
Hippo: Sharing Computations in Hyper-Parameter Optimization
Ahnjae Shin

Seoul National University

aj.shin@snu.ac.kr

Joo Seong Jeong

Seoul National University

joosjeong@snu.ac.kr

Do Yoon Kim
∗

University of Michigan

kdoyoon@umich.edu

Soyoung Jung

Seoul National University

sy.jung@snu.ac.kr

Byung-Gon Chun
†

Seoul National University

FriendliAI

bgchun@snu.ac.kr

ABSTRACT
Hyper-parameter optimization is crucial for pushing the accuracy

of a deep learning model to its limits. However, a hyper-parameter

optimization job, referred to as a study, involves numerous trials

of training a model using different training knobs, and therefore is

very computation-heavy, typically taking hours and days to finish.

We observe that trials issued from hyper-parameter optimization

algorithms often share common hyper-parameter sequence prefixes.

Based on this observation, we propose Hippo, a hyper-parameter

optimization system that reuses computation across trials to reduce

the overall amount of computation significantly. Instead of treating

each trial independently as in existing hyper-parameter optimiza-

tion systems, Hippo breaks down the hyper-parameter sequences

into stages and merges common stages to form a tree of stages (a

stage tree). Hippo maintains an internal data structure, search plan,

to manage the current status and history of a study, and employs a

critical path based scheduler to minimize the overall study comple-

tion time. Hippo applies to not only single studies but multi-study

scenarios as well. Evaluations show that Hippo’s stage-based exe-

cution strategy outperforms trial-based methods for several models

and hyper-parameter optimization algorithms, reducing end-to-end

training time by up to 2.76× (3.53×) and GPU-hours by up to 4.81×
(6.77×), for single (multiple) studies.

PVLDB Reference Format:
Ahnjae Shin, Joo Seong Jeong, Do Yoon Kim, Soyoung Jung, and

Byung-Gon Chun. Hippo: Sharing Computations in Hyper-Parameter

Optimization. PVLDB, 15(5): 1038-1052, 2022.

doi:10.14778/3510397.3510402

1 INTRODUCTION
Deep learning (DL) models have made great leaps in various areas

including image classification [18, 34, 51], object detection [73], and

speech recognition [3, 32]. However, such benefits come at a cost;

training DL models require heavy datasets and long computations,

which may take up to a week [87] even on hundreds of GPUs [87].

∗
Work done at Seoul National University

†
Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 5 ISSN 2150-8097.

doi:10.14778/3510397.3510402

Figure 1: A hyper-parameter optimization study of tri-
als that share common computations. A single hyper-
parameter, learning rate, is explored within the search space
{0.1, 0.05, 0.02, 0.01}. Each trial is split into several stages. Each
stage is labeled with an id (𝐴-𝐸) and its parameter value.

This cost becomes even more significant when we take hyper-

parameter optimization into account. Since hyper-parameters im-

pact the trained models’ quality, investigating the hyper-parameter

search space often requires hundreds to thousands of training with

different hyper-parameter settings [56]. Consequently, naively run-

ning hyper-parameter optimization requires an exceedingly large

number of GPUs, and it is crucial to explore the search space as

efficiently as possible.

Training modern DL models requires changing hyper-parameter

values on-the-fly during training to reach state-of-the-art accu-

racy, as they aim to minimize high-dimensional, non-convex loss

functions. The learning rate hyper-parameter governs the training

speed of a DL model. As a result, the DL community widely uses

the learning rate as a sequence, and all DL frameworks provide

various learning rate sequences that developers can plug-in to their

code. Moreover, many papers also use other hyper-parameters as

sequences to train DL models [20, 36, 46, 78, 87, 90]. However, ex-

isting hyper-parameter optimization systems [16, 27, 48, 59] do not

consider hyper-parameters as sequences of values.
Tuning hyper-parameters as sequences creates an optimization

opportunity of sharing common computations. Figure 1 shows a

hyper-parameter optimization job, which we call a study. This study
consists of four separate instances, or trials, each associated with

different learning rate sequences. The first 100 training steps for all

four trials can be shared, as they are operating on the same learning

rate value, 0.1. We use the term stage to refer to this sharable

execution unit. Similarly, for step range [100, 200), trials 2, 3, and
4 have a common stage for learning rate 0.05. Instead of handling

such common stages independently, we can execute them only

once and share them across trials to avoid redundant computation

and reduce the amount of resource (GPU-hours) used. We can

1038

https://doi.org/10.14778/3510397.3510402
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3510397.3510402

merge the common stages and regard the set of trials as a tree

of stages– a stage tree. This framework-agnostic abstraction can

express the computation dependencies of stages as a directed tree.

Existing systems lack this key abstraction, missing the opportunity

to eliminate redundant computation across trials.

However, building a system that handles trials as a stage tree to

share computation is challenging because of the dynamic charac-

teristics of hyper-parameter optimization. First, as trials are added

and removed on-the-fly, the system must dynamically determine

which stages to share across trials. Depending on the specific hyper-

parameter sequences and trial submission timings, a newly added

trial may or may not be able to reuse the result of an intermediate

stage; the system must efficiently manage the states (checkpoints

and evaluation metrics) of such stages so that no trial needlessly

executes a stage that would otherwise be sharable. Second, stages

must be scheduled in an online manner. In order to minimize the

study’s completion time, the system requires an online schedul-

ing algorithm that allocates GPUs to stages while taking common

stages into account.

To this end, we present Hippo, a hyper-parameter optimization

system that finds and reuses redundant computations in hyper-

parameter optimization jobs. Hippo uses a search plan, a tree-like
data structure with append-only edges, to manage and reuse stage

states for common stages in a clear, consistent fashion. Once added,

edges are invariant to trial operations, allowing us a static structure

for considering only current trials when sharing stages. Hippo also

employs an online scheduler that considers critical paths among

stages to minimize the overall completion time. The scheduler

extracts a stage tree snapshot from the search plan and iteratively

analyzes critical paths, removing the critical path from the stage tree

and repeating the process with the remaining stages. The system

schedules each critical path as a whole by batching the stages in

the same path, subsequently reducing the checkpoint saving and

loading overheads when sharing computations.

We evaluated Hippo with three popular DL models (ResNet56,

MobileNetV2, and BERT-Base) and three well-known hyper-

parameter optimization algorithms (SHA, ASHA, grid search) on a

cluster of 40 GPUs. Our evaluations show that Hippo outperforms

Ray Tune, a black-box optimization system, reducing the end-to-

end training time and GPU-hours of a single study up to 2.76×
and 4.81×, respectively. For multi-study scenarios, Hippo can share

redundant computations across studies and reduce the end-to-end

training time and GPU-hours by up to 3.53× and 6.77×, respectively.
The rest of the paper is organized as follows. Section 2 introduces

hyper-parameter optimization and highlights related challenges.

Section 3 proposes core representations, stage tree and search plan,

for identifying and reusing redundant computations. Section 4 de-

scribes the Hippo design, and Section 5 elucidates implementation

details. Section 6 presents evaluation results, Section 7 explains

related work, and Section 8 concludes.

2 BACKGROUND AND MOTIVATION
In this section, we present a brief overview of hyper-parameters and

its optimization. Then, we motivate the need for the abstraction of

hyper-parameter sequences and discuss the challenges of applying

such abstraction in a system.

2.1 Hyper-Parameter Optimization
Hyper-parameter optimization refers to the act of training multiple

instances of a machine learning model with slightly differing train-

ing knobs, such as learning rate and batch size. We use the term

study to refer to a single optimization run of a model over a certain

search space of parameters. Each sub-procedure of a study associ-

ated with a set of parameters sampled from the given search space

is called a trial. Specifically, a trial defines what hyper-parameter

sequence the model should use to train. A trial can be split into one

or more disjoint subsequences, referred to as stages in this paper.

There are many types of hyper-parameters as well as many pos-

sible values for each hyper-parameter. The search space is often

enormous, and the number of trials is usually in the hundreds and

even thousands [7, 56, 61]. Therefore, hyper-parameter optimiza-

tion is crucial in training DL models for high model quality. The

model quality of trials with different hyper-parameter values may

differ significantly, even if settings other than the hyper-parameters

such as the model architecture and input data are kept the same

across all trials [76].

Hyper-parameter sequences. Learning rate, one of the most crit-

ical hyper-parameters in DL, is a tunable value that controls

how much model weights should be updated proportionally to

its error. If the learning rate value is too small, the training pro-

cess becomes very slow, and if the value is too large, the model

weights may fail to converge to a stable value. As the model

trains, the loss landscape changes and the learning rate must be ad-

justed, respectively, resulting in a sequence of learning rate values.

Over a decade, the DL community have discovered many heuris-

tics [5, 29, 34, 35, 40, 49, 75, 77, 89], which are supported natively

by most DL frameworks [1, 10, 11, 43, 68, 74, 83, 84].

We sampled and analyzed 265 papers from recent machine learn-

ing conferences (CVPR’20 and ACL’20). We only include papers that

train deep neural networks. We discover that 60%(159) use learning-

rate as a sequence. Among the 159 papers that use learning-rate

sequences, 57%(91) of them used a step-decay learning rate se-

quence. 27%(43) use complex sequences such as linear increase

followed by a cosine decay curve. The remaining 16%(25) papers

use elementary functions such as an exponential or polynomial

decaying curve.

Another exemplary hyper-parameter tuned as a sequence is in-
put image size. Scaling the size of input images during training has

been a popular notion among both practitioners [6, 38, 39, 45, 66, 70]

and academics [4, 13, 33, 46]. The image size hyper-parameter is

actually composed of two independent hyper-parameters: width

and height [37]. Nevertheless, the two hyper-parameters are tuned

jointly with other hyper-parameters as a sequence. Such hyper-

parameters include batch size [37], cut-out rate [15], dropout

rate [82], per-image augmentation rate [82], and mixup ratio [82].

Compared to tuning scenarios where there is only a single hyper-

parameter with a constant value, it is more challenging for develop-

ers to manually tune two or three kinds of hyper-parameters with

the multi-step property.

