
DSON: JSON CRDT Using Delta-Mutations For Document Stores
Arik Rinberg

∗

Technion

Haifa, Israel

ArikRinberg@campus.technion.ac.il

Tomer Solomon

IBM

Tel-Aviv, Israel

tomer.solomon@ibm.com

Roee Shlomo

IBM

Tel-Aviv, Israel

Roee.Shlomo@ibm.com

Guy Khazma

IBM

Tel-Aviv, Israel

Guy.Khazma@ibm.com

Gal Lushi

IBM

Tel-Aviv, Israel

gal.lushi@ibm.com

Idit Keidar

Technion

Haifa, Israel

idish@technion.ac.il

Paula Ta-Shma

IBM

Tel-Aviv, Israel

paula@il.ibm.com

ABSTRACT

We propose DSON, a space efficient 𝛿-based CRDT approach for

distributed JSON document stores, enabling high availability at a

global scale, while providing strong eventual consistency guaran-

tees. We define the semantics of our CRDT based approach formally,

and prove its correctness and convergence. Previous approaches

optimize for collaborative document editing and store metadata

proportional to the number of updates to a document, which is not

acceptable for long lived document management. The metadata

stored with our approach is bounded by 𝑂 (𝑘2𝐷 + 𝑛 log𝑛), where 𝑛
is the number of replicas, 𝐷 is the number of document elements,

and 𝑘 ≤ 𝑛 is the number of concurrent document updates. We also

implement our approach[37] and demonstrate its space efficiency

empirically. Experimental analysis shows that the metadata stored

is typically significantly less than the worst case. This provides the

basis for robust highly available distributed document stores with

well defined semantics and safety guarantees, relieving application

developers from the burden of conflict resolution.

PVLDB Reference Format:

Arik Rinberg, Tomer Solomon, Roee Shlomo, Guy Khazma, Gal Lushi, Idit

Keidar, and Paula Ta-Shma. DSON: JSON CRDT Using Delta-Mutations For

Document Stores. PVLDB, 15(5): 1053 - 1065, 2022.

doi:10.14778/3510397.3510403

PVLDB Artifact Availability:

The source code and benchmarks have been made available at https://github.

com/crdt-ibm-research/json-delta-crdt.

∗
This work was done during an internship at IBM Research.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 5 ISSN 2150-8097.

doi:10.14778/3510397.3510403

1 INTRODUCTION

NoSQL systems, and in particular document stores, have signifi-

cantly grown in popularity over the last decade [42], and those in

most widespread use adopt a JSON-based data model [41]. Such a

data model maps directly to common programming language data

structures and relaxes schema restrictions, making it suitable for

developers’ needs. Applications are diverse but include managing

metadata for digital media such as photos and videos, social me-

dia posts, product information, and machine-generated data/logs.

Distributed document stores are often applied in mobile and edge

scenarios where both global scale and high availability under dis-

connected operation are paramount.

Distributed document stores often default to eventual consis-

tency to enable high availability for both reads and writes on a

global scale e.g. CouchDB [5], Couchbase [3], DynamoDB [6]. How-

ever, eventual consistency only guarantees that a document’s state

will converge at some unspecified future point in time if there are

no additional updates. Reasoning without substantial safety guaran-

tees adds a burden to application developers and is not suitable for

all applications. Conflict resolution policies are often arbitrary [16]

and have complex, non-intuitive semantics, e.g., Couchbase of-

fers conflict resolution where the replica with the most mutations

wins [4]. To achieve more control over consistency, some document

stores provide an API for application developers to manually spec-

ify how to merge conflicts when they arise [16]. This approach is

time consuming, error prone, and difficult to reason about.

We adopt Conflict-free Replicated Data Types (CRDTs) [40] to

achieve a distributed document store design with strong eventual

consistency, meaning that any two nodes that have received the

same set of updates will be in the same state. In addition we also

provide causal consistency and read-your-writes guarantees. The

semantics we propose is well defined and intuitive, enabling pro-

grammers to reason about application correctness. We leverage and

extend existing theoretical results for CRDTs and apply them to

the document store context, where documents can have arbitrarily

long lifetimes, but where the amount of metadata used to support

CRDTs must be reasonably bounded.

1053

https://doi.org/10.14778/3510397.3510403
https://github.com/crdt-ibm-research/json-delta-crdt
https://github.com/crdt-ibm-research/json-delta-crdt
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3510397.3510403
https://www.acm.org/publications/policies/artifact-review-and-badging-current

The CRDT approach relies on predetermined conflict resolution

rules which dictate their semantics. These rules are typically data

structure specific, and CRDTs have been defined for counters, sets,

directed graphs etc. [40]. In this paper, we focus on JSON document

stores, and treat JSON[9] as a composition of nested maps and

arrays (lists) over base data types. Note that since we handle both

maps and arrays our work is applicable to other kinds of document

stores as well.We define the semantics of our approach formally and

prove its convergence and correctness. Existing CRDT approaches

for JSON [2, 12] address collaborative document editing and collect

metadata proportional to the number of updates. This metadata

cannot easily be bounded or cleaned up over time, and therefore

these approaches are not suited to our context. Our work enables

global high availability for distributed JSON document stores with

reasonable overheads and proven semantics.

CRDTs are often split into two main families: op-based [17]

and state-based [29]. Op-based approaches are simpler and require

smaller messages, but they assume reliable, exactly-once ordered

messaging which is hard to maintain even when TCP is used [22].

On the other hand messages in state-based systems include the

entire state, which can be prohibitively large. Almeida et al. intro-

duced 𝛿-state-based CRDTs [15] to achieve the best of both worlds

– a 𝛿-based CRDT sends a delta instead of the entire state, reduc-

ing communication overheads. We chose this approach because

it naturally enables bounding metadata growth. However, it re-

quires theoretical guarantees of causal consistency and designing

causal 𝛿-based CRDTs is non trivial. The original paper defines

several causal 𝛿-CRDTs including multi-value registers, add-wins

and remove-wins sets and an enable-wins flag. It also defines a com-

posable (i.e. arbitrarily nestable) Observed-Remove Map which can

contain other causal 𝛿-based CRDTs including maps themselves.

However, maps on their own are not sufficient to handle JSON[9].

In this paper we define a composable causal 𝛿-based Array CRDT.

In addition to arrays (lists) being an important datatype in their

own right, this results in a causal 𝛿-based CRDT library powerful

enough to capture JSON data. To date various array CRDTs have

been proposed, such as Logoot [44], Treedoc [34], WOOT [33]

and others [30, 38], as well as a technique to support concurrent

move operations on array elements [24]. However none of these

achieve composable, causal 𝛿-based array CRDTs. In this paper we

define causal composable 𝛿-based array CRDTs supporting arbitrary

levels of nesting and concurrent move operations without data

duplication.

We base our approach on that of Alameida et. al. [15] and adopt

Observed-Remove (OR) semantics for Arrays and combine themwith

their OR-Maps. OR semantics are intuitive because only observed

state can be removed. For example, under OR semantics, if there is

an update concurrent to a remove, the update wins and the element

isn’t removed. A shopping cart example is given in Figure 1, where

OR semantics is contrasted with Remove-Wins (RW) semantics.

Ourmain contributions are as follows.We define a 𝛿-based CRDT

for Observed-Remove JSON documents which is built on a novel

composable 𝛿-based array CRDT. While ORMap semantics was

previously defined [40], we formalize the 𝛿-based approach with

respect to its execution. We provide a formal definition of the array

CRDT, and prove both its convergence and the correctness of its

semantics. We show that the amount of metadata stored is bounded

by 𝑂 (𝑘2𝐷 + 𝑛 log𝑛), where 𝑛 is the number of replicas, 𝐷 is the

number of document elements, and is 𝑘 ≤ 𝑛 is the number of con-

current operations. We implemented a prototype in JavaScript[37]

and verify that metadata stays constant with the number of updates,

unlike the case for existing JSON CRDTs [2, 12]. Some initial results

were presented as an extended abstract[36].

The rest of the paper is structured as follows. Section 2 covers

related work, section 3 covers preliminaries, and Section 4 covers

our core theoretical results. Section 5 presents the algorithm for the

novel Observed-Remove Array CRDT, and Section 6 presents the

JSON CRDT. Section 7 surveys our implementation and Section 8

provides an experimental evaluation of metadata growth. Section 9

presents some ideas for future work and Section 10 concludes.

2 RELATEDWORK

As described in the introduction, there is no known JSONCRDT that

is implemented using delta mutations. The key missing piece is a

delta-based array implementation that supports moving of elements

and arbitrary nesting, without using tombstones. However, state-

based and operation-based constructions do exist. In this section

we describe existing CRDTs for arrays and JSON documents as well

as describing usage of CRDTs in datastores.

The problem of collaborative text editing has motivated many

proposals for array CRDTs such as WOOT [32], Treedoc [35], Lo-

goot [44], and RGA [39]. However, text editing deals with a linear

structure and does not consider arbitrary nesting of CRDTs as

required for sequences in JSON documents. Higher level construc-

tions, such as the ORArray, are built upon such base constructions.

Moreover, while all mentioned constructions support the insert

and delete operations, only RGA supports update and none of them

support moving elements. In Moving elements in list CRDTs A

generic black box approach to adding move support to existing

CRDTs has been proposed [24]. However, the described construc-

tion cannot easily be applied in a delta-based setting, e.g., it relies

on AWSet that in the delta-based framework is only defined for

primitive types and lacks support for an update operation.

A JSON CRDT has been proposed [25] and is implemented in the

Automerge library [2]. Automerge is an operation-based CRDT that

implements many different data types including composable maps

and arrays. It provides a good solution for use cases that require

observing all history and supporting undo operations. The array

implementation in Automerge is based on RGA, an array CRDT

that is implemented similar to a linked list. Each node contains

an identifier, an identifier of the next item, a value, and a flag to

indicate whether the node is a tombstone. While RGA was origi-

nally designed for linear data, nesting is enabled in Automerge by

cleverly holding the identifiers of nested CRDTs in the value fields.

However, the RGA construction inherently requires tombstones

and has an ever-growing metadata problem. Garbage collection

cannot be fully implemented without compromising consistency,

leading to a significant drawback in use cases such as document

stores. In contrast, ORArray and the JSON CRDT built on top of

it are naturally implemented without tombstones. Another design

choice in Automerge is the handling of conflicts that cannot be

resolved automatically. When users concurrently update the same

key in the same map (or the same index in the same list) then one of

1054

Figure 1: Observed-remove vs. remove-wins semantics via a shopping list example. With OR semantics, only observed state

can be removed, therefore the delete at replica B cannot override the update at replica A which had not been observed.

the concurrently written values is picked arbitrarily and the others

are stored in a conflicts structure as raw values (i.e., not CRDTs).

