the fine-tuning stage; or (2) if streaming
execution is provided by theML framework, we stream data into the
untouched operators and redirect their outputs to theWindTunnel
pipeline. Caching is in general possible because the unsupported
operators are often placed at the beginning of the pipeline thus
their outputs do not change. We can consider this as a separate data
pre-processing step, which is typically done before actual training.

We are currently working on adding the pre-defined mapping
table containing the PyTorch implementations to Hummingbird4.

4 EXPERIMENTS

In this section, we empirically evaluate the performance of Wind-
Tunnel. The main goal of the experiments is to show that we can
improve the performance of ML pipelines by joint optimization
instead of training each operator individually. We carry our ex-
periments on binary classification tasks for three tabular datasets.
We start with details about experimental setup, such as dataset
description, pipeline composition, and training configurations.

4.1 Experimental Setup

Datasets. We conduct experiments on real-world datasets listed
in Table 2. The Flight [39] dataset is used for predicting whether a
scheduled flight will be delayed more than 15 minutes inclusive. We
use records from the year of 2006 and 2007 as training set (about

4https://github.com/microsoft/hummingbird/tree/mainterl/fine-tune-trees.
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Table 2: Statistics of datasets used in experiments. #Rec is

the number of data records, #Num is the number of nu-

merical features, #Cat is the number of categorical features,

#Unq is the number of unique categories that appear in the

training split (i.e. the sum of cardinalities of categorical fea-

tures), and Positive ratio is the percentage of records with

positive label.

Dataset #Rec #Num #Cat #Unq Positive ratio

Flight 21.6M 2 6 694 20.4%
Avazu 40.4M 0 23 8.93M 17.0%
Criteo 45.8M 13 26 30.8M 25.6%

14M records), while the records from the year of 2008 are divided
into two splits and used as validation set (Jan to Jun) and test set
(Jul to Dec). The Avazu [4] and Criteo [9] datasets are from Kaggle
competitions that call for click-through rate prediction models. We
use the first 90% of the Criteo dataset as training set, while the next
5% and the last 5% is used as validation and test set, respectively. For
the Avazu dataset, we use the same ratio for splitting the dataset
after a random shuffling step, to ensure that the distribution of “day
of week” feature is consistent between train-validation-test splits.
Data pre-processing. We experiment with three different data
pre-processing schemes to show both the general applicability of
WindTunnel, as well as the impact of different pre-processing
operations over the embedding dimensions and final accuracy. The
first pre-processing scheme (Pre1) drops categories that appear
less than 25 times in the training set to reduce noise, followed by
a binary encoder for handling categorical features. In the second
pre-processing scheme (Pre2), we replace the binary encoder with a
two-hot encoder, while the rest are left the same as the first scheme
(Pre1). Two-hot encoder is similar to the well-known one-hot en-
coder [35], except that there are two “hot” elements (value of 1) in
the resulting vector. Switching the pre-processing step from Pre1 to
Pre2 allows us to test how accuracy changes when increasing the
embedding dimensions. The last, most complex scheme (Pre3) is
composed as follows: (1) drop the lower 1% categories by frequency;
(2) drop categories that appear less than 10 times in the training
set; (3) add additional categorical features by bucketizing numeric
features using 32 bins; (4) apply two-hot encoding and target en-
coding [43]. We take inspiration from previous literature [24] for
designing Pre3.
ML pipelines. We evaluate the performance improvements using
three ML pipelines. Each pipeline not only serves as the source
pipeline for WindTunnel translation, but also serves as a baseline
for comparison. In the first pipeline (Pipe1), we use a logistic re-
gression model following the pre-processing scheme. After transla-
tion,WindTunnel jointly optimizes the embedding modules trans-
lated from categorical encoders and the logistic regression module.
The second pipeline (Pipe2) employs a GBDT model trained by
LightGBM [23] after the pre-processing scheme. The third pipeline
(Pipe3) is composed as follows: (1) process the data using the de-
scribed pre-processing scheme; (2) train a LightGBMmodel with the
processed data and label; (3) for each tree in the trained LightGBM
model, create a one-hot vector that marks the index of the activated
leaf as 1 and keeps others 0 using the leaf activation function 𝑙 (𝑥)
(see Section 2.2); (4) train a Factorization Machine [46] model with