Recent works have also applied this sequence heuristic to other

hyper-parameters as well, such as batch size [78], drop-out ra-

tio [12], cutout size [21], optimizer [87], momentum [90], image

1039

Figure 2: An illustration of Successive Halving (SHA) when
reduction factor is 2. The search starts with 16 trials (lines).
Only the trials with lower loss values are trained further over
the decision boundaries (vertical lines). For every boundary,
only half of the trials can proceed.

augmentation parameters [36], input sequence length [20]. In par-

ticular, we want to note the recent attention on dynamically scaling

batch sizes. With the theoretical [62, 78] and empirical [19] dis-

covery of changing batch sizes for better convergence, batch size

scaling is now used in recent DL models, especially large language

models [8].

Network architecture parameter is a multi-step hyper-parameter

that recently gained attention, in the pursuit of resource-efficient

machine learning. Hyper-parameters such as the number of model

layers [28, 30], model dimension [30, 86], and input sequence

length [30] all belong here. Considering the ever-advancing perfor-

mance of large-scale pretrained models and their resource-intensive

nature, we assume it will become more of a common practice in

the future to tune network architecture parameters as a sequence.

One remark about network architecture parameters is that they

often get tuned in joint with other parameters [28, 30, 46]. For

example, Gu et al. [30] scales the number of layers, model dimen-

sion, and input sequence length in a joint manner during training.

Progressive-Gan [46] also dynamically adjusts batch size and model

size simultaneously.

Hyper-parameter optimization. Hyper-parameter optimization

allocates resources to each trial in a non-uniform way. Promising

trials with lower loss are trainedmore, and inferior trials are stopped

early. For example, Successive Halving (SHA) [42] is a popular way

to allocate more resource to trials that have better accuracy than

others. We provide an example run of SHA in Figure 2. SHA has

multiple decision boundaries, depicted as vertical dashed lines. SHA

trains all trials until the decision boundary but advances only the

trials with relatively lower loss value. In SHA, every boundary is a

synchronous barrier; all trials are trained until the border before

tested against other trials. However, ASHA [56], an asynchronous

variant of SHA, compares a trial only against completed trials.

Therefore, a trial can advance to the next boundary without waiting

for other trials to complete. SHA and ASHA compare trials after

training a fixed amount of iterations, but some algorithms such as

the median-stopping rule, dynamically kill trials whenever they

perform poorly than expected [27].

Redundant computation in hyper-parameter optimization. The se-
quence characteristic of hyper-parameters create potential reusable

computations both within a study and across multiple studies.

Many works [47, 50] emphasize the impact of hyper-parameter

sequences on the model accuracy when training large models; two

trials with overlapping prefixes may result in totally different ac-

curacies depending on the later values of the hyper-parameter

sequence. These sequences are usually manually sampled by re-

searchers [7]. When manually tuning hyper-parameters, a common

heuristic to discover an optimal combination of hyper-parameters

is local search, slightly modifying a previously attempted hyper-

parameter sequence that showed promising results. As a result,

promising trials in a study often share common subsequences in

their hyper-parameter values.

Multiple studies also potentially share common computation.

Hyper-parameter optimization is a feedback-driven exploratory

process where the user constantly tries new search spaces and

tuning heuristics [48, 85]. Existing hyper-parameter optimization

systems [17, 24, 48, 52, 80, 85] like Amazon SageMaker and Google

Cloud ML Engine support creating a new study by adjusting a

previous study’s search space. As a result, identical prefixes exist

across multiple studies.

Moreover, multiple tenants may tune the samemodel and dataset.

Similar to the adjustment strategy, a hyper-parameter optimization

algorithm [17, 69] may initialize the value of hyper-parameters

by incorporating results of previous studies possibly submitted

by other tenants. In addition, some crowd systems [25, 81] are

designed to enable collaboration and competition among users to

tune complex hyper-parameters in a time-efficient way.

2.2 Challenges of Sharing Computations in
Hyper-Parameter Optimization Jobs

As promising trials usually share common sequences in their hyper-

parameter configurations, it makes sense to build a system that per-

forms such common computations only once, avoiding redundant

computations. Several systems have been proposed throughout the

literature that applies computation sharing to increase computation

efficiency, including machine learning systems [53, 57, 79, 88] that

target a static set of jobs with configurations known beforehand, as

well as systems from the big data domain [9, 23, 31, 44, 54, 67] that

assume an online setting where jobs are dynamically submitted. Un-

fortunately, sharing computations in hyper-parameter optimization

jobs involves new challenges due to the workload characteristics

of hyper-parameter optimization.

C1: Dynamic computation sharing of trials. As opposed to static

settings where all computations are known from the start, hyper-

parameter optimization studies operate in a more online manner in

which trials are constantly added and removed during a study. Thus,

new common computations may emerge at runtime, and existing

common computations may expire. This complicates matters, as

any non-common computation can become a common computa-

tion in the future, and vice versa. Moreover, the unique pattern

of sharable computations across trials motivates an abstraction

tailored to hyper-parameter optimization jobs (Section 3). A hyper-

parameter optimization system must take such uncertainties into

account and employ a computation sharing mechanism that adapts

to such dynamics (Section 4.2).

C2: Online stage scheduling. The scheduling order of stages im-

pacts the total completion time of trials because each stage saves a

different amount of execution time, depending on the number of

1040

Figure 3: A stage tree formed from the trials of Figure 1. Stage
𝐴1 can be executed once to serve all four trials, while stage 𝐵1
can be shared by three trials. A stage can be split into shorter
stages to match the length of a stage from another study that
shares the same hyper-parameter value.

Figure 4: An illustration of a stage tree transformation when
a new trial is added to the stage tree in Figure 3. Both the
first stage in trial 5 and stage𝐴2 in Figure 3 must be split into
smaller stages, in order to merge trial 5 into the stage tree.
As a result, trial 5 shares stages 𝐴1 and 𝐴3 with trial 1.

trials that share the stage. However, the exact saved time is unpre-

dictable, as trials are added and removed dynamically. Moreover,

depending on the scheduling algorithm, sharing computation may

incur large overheads because model checkpoints must be saved

to and loaded from the disk in order to be shared across trials. A

hyper-parameter optimization system must schedule stages on-the-

fly while considering the effects of computation sharing as well as

the possible overheads (Section 4.3).

3 STAGE TREE
We now propose an abstraction for identifying common compu-

tations in hyper-parameter optimization trials: the stage tree. The
stage tree abstraction is not a direct solution to solving the chal-

lenges described in Section 2.2. Rather, stage trees provide the basis

for Hippo’s two core system techniques (Sections 4.2 and 4.3).

We first briefly explain how individual hyper-parameter se-

quences are expressed. Users express sequences as mathematical

functions with a non-negative integer domain. Then two subse-

quences are identical if they share the same function and domain.

The sequences can be elementary functions such as cosine, or ex-
ponential, but also piecewise functions. For example, learning rate

warmup [29] is a technique to increase the learning rate linearly

for a few steps and then decay the value using a different func-

tion. To express piecewise functions, elementary functions can be

concatenated such as trial 1 in Figure 1. Each elementary function

corresponds to a stage, which can be further split for merging.

By merging common stages across trials in Figure 1, we get the

tree-shaped arrangement of stages in Figure 3. In this form, it is

Figure 5: Hippo system architecture. Trial requests are issued
by study applications, scheduled by the Hippo Master, and
trained on the GPU cluster via workers (shown as W).

evident that stages 𝐴1 and 𝐵1 can be shared by multiple trials. We

refer to this form as a stage tree. The stage tree is mainly used

to identify schedulable units when it comes to executing a study.

Conveniently, a stage can be considered as a schedulable unit, while

edges between stages express scheduling dependencies.

During the course of a study, the shape of the stage tree con-

stantly changes as new trials arrive and old trials are deleted. When

new trials arrive, new stages may be added to a stage tree, while

existing stages can be split into shorter stages of smaller step ranges.

Stages can even be deleted if the given hyper-parameter optimiza-

tion algorithm decides to kill certain trials.

Figure 4 depicts how the stage tree from Figure 3 transforms

when a new trial is added. Stage 𝐴 of the new trial (Trial 5) cannot

be merged into stage 𝐴1 or stage 𝐴2 in Figure 3, because neither

of them has a matching step range (steps 0-150). Instead, stage 𝐴2

needs to be divided into stages 𝐴3 (steps 100-150) and 𝐴4 (steps

150-200), and then the new trial’s last stage, 𝐹 , is appended to 𝐴3.

All stages that came after 𝐴2 in the original stage tree are modified

to follow 𝐴4 in the new stage tree.

4 HIPPO SYSTEM DESIGN
In this section, we introduce Hippo, a hyper-parameter optimization

system that incorporates stage trees to run studies while automati-

cally reusing computation for sharable stages. Hippo addresses the

challenge of dynamic computation sharing (C1) by maintaining

an internal data structure, search plan, to track all submitted trials

1041

and efficiently reuse model checkpoints and evaluation metrics for

shared stages (Section 4.2). Hippo also implements a scheduling al-

gorithm (C2) that considers critical paths in stage trees to minimize

the overall makespan of the study (Section 4.3).

4.1 Overview
Hippo consists of various components to serve studies that dynami-

cally send hyper-parameter optimization trials. A study application,

whether an automated optimization algorithm or an interactive

shell, communicates with the Hippo master via a client library. In-
stead of eagerly partitioning a trial into stages, Hippo stores the

trial information in the search plan database, in the form of a global

search plan, so that new trials do not effect existing stages. After

the search plan is updated, a transient stage tree is generated from

the search plan and passed on to the scheduler, which in turn deter-

mines which stages need to be run. The scheduler notifies the node
managers, one on each GPU server, to run stages. The aggregator
continuously collects evaluation metrics from the running stages

to update the search plan database.

Figure 5 shows the overall flow of processing a trial in Hippo.

The study application initiates the execution of a trial by submitting

the trial to Hippo via the client library (1). Once a trial arrives

at the system, the hyper-parameter sequence configuration of the

trial is immediately compared with the search plan in the search

plan database, and the search plan is adjusted accordingly (2). If

metrics that satisfy the trial are already present, Hippo immediately

returns the evaluation metrics of the trial back to the application.

Otherwise, the search plan database generates a stage tree and

notifies the scheduler to run new stages.

The scheduler decides stages to run from the stage tree generated

from the current search plan (3). Stages are given to GPU workers

for execution (4), and the workers start computation by loading

checkpoints from the distributed filesystem (5). Workers periodi-

cally report evaluation metrics to the aggregator through the node

manager. Each server has a node manager to gather metrics locally

before passing them to the aggregator for reducing inter-server data

traffic (6). The aggregator, upon receiving a set of metrics, updates

the search plan (7). After repeating the scheduler-aggregator cycle

multiple times, the final stage for a trial will eventually terminate,

and the metrics are sent back to the application (8). Even if the

trial has not finished yet, the application may request for metrics

of intermediate stages at any time; Hippo will promptly return the

metrics if they are in the database.