In contrast, the JSON CRDT presented in this paper preserves all

subtrees as valid CRDTs and gives more control to the user, similar

to the semantics of a multi-value register, when desired.

Another JSON CRDT has been proposed in YATA [31] and is

implemented in the Yjs library [12]. The core of the YATA CRDT is

an Array CRDT implemented as a doubly linked list with insert and

delete operation. YATA supports update operations and complex

data types such as maps by storing abstract operation types as the

array elements. For example, to support the update operation a

Replace Manager operation type inserts the updated value to the

beginning of an array such that eventually all replicas observe the

same first array element as the updated value. While YATA is an

operation based CRDT, delete operations are handled using a state

based CRDT for storing tombstones. YATA describes a time based

garbage collection mechanism and some ad-hoc optimizations are

implemented to try minimizing the amount of state stored due to

tombstones. The 𝛿-based CRDTs are naturally built without the

need for garbage collection, due to the use of a causal context.

𝛿-based CRDTs have been adopted in industry as part of Akka

toolkit [1] for building applications using the actor model. Akka

supports delta-based CRDTs for counters, sets, maps and registers

but lacks support for arrays. We believe that the addition of a full

JSON CRDT can both open the door for new use cases and greatly

simplify application development.

𝛿-based CRDTs are also used to build real-time collaborative

applications on top of IPFS [10, 18]. The array implementation

is based on RGA with tombstones and without any support for

nesting. That is, you can’t store an array inside a map nor store any

CRDT type inside the array.

Distributed databases such as Redis, Riak, Cosmos DB and Anti-

dote DB include support for CRDT data types such as sets and maps.

However, for data stores such as CouchDB that use JSON as the

data model a full JSON CRDT is required. AutoCouch [21] leverages

both the AutoMerge library and CouchDB to enable developing

collaborative applications. AutoCouch synchronizes the entries of

the AutoMerge history using the database’s revision tree. As stated

by the authors the main issue is the ever growing metadata size,

both due to tombstones and due to the inherent history keeping in

Automerge. We believe that our approach provides an alternative

that preserves all of the functionality required by document stores

while keeping the synchronization cost low due to the use of delta

mutations and a design that does not require garbage collection. Our

approach may also be suitable for other use cases that use the JSON

model, such as decentralized Kubernetes control planes [23, 28].

3 PRELIMINARIES

Section 3.1 presents our model, and in Section 3.2 we define our

notations. In Section 3.3 we present background 𝛿-based CRDTs.

3.1 Model

Our system consists of a set of nodes I hosting replicas of objects;

we use node and replica interchangeably. The object exposes API

methods which are used to alter the underlying state of the object.

Nodes communicate with each other by broadcasting messages over

unreliable, unordered links. The network provides the following two

assumptions: (1) If a node delivers message𝑚, then another node

previously broadcast message𝑚, and (2) if a message is broadcast

infinitely many times it is eventually delivered by every node. We

denote a broadcast of message𝑚 by node 𝑖 as 𝑏𝑐𝑎𝑠𝑡𝑖 (𝑚), and deliver
of message𝑚 broadcast by node 𝑖 at node 𝑗 as 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑗 (𝑚, 𝑖). An
event occurring at a node is either an API method invocation, a

message broadcast, or a deliver.

An execution 𝜎 of the system is an interleaving sequence of

events and states. A trace of an execution 𝜎 is the sub-sequence of

events in 𝜎 . We denote the trace of an execution 𝜎 as 𝑇𝑟 (𝜎).
We make use of the happens-before relation as defined by Lam-

port [27]. An event 𝑒1 ∈ 𝑇𝑟 (𝜎) happens-before or precedes an

event 𝑒2 ∈ 𝑇𝑟 (𝜎) in an execution 𝜎 , denoted 𝑒1 ≺𝜎 𝑒2 if: (1)

𝑒1 occurs before 𝑒2 in the same replica in 𝑇𝑟 (𝜎), or (2) 𝑒1 is a

broadcast of message 𝑚 and 𝑒2 is a deliver of that message, or

(3) there exists some event 𝑒 ∈ 𝑇𝑟 (𝜎) such that 𝑒1 ≺𝜎 𝑒 and

𝑒 ≺𝜎 𝑒2. We define the set of operations in 𝜎 as 𝑂𝑝𝑠 (𝜎) = {𝑒 ∈
𝑇𝑟 (𝜎) |𝑒 is an API method invocation}. We say that two events 𝑒1
and 𝑒2 are concurrent if neither precedes the other in 𝜎 , denoted

𝑒1 | |𝜎𝑒2.
Previous work defines CRDT object semantics in terms of the

poset (𝑂𝑝𝑠 (𝜎), ≺𝜎) [29], i.e., the set of operations and the corre-

sponding happens-before partial order. As an example, we present

1055

the Multi-Value Register (MVReg), a CRDT register. The register

exposes the following API methods: (1) write(𝑥), and (2) read().

Given an execution 𝜎 , the read method returns:

{𝑣 |∃write(𝑣) ∈ 𝑂𝑝𝑠 (𝜎) ∧ �write(𝑢) : write(𝑣) ≺𝜎 write(𝑢)}.

For example, if node 𝑖 executes write(𝑣1) and concurrently node

𝑗 executes write(𝑣2), a read operation on node 𝑘 that is preceded

by both these write operations returns {𝑣1, 𝑣2}. If node 𝑘 executes

a write(𝑣3) after the read, then an ensuing read returns {𝑣3}.

3.2 Notations

We consider standard notations for sets and maps. The sets we

consider in this paper are partially ordered (namely, posets), with a

least element ⊥. A map is a set of key-value pairs {𝑘 ↦→ 𝑣}, where
each key 𝑘 is from some setK , and is associated with a single value

𝑣 from some setV . Given a map𝑚 and a key 𝑘 ∈ K , we denote its

associated value by𝑚[𝑘]. The domain of a map𝑚 is denoted dom 𝑚
and the range of amap𝑚 as ran 𝑚, i.e., dom 𝑚 = {𝑘 | {𝑘 ↦→ 𝑣} ∈𝑚}
and ran 𝑚 = {𝑣 | {𝑘 ↦→ 𝑣} ∈ 𝑚}. For a map 𝑚 and a key 𝑘 , if

𝑘 ∉ dom 𝑚, we say that𝑚[𝑘] = ⊥, i.e., all keys not present in the

map are mapped to ⊥. For a pair 𝑝 = (𝑎, 𝑏), we use fst (𝑝) and
scnd (𝑝) to denote its first (𝑎) and second (𝑏), respectively. Finally,

for a set 𝑆 we denote its power set by 𝑃 (𝑆).
A join semilattice [19], or simply a lattice, is a three tuple (𝑆, <,⊔),

where 𝑆 is a set, < is a partial order on 𝑆 , and ⊔ is a function

𝑆 × 𝑆 ↦→ 𝑆 that is associative, commutative, and idempotent.

Table 1: Table of notations.

Notation Explanation

I Set of nodes

bcast𝑖 (𝑚) Broadcast event of message𝑚 by node 𝑖 ∈ I
deliver 𝑗 (𝑚, 𝑖) Deliver event of message𝑚 broadcast by node

𝑖 ∈ I, at node 𝑗 ∈ I
𝜎 An execution of the system, including events

and states.

Tr (𝜎) Sub-sequence of events (trace) of execution 𝜎 .

𝑒1 ≺𝜎 𝑒2 Event 𝑒1 precedes event 𝑒2 in execution 𝜎

𝑒1 | |𝜎𝑒2 Event 𝑒1 and 𝑒2 are concurrent in execution 𝜎

Ops(𝜎) The set of API methods invoked in 𝜎 .

3.3 𝛿-Based CRDTs

Asmentioned in the introduction, 𝛿-based CRDTs were proposed by

Almeida et al. [15] to achieve the best of both state-based CRDTs and

op-based CRDTs. This is achieved by using a join semilattice. The

state of the CRDT and the broadcasted messages are both elements

of the join semilattice. We denote the broadcasted messages as

deltas.

The API methods use the current object state 𝑋 to generate a

delta 𝑋𝛿
that represents the incremental movement from the old

state (before the method invocation) to the new one (after), i.e., 𝑋

is the old state and 𝑋 ⊔𝑋𝛿
is the new one. After generating 𝑋𝛿

, the

node joins its state with 𝑋𝛿
to get the new state, and broadcasts

𝑋𝛿
to all nodes.

Nodes needn’t keep track of which messages have been received,

as the join is idempotent, and don’t need to deliver messages in

the same order, as the join is commutative and associative. Finally,

convergence is achieved whenever all nodes deliver all messages

from all other nodes. An anti-entropy algorithm [14] is used to

enforce convergence and preserve causality: it retransmits out-

standing deltas, enforces the causal order of delivery, and merges

outstanding deltas in order to send fewer messages.

Commonly, 𝛿-based CRDTs assign unique identifiers to opera-

tions. The simplest way to generate these identifiers is for replica

𝑖 ∈ I to generate the sequence of pairs (𝑖, 1), (𝑖, 2), . . . and assign

a pair per event. We denote such a pair a dot. An operation’s dot

is broadcast along with the delta reflecting its mutation. We say

that a dot has been observed by replica 𝑖 if: (1) 𝑖 generated the dot,

or (2) 𝑖 delivered a message containing the dot. The collection of

observed events at a node up to a given point in an execution is

called a causal context, and it is maintained locally at every replica

as part of its state. The causal context 𝑐 local to 𝑖 exposes three

functions: max𝑖 (𝑐), which gives the maximum sequence number

in the causal context, next𝑖 (𝑐), which produces the next dot for

replica 𝑖 , and insert𝑖 (𝑐, 𝑑), which adds dot 𝑑 to the causal context.

The causal context is defined in Equation 1.

CausalContext ∈ 𝑃 (I ×N)
max𝑖 (𝑐) = max({𝑛 | (𝑖, 𝑛) ∈ 𝑐} ∪ {0})

next𝑖 (𝑐) = (𝑖, max𝑖 (𝑐) + 1)
insert𝑖 (𝑐, 𝑑) = 𝑐 ∪ {𝑑}

(1)

As the causal context is a grow-only set, its size is unbounded. In

practice, it can be efficiently compressedwithout loss of information.

As dots are created sequentially, instead of maintaining a list of dots

(𝑖, 1), (𝑖, 2), . . . , (𝑖, 𝑛) for every replica 𝑖 , we can maintain a mapping

prefix : I ↦→ N, such that if prefix [𝑖] = 𝑛 then all dots (𝑖,𝑚) for
𝑚 ≤ 𝑛 are in the causal context. Due to the unreliable network,

we may have a gap in the sequence, e.g., replica 𝑗 may observe

(𝑖, 1) and (𝑖, 3) but not (𝑖, 2). We therefore also maintain a separate

(uncompressed) set of dots exceeding the longest prefix.

