
Ranked Enumeration of JoinQueries with Projections
Shaleen Deep

University of Wisconsin - Madison

shaleen@cs.wisc.edu

Xiao Hu

Duke University

xh102@cs.duke.edu

Paraschos Koutris

University of Wisconsin - Madison

paris@cs.wisc.edu

ABSTRACT

Join query evaluation with ordering is a fundamental data pro-

cessing task in relational database management systems. SQL and

custom graph query languages such as Cypher offer this functional-
ity by allowing users to specify the order via the ORDER BY clause. In
many scenarios, the users also want to see the first 𝑘 results quickly

(expressed by the LIMIT clause), but the value of 𝑘 is not predeter-

mined as user queries are arriving in an online fashion. Recent work

has made considerable progress in identifying optimal algorithms

for ranked enumeration of join queries that do not contain any

projections. In this paper, we initiate the study of the problem of

enumerating results in ranked order for queries with projections.

Our main result shows that for any acyclic query, it is possible to

obtain a near-linear (in the size of the database) delay algorithm af-

ter only a linear time preprocessing step for two important ranking

functions: sum and lexicographic ordering. For a practical subset

of acyclic queries known as star queries, we show an even stronger

result that allows a user to obtain a smooth tradeoff between faster

answering time guarantees using more preprocessing time. Our re-

sults are also extensible to queries containing cycles and unions. We

also perform a comprehensive experimental evaluation to demon-

strate that our algorithms, which are simple to implement, improve

up to three orders of magnitude in the running time over state-of-

the-art algorithms implemented within open-source RDBMS and

specialized graph databases.

PVLDB Reference Format:

Shaleen Deep, Xiao Hu, and Paraschos Koutris. Ranked Enumeration of

Join Queries with Projections. PVLDB, 15(5): 1024 - 1037, 2022.

doi:10.14778/3510397.3510401

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/shaleen/rankedenumprojections.

1 INTRODUCTION

Join processing is one of themost fundamental problems in database

research with applications in many areas such as anomaly and

community detection in social media, fraud detection in finance, and

health monitoring. In many data analytics tasks, it is also required

to rank the query results in a specific order. This functionality is

supported by the ORDER BY clause in SQL, Cypher and SPARQL.
We demonstrate a practical example use-case.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 5 ISSN 2150-8097.

doi:10.14778/3510397.3510401

Example 1. Consider the DBLP dataset as a single relation 𝑅(𝐴, 𝐵),
indicating that 𝐴 is an author of paper 𝐵. Given an author 𝑎, the

function h-index(𝑎) returns the h-index of 𝑎. A popular analytical task

asks to find all co-authors who authored at least one paper together.

Additionally, the pairs of authors should be returned in decreasing

order of the sum of their h-indexes, since users are only interested in

the top-100 results. The following SQL query captures this task.

SELECT DISTINCT 𝑅1 .𝐴, 𝑅2 .𝐴 FROM 𝑅 AS 𝑅1, 𝑅 AS 𝑅2

WHERE 𝑅1 .𝐵 = 𝑅2 .𝐵

ORDER BY h_index(𝑅1 .𝐴) + h_index(𝑅2 .𝐴) LIMIT 100;

The above task is an example of a join query with projections

(join-project queries) because attribute 𝐵 has been projected out

(i.e. it is not present in the selection clause). The DISTINCT clause
ensures that there are no duplicate results.

Importance of joins with projections. Join queries containing

projections appear in several practical applications such as recom-

mendation systems [30, 47], similarity search [67], and network

reachability analysis [13, 26]. In fact, as Manegold et al. [48] re-

marked, joins in real-life queries almost always come with pro-

jections over certain attributes. Matrix multiplication [7], path

queries (equivalent to sparse matrix multiplication), and reachabil-

ity queries [32] are all examples of join-project queries that have

widespread applications in linear and relational algebra. Other data

models such as SPARQL [54] also support the projection operator

and evaluation of join-project queries has been a subject of research,

both theoretically [8] and practically [20]. In fact, as SPARQL sup-

ports ORDER BY/LIMIT operator, ranked enumeration for queries

(that include projections) and top-k over knowledge bases in the

SPARQL model has also been explicitly studied recently [18, 43].

As many practical SPARQL evaluation systems [33, 59] evaluate

queries using RDBMS, it is important to develop efficient algorithms

for such queries in the relational model. Similarly, [64] argued that

since a large fraction of the data of interest resides in RDBMS, ef-

ficient execution of graph queries (such as path and reachability

queries that contain projections and ranking) using RDBMS as the

backend is valuable. In the relational setting, join-project queries

also appear in the context of probabilistic databases (see Section

2.3 in [21]). This motivates us to develop efficient algorithms, both

in theory and practice, that address the challenge of incorporating

the ranked enumeration paradigm for join-project queries.