4.2 Search Plan
4.2.1 Search Plan Data Structure. When a trial is submitted, Hippo

must check if it can reuse an existing model checkpoint that shares

hyper-parameter configurations. Hippo uses a data structure called

search plan to maintain this information. A search plan is a tree that

stores the hyper-parameter configuration history of submitted tri-

als as well as model checkpoints and evaluation metrics. Each tree

node in a search plan represents a hyper-parameter configuration

starting from a certain training step. An edge between nodes indi-

cates that the hyper-parameter configuration of the child node is

appended to the configuration of the parent node, to form a hyper-

parameter sequence. The number of training steps required to move

from a parent node hyper-parameter configuration to a child node

is annotated on the connecting edge. A path in a search plan repre-

sents a trial. Search plans have append-only edges; trial additions or

removals do not remove existing edges. Such characteristics make

individual paths invariant to other paths, or trials.

An example of a search plan is drawn in Figure 6. 𝐻𝐴 , the root

node of this search plan, indicates a configuration of training a

freshly initialized model (no parent node) with a linear learning rate

(LINEAR(𝑥 ;𝑎, 𝑏) = 𝑎+𝑏𝑥) and constant batch size (CONSTANT(𝑥 ;𝑎) =
𝑎). Likewise,𝐻𝐸 indicates a configuration of an exponential learning

rate (EXP(𝑥 ;𝑎0, 𝛾) = 𝑎0𝛾
𝑥
) and constant batch size, starting from

a model checkpoint that has been trained with 𝐻𝐴 for 200 steps

(note the directed edge between 𝐻𝐴 and 𝐻𝐸).

Unlike stage trees, a search plan node is not a scheduling unit.

The existence of a node does not necessarily imply that a trial,

configured by that node, is currently running in the system. Rather,

a node holds statistics gathered by the system regarding the cor-

responding hyper-parameter configurations. Hippo can tell that a

trial for that node has finished running by checking the following

node fields:

• hp_config: Hyper-parameter configurations for each tar-

get hyper-parameter. Widely used functions for hyper-

parameter values, such as CONSTANT, EXPONENTIAL, COSINE,
and STEP, are allowed.

• ckpt: A dictionary of file paths for checkpoints that were

trained under this configuration.

• metrics: Intermediate values for evaluating the quality of

the model checkpoint, like validation accuracy and loss.

• requests: A dictionary holding integers representing trial

requests as keys, and state variables (SCHED or NOT_SCHED)
as values. Each integer indicates the number of steps a

model needs to be trained before evaluating it. For example,

in Figure 6, the number 150 in 𝐻𝐴’s requests field indicates

that a trial requires training with 𝐻𝐴’s hyper-parameter

configuration for 150 steps. The state variable marks if that

request has currently been scheduled or not (Section 4.3).

Note that a single request maps to a single trial; we use

both terms interchangeably throughout the paper.

Adding a new trial to the search plan is done as follows. When a

new trial arrives, the system traverses the search plan for a path

that matches the trial’s hyper-parameter sequence. If the trial has

no matching path, new nodes are added to the search plan. Then we

check the ckpt and metrics fields of the leaf node and immediately

return the appropriate results in case no training is needed (e.g.,

there already is a metric that matches the request). In case results

aren’t already available, a new entry is added to the requests field
of the node.

Revisiting the example illustrated in Figure 4 where a new trial

submission requires splitting an existing stage 𝐴2 and adding a

new stage 𝐹 , Hippo handles this case by adding a search plan node

corresponding to 𝐹 as a child of 𝐻𝐴 in Figure 6. 𝐻𝐴 itself does not

need to be modified. Hippo also marks the new node’s requests field
with the number 300, the step count of the new trial.

Removing a trial is done in a similar manner as adding a trial,

except that nodes are not added nor deleted (to maintain the append-

only edge property). The system traverses the search plan to find the

1042

Figure 6: A search plan example of hyper-parameter configurations. Each node stores various fields, including hyper-parameter
value functions for each hyper-parameter (hp_config) and a dictionary that marks the current stages that are waiting to be
executed under this configuration (requests). Edges across nodes indicate sequential dependencies, e.g.,𝐻𝐵 occurs after training
a model for 100 steps under 𝐻𝐴, while 𝐻𝐶 occurs after training a model for 100 more steps under 𝐻𝐵 (a total of 200 preceding
steps).

Algorithm 1 Build Stage Tree

1: function BuildStageTree(requests 𝑅)
2: Initialize empty lookup table, 𝐿

3: Initialize empty set of stages, 𝑆

4:

5: for 𝑟 ∈ 𝑅 do
6: FindLatestCheckpoint(𝑟 , 𝐿)

7: for 𝑒𝑛𝑑 , 𝑠𝑡𝑎𝑟𝑡 in 𝐿 do
8: 𝑆 .put(Stage(𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑))

9: return BuildTree(𝑆)

10:

11: function FindLatestCheckpoint(𝑟 , 𝐿)

12: if 𝑟 .node == null | | 𝑟 ∈ 𝐿 then
13: return
14:

15: for 𝑠 ∈ {𝑟 .step - 1, 𝑟 .step - 2, ..., 𝑟 .node.init_step} do
16: if checkpoint_exists(𝑟 .node, 𝑠) then
17: 𝐿[𝑟] = (𝑟 .node, 𝑠)

18: return
19:

20: 𝑟𝑝 = (𝑟 .node.parent, 𝑟 .node.init_step)

21: 𝐿[𝑟] = 𝑟𝑝
22: FindLatestCheckpoint(𝑟𝑝 , 𝐿)

node of the request that corresponds to the trial. If the request object

is marked as NOT_SCHED, thenwe can simply delete the request from

the database since the request has not yet been scheduled. On the

other hand, if the request is marked SCHED, the database signals the
scheduler to abort computation for the corresponding stage.

Going from search plans to stage trees. While search plans are

effective for managing the current status and history of a hyper-

parameter study, stages are more straightforward as a scheduling

unit for a system scheduler component to interact with. Thus, we

use search plans as the basic format for carrying out trial additions

and removals, but ultimately generate stage trees when a scheduling

decision needs to be made. The generated stage trees are transient

representations, used solely for creating scheduling units (stages),

and are not kept in the system like search plans.

The generated stage tree serves all NOT_SCHED requests in the

search plan; SCHED requests have already been processed by the

scheduler, and thus do not need to be served again. Every request

corresponds to a path in the stage tree where the path starts from

an existing checkpoint. For example, to serve the request 300 of

𝐻𝐸 in Figure 6, we first follow the edge from the preceding node

(𝐻𝐴), indicating that the request requires training for 200 steps with

𝐻𝐴’s hyper-parameter configuration. Then, the request requires

training for an additional 100 steps with 𝐻𝐸 ’s hyper-parameter

configuration, for a total of 300 steps. Note that since there already is

a checkpoint for 𝐻𝐴 at 200 steps, we don’t actually have to perform

any training with 𝐻𝐴 .

Algorithm 1 describes the process of generating a stage tree from

a search plan. The algorithm first checks all requests and breaks

them down into smaller units that utilize available checkpoints

(line 6). The lookup table 𝐿 maps a child request object to a parent

request object that is needed to reach the child. The request object

is a tuple of a search plan node (e.g.,𝐻𝐸 in Figure 6) and the number

of training steps required to fulfill the request (e.g., 300 in𝐻𝐸). Next,

each <child, parent> pair is translated as a stage (line 8) that loads

a model checkpoint from the parent, trains the model, and saves

a new checkpoint at the child. Lastly, the function BuildTree is

called (line 9) to construct a stage tree from the stages by connecting

consecutive stages.

Figuring out the closest parent to a child is done with a helper

function FindLatestCheckpoint. This function receives a request

object and the lookup table 𝐿 as input. If no appropriate checkpoints

are available in the current node, the function is recursively called

with its parent node (line 22). Also, the parent node is added to the

lookup table (line 21). It is worth noting that the lookup table is

also used as a memoization mechanism (line 12).

Figure 7 illustrates the stage tree generated from the search plan

in Figure 6 via Algorithm 1. A stage will be executed by resuming

from the nearest available checkpoint, where available checkpoints

are marked as shaded areas. For example, the stage denoted by 𝐻𝐸2

with steps 250 to 300 in the figure will be trained after resuming

from 𝐻𝐸1’s checkpoint at 250 steps (as seen in 𝐻𝐸 ’s ckpt field).

Algorithm Analysis. Let us define |𝑅 | as the number of re-

quests, 𝑁 as the number of nodes in the search plan, and 𝑑 as

the height of the search plan. The worst-case time complexity of

1043

Figure 7: A stage tree generated from the search plan in Fig-
ure 6. The numbers below each stage indicate the step to
start and stop training. Shaded stages indicate stages with
checkpoints where training can be resumed from.

FindLatestCheckpoint is 𝑂 (𝑑). The worst-case occurs when the

lookup table is empty and the given request points to a step in

a leaf node; the function should recursively call itself from the

leaf node to the root node. However, as the output of this func-

tion is memoized, a node is only visited once for every child it

has. Therefore, the function visits non-leaf nodes as many times

as the number of edges (𝑁 − 1) and visits leaf nodes as many

times as the number of requests (|𝑅 |). Therefore, the worst-case
time required to run FindLatestCheckpoint for all |𝑅 | requests
is 𝑂 (𝑁 + |𝑅 |). Since BuildTree can be done in 𝑂 (𝑁), worst-case
time of BuildStageTree is 𝑂 (𝑁 + |𝑅 |).

In practice, the scheduler calls the algorithm consecutively. Sim-

ilar to the dynamic programming method used in the algorithm,

checkpoints created from processing a previously created stage

tree acts as memoization that warm-starts the following algorithm

invocation. Therefore, the worst-case time complexity for creating

all stage trees throughout a study is 𝑂 (𝑁 ′ + |𝑅′ |). 𝑅′ is the total
number of requests submitted through the study, and 𝑁 ′

is the final

number of nodes in search plan.

4.2.2 Search Plan Database. Hippo stores all search plans that

are currently being served in the search plan database. When a

new trial is added, Hippo updates the search plan as described in

Section 4.2.1. The various field entries in any node of the search

plan, including checkpoints, metrics, and runtime profile data, can

also be updated by the aggregator component.