A DotStore is a container for data-type specific information

and is used to store the state of a 𝛿-based CRDT. It provides the

operation dots for querying the set of event identifiers (i.e., dots)
currently stored in the dot store. We now present the dot stores

defined by Almeida et al. [15]. The DotFun instantiated with lattice

𝑉 is a map from dots in I ×N to 𝑉 . Its dots operation returns the

domain of the map. It is presented formally in Equation 2.

DotFun⟨𝑉 : 𝐿𝑎𝑡𝑡𝑖𝑐𝑒⟩ : I ×N ↦→ 𝑉

dots(𝑠) = dom 𝑠
(2)

The DotMap instantiated with a set 𝐾 and a DotStore 𝑉 is a map

from 𝐾 to 𝑉 . Its dots operation returns the union of the return

values of invoking the dots operation on each DotStore in the

range. Equation 3 presents it formally.

DotMap⟨𝐾,𝑉 : 𝐷𝑜𝑡𝑆𝑡𝑜𝑟𝑒⟩ : 𝐾 ↦→ 𝑉

dots(𝑚) =
⋃

𝑘∈dom 𝑚

dots(𝑚[𝑘]) (3)

1056

To form the join semilattice that makes up the state and deltas of

𝛿-based CRDTs, dot stores are paired with causal contexts. We de-

note the pair DotStore×CausalContext as Causal⟨DotStore⟩.
For each type of Causal⟨DotStore⟩ we define the join function

(⊔). The semilattice’s partial ordering is defined with respect to the

join function: For any 𝑋 ∈ Causal⟨DotStore⟩, 𝑋 ⊔ ⊥ = 𝑋 . For

two elements 𝑋1, 𝑋2 ∈ Causal⟨DotStore⟩ we say that 𝑋1 < 𝑋2
iff ∃𝑋 ≠ ⊥ ∈ Causal⟨DotStore⟩ such that 𝑋1 ⊔ 𝑋 = 𝑋2.

The merge in the Causal⟨DotFun⟩ keeps values that exist in
both of the mappings and merges their respective values, or exist

in either one of the mappings and are “new” to the other, in the

sense that they are not in its causal history. It is formally defined

in Equation 4.

(𝑚,𝑐) ⊔ (𝑚′, 𝑐 ′) =
({𝑑 ↦→𝑚[𝑑] ⊔𝑚′[𝑑] | 𝑑 ∈ dom 𝑚 ∩ dom 𝑚′}

∪{(𝑑, 𝑣) ∈𝑚 |𝑑 ∉ 𝑐 ′} ∪ {(𝑑, 𝑣) ∈𝑚′ | 𝑑 ∉ 𝑐}, 𝑐 ∪ 𝑐 ′)
(4)

The merge in the Causal⟨DotMap⟩ applies the merge recursively

on each of the keys in either domains, and keeps all none ⊥ values.

It is presented formally in Equation 5. An example of a ⊥ value is a

merge between two elements of the Causal⟨DotFun⟩ semilattice,

where the domains are disjoint but all mappings are in the others

causal history. Consider for example a write 𝑤1 that precedes a

write 𝑤2, i.e., 𝑤1 ≺𝜎 𝑤2, then the dot generated by 𝑤1 is in the

causal context of the delta generated by 𝑤2. By the definition of

join, the mapping doesn’t “survive” the join, and therefore the old

value (written by𝑤1) is overwritten – it isn’t present in the range

of the map after𝑤2.

(𝑚,𝑐) ⊔ (𝑚′, 𝑐 ′) = ({𝑘 ↦→ 𝑣 (𝑘) | 𝑘 ∈ dom 𝑚 ∪ dom 𝑚′

∧𝑣 (𝑘) ≠ ⊥}, 𝑐 ∪ 𝑐 ′)
where 𝑣 (𝑘) = fst ((𝑚(𝑘), 𝑐) ⊔ (𝑚′(𝑘), 𝑐 ′))

(5)

We next give an example of a 𝛿-based CRDT, via the MVReg [15].

Its pseudo-code is presented in Algorithm 1. The state is an ele-

ment (𝑚,𝑐) in the semilattice Causal⟨DotFun⟩. Namely, a map-

ping from dots to values in 𝑉 . The write(𝑣) operation creates a

delta 𝑋𝛿 = (𝑚𝛿 , 𝑐𝛿) ∈ Causal⟨DotFun⟩ as follows: 𝑐𝛿 contains

the current domain of the DotFun, which is the set of dots writ-

ten but not over-written, and 𝑚𝛿
is a mapping from a new dot

to the written value 𝑣 . Note that any preceding write(𝑢) that is
contained 𝑚 before the operation has its dot added to 𝑐𝛿 , there-

fore, when joining 𝑋𝛿
with the current state, 𝑢 is removed from

𝑚. A read operation returns all values that are not removed. For

example, consider two replicas 𝑖 and 𝑗 of a new MVReg. Replica 𝑖

executes write𝑖 (𝑣), generates delta ({(𝑖, 1) ↦→ 𝑣}, {(𝑖, 1)}), merges

and broadcasts it. Replica 𝑗 delivers the delta, and changes its state

to ({(𝑖, 1) ↦→ 𝑣}, {(𝑖, 1)}). Now, replica 𝑖 executes write𝑖 (𝑢) con-
currently to replica 𝑗 executing write𝑗 (𝑤). The delta generated
by write𝑖 (𝑢) is ({(𝑖, 2) ↦→ 𝑢}, {(𝑖, 1), (𝑖, 2)}), and the delta gener-

ated by write𝑗 (𝑤) is ({(𝑗, 1) ↦→ 𝑤}, {(𝑖, 1), (𝑗, 1)}). After all deltas
have been merged, both replicas are in the state:

({(𝑖, 2) ↦→ 𝑢, (𝑗, 1) ↦→ 𝑤}, {(𝑖, 1), (𝑖, 2), (𝑗, 1)}),

so the MVReg holds both values 𝑢 and𝑤 .

Algorithm 1 MVReg algorithm for node 𝑖 .

1: Global state (𝑚,𝑐) ⊲ Causal⟨DotFun⟩
2: procedure write𝑖 (𝑣)

3: 𝑑 ← 𝑛𝑒𝑥𝑡𝑖 (𝑐) ⊲ New dot

4: 𝑐 ′ ← dom 𝑚 ⊲ Currently stored dots

5: return ({𝑑 ↦→ 𝑣} , 𝑐 ′ ∪ {𝑑}) ⊲ New 𝑋𝛿

6: procedure read𝑖

7: return ran 𝑚

4 OBSERVED-REMOVE SEMANTICS

Observed-remove semantics are a commonly used in production

systems (e.g., Riak [26]). Under such semantics, an operation can

overwrite (“undo”) preceding operations executed on the same

element. The MVReg is a simple example of such an object, where

a write overwrites any preceding write operations albeit not

concurrent ones: If two write operations are concurrent, then both

values are reflected in the state. We now present two more elaborate

examples, and formalize their OR semantics.

4.1 𝛿-Based ORMap

We first formalize the Observed Remove Map (ORMap) [15]. It is a

mapping of some set of keys 𝐾 , each to an arbitrary 𝛿-based CRDT,

possibly an ORMap itself. Thus, the ORMAP is composable. The

map has no schema, in that each key can be mapped to a different

type of CRDT. Its API consists of the following methods:

apply(𝑘, 𝑜𝛿
𝑖
) – given a key 𝑘 ∈ 𝐾 mapped to some 𝛿-based

CRDT 𝑣 of type 𝑉 , and a method 𝑜𝛿
𝑖
from the API of 𝑉 , The

method applies 𝑜𝛿
𝑖
to the CRDT by invoking 𝑜𝛿

𝑖
on 𝑣 .

delete(𝑘) – deletes key 𝑘 from the map.

get(𝑘) – returns the embedded value of the CRDT mapped to

by 𝑘 .

For example, consider a map from keys to MVRegs. Writing

value 𝑣 to key 𝑘1 is done by executing apply(𝑘1,write(𝑣)) to the

map, and get(𝑘1) reads the same MVReg.

Recall that the deltas generated by API methods and the replica

states are both members of the same join semilattice. We next define

the semantics of the 𝛿-based ORMap. Given execution 𝜎 , define:

X𝑎𝑝𝑝𝑙𝑦 (𝜎) ≜ {𝑋𝛿 |∃apply𝑖 (𝑘, 𝑜𝛿𝑖) ∈ 𝑂𝑝𝑠 (𝜎) that returns 𝑋
𝛿

∧ �delete𝑗 (𝑘) ∈ 𝑂𝑝𝑠 (𝜎) : apply𝑖 (𝑘, 𝑜𝛿𝑖) ≺𝜎 delete𝑗 (𝑘)}

𝑋 (𝜎) ≜
{⊔

𝑋𝛿 ∈X𝑎𝑝𝑝𝑙𝑦 (𝜎) 𝑋
𝛿 X𝑎𝑝𝑝𝑙𝑦 (𝜎) ≠ ∅

⊥ otherwise

Intuitively, X𝑎𝑝𝑝𝑙𝑦 is the set of deltas generated by apply opera-

tions whose keys were not subsequently deleted, and 𝑋 is the join

of these deltas.

Furthermore, assume the existence of an abstract function

Value(𝑋, 𝑘), which retrieves the value of key 𝑘 from any element

𝑋 in the join semilattice, similarly to executing get(𝑘) on a replica

with state 𝑋 . Then a get(𝑘) returns Value(𝑋 (𝜎), 𝑘).
Under this definition, in the presence of a concurrent apply and

delete of the same key, the delete removes all apply operations

that causally precede it and leaves the key in the map with the

1057

concurrently written value. A delete can thus be seen as an “undo”

of all operations leading up to it.

The semantics of the ORMap were previously defined less for-

mally in [15]. Here we formally define the semantics of the return

value of a get for the first time.

Algorithm 2 presents the ORMap pseudo-code, as proposed

in [15]. The state is an element in Causal⟨DotMap⟩. The causal
context is shared by all keys and corresponding nested CRDTs. The

apply method fetches the value at key 𝑘 from𝑚 and pairs it with the

shared causal context 𝑐 to obtain the value from the embedded type.

It then invokes the operation over the pair. From the resulting pair

it extracts the value to create a new mapping for that key, which it

pairs with the resulting causal context. As the delete method uses

the dots method from within a DotMap, the dots returned are the

dots of all embedded values, therefore deleting a key recursively

removes the corresponding embedded values.

Algorithm 2 ORMap algorithm for node 𝑖 .