the output from (3) and label. We take inspiration from the win-
ning solution of Kaggle competition [20] for designing Pipe3. These
pipelines cover the most common ML algorithms (linear models
and decision-tree variants) used in practice [22].
DNN baseline. In addition to the three ML pipelines described
above, we compare DeepGBM [24], a state-of-the-art neural net-
work that takes advantage of classical ML by distilling knowledge
from gradient boosting machine. We do not compare with other
DNN-based models because Ke et al. [24] already demonstrated that
DeepGBM is consistently better than Wide&Deep [8], DeepFM [13]
and PNN [45]. We also do not report results from ML pipelines
using a single operator because they fall far behind other models.
Configurations.We set the LightGBM to create 64 leaves for each
tree, and we construct 100 trees for all experiments that use Light-
GBM. The Factorization Machine (FM) model uses a latent dimen-
sion of 20 for all experiments. We set learning rate to 0.25 and 10−3
for training LightGBM and FM, respectively. Regarding the training
of WindTunnel pipelines, we use the parametrization level L4 for
GBDT-translated modules unless otherwise noted. Dropout [52] is
applied to each NN layer of WindTunnel pipeline, with a zeroing
probability of 0.1. We use the Adam [27] optimizer with a batch
size of 4096 and weight decay of 10−6 for all experiments. Learn-
ing rate is set to 10−4 for the Flight and Avazu dataset, and 10−5
for the Criteo dataset. We select these rates by sweeping a grid of
{10−2, 10−3, · · · , 10−6} for learning rate and {10−5, 10−6, 10−7} for
weight decay. We let the training process run until convergence.
Regarding the experiments using DeepGBM, we use an open-source
implementation. For the Flight and Criteo dataset, we use the hy-
perparameter setting described in the original literature. Since the
literature did not use the Avazu dataset, we set the hyperparameters
same as Criteo’s.

4.2 Overall Performance

We first evaluate the overall performance of WindTunnel. The
comparison results can be found in Table 3. As we can see, Wind-
Tunnel greatly improves AUC of the original pipeline by jointly
optimizing the ML operators which were trained separately, pro-
viding up to 10.0% higher AUC. This demonstrates the power of
end-to-end training and WindTunnel’s ability to leverage such
advantage. WindTunnel also surpasses DeepGBM by a significant
margin (up to 3.4%) for all cases, except the Avazu dataset using
Pre3 pre-processing where the margin is small (0.7760 vs. 0.7763).
We credit the AUC gap to joint training of embedding modules
(translated from categorical encoders) and downstream modules
(translated from GBDT and FM), which is not possible in DeepGBM.
Impact of data pre-processing. We study the impact of using
different pre-processing schemes, and find that it can largely affect
the AUC of both the original pipeline andWindTunnel pipeline.
First of all, the use of one-hot encoder [35] is not suitable for large-
scale dataset because it requires too much host and GPU memory
and computation power. The number of embedding dimension
grows linearly with the number of unique categories (denoted as𝐶),
which makes training of both the original pipeline and WindTun-
nel pipeline extremely difficult. On the other hand, for the binary
encoder [33] and two-hot encoder, the minimum required size of
embedding dimension is roughly 𝑙𝑜𝑔2𝐶 and

√
𝐶 , respectively.
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Table 3: Overall performance comparision. We report AUC on test split following the previous work [24]. ML is the original

ML pipeline, while W.T. is for WindTunnel. PreX means different preprocessing schemes, and PipeX denotes different ML

pipelines. The best result is marked bold.

Model
Flight Avazu Criteo

Pre1 Pre2 Pre3 Pre1 Pre2 Pre3 Pre1 Pre2 Pre3

ML (Pipe1) 0.6783 0.6847 0.7126 0.6896 0.7264 0.7553 0.7167 0.7442 0.7769
ML (Pipe2) 0.7358 0.7427 0.7507 0.7521 0.7550 0.7718 0.7739 0.7781 0.7925
ML (Pipe3) 0.7519 0.7547 0.7467 0.7597 0.7616 0.7728 0.7838 0.7884 0.7954
DeepGBM 0.7793 0.7695 0.7726 0.7682 0.7680 0.7760 0.7965 0.7918 0.7972

W.T. (Pipe1) 0.6913 0.6910 0.7244 0.7588 0.7589 0.7637 0.7750 0.7804 0.7903
W.T. (Pipe2) 0.7790 0.7897 0.7960 0.7753 0.7742 0.7763 0.8006 0.8053 0.8041
W.T. (Pipe3) 0.7829 0.7906 0.7989 0.7746 0.7718 0.7753 0.8014 0.8058 0.8048

Table 4: AUC of the Criteo dataset

using different translation scopes.

Model Pre2 Pre3

ML (Pipe2) 0.7781 0.7925
GBDT2NN (Pipe2) 0.7962 0.7998

W.T. (Pipe2) 0.8053 0.8041

Table 5: AUC of the Criteo dataset using dif-

ferent parameter initialization regimes.