Checkpoint caching. The database stores pointers to each check-

point, as well as metadata such as file size, reference count, and last

used time. These checkpoints have two purposes: sharing compu-

tations and recovering from failures. Depending on its primary use,

checkpoints are either central or peripheral. Workers automatically

create central checkpoints at the end of a stage for computation

reuse in child stages. The central checkpoint of a leaf stage is actu-
ally optional, but useful when extending a trial by training more

steps, which is a common pattern. Additionally, users can configure

the system to periodically create peripheral checkpoints in the mid-

dle of stages. Long stages can recover from peripheral checkpoints

in case of failures.

Trial additions and removals can cause a central checkpoint to

become a peripheral one, or vice versa. Therefore, Hippo manages

the two types of checkpoints in the same cache. The cache policy

can evict any of the two checkpoints according to a cost-benefit

ratio, proposed in Nectar [31].

Multiple search plans. Trials may have no overlapping hyper-

parameter sequences at all, in which case they cannot be repre-

sented with a single search plan. To cover such cases, the search

plan database holds multiple search plans; when a new trial arrives,

Hippo adds it to the search plan that has a matching root node

hyper-parameter configuration. Managing multiple search plans

also has the benefit of allowing Hippo to serve more than one study

at once – studies on different models as well as different input

datasets. As different search plans are mutually independent, Hippo

does not require any kind of synchronization mechanism between

search plans.

4.3 Scheduler
Hippo schedules computation on GPUs with stages as the basic

scheduling unit. Since the number of stages that can run concur-

rently at a given moment usually exceeds the number of available

GPUs in the cluster, Hippo utilizes a scheduler component to deter-

mine the stages to be run. The scheduler allocates GPUs to execute

stages, and preempts stages associated with requests that have been

canceled by the client.

The scheduler takes stage trees generated from the current search

plans as inputs and schedules stages on GPU workers. A simple

scheduling method would be to do a breadth-first traversal through

all stage trees and schedule each stage one by one until all GPU

workers have been assigned stages. However, we have found that

this method leads to a large job makespan, due to stages on the

critical path of the stage trees being scheduled relatively later than

non-critical path stages.

Instead, the scheduler computes the critical path of all given

trees and schedules the longest critical path on a worker. At this

point, all request entries in the search plan associated with this

path are marked as SCHED. With multiple workers, the scheduler

repeatedly finds the next longest path among unscheduled stages

of all stage trees and schedules the path of stages on an idle worker.

The longest path of a stage tree is the path that has the longest

estimated execution time; the execution time of an individual stage

is estimated by multiplying the number of steps of that stage by the

execution time per step (profiled beforehand when a search plan

node is newly added).

We also observed that the stage transition overhead for a worker

is significant due to checkpoint saving and loading, when sched-

uling a path of stages on the worker. If two consecutive stages

(connected as parent and child in the stage tree) are scheduled on

the same worker, then there is no need to load the corresponding

central checkpoint from the distributed filesystem before running

the child stage because the checkpoint would still be present in GPU

memory. The checkpoint save still needs to happen for other child

stages, but can be done in the background, in parallel with training.

To mitigate these overheads, the scheduler batches consecutive

stages in the critical path and dispatches them as a single schedul-

ing unit to a worker. The larger scheduling granularity improves

locality by avoiding checkpoint overheads and further minimizes

the end-to-end training time of a study.

The scheduler does not store any information regarding the

execution states of stages. The scheduler operates in a stateless

manner, relying entirely on the search plan to identify the stages

1044

that need to be run and the stages that have already run. After

processing a stage tree, the scheduler simply releases the stage tree.

Any stage batches (i.e., stage paths) that are yet to be scheduled

on a worker (due to all workers being busy) are put in a separate

queue; as soon as a worker becomes idle, the aggregator is notified

to update the search plan, and the scheduler sends the batch at the

head of the queue to the idle worker, unless the queue is empty.

When the scheduler is triggered again later by another trial

addition/removal to schedule more stages, the scheduler takes a

new stage tree freshly generated from the latest search plan and

repeats the whole scheduling process from the start. Note that

triggering the scheduler while it is scheduling a stage tree does not

affect the current scheduling; all unscheduled stage batches will be

enqueued into the queue, behind the previous batches.

5 IMPLEMENTATION
We have implemented Hippo in 5K lines of Python code. Commu-

nication between the Hippo master and node managers is done via

the pub/sub interface provided by Apache Kafka 2.4.1 and Apache

ZooKeeper 3.4.13. MySQL 8.0 is used to store system states in the

search plan database. Kafka, ZooKeeper, and MySQL all run in

Docker [63] containers. Additionally, we use GlusterFS [72] as the

distributed file system for saving and sharing checkpoints between

nodes. Our current implementation of Hippo utilizes the DL frame-

work PyTorch 1.5.0 to train DNN models, though Hippo’s design is

not tied to any specific framework.

Data Pipeline. We implemented a custom data pipeline for Py-

Torch that is compatible with stages. Two major updates were done.

First, we modified the checkpoint mechanism of PyTorch’s default

data pipeline to include the current permutation of the dataset as a

part of the checkpoint. This way, the data pipeline is able to save

its current position in the dataset when a stage terminates, and

later resume from the same position for the next stage. Second,

we added a feature to change the batch size of the data pipeline.

When the batch size is changed, the data pipeline will flush every

preprocessed batch from the queue, and relaunch the background

threads so that they produce the correct batch samples.

Cost Estimator. Since hyper-parameters affect the GPU resource

requirements of a stage, we implemented a cost estimator that uses

linear regression to estimate a stage’s completion time and number

of GPUs required on profiling results. The scheduler uses this es-

timator to analyze the critical paths. Initially, when no historical

data is available, the estimator predicts both latency and GPU re-

quirement as one. We observe that cold predictions underestimate

the GPU requirements of a stage, causing out of memory(OOM)

errors. To effectively mitigate OOM errors, the stage is rescheduled

with double the number of GPUs of the previous attempt.

Client Library. We implement a client library that serves three

purposes. First, the client library is the entry point to Hippo. It

serves as a thin communication layer for the study to add new

trial requests. Second, the client library includes popular hyper-

parameter optimization algorithms [27, 41, 42, 55, 56]. Lastly, the

client library provides the API to express hyper-parameter se-

quences. The API is a collection of several parametric families. Each
family represents a set of functions with identical parameters. Users

Table 1: Hyper-parameter types, functions and theirmember-
ships. Functions denote possible sequences samples. R, M, B
each denote the search space of ResNet56, MobileNetV2, and
BERT-Base. For example, the ResNet56 search space consists
of five hyper-parameters.

Type Function

Models

R M B

learning rate

MultiStep, CyclicLR,

Warmup+MultiStep

Warmup+Exponential,

Warmup+Cosine,

✓ ✓ ✓

batch size Constant, MultiStep ✓ ✓

momentum Constant, MultiStep ✓

weight decay Constant ✓

optimizer Constant ✓ ✓

cutout size Constant, MultiStep ✓

input seq. length Constant, MultiStep ✓

can use the family to create new sequences. For example, the si-

nusoidal parametric family is a function that returns a new cosine

function when given magnitude, period, and phase.

6 EVALUATION
In this section, we first compare Hippo with Tune [59], a black-box

hyper-parameter optimization framework built on top of Ray [65].

We conducted four single study experiments comparing Tune and

Hippo (Section 6.1), and two multi-study experiments, each with a

varying number of studies that run in parallel (Section 6.2). Then we

show simulation results on how final accuracy changes according

to different hyper-parameter search spaces (Section 6.3). We also

compare how Hippo and Tune behave under different dynamic

scenarios (Section 6.4). Finally, we demonstrate the effect of our

scheduling policy via comparison with other policies (Section 6.5).

Environment. Each experiment uses a homogeneous GPU cluster

of five Amazon EC2 p2.8x instances, each with 8 NVIDIA Tesla

K80 GPUs. A distributed file system using GlusterFS is set up on

Amazon EBS volumes. All experiment scripts are implemented in

PyTorch 1.5.0 [68]. In all of our experiments, we measure the end-
to-end time (the elapsed time from the start of the experiment to

the end) and the GPU-hours (the sum of elapsed time each GPU

was held for training).

For fair evaluation, we have made the following changes to Tune.

We re-implement the ASHA [56] algorithm to match the behavior

specified in the original paper. Also, we alter Tune’s runtime and

API so that the system evaluates the model only whenever Hippo

does. Model evaluation is relatively cheaper than training one epoch

but causes huge overheads when done every batch. Tune’s original

implementation runs model evaluation every iteration creating

huge overhead when tuning the BERT-Base model, which is trained

in units of steps. Conversely, Hippo evaluates the model only when

necessary.

Merge rate. As our evaluation results vary on the configuration

of the search space, we provide a metric𝑚 that summarizes the

1045

Table 2: Specification of four studies. Each study is specified a model, dataset, hyper-parameter, tuning algorithm, and a tuning
algorithm policy. min and max are the minimum and maximum training iterations for each trial. Each study is given its own
search space represented by number of trials and merge rate.

Model Dataset Tune Algorithm Algorithm Policy # of trials Merge rate (𝑚)

ResNet56 CIFAR-10 SHA reduction=4, min=15, max=120 448 2.45

ResNet56 CIFAR-10 ASHA reduction=4, min=15, max=120 448 2.45

MobileNetV2 CIFAR-10 Grid search max=120 240 3.14

BERT-Base SQuAD 2.0 Grid search max=27000 40 2.05

(a) End-to-end time (b) GPU-hours

Figure 8: Single-study experiment results for Tune, Hippo-Trial, and Hippo. Compared to Tune, Hippo can reduce end-to-end
time by up to 2.76×, and GPU-hours by up to 4.81×.

merging capability of the search space.

𝑚 = Total steps/Unique steps
Unique steps is defined as the number of training steps that are

needed to train the entire search space, counting identical steps

(redundant computation) as one step. Total steps is defined as the

number of training steps while not considering redundant compu-

tations. For example, if there are N identical trials, the merge rate

is𝑚 = 𝑁
1
= 𝑁 . Similarly, we define a 𝑘-wise merge rate𝑚𝑘 defined

on 𝑘 search spaces.