1: Global state (𝑚,𝑐) ⊲ Causal⟨DotMap⟩
2: procedure apply𝑖 (𝑘 ,𝑜

𝛿
𝑖
)

3: (𝑣, 𝑐 ′) ← 𝑜𝛿
𝑖
(𝑚[𝑘], 𝑐) ⊲ Apply the mutator.

4: return ({𝑘 ↦→ 𝑣} , 𝑐 ′)
5: procedure delete𝑖 (𝑘)

6: 𝑐 ′ ← dots(𝑚[𝑘]) ⊲ Get all embedded dots.

7: return (⊥, 𝑐 ′)

4.2 𝛿-Based ORArray

We now introduce a new OR data type, the Observed Remove Array

(ORArray). To this end, we represent an array as a set of value-

position pairs, whose values are general CRDTs. Using an integer

index as the position would require updating multiple element po-

sitions following an insertion or deletion. Therefore, we adopt the

notion of stable identifiers [24], which allow insertion and deletion

without updating other elements, for example, the set of real num-

bers. An insertion of an element between an element at position 𝑝1
and one at 𝑝2, inserts an element at position (𝑝1 + 𝑝2)/2. The array
is the sequence of values sorted by the corresponding position in

ascending order. For example, the array [𝑎, 𝑏, 𝑐] can be represented

by the set {(𝑎, 1.0), (𝑏, 7.5), (𝑐, 42.7)}.
As the ORArray allows concurrent operations, the position may

be ambiguous, similarly to the value of an MVReg under concurrent

writes. To this end, we extend the position to be a set of possible

positions. For example, if element 𝑏 is concurrently moved before 𝑎

and after 𝑐 , it’s position may be {0.3, 54}. To sort the array, replicas

deterministically choose an element from the position set (e.g., the

maximum) to use for ordering the values. To keep track of values

as they change positions under concurrent operations, we identify

each array element by a unique identifier. For example, the unique

identifier can be the dot with which the element was created (as

the creation point is unique). The representation of the ORArray is

therefore a map from unique identifiers to value-positions pairs. For

example, the aforementioned array can be represented as the map:

{(𝑖, 1) ↦→ (𝑎, {1.0}), (𝑗, 1) ↦→ (𝑏, {0.3, 54}), (𝑖, 2) ↦→ (𝑐, {42.7})},
where (𝑖, 1) is the dot marking the creation even of element 𝑎, (𝑗, 1)

is the creation event of 𝑏, and (𝑖, 2) is the creation event of 𝑐 . When

an element is inserted for the first time, the API receives the unique

identifier that identifies the inserted element until its deletion.

The value of an element can be any 𝛿-based CRDT, possibly an

ORArray itself. Thus, the ORArray is also composable. The array

has no schema; each value can be a different type of CRDT.

Its API consists of the following methods:

apply(𝑢𝑖𝑑, 𝑜𝛿
𝑖
, 𝑝) – given a unique identifier 𝑢𝑖𝑑 mapped to

some pair consisting of a 𝛿-based CRDT 𝑣 of type 𝑉 and a

set of positions, a method 𝑜𝛿
𝑖
from the API of𝑉 , and a target

position 𝑝 , The method applies 𝑜𝛿
𝑖
to the CRDT by invoking

𝑜𝛿
𝑖
on 𝑣 , and overwriting the set of positions with 𝑝 .

move(𝑢𝑖𝑑, 𝑝) – given a unique identifier 𝑢𝑖𝑑 and a position 𝑝 ,

overwrites the position of the element to be 𝑝 .

delete(𝑢𝑖𝑑) – deletes any element mapped to 𝑢𝑖𝑑 from the

map.

get(𝑢𝑖𝑑) – given a 𝑢𝑖𝑑 mapped to a value 𝑣 of some CRDT of

type 𝑉 and a set of positions 𝑃 , returns the value of 𝑣 based

on 𝑉 paired with the set of positions 𝑃 .

While the API uses a unique id to refer to an element in an

array and uses stable position identifiers to sort it, traditional use

of an array consists of using integer indices, i.e., the first element

of an array 𝑎𝑟𝑟 is 𝑎𝑟𝑟 [0]. To this end, we also provide a wrapper

API and implemented functions converting an integer index to a

unique id and to a stable position identifier. Converting an index

𝑖𝑑𝑥 to a unique identifier 𝑢𝑖𝑑 is done by sorting the array using

the position identifiers, and returning the 𝑢𝑖𝑑 of the element at

index 𝑖𝑑𝑥 . Converting an index to a position identifier is done in a

similar fashion. The wrapper API consists of the followingmethods,

mapped to the methods above:

insert(𝑖𝑑𝑥, 𝑜𝛿
𝑖
) – given an index 𝑖𝑑𝑥 and a method 𝑜𝛿

𝑖
from

the API of some CRDT of type 𝑉 , The method assigns a

unique id 𝑢𝑖𝑑 , assigns a stable position identifier 𝑝 such that

the new element in the sorted array appears at index 𝑖𝑑𝑥 ,

and invokes apply(𝑢𝑖𝑑, 𝑜𝛿
𝑖
, 𝑝).

update(𝑖𝑑𝑥, 𝑜𝛿
𝑖
) – given an index 𝑖𝑑𝑥 and a method 𝑜𝛿

𝑖
of

some CRDT type𝑉 , The method finds the𝑢𝑖𝑑 corresponding

to the element at index 𝑖𝑑𝑥 , finds the position 𝑝 , and invokes

apply(𝑢𝑖𝑑, 𝑜𝛿
𝑖
, 𝑝).

move(𝑜𝑙𝑑_𝑖𝑑𝑥, 𝑛𝑒𝑤_𝑖𝑑𝑥) – given two indexes, finds the ele-

ment 𝑢𝑖𝑑 corresponding to the element at index 𝑜𝑙𝑑_𝑖𝑑𝑥 ,

calculates the stable position identifier 𝑝 such that the el-

ement in the sorted array will be at index 𝑛𝑒𝑤_𝑖𝑑𝑥 , and

invokes move(𝑢𝑖𝑑, 𝑝).
delete(𝑖𝑑𝑥) – given an index 𝑖𝑑𝑥 , finds the element 𝑢𝑖𝑑 cor-

responding to index 𝑖𝑑𝑥 , and invokes delete(𝑢𝑖𝑑).
get(𝑖𝑑𝑥) – given an index 𝑖𝑑𝑥 , finds the element 𝑢𝑖𝑑 corre-

sponding to the element at index 𝑖𝑑𝑥 , and invokes get(𝑢𝑖𝑑).

We define the semantics of the ORArray in two steps: First the

value and next the position. We define the semantics of the value

1058

in a similar fashion to Section 4.1. Given execution an 𝜎 , define:

X𝑎𝑝𝑝𝑙𝑦 (𝜎) ≜ {𝑋𝛿 |∃apply𝑖 (𝑢𝑖𝑑, 𝑜𝛿𝑖 , 𝑝) ∈ 𝑂𝑝𝑠 (𝜎) that returns 𝑋
𝛿

∧�delete𝑗 (𝑢𝑖𝑑) ∈ 𝑂𝑝𝑠 (𝜎) : apply𝑖 (𝑢𝑖𝑑, 𝑜𝛿𝑖 , 𝑝) ≺𝜎 delete𝑗 (𝑢𝑖𝑑)}

𝑋 (𝜎) ≜
{⊔

𝑋𝛿 ∈X𝑎𝑝𝑝𝑙𝑦 (𝜎) 𝑋
𝛿 X𝑎𝑝𝑝𝑙𝑦 (𝜎) ≠ ∅

⊥ otherwise

Furthermore, assume the existence of an abstract function which

gets the value of element 𝑢𝑖𝑑 from any element 𝑋 in the join semi-

lattice, similarly to executing get(𝑢𝑖𝑑) on a replica with state𝑋 , de-

noted Value(𝑋,𝑢𝑖𝑑). Then 𝑓 𝑠𝑡 (get(𝑢𝑖𝑑)) returns Value(𝑋,𝑢𝑖𝑑).
To define the positional semantics, we first identify the subset

of 𝑂𝑝𝑠 (𝜎) consisting of all operations that alter element 𝑢𝑖𝑑 (i.e.,

apply(𝑢𝑖𝑑, 𝑜𝛿
𝑖
, 𝑝), move(𝑢𝑖𝑑, 𝑝), and delete(𝑢𝑖𝑑)), and do not pre-

cede another operation that alters element 𝑢𝑖𝑑 in 𝜎 . We denote this

subset as maximal(𝜎,𝑢𝑖𝑑).
Next, given an execution 𝜎 , define:

𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ≜ {𝑝 |∃apply(𝑢𝑖𝑑, 𝑜𝑖𝛿, 𝑝) ∈ maximal(𝜎,𝑢𝑖𝑑)}
𝑃𝑚𝑜𝑣𝑒 (𝑢𝑖𝑑, 𝜎) ≜ {𝑝 |∃move(𝑢𝑖𝑑, 𝑝) ∈ maximal(𝜎,𝑢𝑖𝑑)}

At the end of 𝜎 , if 𝑓 𝑠𝑡 (get(𝑢𝑖𝑑)) ≠ ⊥ then 𝑠𝑐𝑛𝑑 (get(𝑢𝑖𝑑)) re-
turns a non-empty set of positions 𝑃 (𝑢𝑖𝑑) such that:

𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ⊆ 𝑃 (𝑢𝑖𝑑) ⊆
(
𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ∪ 𝑃𝑚𝑜𝑣𝑒 (𝑢𝑖𝑑, 𝜎)

)
.

Note that if 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) is empty, and the value is not ⊥, then
the position has at least one element from 𝑃𝑚𝑜𝑣𝑒 (𝜎).

Under these semantics, the position set of an element contains

all positions set by apply operations, as such operations update

the value and therefore it is important they not be overwritten.

It may or may not contain positions set by move operations that

occur concurrently with other updates, as these do not impact the

underlying data.

5 ORARRAY ALGORITHM

In Section 5.1 we present a new dot store, and in Section 5.2 we

present our algorithm implementing the 𝛿-based ORArray.

5.1 The CompDotFun

To construct the ORArray we first propose a new dot store. We

combine the DotMap and DotFun to get a dot store which maps

dots to dot stores. We assume the dot stores in the range of the

DotFun are all join-semilattices. We will show that the resulting

mapping is also a join-semilattice. Thus, this construction yields

a composable DotFun. We denote this dot store as CompDotFun.

The dot store is presented in Equation 6. Note that the dotsmethod

returns the dots in the domain, as well as a union on recursive calls

of dots on all dot stores in the range.