Model
Pre2 Pre3

Cold Warm Cold Warm

W.T. (Pipe2) 0.7983 0.8053 0.7990 0.8041
W.T. (Pipe3) 0.7966 0.8058 0.7975 0.8048

Table 6: AUC of the Criteo dataset us-

ing different GBDT parametrization lev-

els and dataset sizes (1%, 10%, 100%).

Model 100% 10% 1%

ML (Pipe2) 0.7781 0.7777 0.7657
W.T. (Pipe2, L2) 0.7924 0.7874 0.7685
W.T. (Pipe2, L3) 0.8051 0.7912 0.7699
W.T. (Pipe2, L4) 0.8053 0.7906 0.7691

Second, Pre2 shows better AUC on all cases using ML pipelines
compared to Pre1. Similarly, WindTunnel pipelines tends to work
better with Pre2 than Pre1. This means that both ML and Wind-
Tunnel pipelines prefer two-hot encoding to binary encoding. We
attribute this trend to the high separability of two-hot vectors com-
pared to binary vectors at the cost of larger embedding dimension.
Note that DeepGBM prefers Pre1 to Pre2 because it explicitly selects
top-N elements of the input vector based on the amount of infor-
mation computed by LightGBM and use only them for training the
GBDT-distilled neural network. Due to this feature selection policy,
when we use two-hot encoder that produces larger encoded vec-
tor, some elements of the vector with meaningful information are
dropped, thus resulting in worse AUC compared to binary encoder.

If we go one step further and compare Pre2 and Pre3, Pre3 shows
better AUC in most cases. This means that if we carefully design
the pre-processing scheme and adopt more sophisticated feature
engineering, we can achieve better results compared to using simple,
less-optimized pre-processing scheme.
Discussion. From this experiment, we notice the importance of
getting a proper pre-processing scheme.We deem developing neural
translation of the pre-processing operators a promising direction
able to improve the performance. This also aligns with recent trends
in computer vision domain that learns to augment input images by
parametrizing and tuning the pre-processing scheme [10, 25, 32].
Developing new types of pre-processing operators that are naturally
tunable (e.g., embedding) could also be an alternative solution.

4.3 Ablation Study

Next, we evaluate the performance of WindTunnel with varying
configurations. As a representative for the datasets we study, we
select the largest one (i.e, Criteo) and conduct experiments on it.

We also focus on the settings with Pre2 & Pre3 schemes and Pipe2 &
Pipe3 pipelines, because we produce top results with these settings.
Joint optimization. We study the impact of joint optimization in
more details. Table 4 reports additional results by translating only
the GBDT model of Pipe2, not categorical encoders (denoted by
“GBDT2NN”). Note that a GBDT model is already an ensemble of
multiple trees, so translating only the GBDT model (GBDT2NN)
also employs joint optimization of multiple MLP modules. From
the results, we can observe a clear pattern that as the scope of
translation gets wider, the AUC increases (ML < GBDT2NN <

WindTunnel). This further supports the claim that joint optimiza-
tion is a promising technique able to improve the performance. In
particular, the gap between GBDT2NN and WindTunnel suggests
that the neural translation of pre-processing operators (categorical
encoder) is indeed effective in improving the accuracy.
Parameter initialization and architecture. In this set of exper-
iments, we show that the translation of trained ML operators pro-
vides informative initialization of WindTunnel pipelines. We ex-
periment with two regimes of initialization for the parameters of
WindTunnel pipeline: (1) in the cold start regime the parame-
ters are randomly initialized (denoted by “Cold”); and (2) in the
warm start regime the parameters are carried over from the original
ML pipeline (denoted by “Warm”, used as default setting for other
WindTunnel experiments).

Table 5 shows that the warm start outperforms the cold start,
which means that the parameters extracted from the original ML
pipeline provide an informative initialization for WindTunnel.
Interestingly, the cold start regime performs better than DeepGBM.
This shows that WindTunnel not only delivers meaningful infor-
mation by parameter initialization, but also provides a good neural
architecture that can achieve better results than the baseline.

17



GBDT parametrization level and dataset size. As described in
Section 2.2, the proposed translation of GBDT increases the capacity
of themodel if we adopt higher parametrization levels (L3 or L4).We
evaluate the effect of the parametrization level in Table 6, using the
combination of Pre2 and Pipe2. From the results, we can observe
the significant gap between L2 and L3, verifying that the extra
capacity helps improving the performance. Yet, L2 still outperforms
the original ML pipeline, due toWindTunnel’s ability to jointly
optimize the categorical encoders and GBDT. We also evaluate
trade-offs between flexibility and inductive bias come from different
levels. For this, we use subsets of the training split with various
sampling ratios (1%, 10%, 100%). As the subset size decreases, the
gap between L2 and the other two level closes. This trend shows
overfitting of L3 and L4 in small data experiments and how it is
avoided by L2 that has much smaller capacity. In other words,
lower levels provide a natural regularization mechanism in small
data experiments. The results also show that the gap between the
original pipeline (ML) andWindTunnel gets wider as the subset
size increases. This suggests thatWindTunnel has better scalability
(in terms of accuracy) than the original pipeline by exploiting the
extra model capacity that comes from the joint optimization.