𝑚𝑘 = Total steps of 𝑘 studies/Unique steps across 𝑘 studies

The merge rate is the theoretical estimate of GPU-hour reduction

in Hippo. Actual reduction values differ from this estimate due to

three factors: optimization algorithm, checkpoint overhead, and

hyper-parameter value. First, hyper-parameter optimization algo-

rithms like SHA and ASHA early-stop trials, thereby pruning outer

stages. As a result, the algorithm prunes stages that are less shared.

We show experimental results that exhibit this effect in 6.1. Second,

checkpoint saving and loading create overhead, decreasing the GPU

hour reduction gain. Lastly, the GPU time for a trial differs by the

hyper-parameter value it has. Hyper-parameters like batch size, or

optimizer require different computation time. Sharing a stage with

hyper-parameters that corresponds to heavy computation is more

beneficial than a stage that does not.

Hyper-parameters. Table 1 summarizes hyper-parameters used

for each search space.We use a total of seven hyper-parameters. Five

hyper-parameters (learning rate, batch size, momentum, cutout[21]

size, input sequence length[20]) are sampled as sequences, and two

hyper-parameters (optimizer, weight decay) are sampled as point

values. The search space is composed of commonly used functions

in research papers, github repositories and Kaggle kernels.

6.1 Single Study
This section compares three different hyper-parameter optimization

algorithm systems: Tune, Hippo, and Hippo-Trial. Hippo-Trial is

an implementation of Hippo where no computation is reused.

We compare four different studies across three different hyper-

parameter optimization systems. The design of each study is de-

scribed in Table 2. Three different models, two different datasets,

and three different hyper-parameter optimization algorithms are

used for the different studies. We further train the best performing

trial for 100 additional steps and the extra training time is accounted

to the GPU-hour and the end-to-end time. Aside from system per-

formance, we also compare the final model accuracy of the systems.

For ResNet56 andMobileNetV2, we report the top-1 validation accu-

racy, and for BERT-Base, we report the F1 score. We train ResNet56

and MobileNetV2 from scratch, but we fine-tune BERT-Base.

Figure 8 depicts the end-to-end time and the GPU-hour of four

studies. Tune and Hippo-Trial show comparable end-to-end time

and GPU-hours, except for ASHA. In ASHA, the number of early-

stopped trials depends on the completion order of trials. Because

of its non-deterministic nature, Tune and Hippo-Trial differ in the

total number of training steps.

Compared to Tune, Hippo can reduce end-to-end time and GPU-

hours by up to 2.76× and 4.81×, respectively. As expected, for the
two grid search studies, the merge rate (3.14×, 2.05×) matches the

GPU-hour saving (3.15×, 2.07×). However, the GPU-hour saving of

SHA and ASHA (4.81×, 3.92×) is significantly higher than its merge

1046

Table 3: Final model metric of all four single-study experi-
ments. Tune, Hippo, and Hippo-Trial reached the reported
model accuracy or F1 score, reported from the original paper,
popular GitHub repository, or dataset leaderboard.

Model

Accuracy / F1 score [%]

Reported Tune Trial Stage

ResNet56 (SHA) 93.03 93.08 92.89 93.27
ResNet56 (ASHA) 93.03 93.58 92.89 93.72
MobileNetV2 94.43 95.03 95.04 95.04
BERT-Base 76.28 78.42 78.57 78.18

rate (2.45×). As discussed earlier, the early-stopping mechanism

used by these algorithms prune stages that are less shared. This

reduces the search space size, increasing the effective merge rate.

The top-1 accuracies and F1 scores reached in each study is

shown in Table 3. In all four studies, Hippo successfully achieved

top-1 accuracies and F1 scores higher than the reported target

values. Moreover, in the experiment some studies reached higher

model accuracy on Hippo compared to Tune, demonstrating that

Hippo can finish training in a fraction of the time spent by Tune

while possibly finding a better model checkpoint.

In our experiment results in section 6.1, the best performing trial

had dynamically changing hyper-parameters other than learning

rate. The ResNet56 model had both learning rate and batch size

as dynamic values. MobileNetV2 had learning rate, batch size, and

cutout. BERT-Base had learning rate and sequence length.

6.2 Multiple Studies
Hippo is able to merge computation across multiple studies. We

compare the GPU-hour and the end-to-end time of Hippo and Tune

when runningmultiple studies simultaneously. We vary the number

of studies: 1, 2, 4, and 8, and refer to each case as S1, S2, S4, and S8.

We create two search space sets where each set contains 8 subspaces.

All studies spawn 144 trials where each trial train the ResNet20

model on the CIFAR-10 dataset, and tune learning rate and batch

size.

The merge rate for the first search space set ranges from 1.5× to

2.73×. The k-wise merge rate for S2’, S4’, and S8’ is 2.26, 2.77, and

2.47, respectively. Figure 9-(a) depicts the results from this search

space. We can see that with a relatively large merge rate between

the studies, the GPU-hour and the end-to-end time shrinks by up

to 6.77× and 3.53×.
The merge rate for the second search space set ranges from 1.2×

to 2.1×. The k-wise merge rate for S2, S4, and S8 are 1.40, 1.19,

and 1.66, respectively. Figure 9-(b) depicts the results from this

search space. Though the gains are smaller than in the previously

defined search space due to lower merge rates, Hippo still reduces

the GPU-hour and end-to-end time by up to 2.32× and 1.99×.
Note that whether a hyper-parameter is parameterized with a

continuous function (e.g., Exp(init, gamma)) or a discrete function
(e.g., piecewise linear) does not affect the fact that trials can share

hyper-parameter prefixes. For instance, two trials that share the

same init and gamma values for a exponential learning-rate will

have completely identical hyper-parameter values for all training

steps, resulting in a merge rate of 2.

Figure 9: End-to-end time speedups and GPU-hour savings
of two multi-study experiments. For each experiment, we
define a search space and vary the number of studies from
one to eight. The k-wise merge rate for each run is shown
in parenthesis. For example, S2(2.26) means there were two
studies submitted and the k-wise merge rate was 2.26. All
values are normalized with respect to Tune.

6.3 Simulated Experiments
In this section, we show that merging computations does not affect

model performance negatively. We collected traces of the ResNet56

model (training time, checkpointing time, evaluation accuracy) in

the previous experiments (Section 6.1,6.2). With the collected trace,

we created a search space superset. From the superset, we create

several random search space subsets. Each search space subset has

different number of trials, and merge rate. Using the evaluation

accuracy values collected, each subset is undergone a simulation to

calculate the final accuracy, and end-to-end job completion time.

The simulation assumes the same setting as in Section 6.1. We

also randomize the hyper-parameter optimization algorithm used

(one of 𝑔𝑟𝑖𝑑𝑠𝑒𝑎𝑟𝑐ℎ, 𝑠ℎ𝑎, 𝑎𝑠ℎ𝑎). The simulator is implemented by

emulating the scheduler and aggregator in Figure 5. The simulator

yields the same final accuracy as in Table 3.

We sampled search spaces with six different numbers of trials

and ran simulations on each search space. Figure 10 shows the final

accuracy for each of the search spaces. As the number of trials in a

search space increases, the amount of reusable computation and

merge rate also increases. We can observe that search spaces with

high merge rates also result in high final accuracy.

6.4 Dynamic Scenarios
In this section, we evaluate Hippo under different dynamic scenar-

ios. To understand the merging ability of Hippo with varying levels

1047

Figure 10: Simulation results on various search space subsets
composed of different number of trials. The x-axis shows the
merge rate of individual subsets, and the y-axis shows the
final accuracy of a study optimized upon the subset.

of dynamism, we define a hyper-parameter tuner that submits re-

quests to Hippo. We model the request arrival pattern from the

tuner as a poisson process. The rate parameter 𝛾 is varied, simulat-

ing different levels of dynamism. For higher 𝛾 values, the average

arrival rate of requests would be lower.

Figure 11 shows Hippo’s merging ability with respect to a range

of dynamic settings. The different colors in the figure correspond

to a different random generator seed value which controls the

permutation of the requests to be submitted. We measure the actual

merge rate of the study. Unlike in the static setting where all trials

are submitted simultaneously, new reusable computations occur

dynamically for hyper-parameter optimization algorithms. This is

because Hippo needs to compute them, although it would not be

necessary if the information were available beforehand. Therefore,

the more dynamic the tuner is, the actual merge rate decreases.

Figure 11 shows such characteristic of Hippo. Tuners that submitted

trials with average interval timesmore than 20 seconds had a drop in

merge rate. In practice, Hippomitigates this problem by introducing

peripheral checkpoints (Section 4.2.1). Checkpoints are created

periodically in the middle of stages to be reused in later submitted

requests.

Figure 11: Hippo’smerging ability in dynamic settings. The x-
axis represents the average arrival interval of a request. The
y-axis represents the actualmerge rate of the study. The three
colors represent different seed values. The different seed
values change the permutation of the submitted requests.
Hippo can merge almost every computation when trials are
submitted frequently (with arrival interval 0.1s 20s).

Figure 12: End-to-end time of four scheduling policies on
four hyper-parameter optimization algorithms.

6.5 Scheduler Comparison
In this section, we compare Hippo’s critical path scheduler with

other possible scheduling policies on the simulator used in Sec-

tion 6.3. The four policies we compare are as follows.

• BFS: schedule stages in breadth-first search order

• THR: maximize throughput by scheduling stages with the

largest number of child stages first

• Critical: Hippo’s scheduler policy
• B-Critical: Hippo’s scheduler policy with stage batching

We compare the policies with four hyper-parameter optimiza-

tion algorithms: grid search, SHA, ASHA, and learning curve ex-

trapolation [22]. The extrapolation optimization algorithm uses

curve-fitting to predict if the given trial would reach the desired

accuracy. For our experiments, the algorithm estimates the proba-

bility of the trial surpassing accuracy 93.03% before epoch 120. We

follow the original paper’s choice of configurations; at every 30

epochs, the trial is early-stopped if the probability of reaching the

desired accuracy is below 5%.

Figure 12 depicts the end-to-end time of four hyper-parameter

optimization algorithm with four different scheduling policies. The

B-Critical policy was the fastest across all four optimization algo-

rithms. The end-to-end time speedup of B-Critical relative to BFS

is 1.10x (Grid Search), 1.17x (SHA), 1.03x (ASHA), 1.92x (Extrap-

olate). The speedup of Critical relative to BFS/THR is 1.05x/1.03x

(Grid Search), 1.16x/0.97x (SHA), 1.03x/1.15x (ASHA), 1.06x/0.86x

(Extrapolate).