CompDotFun⟨𝑉 : DotStore⟩ : I ×N ↦→ 𝑉

dots(𝑚) = dom 𝑚 ∪
⋃

𝑣∈ran 𝑚

dots(𝑣) (6)

We define its corresponding join-semilattice in Equation 7. The

join operation keeps keys that have not been deleted (as in the

DotFun), or the values themselves haven’t been deleted (as in the

DotMap).

(𝑚,𝑐) ⊔ (𝑚′, 𝑐 ′) =
({𝑑 ↦→ 𝑣 (𝑑) | 𝑑 ∈ dom 𝑚 ∩ dom 𝑚′ ∧ 𝑣 (𝑑) ≠ ⊥}

∪{(𝑑, 𝑣) ∈𝑚 | 𝑑 ∉ 𝑐 ′} ∪ {(𝑑, 𝑣) ∈𝑚′ | 𝑑 ∉ 𝑐}, 𝑐 ∪ 𝑐 ′)
where 𝑣 (𝑑) = fst ((𝑚(𝑑), 𝑐) ⊔ (𝑚′(𝑑), 𝑐 ′))

(7)

It can be proven that given three elements inCausal⟨CompDotFun⟩,
the resulting object is depends on set union and the join of the in-

ner dot store of the three elements. As set union is commutative,

associative, and idempotent, and as we assume that the inner dot

store is a join semilattice we arrive at the following corollary:

Corollary 5.1. The Causal⟨CompDotFun⟩ is a join-semilattice.

5.2 The ORArray

We now propose an algorithm implementing the 𝛿-based ORArray.

The ORArray is instantiated with some set of stable position identi-

fiers P. Algorithm 3 presents our proposal. We store the position

in the following dot store:

Pos ≜ CompDotFun⟨DotFun⟨P⟩⟩
The state and deltas are generated by the algorithm are from the

following join-semilattice:

Causal⟨DotMap⟨I ×N, (𝐷𝑜𝑡𝑆𝑡𝑜𝑟𝑒, Pos⟩⟩.
In other words, the ORArray is stored as a mapping from dots to

pairs of value-positions, where the value is any CRDT, and the set

of positions is stored using a DotFun nested in a CompDotFun.

This position construction is what allows for concurrent updates.

This construction stores the set of positions as a forest, where each

tree is of depth 3. For example, an element whose set of positions

is {0.3, 54} may have the position stored in the following forest:

{𝑑1 ↦→ {𝑑2 ↦→ 0.3}, 𝑑3 ↦→ {𝑑4 ↦→ 54}},
where 𝑑1, 𝑑2, 𝑑3, and 𝑑4 are dots. The apply function adds a new

tree and removes all the old ones by removing their roots. In the

example above, the roots 𝑑1 and 𝑑3 are removed and a new tree is

inserted. As the root is stored in a CompDotFun, once a root is

removed it never reappears, contrary to keys in a DotMap which

may remain undeleted if there is a concurrent update. The move

function removes the child of all roots and adds a single child to

every root with the new position. Consider the example above

where the position is set to 42. The dots 𝑑2 and 𝑑4, and the forest is

altered to

{𝑑1 ↦→ {𝑑5 ↦→ 42}, 𝑑3 ↦→ {𝑑5 ↦→ 42}}.
The delete function removes all roots, thus removing the position.

A move may be overwritten by a concurrent apply or delete, as

the apply and delete remove the roots. But an apply always adds

a new root, thus an element cannot have a non-empty value and

be without any possible position.

As an apply inserts a new tree into the forest, concurrent apply

operations create multiple trees. For example, if one apply sets the

position to {𝑑1 ↦→ {𝑑2 ↦→ 0.3}} and another one sets the position

to {𝑑3 ↦→ {𝑑4 ↦→ 54}}, after they are merged the resulting forest is

the one appearing above.

We now prove that Algorithm 3 implements an ORArray. We

begin with the values. Note that the implementations of the apply𝑖

1059

Algorithm 3 ORArray algorithm for node 𝑖 .

1: Global state (𝑚,𝑐) ⊲ Causal⟨DotMap⟨I ×
N, (𝐷𝑜𝑡𝑆𝑡𝑜𝑟𝑒,CompDotFun⟨DotFun⟨P⟩⟩⟩⟩

2: procedure apply𝑖 (𝑢𝑖𝑑 ,𝑜
𝛿
𝑖
, 𝑝)

3: 𝑑 ← 𝑛𝑒𝑥𝑡𝑖 (𝑐)
4: (𝑣, 𝑐 ′) ← 𝑜𝛿 (fst (𝑚[𝑢𝑖𝑑]), 𝑐 ∪ {𝑑})
5: 𝑟𝑜𝑜𝑡𝑠 ← {𝑑 ′ |𝑑 ′ ∈ dom scnd(𝑚[𝑑])} ⊲ Get all roots

6: 𝑚′ ← {𝑢𝑖𝑑 ↦→ (𝑣, {𝑑 ↦→ {𝑑 ↦→ 𝑝}})}
7: 𝑐 ′ ← 𝑐 ′ ∪ {𝑑} ∪ 𝑟𝑜𝑜𝑡𝑠
8: return (𝑚′, 𝑐 ′)
9: procedure move𝑖 (𝑢𝑖𝑑 ,𝑝)

10: 𝑑 ← 𝑛𝑒𝑥𝑡𝑖 (𝑐)
11: 𝑟𝑜𝑜𝑡𝑠 ← {𝑑 ′ |𝑑 ′ ∈ dom scnd(𝑚[𝑑])} ⊲ Get all roots

12: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← ⋃
child∈dom (ran scnd(𝑚 [𝑢𝑖𝑑])) dots(𝑐ℎ𝑖𝑙𝑑)

13: position← {𝑟 ↦→ {𝑑 ↦→ 𝑝}|𝑟 ∈ 𝑟𝑜𝑜𝑡𝑠}
14: 𝑚′ ← {𝑢𝑖𝑑 ↦→ ({}, position)}
15: 𝑐 ′ ← {𝑑} ∪ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
16: return (𝑚′, 𝑐 ′)
17: procedure delete𝑖 (𝑢𝑖𝑑)

18: 𝑐 ′ ← dots(𝑚[𝑢𝑖𝑑])
19: return ({}, 𝑐 ′)

and the delete𝑖 operations in Algorithm 3 are, disregarding Line 3

and Line 5, identical to those in Algorithm 2. The difference in the

apply𝑖 operation is due to updating the position identifier. Further-

more, the semantics as defined in Section 4 are identical. Therefore,

we begin with the following observation:

Observation 1. The value of an element in an object implemented

by Algorithm 3 adheres to OR semantics.

We next show that the set of positions of an element 𝑃 satisfies

the semantics described in Section 4.2. We show each containment

separately.

Lemma 5.2. Consider an execution 𝜎 of Algorithm 3. Let 𝑃 be

the set of possible positions of some element at the end of 𝜎 . Then

𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ⊆ 𝑃 .

Proof. If 𝑝 ∈ 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎), then there exists some

apply(𝑢𝑖𝑑, 𝑜𝛿
𝑖
, 𝑝) in maximal(𝜎,𝑢𝑖𝑑). When apply(𝑢𝑖𝑑, 𝑜𝛿

𝑖
, 𝑝) exe-

cutes, it execute Line 3, generating a new dot 𝑑 . It then adds {𝑑 ↦→
{𝑑 ↦→ 𝑝}} as the position in the delta it generates 𝑋𝛿

. As the oper-

ation is a maximal operation, no other operation has seen dot 𝑑 . In

particular, the local causal context does not contain𝑑 . Therefore, the

position survives the join, and {𝑝 ↦→ {𝑝 ↦→ 𝑑}} ∈ 𝑠𝑐𝑛𝑑 (get(𝑢𝑖𝑑))
for a get that was to execute at this point. Therefore, 𝑝 ∈ 𝑃 .

This is true for all 𝑝 ∈ 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎), and therefore:

𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ⊆ 𝑃 .

□

We now show the right hand side.

Lemma 5.3. Consider an execution 𝜎 of Algorithm 3. Let 𝑃 be

the set of possible positions of some element at the end of 𝜎 . Then

𝑃 ⊆ 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ∪ 𝑃𝑚𝑜𝑣𝑒 (𝑢𝑖𝑑, 𝜎).

Proof. We prove the lemma by showing that if

𝑝 ∉ 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ∪ 𝑃𝑚𝑜𝑣𝑒 (𝑢𝑖𝑑, 𝜎), then 𝑝 ∉ 𝑃 for any 𝑝 . Consider

some 𝑝 ∉ 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ∪ 𝑃𝑚𝑜𝑣𝑒 (𝑢𝑖𝑑, 𝜎). Trivially, if there exists
no operation in 𝑂𝑝𝑠 (𝜎) that sets the position to 𝑝 , then 𝑝 ∉ 𝑃 .

Consider the case that there exists either a apply(𝑢𝑖𝑑, 𝑜𝛿
𝑖
, 𝑝) ∈

𝑂𝑝𝑠 (𝜎) or move(𝑢𝑖𝑑, 𝑜𝛿
𝑖
, 𝑝) ∈ 𝑂𝑝𝑠 (𝜎). Denote the operation as 𝑜𝑝 .

As 𝑝 ∉ 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ∪ 𝑃𝑚𝑜𝑣𝑒 (𝑢𝑖𝑑, 𝜎), then 𝑜𝑝 ∉ maximal(𝜎,𝑢𝑖𝑑).
Therefore, there exists some other operation 𝑜 ≠ get ∈ 𝑂𝑝𝑠 (𝜎)
such that 𝑜𝑝 ≺𝜎 𝑜 .

When 𝑜𝑝 returns a delta 𝑋𝛿
, then the position in 𝑋𝛿

is of the

form {𝑑1 ↦→ {𝑑1 ↦→ 𝑝}, 𝑑2 ↦→ {𝑑2 ↦→ 𝑝}, . . . 𝑑𝑘 ↦→ {𝑑𝑘 ↦→ 𝑝}}
for some integer 𝑘 . We now show that no matter what type of

operation 𝑜 is, 𝑝 is removed after 𝑜 . If 𝑜 is an apply, then on Line 5

dots {𝑑1, 𝑑2, . . . , 𝑑𝑘 } are added to the causal context and not added

to the map. Denote the delta returned by 𝑜 as 𝑋𝛿 ′
. Then when 𝑋𝛿

is joined with 𝑋𝛿 ′
, these dots do not survive that join, as they are

keys in a CompDotFun. If 𝑜 is a delete, then dots {𝑑1, 𝑑2, . . . , 𝑑𝑘 }
are added to the causal context and the result is identical. If 𝑜 is a

move, then on Line 12 dots {𝑑1, 𝑑2, . . . , 𝑑𝑘 } are added to the delta’s

causal context. As this join is in a DotFun, the dots don’t survive

the join.