5 RELATEDWORKS

End-to-end training of ML pipelines. Milutinovic et al. [36]
proposes the end-to-end training of ML pipelines via propagating
gradients across multiple differentiable operators. This work how-
ever has no discussion about non-differentiable operators, while we
attempt to backpropagate through non-differentiable (e.g., GBDT)
and non-trainable operators (e.g., categorical encoding). Addition-
ally, this work requires users to manually write “backward” code
for operators from non-NN libraries (e.g., scikit-learn), whileWind-
Tunnel exploits the automatic differentiation capabilities of DL
libraries by neural translation.
Tree-basedmodels andneural networks.There have been early
works [5, 18, 50] that initialize parameters of a MLP by using a
trained decision tree. However, these works have several limitations:
(1) the resulting MLP cannot back-propagate gradients to upstream
(or downstream) operators because the input and output layers
are not designed with end-to-end training in mind; and (2) the
MLP is not well-suited for adopting dropout [52] due to the use of
logistic sigmoid activation that introduces bias. They also did not
demonstrate generalizability on tree ensemble models like GBDT
or Random Forest, and only experimented with a single decision
tree that is unlikely used in practice.

DJINN [17] initializes a MLP in a different way, where the depth
of the decision tree is used to decide the number of layers. Weights
are randomly initialized, while the information on the tree is re-
tained only for sparsely connecting the neurons. We instead extract
more information from a GBDT model including tree structure and
decision thresholds to initialize the parameters. DNDT [61] sug-
gests to build tree-like neural networks for interpretability. This is
different from our approach of handling trees because: (1) it builds a
tree-like neural network using random weight initialization, while
we retain the behavior of trained trees by neural translation; and (2)
our translated pipeline learns to use all features for making decision
at each internal node (L3 and L4), while this work uses a single

feature at each neuron and requires a wider network whose number
of neurons grows exponentially as the number of features grows.
dNDF [29] combines neural networks (CNNs) and decision tree
classifiers by enabling backpropagation, with a focus on computer
vision tasks. Similar to DNDT, dNDF also starts with a random
initialization of tree parameters.

Finally, DeepGBM [24] distills trees into neural networks by
transferring the knowledge of tree outputs and feature importance
learned by GBDT. Given this distilled neural network, DeepGBM
incorporates an additional embedding-based neural network called
CatNN for handling categorical features only. For this, DeepGBM
requires several hyperparameters such as the number of layers and
hidden units (for both the distilled NN and CatNN), weights for
controlling the strength between knowledge distillation and final
loss, the number of features used for training the distilled NN, how
to group trees for distillation, and so on. Instead, WindTunnel di-
rectly translates a ML pipeline so the structure of resulting pipeline
solely depends on the structure of the original one.
Making a specific model differentiable. Stoyanov et al. [54]
deals with algorithmic operator beyond trees. Specifically, they
directly minimizes the empirical risk of a Markov Random Field
(MRF) by backpropagating through the inference algorithm. While
this work deals with a system composed of a single model (MRF),
our work handles pipelines with multiple operators. We can adopt
their approach when we encounter ML pipelines containing MRF.
Neural translation for fast inference. Finally, while in this work
we focus on translating ML operators into differentiable modules
for fine-tuning, in the Hummingbird project [37] we translate ML
operators (including unsupported ones inWindTunnel) into ten-
sor operations without requiring the operations to be differentiable.
This allow us to run inference of end-to-end pipelines (1) com-
pletely on DL frameworks without any additional data conversion
overhead; and (2) on hardware accelerators specialized for tensor op-
erations. We are currently working on adding training (fine-tuning)
support in Hummingbird through WindTunnel.

6 CONCLUSIONS

Inspired by the existing gap between classical ML pipelines and
neural networks, we proposeWindTunnel, a framework for trans-
lating pipelines of ML operators into neural networks and further
jointly fine-tuning them. As part of the translation procedure, we
also propose techniques for translating popular non-differentiable
operators including GBDT and categorical encoders. The experi-
mental results show that the translation with knowledge transfer
followed by the fine-tuning leads to significant accuracy improve-
ments over the original pipeline and state-of-the-art NNs. Further-
more, we see that our translation mechanism can be seen as an
approach for designing neural network architectures for a given
task that is inspired by the classical ML pipeline structure for that
task. We deem this work as a step towards filling the gap between
classical ML pipelines and neural networks over tabular data.
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