For SHA, Critical is slightly slower than THR. This is because the
resulting search plan of the SHA study contained 28 paths with a

similar cost to the critical one. Similarly, if the stages require similar

training costs, multiple nearly-critical paths can exist. Assuming

there are enough GPUs to train the stages in parallel, THR may be

more efficient than Critical. Nevertheless, if the number of stages

increase, the batching optimization B-Critical would yield similar

performance to THR like in Figure 12.

For ASHA, THR is the slowest algorithm; B-Critical is 1.16x faster.
When ASHA dynamically adds new trials, the critical path before

trial submission tends to be also a critical path in the new stage

tree; however, the number of descendants the stage has changes as

new trials are added.

For Extrapolate, the algorithm evaluates trials every epoch, cre-

ating many small stages. Therefore, the stage batching in B-Critical
is more effective in Extrapolate than other hyper-parameter opti-

mization algorithms.

1048

7 RELATED WORK
Systems for Hyper-parameter tuning. In recent years, there have

been hyper-parameter optimization systems [2, 26, 27, 48, 59, 60,

64, 69, 71] which help users to manage their hyper-parameter opti-

mization jobs in distributed environments. Tune [59], for example,

is a hyper-parameter optimization system built on top of Ray [65].

Since Tune does not understand the internals of a trial, a single trial

cannot be further split into multiple stages to merge the common

computation between trials, achieving sub-optimal performance

compared to Hippo. Other popular trial-based hyper-parameter op-

timization systems such as Google Vizier [27], NNI [64], Optuna [2],

Kubeflow [26], CHOPT [48], HyperDrive [71], and SageMaker [69]

provide similar trial-level user APIs and schedule hyper-parameter

optimization jobs on a trial basis, failing to share common compu-

tation as they cannot identify stages.

Hippo is distinguished from the existing systems mentioned

above in that it is purposefully designed to support tuning hyper-

parameters, of which values dynamically change during a trial.

Other systems model hyper-parameter optimization workloads as

a function of a single configuration input. Alternatively, Hippo cap-

tures the multi-step characteristic in some hyper-parameters and

extends the traditional view of hyper-parameter from a single input

to a sequence of configurations. This approach creates potentially

overlapping operations within a study and across multiple studies.

Computation sharing systems. Reusing intermediate outputs

across multiple jobs is a commonly used technique for multi-job

systems. The workloads covered by such systems can largely be

categorized into two groups: (i) a static setting in which all jobs

are available at once so that the system can analyze sharable com-

putation from the start, and (ii) a dynamic setting where jobs are

continuously submitted to the system.

Several recent machine learning systems [14, 53, 57, 79, 88] fall

into the former, the static setting. Liam et al. [57] proposes an al-

gorithm to reduce the resource usage of static data preprocessing

pipelines by caching intermediate data. On the contrary, this paper

proposes both a data management system and algorithm to reduce

the overall amount of computation in dynamic hyper-parameter

optimization jobs by merging common stages. Moreover, the tech-

nique performs model training sequentially, running individual

hyper-parameter optimization trials one by one on a single GPU,

whereas Hippo exploits a multi-GPU cluster to run multiple stages

in parallel via a system scheduler. Pretzel [53] performs offline

analysis on a given set of machine learning jobs and compiles a

model plan that is able to reuse computation across the jobs, while

Clipper [14] employs a prediction cache that stores the whole re-

sult of executing a job. Both Pretzel and Clipper target inference

workloads, and thus are inapplicable to model training settings. He-

lix [88] selectively caches intermediate results for a job, depending

on the storage cost and materialization cost, and reuses them in

subsequent iterations. None of these systems particularly consider

dynamically arriving jobs. On the other hand, Hippo’s search plan

data structure allows the system to dynamically accommodate new

trials and identify reusable stage results without running an offline

analysis of all trials.

Various big data systems [9, 23, 31, 44, 54, 67] assume the latter,

dynamic setting. Nectar [31] enables reusing common computation

in DryadLINQ programs within a datacenter. Tachyon [54] imple-

ments an algorithm that bounds the recovery cost of any file in

the whole job lineage by checkpointing certain key files. Although

these systems take dynamically added jobs into account, they were

not designed to handle hyper-parameter optimization workloads.

Systems focusing on a specific algorithm. As hyper-parameter

optimization algorithms such as ASHA [56] and PBT [41] have

been devised to optimize the resource usage on distributed envi-

ronments, systems to efficiently run those algorithms have been

introduced alongside with the algorithms themselves. However, the

systems are not generic since each of these systems is specifically

designed for executing only a specific algorithm. HyperSched [58]

extends ASHA [56] and supports algorithms similar to ASHA. On

the other hand, Hippo aims to support various hyper-parameter

optimization algorithms including ASHA [56], SHA [42], PBT [41],

and the median-stopping rule [27].

Model merging optimization. Liu et al. [60] propose a pack mech-

anism that trains multiple models as a single batch, which allows

a worker to run multiple stages at once. Packing models does not

necessarily eliminate redundant computation, though; the help of

a stage-based hyper-parameter optimization system like Hippo is

still needed to identify common computations and schedule them

as a single stage. Hippo’s goal of training multiple different models

and studies simultaneously is well aligned with that of the pack

mechanism.

Integrating model packing into Hippo’s workers is straightfor-

ward – instead of scheduling a single path of stages to a worker,

Hippo’s scheduler fetches multiple paths per worker. The workers

then pack stages from each path and run the packed stages as a

single batch. Such an extension implies an interesting challenge of

designing a scheduling policy that considers both resource packing

and stage trees. Resource packing is beneficial when there are more

trials to execute than the number of GPUs. Unfortunately, the num-

ber of queued stages dynamically changes, and thus, the system

constantly switches from an overloaded state to an under-utilized

state and vice versa. Therefore, to effectively integrate resource

sharing with Hippo, the system should pack trials when overloaded

and unpack trials when there are idle resources. We leave designing

such a policy as future work.

8 CONCLUSION
Hippo is a hyper-parameter optimization system that removes re-

dundant computation for model training by breaking down the

hyper-parameter sequences into stages, merging common stages

to form a tree of stages, and executing a stage once per tree. Hippo

is also applicable to multi-study scenarios. Our evaluations show

that Hippo significantly saves GPU-hours and reduces end-to-end

training time compared to Ray Tune on multiple models and hy-

perparameter optimization algorithms.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments. This work

was supported by FriendliAI Inc.

1049

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine

Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association,

USA, 265–283.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A Next-Generation Hyperparameter Optimization

Framework. In Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (Anchorage, AK, USA) (KDD
’19). Association for Computing Machinery, New York, NY, USA, 2623–2631.

https://doi.org/10.1145/3292500.3330701

[3] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,

Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guo-

liang Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam

Coates, Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei

Fang, Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun,

Tony Han, Lappi Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby

Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sharan Narang,

Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng

Quan, Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho

Sengupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong

Wang, JidongWang, KaifuWang, Yi Wang, ZhijianWang, ZhiqianWang, Shuang

Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan,

and Zhenyao Zhu. 2016. Deep Speech 2 : End-to-End Speech Recognition in

English and Mandarin. In Proceedings of The 33rd International Conference on
Machine Learning (Proceedings of Machine Learning Research), Maria Florina

Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. PMLR, New York, New York,

USA, 173–182. https://proceedings.mlr.press/v48/amodei16.html

[4] Elahe Arani, Shabbir Marzban, Andrei Pata, and Bahram Zonooz. 2021. RGPNet:

A Real-Time General Purpose Semantic Segmentation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 3009–
3018.

[5] Atilim Gunes Baydin, Robert Cornish, David Martínez-Rubio, Mark Schmidt,

and Frank Wood. 2018. Online Learning Rate Adaptation with Hypergradient

Descent. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=BkrsAzWAb

[6] Kurian Benoy. 2020. Classifying Flowers with Fastai2. https://www.kaggle.com/

kurianbenoy/classifying-flowers-with-fastai2/notebook

[7] Xavier Bouthillier and Gaël Varoquaux. 2020. Survey of machine-learning experi-
mental methods at NeurIPS2019 and ICLR2020. Research Report. Inria Saclay Ile

de France. https://hal.archives-ouvertes.fr/hal-02447823

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.

arXiv:2005.14165 [cs.CL]

[9] Jesús Camacho-Rodríguez, Dario Colazzo, Melanie Herschel, Ioana Manolescu,

and Soudip Roy Chowdhury. 2016. Reuse-Based Optimization for Pig Latin.

In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (Indianapolis, Indiana, USA) (CIKM ’16). Association
for Computing Machinery, New York, NY, USA, 2215–2220. https://doi.org/10.

1145/2983323.2983669

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible

and Efficient Machine Learning Library for Heterogeneous Distributed Systems.

arXiv:1512.01274 [cs.DC]

[11] François Chollet et al. 2015. Keras. https://github.com/fchollet/keras.

[12] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and

Accurate Deep Network Learning by Exponential Linear Units (ELUs). In 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun
(Eds.). http://arxiv.org/abs/1511.07289

[13] Federico Colangelo, Federica Battisti, and Alessandro Neri. 2020. Progressive

Training Of Convolutional Neural Networks For Acoustic Events Classification.

In 28th European Signal Processing Conference, EUSIPCO 2020, Amsterdam, Nether-
lands, January 18-21, 2021. IEEE, 26–30. https://doi.org/10.23919/Eusipco47968.