In either one of the cases, the position does not survive the

execution of 𝑜 , and therefore 𝑝 ∉ 𝑃 . □

Lemma 5.4. Consider an execution 𝜎 of Algorithm 3. Let 𝑃 be the

set of possible positions of some element at the end of 𝜎 , and denote

the value of the element 𝑣 . If 𝑣 ≠ ⊥ then 𝑃 ≠ ∅

Proof. Consider some execution 𝜎 of Algorithm 3, and consider

some element 𝑢𝑖𝑑 , such that its corresponding value 𝑣 is not ⊥. If
𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ≠ ∅ then the lemma is proven, as 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) ⊆ 𝑃 .
Assume, therefore, that 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) = ∅.

As 𝑣 ≠ ⊥, there exists some apply operation that does not pre-

cede a delete in 𝜎 . Consider the maximal such apply operation,

i.e., an apply that does not precede a delete or another apply op-

eration in 𝜎 . Let 𝑑 be the new dot generated on Line 3 during the

execution of the operation. As 𝑃𝑎𝑝𝑝𝑙𝑦 (𝑢𝑖𝑑, 𝜎) = ∅, then there ex-

ists a move operation such that the apply precedes the move in 𝜎 .

Consider the maximal such move in 𝜎 . During the execution of the

operation, the move adds {𝑑 ↦→ {𝑑 ′ ↦→ 𝑝}} to the position map. As

𝑑 wasn’t yet deleted (as it is only removed due a subsequent apply

or delete), and 𝑑 ′ is a new dot generated by the move, the local

state satisfies: {𝑑 ↦→ {𝑑 ′ ↦→ 𝑝}} ∈ 𝑠𝑐𝑛𝑑 (𝑚[𝑢𝑖𝑑]). Therefore 𝑝 ∈ 𝑃 ,
and 𝑃 ≠ ∅. □

6 DSON

We now describe the construction of DSON. A JSON document [9]

is defined recursively as follows:

Register = 𝑆𝑡𝑟𝑖𝑛𝑔|𝑁𝑢𝑚𝑏𝑒𝑟 |𝑛𝑢𝑙𝑙
Map = {𝑆𝑡𝑟𝑖𝑛𝑔 : Value, . . . , 𝑆𝑡𝑟𝑖𝑛𝑔 : Value}

Array = [Value,Value, . . . ,Value]
Value = Map|Array|Register

A JSON document is a Value itself. The identifier of a Value in

a JSON document is the path followed from the root to get to the

1060

Value, starting from 𝑑𝑜𝑐 . For example, given the JSON document:

{𝑘1 : 𝑣1, 𝑘2 : [𝑣2, 𝑣3], 𝑘3 : {𝑘4 : 𝑣4}},
the identifier of 𝑣1 is 𝑑𝑜𝑐.𝑘1, the identifier of 𝑣3 is 𝑑𝑜𝑐.𝑘2 [1], and
the identifier of the value 𝑣4 is 𝑑𝑜𝑐.𝑘3 .𝑘4.

The JSON document is one of three objects: Register, Map, and

Array. We define each object’s API methods:

• Register:

(1) write(𝑥) – sets register value to 𝑥 ;

(2) read() – returns the register value.

• Map:

(1) apply(𝑘 ,𝑜𝑖
𝛿
) – given a key 𝑘 and function 𝑜𝛿

𝑖
, applies 𝑜𝛿

𝑖
to

key 𝑘 ;

(2) get(𝑘) – returns the Value of key 𝑘 ;

(3) remove(𝑘) – removes key 𝑘 from the map.

• Array:

(1) apply(𝑢𝑖𝑑 ,𝑜𝑖
𝛿
,𝑝) – given a unique identifier 𝑢𝑖𝑑 , function

𝑜𝛿
𝑖
and position 𝑝 , applies 𝑜𝛿

𝑖
to element 𝑢𝑖𝑑 and sets its

position to 𝑝;

(2) move(𝑢𝑖𝑑 , 𝑜𝑖
𝛿
, 𝑝) – given a unique identifier 𝑢𝑖𝑑 and posi-

tion 𝑝 , set the position of element 𝑢𝑖𝑑 to 𝑝;

(3) get(𝑢𝑖𝑑) – returns the Value of element 𝑢𝑖𝑑 ;

(4) remove(𝑢𝑖𝑑) – removes the element 𝑢𝑖𝑑 .

An Observed-Remove JSON (OR-JSON) CRDT is one in which

the register, map, and array all adhere to OR semantics, as defined

in Section 4. We achieve this by implementing the register using

the MVReg, the map using the ORMap, and the array using the

ORArray. The replicas communicate with each other via a causal

anti-entropy algorithm, and each replica is sequential.

Our solution provides the following guarantees:

• Read-your-writes [43] – if a read method is executed follow-

ing a write method in the same replica, then the read sees

the write;

• Causal Consistency [27] – if a read method sees a write𝑤1,

and𝑤2 causally precedes𝑤1, then the read sees𝑤2;

• Strong Eventual Consistency – all nodes eventually converge

on the same state, such that identical reads on different nodes

return identical values.

Read-your-writes is achieved because every replica is sequen-

tial, an it merges the new delta with its local state one an opera-

tion returns, before any subsequent reads. Eventual consistency

is achieved by (1) using some anti-entropy algorithm that ensures

that the latest states or updates eventually reach all replicas, e.g., as

defined in [15]; and (2) having the states and the deltas be elements

of a join-semilattice. Causal consistency is achieved by using a

causal anti entropy algorithm, e.g., one that only delivers a delta

once all deltas causally preceding it have been delivered.

As previously noted, an important property for our JSON CRDT

is bounding the stored metadata. In our case, the state is the pair

(𝑚,𝑐), where𝑚 stores the state of the underlying document and 𝑐

is the causal context. We now analyze the metadata overhead.

We first consider the steady state, i.e., after all conflicts have

been resolved and the maximal updates are not concurrent to any

others. In this case, as explained in Section 3.3, the causal context

can be efficiently stored in a map from node identifiers to integers,

therefore its size is 𝑂 (𝑛 log𝑛), where 𝑛 is the number of replicas..

The ORMap does not store any dots, therefore comes with no meta-

data overhead. The MVReg stores a dot per value, therefore has a

metadata size of 𝑂 (1) per value. An element in the ORArray has

1 dot as the 𝑢𝑖𝑑 , and 2 dots for the position, therefore has a size

of 𝑂 (1) per array element. Therefore, the metadata stored for a

document with 𝐷 registers and array elements is 𝑂 (𝐷 + 𝑛 log𝑛).
We now analyze the metadata in the presence of 𝑘 concurrent

operations. Theworst case is for𝑘/2 operations to be applymethods

to the same array element (creating 𝑘/2 new roots), followed by all

replicas receiving all deltas, and then 𝑘/2 operations to be move

methods to that same element (creating 𝑘/2 children for each root).

In this case, the metadata for the position has𝑂 (𝑘2) dots. As we use
a causal anti-entropy algorithm, causal context remains 𝑂 (𝑛 log𝑛).
Therefore, in this case the metadata stored for a document of size

𝐷 is bounded by 𝑂 (𝑘2𝐷 + 𝑛 log𝑛).

7 IMPLEMENTATION

We implemented DSON in around 2500 lines of JavaScript code[37].

We expose 5 methods from the external API of Automerge [2]:

init() initializes a new empty document.

from(𝑜𝑏 𝑗) creates a new document and populates it with the

contents of a given JSON object 𝑜𝑏 𝑗 .

change(𝑑𝑜𝑐, 𝑓): applies function 𝑓 to document 𝑑𝑜𝑐 locally as

well as locally storing the delta to be broadcast.

applyChanges(𝑑𝑜𝑐, 𝑑𝑒𝑙𝑡𝑎): merges delta 𝑑𝑒𝑙𝑡𝑎 with the local

document 𝑑𝑜𝑐 .

getChanges(𝑑𝑜𝑐): coalesces all deltas generated for a docu-

ment since the previous getChanges operation for sending

to another replica.

In a nutshell, change(𝑑𝑜𝑐, 𝑓) returns the delta 𝑋𝛿
that represents

the alteration of document 𝑑𝑜𝑐 by function 𝑓 , and

applyChanges(𝑑𝑜𝑐, 𝑑𝑒𝑙𝑡𝑎) computes 𝑋 ⊔𝑋𝛿
where 𝑋 is the state of

document 𝑑𝑜𝑐 , as defined in previous sections. Separate libraries

implement disk persistence and network communication, e.g., en-

cryption, authentication, access control, and implementation of an

anti-entropy algorithm.

To represent a JSON object, the top level of DSON is a map. Recall

that ORMaps and ORArrays recursively apply changes via a delta

mutator. These recursive functions can be complex to write and

reason about. To make the interaction with DSON more accessi-

ble, we follow a path similar to Automerge [2], utilizing JavaScript

proxies [8] to allow a user to interact with DSON using the stan-

dard JavaScript programming model. To that end, we implemented

a mechanism that transforms these operations into delta muta-

tors and applies them. For example, figure 2 depicts the update

𝑑𝑜𝑐.𝑘1 [0] = {𝑘2 : 1}, we first create a delta mutator representing

the left hand side to identify the path in the document to which

this mutator is to be applied. Then the value is created by creating

an MVReg for the literal and a new ORMap is created into which

the MVReg is inserted under the key 𝑘2.

We also implemented the wrapper described in Section 5.2, pre-

sented in Algorithm 4. This wrapper enables programmatic access

to arrays using JavaScript indices (integers), while internally ar-

ray positions are encoded using stable identifiers as defined in

Logoot [44] and LSEQ [30]. Note that the code altering the state is

1061

Figure 2: Transform a JavaScript operation 𝑑𝑜𝑐.𝑘1 [0] = {𝑘2 :

1} to a delta mutation in the JSON CRDT, where 𝑝 =

GetPosFromIdx(0) and 𝑢𝑖𝑑 = GetUidFromIdx(0).

decoupled from the state itself, so that any choice of stable identi-

fiers can be plugged in. The function GetUidFromIdx(𝑖𝑑𝑥, (𝑚,𝑐))
(GetPosFromIdx(𝑖𝑑𝑥, (𝑚,𝑐))) is implemented by sorting the array

and returning the unique identifier (position) of the element at the

index 𝑖𝑑𝑥 .

Concurrent writes support both value and type conflicts. A value

conflict is where the same variable is concurrently set to different

values, e.g., replica 1 sets𝑢𝑠𝑒𝑟 .𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠 = 14:49 and replica 2 sets

𝑢𝑠𝑒𝑟 .𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠 = 14:52. This is handled by the MVReg.

Type conflicts arise because JSON objects are weakly typed.