2020.9287362

[14] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-

zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving

System. In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). USENIX Association, Boston, MA, 613–627. https://www.

usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw

[15] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. 2020. Ran-

dAugment: Practical Automated Data Augmentation with a Reduced Search

Space. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran As-

sociates, Inc., 18613–18624. https://proceedings.neurips.cc/paper/2020/file/

d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf

[16] Henggang Cui, Gregory R. Ganger, and Phillip B. Gibbons. 2018. MLtuner: System

Support for Automatic Machine Learning Tuning. arXiv:1803.07445 [cs.LG]

[17] Piali Das, Nikita Ivkin, Tanya Bansal, Laurence Rouesnel, Philip Gautier, Zohar

Karnin, LeoDirac, Lakshmi Ramakrishnan, Andre Perunicic, Iaroslav Shcherbatyi,

Wilton Wu, Aida Zolic, Huibin Shen, Amr Ahmed, Fela Winkelmolen, Miroslav

Miladinovic, Cedric Archembeau, Alex Tang, Bhaskar Dutt, Patricia Grao, and

Kumar Venkateswar. 2020. Amazon SageMaker Autopilot: A White Box AutoML

Solution at Scale. In Proceedings of the Fourth International Workshop on Data
Management for End-to-End Machine Learning (Portland, OR, USA) (DEEM’20).
Association for Computing Machinery, New York, NY, USA, Article 2, 7 pages.

https://doi.org/10.1145/3399579.3399870

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.
2009.5206848

[19] Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2018. Ad-

aBatch: Adaptive Batch Sizes for Training Deep Neural Networks.

arXiv:1712.02029 [cs.LG]

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-

tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[21] Terrance Devries and Graham W. Taylor. 2017. Improved Regularization of

Convolutional Neural Networks with Cutout. arXiv:1708.04552 (2017).
[22] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding

up Automatic Hyperparameter Optimization of Deep Neural Networks by Ex-

trapolation of Learning Curves. In Proceedings of the 24th International Confer-
ence on Artificial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press,
3460–3468.

[23] Iman Elghandour and Ashraf Aboulnaga. 2012. ReStore: Reusing Results of

MapReduce Jobs. Proc. VLDB Endow. 5, 6 (feb 2012), 586–597. https://doi.org/10.

14778/2168651.2168659

[24] Canva Engineering. 2021. Machine learning hyperparameter optimization

with Argo. https://canvatechblog.com/machine-learning-hyperparameter-

optimization-with-argo-a60d70b1fc8c.

[25] Lex Fridman, Jack Terwilliger, and Benedikt Jenik. 2019. DeepTraffic: Crowd-

sourced Hyperparameter Tuning of Deep Reinforcement Learning Systems for

Multi-Agent Dense Traffic Navigation. arXiv:1801.02805 [cs.NE]

[26] Johnu George, Ce Gao, Richard Liu, Hou Gang Liu, Yuan Tang, Ramdoot Pydipaty,

and Amit Kumar Saha. 2020. A Scalable and Cloud-Native Hyperparameter

Tuning System. arXiv:2006.02085 [cs.DC]

[27] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Elliot

Karro, and D. Sculley (Eds.). 2017. Google Vizier: A Service for Black-Box Opti-
mization. http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-

for-black-box-optimization

[28] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. 2019.

Efficient Training of BERT by Progressively Stacking. In Proceedings of the 36th
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR,

2337–2346. https://proceedings.mlr.press/v97/gong19a.html

[29] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,

large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[30] Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. 2021.

On the Transformer Growth for Progressive BERT Training. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational

Linguistics, Online, 5174–5180. https://doi.org/10.18653/v1/2021.naacl-main.406

[31] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath,

Yuan Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and

Computation in Datacenters. In 9th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 10). USENIX Association, Vancouver,

BC. https://www.usenix.org/conference/osdi10/nectar-automatic-management-

data-and-computation-datacenters

[32] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich

Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and

1050

https://doi.org/10.1145/3292500.3330701
https://proceedings.mlr.press/v48/amodei16.html
https://openreview.net/forum?id=BkrsAzWAb
https://www.kaggle.com/kurianbenoy/classifying-flowers-with-fastai2/notebook
https://www.kaggle.com/kurianbenoy/classifying-flowers-with-fastai2/notebook
https://hal.archives-ouvertes.fr/hal-02447823
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/2983323.2983669
https://doi.org/10.1145/2983323.2983669
https://arxiv.org/abs/1512.01274
https://github.com/fchollet/keras
http://arxiv.org/abs/1511.07289
https://doi.org/10.23919/Eusipco47968.2020.9287362
https://doi.org/10.23919/Eusipco47968.2020.9287362
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://proceedings.neurips.cc/paper/2020/file/d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf
https://arxiv.org/abs/1803.07445
https://doi.org/10.1145/3399579.3399870
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1712.02029
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.14778/2168651.2168659
https://doi.org/10.14778/2168651.2168659
https://canvatechblog.com/machine-learning-hyperparameter-optimization-with-argo-a60d70b1fc8c
https://canvatechblog.com/machine-learning-hyperparameter-optimization-with-argo-a60d70b1fc8c
https://arxiv.org/abs/1801.02805
https://arxiv.org/abs/2006.02085
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
https://proceedings.mlr.press/v97/gong19a.html
https://doi.org/10.18653/v1/2021.naacl-main.406
https://www.usenix.org/conference/osdi10/nectar-automatic-management-data-and-computation-datacenters
https://www.usenix.org/conference/osdi10/nectar-automatic-management-data-and-computation-datacenters

Andrew Y. Ng. 2014. Deep Speech: Scaling up end-to-end speech recognition.

[33] Md Kamrul Hasan, Md Tasnim Jawad, Kazi Nasim Imtiaz Hasan, Sajal Basak

Partha, Md Masum Al Masba, Shumit Saha, and Mohammad Ali Moni. 2021.

COVID-19 identification from volumetric chest CT scans using a progressively re-

sized 3D-CNN incorporating segmentation, augmentation, and class-rebalancing.

Informatics in medicine unlocked 26 (2021), 100709. https://doi.org/10.1016/j.imu.

2021.100709

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[35] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. 2012. Neural networks

for machine learning lecture 6a overview of mini-batch gradient descent. Cited
on 14, 8 (2012), 2. http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_

slides_lec6.pdf.

[36] Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. 2019. Population

Based Augmentation: Efficient Learning of Augmentation Policy Schedules. In

Proceedings of the 36th International Conference on Machine Learning (Proceedings
of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov

(Eds.), Vol. 97. PMLR, 2731–2741. https://proceedings.mlr.press/v97/ho19b.html

[37] Elad Hoffer, Berry Weinstein, Itay Hubara, Tal Ben-Nun, Torsten Hoefler, and

Daniel Soudry. 2019. Mix & Match: training convnets with mixed image sizes

for improved accuracy, speed and scale resiliency. arXiv:1908.08986 [cs.CV]

[38] Jeremy Howard. 2018. Training Imagenet in 3 hours for USD 25; and CIFAR10

for USD 0.26. https://www.fast.ai/2018/04/30/dawnbench-fastai/

[39] IAFOSS. 2018. Similarity DenseNet121 [0.805LB] kernel time limit. https://www.

kaggle.com/iafoss/similarity-densenet121-0-805lb-kernel-time-limit/notebook

[40] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning (Proceedings of Machine
Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR, Lille,

France, 448–456. https://proceedings.mlr.press/v37/ioffe15.html

[41] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff

Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,

Chrisantha Fernando, and Koray Kavukcuoglu. 2017. Population Based Training

of Neural Networks. arXiv:1711.09846 [cs.LG]

[42] Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic Best Arm Identifica-

tion and Hyperparameter Optimization. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research), Arthur Gretton and Christian C. Robert (Eds.), Vol. 51. PMLR, Cadiz,

Spain, 240–248. https://proceedings.mlr.press/v51/jamieson16.html

[43] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convo-

lutional Architecture for Fast Feature Embedding. In Proceedings of the 22nd
ACM International Conference on Multimedia (Orlando, Florida, USA) (MM
’14). Association for Computing Machinery, New York, NY, USA, 675–678.

https://doi.org/10.1145/2647868.2654889

[44] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc

Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018. Com-

putation Reuse in Analytics Job Service at Microsoft. In Proceedings of the
2018 International Conference on Management of Data (Houston, TX, USA) (SIG-
MOD ’18). Association for Computing Machinery, New York, NY, USA, 191–203.

https://doi.org/10.1145/3183713.3190656

[45] Kiran U Kamath. 2020. fastai MultiLabel Classification using Kfold

CV. https://www.kaggle.com/kirankamat/fastai-multilabel-classification-using-

kfold-cv/notebook

[46] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progres-

sive Growing of GANs for Improved Quality, Stability, and Variation. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.
https://openreview.net/forum?id=Hk99zCeAb

[47] Chiheon Kim, Saehoon Kim, Jongmin Kim, Donghoon Lee, and Sungwoong Kim.

2021. Automated Learning Rate Scheduler for Large-batch Training. In 8th ICML
Workshop on Automated Machine Learning (AutoML).

[48] Jinwoong Kim, Minkyu Kim, Heungseok Park, Ernar Kusdavletov, Dongjun

Lee, Adrian Kim, Ji-Hoon Kim, Jung-Woo Ha, and Nako Sung. 2018. CHOPT :

Automated Hyperparameter Optimization Framework for Cloud-Based Machine

Learning Platforms. arXiv:1810.03527 [cs.LG]

[49] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[50] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,

Sylvain Gelly, and Neil Houlsby. 2020. Big transfer (bit): General visual repre-

sentation learning. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16. Springer, 491–507.

[51] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.

Tech report (2009).

[52] Lak Lakshmanan and Wenzhe Li. 2018. Hyperparameter tuning on Google Cloud

Platform is now faster and smarter. https://cloud.google.com/blog/products/

gcp/hyperparameter-tuning-on-google-cloud-platform-is-now-faster-and-

smarter.

[53] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santam-

brogio, Markus Weimer, and Matteo Interlandi. 2018. PRETZEL: Opening the

Black Box of Machine Learning Prediction Serving Systems. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX
Association, Carlsbad, CA, 611–626. https://www.usenix.org/conference/osdi18/

presentation/lee

[54] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014.

Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks.

In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)

(SOCC ’14). Association for Computing Machinery, New York, NY, USA, 1–15.

https://doi.org/10.1145/2670979.2670985

[55] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet

Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter

optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765–6816.

[56] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan

Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2020. A

System for Massively Parallel Hyperparameter Tuning. In Proceedings of
Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze

(Eds.), Vol. 2. 230–246. https://proceedings.mlsys.org/paper/2020/file/

f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf

[57] Liam Li, Evan Sparks, Kevin Jamieson, and Ameet Talwalkar. 2018. Exploiting

Reuse in Pipeline-Aware Hyperparameter Tuning. In Systems for ML Workshop
at NeurIPS.

[58] Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E. Gonzalez, Ion

Stoica, and Alexey Tumanov. 2019. HyperSched: Dynamic Resource Reallocation

for Model Development on a Deadline. In Proceedings of the ACM Symposium on
Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19). Association for Computing

Machinery, New York, NY, USA, 61–73. https://doi.org/10.1145/3357223.3362719

[59] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez,

and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection

and Training. In ICML AutoML Workshop.
[60] Rui Liu, Sanjay Krishnan, Aaron J. Elmore, and Michael J. Franklin. 2021.

Understanding and Optimizing Packed Neural Network Training for Hyper-

Parameter Tuning. In Proceedings of the Fifth Workshop on Data Management
for End-To-End Machine Learning (Virtual Event, China) (DEEM ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 3, 11 pages.

https://doi.org/10.1145/3462462.3468880

[61] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-

man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis: Fair

and Efficient GPU Cluster Scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). USENIX Association, Santa Clara,

CA, 289–304. https://www.usenix.org/conference/nsdi20/presentation/mahajan

[62] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. 2018.

An Empirical Model of Large-Batch Training. arXiv:1812.06162 [cs.LG]

[63] Dirk Merkel. 2014. Docker: Lightweight Linux Containers for Consistent

Development and Deployment. Linux J. 2014, 239, Article 2 (March 2014).

http://dl.acm.org/citation.cfm?id=2600239.2600241

[64] Microsoft. 2017. Neural Network Intelligence (NNI). https://github.com/

Microsoft/nni

[65] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard

Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,

and Ion Stoica. 2018. Ray: ADistributed Framework for EmergingAI Applications.

In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 561–577. https://www.usenix.

org/conference/osdi18/presentation/moritz

[66] Anna Novikova. 2019. fast.ai starter with ResNet 50. https://www.kaggle.com/

demonplus/fast-ai-starter-with-resnet-50/notebook

[67] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick

Koudas. 2010. MRShare: Sharing across Multiple Queries in MapReduce. Proc.
VLDB Endow. 3, 1–2 (sep 2010), 494–505. https://doi.org/10.14778/1920841.

1920906

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo

Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman

Garnett (Eds.). 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/

bdbca288fee7f92f2bfa9f7012727740-Abstract.html

1051

https://doi.org/10.1016/j.imu.2021.100709
https://doi.org/10.1016/j.imu.2021.100709
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://proceedings.mlr.press/v97/ho19b.html
https://arxiv.org/abs/1908.08986
https://www.fast.ai/2018/04/30/dawnbench-fastai/
https://www.kaggle.com/iafoss/similarity-densenet121-0-805lb-kernel-time-limit/notebook
https://www.kaggle.com/iafoss/similarity-densenet121-0-805lb-kernel-time-limit/notebook
https://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1711.09846
https://proceedings.mlr.press/v51/jamieson16.html
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/3183713.3190656
https://www.kaggle.com/kirankamat/fastai-multilabel-classification-using-kfold-cv/notebook
https://www.kaggle.com/kirankamat/fastai-multilabel-classification-using-kfold-cv/notebook
https://openreview.net/forum?id=Hk99zCeAb
https://arxiv.org/abs/1810.03527
http://arxiv.org/abs/1412.6980
https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-on-google-cloud-platform-is-now-faster-and-smarter
https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-on-google-cloud-platform-is-now-faster-and-smarter
https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-on-google-cloud-platform-is-now-faster-and-smarter
https://www.usenix.org/conference/osdi18/presentation/lee
https://www.usenix.org/conference/osdi18/presentation/lee
https://doi.org/10.1145/2670979.2670985
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://doi.org/10.1145/3357223.3362719
https://doi.org/10.1145/3462462.3468880
https://www.usenix.org/conference/nsdi20/presentation/mahajan
https://arxiv.org/abs/1812.06162
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://github.com/Microsoft/nni
https://github.com/Microsoft/nni
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.kaggle.com/demonplus/fast-ai-starter-with-resnet-50/notebook
https://www.kaggle.com/demonplus/fast-ai-starter-with-resnet-50/notebook
https://doi.org/10.14778/1920841.1920906
https://doi.org/10.14778/1920841.1920906
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[69] Valerio Perrone, Huibin Shen, Aida Zolic, Iaroslav Shcherbatyi, Amr Ahmed,

Tanya Bansal, Michele Donini, Fela Winkelmolen, Rodolphe Jenatton, Jean Bap-

tiste Faddoul, Barbara Pogorzelska, Miroslav Miladinovic, Krishnaram Kentha-

padi, Matthias Seeger, and Cédric Archambeau. 2021. Amazon SageMaker Au-
tomatic Model Tuning: Scalable Gradient-Free Optimization. Association for

Computing Machinery, New York, NY, USA, 3463–3471. https://doi.org/10.1145/

3447548.3467098

[70] Miguel Pinto. 2019. pneumothorax fastai U-Net. https://www.kaggle.com/

mnpinto/pneumothorax-fastai-u-net/notebook

[71] Jeff Rasley, Yuxiong He, Feng Yan, Olatunji Ruwase, and Rodrigo Fonseca. 2017.

HyperDrive: Exploring Hyperparameters with POP Scheduling. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference (Las Vegas, Nevada) (Mid-
dleware ’17). Association for Computing Machinery, New York, NY, USA, 1–13.

https://doi.org/10.1145/3135974.3135994

[72] Inc Red Hat. 2020. GlusterFS. https://www.gluster.org/

[73] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You

only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[74] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s Open-Source Deep-

Learning Toolkit. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (San Francisco, California, USA)

(KDD ’16). Association for Computing Machinery, New York, NY, USA, 2135.

https://doi.org/10.1145/2939672.2945397

[75] Leslie N. Smith. 2017. Cyclical Learning Rates for Training Neural Networks. In

2017 IEEEWinter Conference on Applications of Computer Vision (WACV). 464–472.
https://doi.org/10.1109/WACV.2017.58

[76] Leslie N. Smith. 2018. A disciplined approach to neural network hyper-

parameters: Part 1 – learning rate, batch size, momentum, and weight decay.

arXiv:1803.09820 [cs.LG]

[77] Leslie N. Smith andNicholay Topin. 2018. Super-Convergence: Very Fast Training

of Neural Networks Using Large Learning Rates. arXiv:1708.07120 [cs.LG]

[78] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. 2018. Don’t

Decay the Learning Rate, Increase the Batch Size. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/

forum?id=B1Yy1BxCZ

[79] Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin,

and Benjamin Recht. 2017. KeystoneML: Optimizing Pipelines for Large-Scale

Advanced Analytics. In 33rd IEEE International Conference on Data Engineering,
ICDE 2017, San Diego, CA, USA, April 19-22, 2017. IEEE Computer Society, 535–546.

https://doi.org/10.1109/ICDE.2017.109

[80] Danny Stoll, Jörg K. H. Franke, Diane Wagner, Simon Selg, and Frank

Hutter. 2020. Hyperparameter Transfer Across Developer Adjustments.

arXiv:2010.13117 [cs.LG]

[81] Nako Sung, Minkyu Kim, Hyunwoo Jo, Youngil Yang, Jinwoong Kim, Leonard

Lausen, Youngkwan Kim, Gayoung Lee, Donghyun Kwak, Jung-Woo Ha, and

Sunghun Kim. 2017. NSML: A Machine Learning Platform That Enables You to

Focus on Your Models. In NIPS Workshop on Machine Learning Systems (Learn-
ingSys).

[82] Mingxing Tan and Quoc Le. 2021. EfficientNetV2: Smaller Models and Faster

Training. In Proceedings of the 38th International Conference on Machine Learning
(Proceedings of Machine Learning Research), Marina Meila and Tong Zhang (Eds.),

Vol. 139. PMLR, 10096–10106. https://proceedings.mlr.press/v139/tan21a.html

[83] Eclipse Deeplearning4j Development Team. 2016. ND4J: Fast, Scientific and

Numerical Computing for the JVM. https://github.com/eclipse/deeplearning4j

[84] Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa, Shunta

Saito, Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hiroyuki Yamazaki Vincent.

2019. Chainer: A Deep Learning Framework for Accelerating the Research Cycle.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur
Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George

Karypis (Eds.). ACM, 2002–2011. https://doi.org/10.1145/3292500.3330756

[85] Qianwen Wang, Yao Ming, Zhihua Jin, Qiaomu Shen, Dongyu Liu, Micah J.

Smith, Kalyan Veeramachaneni, and Huamin Qu. 2019. ATMSeer: Increasing
Transparency and Controllability in Automated Machine Learning. Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/

3290605.3300911

[86] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. 2016. Network

Morphism. In Proceedings of The 33rd International Conference on Machine Learn-
ing (Proceedings of Machine Learning Research), Maria Florina Balcan and Kil-

ian Q. Weinberger (Eds.), Vol. 48. PMLR, New York, New York, USA, 564–572.

https://proceedings.mlr.press/v48/wei16.html

[87] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

2016. Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144 (2016).
[88] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya G.

Parameswaran. 2018. Helix: Holistic Optimization for Accelerating Iterative

Machine Learning. Proc. VLDB Endow. 12, 4 (2018), 446–460. https://doi.org/10.

14778/3297753.3297763

[89] Matthew D Zeiler. 2012. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).

[90] Jian Zhang and Ioannis Mitliagkas. 2019. YellowFin and the Art of Momentum

Tuning. In Proceedings of Machine Learning and Systems, A. Talwalkar, V. Smith,

and M. Zaharia (Eds.), Vol. 1. 289–308. https://proceedings.mlsys.org/paper/

2019/file/b3e3e393c77e35a4a3f3cbd1e429b5dc-Paper.pdf

1052

https://doi.org/10.1145/3447548.3467098
https://doi.org/10.1145/3447548.3467098
https://www.kaggle.com/mnpinto/pneumothorax-fastai-u-net/notebook
https://www.kaggle.com/mnpinto/pneumothorax-fastai-u-net/notebook
https://doi.org/10.1145/3135974.3135994
https://www.gluster.org/
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1109/WACV.2017.58
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1708.07120
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://doi.org/10.1109/ICDE.2017.109
https://arxiv.org/abs/2010.13117
https://proceedings.mlr.press/v139/tan21a.html
https://github.com/eclipse/deeplearning4j
https://doi.org/10.1145/3292500.3330756
https://doi.org/10.1145/3290605.3300911
https://doi.org/10.1145/3290605.3300911
https://proceedings.mlr.press/v48/wei16.html
https://doi.org/10.14778/3297753.3297763
https://doi.org/10.14778/3297753.3297763
https://proceedings.mlsys.org/paper/2019/file/b3e3e393c77e35a4a3f3cbd1e429b5dc-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/b3e3e393c77e35a4a3f3cbd1e429b5dc-Paper.pdf