The type of a variable can change over time, and variables can be

set concurrently to different types, for example, replica 1 may set

𝑎 = 1, while replica 2 may concurrently set 𝑎 = {}. The resulting
variable is not defined by a singe type. The challenge is that our

𝛿-based CRDTs do not support joins across dot stores, e.g., a join

between a 𝐷𝑜𝑡𝐹𝑢𝑛 and a 𝐷𝑜𝑡𝑀𝑎𝑝 is undefined. To circumvent this,

we nest each variable in an ORMap containing three keys, one

corresponding to a map, one to an array and one to a value, and

arbitrarily choose the following order𝑀𝑎𝑝 > 𝐴𝑟𝑟𝑎𝑦 > 𝑀𝑉𝑅𝑒𝑔. A

type change is implemented by adding an element to this triple,

and removes the other keys. The CRDT eventually converges to a

single type, although values that were written with previous types

remain until they are overwritten, which can be arbitrarily long.

8 EVALUATION

We compare DSON to two open-source libraries implementing

JSON CRDTs: Automerge [2] and Yjs [12]. Both of these libraries

optimize for collaborative text editing, but nevertheless have full

support for JSON CRDTs. We note that while these libraries opti-

mize for different behavior, they are the only CRDT libraries known

to us providing full JSON datatype. Riak [11] does not provide an

array data type, therefore we do not compare to it. The goal of the

evaluation section is to see how the metadata size varies with the

number of operations. Unlike Automerge and Yjs, our code is a

research prototype and has not been optimized for performance, so

we emphasize overall trends. We ran all tests on a 4-core Intel i7-

8565U laptop. All documents are initialized empty, with no warmup

done. Measuring document size was done using the byte size of

the latest encoding provided by each library. All benchmarks are

available together with the DSON source code [37].

We evaluate the map and array separately, and first evaluate

the map. In our first benchmark ,we update the same key in a map

consecutively with different values. The document size remains

Algorithm 4 Wrapper for ORArray.

IDX represents a JavaScript index (integer), UID represents a dot,

and POS represents a stable identifier.

1: Shared state (𝑚,𝑐) with Algorithm 3

2: Function GetPosFromIdx(𝑖𝑑𝑥, (𝑚,𝑐)) ⊲ Converts index 𝑖𝑑𝑥 to

stable position identifier 𝑝 ∈ 𝑃 .
3: Function GetUidFromIdx(𝑖𝑑𝑥, (𝑚,𝑐)) ⊲ Returns the 𝑢𝑖𝑑 of

the element at index 𝑖𝑑𝑥 .

4: procedure insert(𝑖𝑑𝑥 ,𝑜𝛿
𝑖
)

5: 𝑝 ← GetPosFromIdx(𝑖𝑑𝑥, (m,c))
6: 𝑢𝑖𝑑 = 𝑛𝑒𝑥𝑡𝑖 (𝑐)
7: return apply𝑖 (𝑢𝑖𝑑, 𝑝, 𝑜𝛿𝑖)
8: procedure update(𝑖𝑑𝑥 ,𝑜𝛿

𝑖
)

9: 𝑑 ← 𝑛𝑒𝑥𝑡𝑖 (𝑐)
10: 𝑝 ← GetPosFromIdx(𝑖𝑑𝑥, (m,c))
11: 𝑢𝑖𝑑 = GetUidFromIdx(𝑖𝑑𝑥)
12: return apply𝑖 (𝑢𝑖𝑑, 𝑝, 𝑜𝛿𝑖)
13: procedure move(𝑜𝑙𝑑_𝑖𝑑𝑥 ,𝑛𝑒𝑤_𝑖𝑑𝑥)

14: 𝑢𝑖𝑑 ← GetUidFromIdx(𝑜𝑙𝑑_𝑖𝑑𝑥, (m,c))
15: 𝑝 ← GetPosFromIdx(𝑛𝑒𝑤_𝑖𝑑𝑥, (m,c))
16: return move𝑖 (𝑢𝑖𝑑, 𝑝)
17: procedure delete(𝑖𝑑𝑥)

18: 𝑢𝑖𝑑 ← GetUidFromIdx(𝑖𝑑𝑥, state)
19: return delete𝑖 (𝑢𝑖𝑑)

constant (it remains a single key value pair) because we do not

add keys. The results are presented in Figure 3a. DSON and Yjs

both maintain constant metadata size, whereas the metadata in

Automerge grows linearly with the number of operations.

Next, we continuously insert and subsequently delete a key in a

map. In this case the document is empty after every insert-delete

pair. Figure 3b presents the results. In this workload, DSON main-

tains constant metadata size, whereas the metadata in both Au-

tomerge and Yjs is unbounded. The Yjs behavior is a result of its

garbage collector - it creates a local object for every key which it can

only clean up after its parent object has been deleted, to avoid sync

conflicts [13]. Yjs attempts to garbage collect more efficiently for

certain patterns but a complete and efficient solution is inherently

difficult. Our delta based approach avoids the need for garbage

collection altogether.

We now evaluate the array. We first measure an update only

workload, i.e., the same index is consecutively updated. The reuslts

are shown in Figure 3c. As expected, the DSON’s metadata size

remains constant. This is also the case when continuously insert-

ing and removing array elements, as shown in Figure 3d. In the

latter case Yjs also achieves constant metadata, because YATA [31]

handles arrays efficiently. Note, however, that Yjs is optimized for

character insertions and deletions. When inserting and removing

a complex data type, the optimizations break down and the meta-

data grows. Figure 3e presents the metadata growth as a function

of consecutively inserting and removing a map in an array, and

Figure 3f presents the metadata growth as a function of inserting

and removing an array in an array. While DSON keeps constant

metadata, that of Yjs grows.

1062

(a) Map size when updating the same key in a map. (b) Map size when inserting and removing a map key.

(c) Array size when consecutively updating the same index in

an array.

(d) Array size when consecutively inserting and removing a

character in an array.

(e) Array size when consecutively inserting and removing a

map in an array.

(f) Array size when consecutively inserting and removing an

array in an array.

Figure 3: Micro benchmarks measuring map and array sizes.

In Section 6 we outlined our worst case metadata growth as

𝑂 (𝑘2) for 𝑘 concurrent operations. This stems from how we store

the position of an array element. To achieve this worst case growth,

the 𝑘 operations need to concurrently execute an apply to the same

element, then deliver each other’s messages, then execute move

operations to that same element concurrently, and finally deliver

each other’s messages. In this execution, the position of the element

has 𝑘 roots, each with 𝑘 children, resulting in 𝑘2 dots, giving𝑂 (𝑘2)
metadata growth.

To show the worst-case behavior, all replicas update every array

element, then all replicas deliver each other’s messages, and then

all replicas sort the array. The results are presented in Figure 4. In

this case, the empirical analysis matches the theoretical expectation.

We argue that this scenario is rare, and under better conditions the

metadata grows significantly slower than in the worst case

To show this, we implement the sort operation. Sorting an array

is a common and useful operation, and is efficiently done with our

move operation. As explained in Section 5, the array values are

not copied at all, rather only their position changes. Furthermore,

sorting can be concurrently done by different replicas, which sort

the array into similar states.

We use a randomized micro-benchmark with 5 replicas to cap-

ture as many scenarios as possible. The benchmark is defined by

two parameters, an update probability 𝑝𝑢 and a sync probability

𝑝𝑠 . Each run executes 200 steps, where in every step a randomly

chosen replica performs an update with probability 𝑝𝑢 , and a sort

with probability 1 − 𝑝𝑢 . After every step, the replicas sync with

probability 𝑝𝑠 . Each run is repeated 10 times, where every run mea-

sures the maximum document size within the run. The result of

the micro-benchmark is the average of the maximums, with error

bars depicting the standard deviation. The results are presented

in Figure 5. The worst case memory size is taken from Figure 4,

and the best case is measured when the array is created, before

any concurrent operations occur, for the appropriate number of

replicas. The analysis shows that the document size in these tests

remains far from the worst-case scenario.

1063

Figure 4: Document size where all replicas update all ele-

ments of an array, then sync, and then sort the array, as a

function of the number of replicas.

Figure 5: Document size for 5 replicas, where each replica

either performs an update with probability 𝑝𝑢 , sorts with

probability 1 − 𝑝𝑢 , and synchronizes with probability 𝑝𝑠 .

9 FUTUREWORK

9.1 Performance Optimizations

Enes et al. have shown that practical anti-entropy algorithms are

wasteful, and in the end 𝛿-based CRDTs perform no better than

the state based solution [20]. They identify the concept of join

decompositionwhich can be used to obtain optimal deltas, and show

how this concept is applied to existing 𝛿-based CRDTs. Future

work is needed to construct the join decomposition for the 𝛿-based

CRDTs mentioned in this paper.

9.2 Ad-hoc Clients

We have shown that the size of the causal context is 𝑂 (𝑛 log𝑛)
where 𝑛 is the number of replicas. For a system with a bounded

number of long-lived replicas this overhead remains small. For

example, when deploying distributed document stores as a global

cloud service, one could provide strong consistency within a region

[7], and use DSON to coordinate updates globally. Each region

would be considered a single replica, and the number of replicas is

bounded and fairly static. This requires clients to be connected to

some replica. For systems with an unbounded number of short-lived

replicas this overhead may become significant, since any replica

that connects and executes operations leaves a permanent footprint.

We now differentiate between long-lived replicas, which typ-

ically represent servers connecting the network, and short-lived

replicas which represent ad-hoc, possibly disconnected, clients. For

simplicity, we refer to the latter as clients. We propose a solution

which supports an unbounded number of clients while maintaining

low metadata overheads.

To this end, we note that the purpose of the dot is to uniquely

identify an operation. Moreover, dots needn’t dictate a causal order

– up until now given two dots (𝑐, 𝑖) and (𝑐, 𝑖 +𝑘) for some 𝑘 ≥ 0 we

could say that the operation that generated (𝑐, 𝑖) causally precedes

the operation that generated (𝑐, 𝑖 + 𝑘). However, this is not an
inherent requirement, as the causal context is used to maintain the

causal order.

We propose using a mixture of local and global dots. A client

𝑐 is connected to a single replica 𝑟 , and runs the same algorithm

as for mutating the JSON CRDT. When the client generates a dot,

it considers itself a replica and does so normally, generating a dot

(𝑐, 𝑖) for some integer 𝑖 . When the client propagates its delta, it

passes along a list of its locally generated dots contained in the

delta (𝑐, 𝑖), (𝑐, 𝑖 +1), . . . , (𝑐, 𝑖 +𝑘). When the server receives the delta

and list, for every client dot in the list it generates its dot, mapping

(𝑐, 𝑖 + 𝑗) to (𝑟, 𝑙 + 𝑗) for all 1 ≤ 𝑗 ≤ 𝑘 , where (𝑟, 𝑙) would be the next
dot generated right before the delta is received.

After generating the mapping, the replica scans the delta and

alters all client dots to the corresponding replica dots. It then sends

the mapping back to client 𝑐 , and propagates the transformed delta

to all other clients and replicas. This method allows the clients to

operate as if they were replicas, while maintaining a small causal

context. One drawback is if the mapping sent back from replica 𝑟

to client 𝑐 is lost or delayed for long enough, the client may assume

the replica crashed. In such a case it may send its delta to a different

replica 𝑟 ′, which will reapply the changes. In such a case we may

have a double commit of an update done by the client.

9.3 Efficient Replica Removal

The CRDT approach allows replicas to be added to the network

dynamically at no additional cost, as this case is equivalent to

the replica joining from the start without sending messages. Effi-

ciently removing replicas from the network is more challenging.

The changes made by a replica are retained in the casual context,

which leads to an increase in metadata over time. Simply removing

the relevant dots from the causal context may harm causality, since

it may lead to unwanted re-application of updates. A safe method

of cleaning up metadata is left for further work.

10 CONCLUSIONS

We presented DSON, a space efficient 𝛿-based CRDT approach for

distributed JSON document stores, enabling high availability at a

global scale. We formally defined DSON’s semantics, and proved

its correctness and convergence, providing consistency guarantees

which relieve application developers of the burden of reasoning

about complex distributed application logic. The amount of meta-

data DSON stores is not dependent on the number of document up-

dates, unlike previous approaches. We evaluated DSON empirically

in this respect and showed that the metadata size stays constant as

expected while varying the number of document updates, unlike

the case for Automerge and Yjs which are optimized for collab-

orative document editing. DSON is a sound theoretical basis for

efficient and robust highly available distributed document stores,

which we believe can lead to efficient systems in practice.

ACKNOWLEDGMENTS

We would like to thank Dolev Adas, Ofer Biran, Michael Factor,

Ronen Kat, and Adam Kocoloski for their invaluable input.

1064

REFERENCES

[1] 2021. Akka. https://akka.io/.

[2] 2021. Automerge. https://github.com/automerge/automerge.

[3] 2021. Couchbase. https://www.couchbase.com/.

[4] 2021. Couchbase Availability. https://docs.couchbase.com/server/

5.5/understanding-couchbase/clusters-and-availability/replication-

architecture.html.

[5] 2021. CouchDB. https://couchdb.apache.org/.

[6] 2021. DynamoDB. https://aws.amazon.com/dynamodb/.

[7] 2021. IBM Cloudant on Transaction Engine Documentation. https://cloud.ibm.

com/docs/Cloudant?topic=Cloudant-overview-te.

[8] 2021. JavaScript Proxy. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Proxy.

[9] 2021. JSON. https://www.json.org/json-en.html.

[10] 2021. Peer-base/JS-delta-crdts: Delta State-based CRDTs in Javascript. https:

//github.com/peer-base/js-delta-crdts

[11] 2021. Riak. https://riak.com/index.html.

[12] 2021. Yjs. https://github.com/yjs/yjs.

[13] 2021. Yjs Forum: Map Metadata Overhead. https://discuss.yjs.dev/t/map-

metadata-overhead/492.

[14] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2015. Efficient state-

based crdts by delta-mutation. In International Conference on Networked Systems.

Springer, 62–76.

[15] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta state replicated

data types. J. Parallel and Distrib. Comput. 111 (2018), 162–173.

[16] J Chris Anderson, Jan Lehnardt, and Noah Slater. 2010. CouchDB: The Definitive

Guide, chapter 17: Conflict Management. " O’Reilly Media, Inc.".

[17] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. 2014. Making operation-

based CRDTs operation-based. In IFIP International Conference on Distributed

Applications and Interoperable Systems. Springer, 126–140.

[18] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. arXiv

preprint arXiv:1407.3561 (2014).

[19] Ivan Chajda, Radomír Halaš, and Jan Kühr. 2007. Semilattice structures. Vol. 30.

Heldermann Lemgo.

[20] Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, and João Leitão. 2019. Efficient

synchronization of state-based CRDTs. In 2019 IEEE 35th International Conference

on Data Engineering (ICDE). IEEE, 148–159.

[21] Pascal Grosch, Roman Krafft, Marcel Wölki, and Annette Bieniusa. 2020. Au-

toCouch: A JSON CRDT Framework. In 7th Workshop on Principles and Prac-

tice of Consistency for Distributed Data (PaPoC 2020). ACM, Article 6. https:

//doi.org/10.1145/3380787.3393679

[22] Pat Helland. 2012. Idempotence Is Not a Medical Condition: An essential property

for reliable systems. Queue 10, 4 (2012), 30–46.

[23] Andrew Jeffery, Heidi Howard, and Richard Mortier. 2021. Rearchitecting Ku-

bernetes for the Edge. In Proceedings of the 4th International Workshop on Edge

Systems, Analytics and Networking. 7–12.

[24] Martin Kleppmann. 2020. Moving elements in list CRDTs. In Proceedings of the

7th Workshop on Principles and Practice of Consistency for Distributed Data. 1–6.

[25] Martin Kleppmann and Alastair R Beresford. 2017. A Conflict-Free Replicated

JSON Datatype. IEEE Transactions on Parallel and Distributed Systems 28, 10 (April

2017), 2733–2746. https://doi.org/10.1109/TPDS.2017.2697382 arXiv:1608.03960

[26] Rusty Klophaus. 2010. Riak core: Building distributed applications without shared

state. In ACM SIGPLAN Commercial Users of Functional Programming. 1–1.

[27] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. In Concurrency: the Works of Leslie Lamport. 179–196.

[28] Lars Larsson, Harald Gustafsson, Cristian Klein, and Erik Elmroth. 2020. Decen-

tralized Kubernetes Federation Control Plane. In 2020 IEEE/ACM 13th International

Conference on Utility and Cloud Computing (UCC). IEEE, 354–359.

[29] M Mihai Letia, N Preguica, and M Shapiro. 2009. CRDTs: Consistency without

concurrency control. RR-6956, INRIA (2009).

[30] Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils. 2013.

LSEQ: an adaptive structure for sequences in distributed collaborative editing. In

Proceedings of the 2013 ACM symposium on Document engineering. 37–46.

[31] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2016. Near Real-

Time Peer-to-Peer Shared Editing on Extensible Data Types. In 19th International

Conference on Supporting Group Work (GROUP 2016). ACM, 39–49. https://doi.

org/10.1145/2957276.2957310

[32] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 2005. Real time

group editors without operational transformation. Research Report RR-5580. INRIA.

https://hal.inria.fr/inria-00071240/document

[33] Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. 2006. Data con-

sistency for P2P collaborative editing. In Proceedings of the 2006 20th anniversary

conference on Computer supported cooperative work. 259–268.

[34] Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. 2009.

A commutative replicated data type for cooperative editing. In 2009 29th IEEE

International Conference on Distributed Computing Systems. IEEE, 395–403.

[35] Nuno Preguiça, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. 2009.

A Commutative Replicated Data Type for Cooperative Editing. In 29th IEEE

International Conference on Distributed Computing Systems (ICDCS 2009). IEEE,

395–403. https://doi.org/10.1109/ICDCS.2009.20

[36] Arik Rinberg, Tomer Solomon, Guy Khazma, Gal Lushi, Roee Shlomo, and Paula

Ta-Shma. 2021. Array CRDTs Using Delta-Mutations. In Proceedings of the 8th

Workshop on Principles and Practice of Consistency for Distributed Data. 1–3.

[37] Arik Rinberg, Tomer Solomon, Roee Shlomo, Guy Khazma, and Gal Lushi.

2021. DSON - JSON CRDT Using Delta-Mutations. https://github.com/crdt-

ibm-research/json-delta-crdt.

[38] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011. Replicated

abstract data types: Building blocks for collaborative applications. J. Parallel and

Distrib. Comput. 71, 3 (2011), 354–368.

[39] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011. Replicated

Abstract Data Types: Building Blocks for Collaborative Applications. J. Parallel

and Distrib. Comput. 71, 3 (March 2011), 354–368. https://doi.org/10.1016/j.jpdc.

2010.12.006

[40] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-free replicated data types. In Symposium on Self-Stabilizing Systems.

Springer, 386–400.

[41] solid IT. 2021. DB-Engines Ranking of Document Stores. https://db-engines.

com/en/ranking/document+store.

[42] solid IT. 2021. DBMS popularity broken down by database model. https://db-

engines.com/en/ranking_categories.

[43] Douglas B Terry, Alan J Demers, Karin Petersen, Mike J Spreitzer, Marvin M

Theimer, and Brent B Welch. 1994. Session guarantees for weakly consistent

replicated data. In Proceedings of 3rd International Conference on Parallel and

Distributed Information Systems. IEEE, 140–149.

[44] StéphaneWeiss, Pascal Urso, and Pascal Molli. 2009. Logoot: A scalable optimistic

replication algorithm for collaborative editing on p2p networks. In 2009 29th

IEEE International Conference on Distributed Computing Systems. IEEE, 404–412.

1065

https://akka.io/
https://github.com/automerge/automerge
https://www.couchbase.com/
https://docs.couchbase.com/server/5.5/understanding-couchbase/clusters-and-availability/replication-architecture.html
https://docs.couchbase.com/server/5.5/understanding-couchbase/clusters-and-availability/replication-architecture.html
https://docs.couchbase.com/server/5.5/understanding-couchbase/clusters-and-availability/replication-architecture.html
https://couchdb.apache.org/
https://aws.amazon.com/dynamodb/
https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-overview-te
https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-overview-te
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://www.json.org/json-en.html
https://github.com/peer-base/js-delta-crdts
https://github.com/peer-base/js-delta-crdts
https://riak.com/index.html
https://github.com/yjs/yjs
https://discuss.yjs.dev/t/map-metadata-overhead/492
https://discuss.yjs.dev/t/map-metadata-overhead/492
https://doi.org/10.1145/3380787.3393679
https://doi.org/10.1145/3380787.3393679
https://doi.org/10.1109/TPDS.2017.2697382
https://arxiv.org/abs/1608.03960
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://hal.inria.fr/inria-00071240/document
https://doi.org/10.1109/ICDCS.2009.20
https://github.com/crdt-ibm-research/json-delta-crdt
https://github.com/crdt-ibm-research/json-delta-crdt
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1016/j.jpdc.2010.12.006
https://db-engines.com/en/ranking/document+store
https://db-engines.com/en/ranking/document+store
https://db-engines.com/en/ranking_categories
https://db-engines.com/en/ranking_categories