Prior Work. Efficient evaluation of join queries in the presence

of ranking functions has been a subject of intense research in the

database community. Recent work [16, 24, 62, 63, 65] has made sig-

nificant progress in identifying optimal algorithms for enumerating

query results in ranked order. In each of these works, the key idea

is to perform on-the-fly sorting of the output via the use of priority

queues by taking into account the query structure. [16] considered

1024

https://doi.org/10.14778/3510397.3510401
https://github.com/shaleen/rankedenumprojections
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3510397.3510401
https://www.acm.org/publications/policies/artifact-review-and-badging-current

the problem of top-k tree matching in graphs and proposed op-

timal algorithms by combining Lawler’s procedure [42] with the

ranking function. [62] introduced multiple dynamic programming

algorithms that lazily populate the priority queues. [65] took a

different approach where all possible candidates were eagerly in-

serted into the priority queues and [24] generalized these ideas to

present a unified theory of ranked enumeration for full join queries.

Very recently, [63] was able to extend some of these results to non

equi-joins as well. The performance metric for enumerating query

results is the delay [9], defined as the time difference between any

two consecutive answers. Prior work was able to obtain logarithmic

delay guarantees, which were shown to be optimal. However, all

prior work in this space suffer from one fundamental limitation:

it assumes that the join query is full, i.e. there are no non-trivial

projections involved. In fact, [63] explicitly remarks that in pres-

ence of projections, the strong guarantees obtained for full queries

do not hold anymore. Their suggestion to handle this limitation is

to convert the query with projections into a projection-free result,

i.e. materialize the join query result, apply the projection filter, and

then rank the resulting output. However, this conversion requires

an expensive materialization step. An alternate approach is to mod-

ify the weights of the tuples/attribute values to allow re-use of

existing algorithms (we describe this approach in Section 2). As

we show later, this approach also does not fare any better and re-

quires enumerating the full output of the join query, which can be

polynomially slower than the optimal solution.

On the practical side, all RDBMS and graph processing engines

evaluate join-project queries in the presence of ranking functions

by performing three operations in serial order: (𝑖) materializing

the result of the full join query, (𝑖𝑖) de-duplicating the query result

(since the query has DISTINCT clause), and (𝑖𝑖𝑖) sorting the de-

duplicated result according to the ranking function. The first step

in this process is a show-stopper. Indeed, the size of the full join

query result can be orders of magnitude larger than the size of

the final output after applying projections and de-duplicating it.

Thus, the materialization and the de-duplication step introduces

significant overhead since they are blocking operators. Further, if

the user is interested in only a small fraction of the ordered output,

the user still has to wait until the entire query completes even to

see the top-ranked result.

1.1 Our Contribution and Key Ideas

In this paper, we initiate the study of ranked enumeration over

join-project queries. We focus on two important ranking functions:

SUM (𝑓 (𝑥, 𝑧) = 𝑥 + 𝑧) and LEXICOGRAPHIC (𝑓 (𝑥, 𝑧) = 𝑥, 𝑧) for two

reasons. First, both of these functions are very useful in practice [35].

Second, extending the algorithmic ideas to other functions, such

as MIN, MAX, AVG and circuits that use sum and products, is quite

straightforward. More specifically, we make three contributions.

1. Enumeration with Formal Delay Guarantees. Our first main

result shows that for any acyclic query (the most common fragment

of queries in practice [14]) with arbitrary projection attributes, it is

possible to develop efficient enumeration algorithms (Section 3).

Theorem 1. For an acyclic join-project query 𝑄 , an instance 𝐷 , and

a ranking function rank ∈ {SUM, LEXICOGRAPHIC}, the query result

𝑄 (𝐷) can be enumerated according to rank with worst-case delay

𝑂 (|𝐷 | log |𝐷 |), after 𝑂 (|𝐷 |) preprocessing time.

This result implies that top-𝑘 results in𝑄 (𝐷) can be enumerated

in 𝑂 (𝑘 |𝐷 | log |𝐷 |) time. Theorem 1 is able to recover the prior

results for ranked enumeration of full queries as well [24]. The

key idea of our algorithm is to develop multiway join plans [52]

by exploiting the properties of join trees. Embedding the priority

queues in the join tree strategically allows us to generate the sorted

output on-the-fly and avoid the binary join plans that all state-

of-the-art systems use. Further, since we formulate the problem

in terms of delay guarantees, it allows our techniques to be limit-

aware: for small 𝑘 , the answering time is also small.

2. Faster Enumeration with More Preprocessing. Our second

contribution is an algorithm that allows for a smooth tradeoff be-

tween preprocessing time and delay guarantee for a subset of join-

project queries known as star queries over binary relations of the

form 𝑅𝑖 (𝐴𝑖 , 𝐵) (denoted as 𝑄★
𝑚) (Section 4):

SELECT DISTINCT 𝐴1, . . . , 𝐴𝑚 FROM 𝑅1, . . . , 𝑅𝑚

WHERE 𝑅1 .𝐵 = · · · = 𝑅𝑚 .𝐵 ORDER BY 𝐴1 + · · · +𝐴𝑚 LIMIT k;

Theorem 2. For a star join-project query 𝑄★
𝑚 , an instance 𝐷 , and

a ranking function rank ∈ {SUM, LEXICOGRAPHIC}, the query result
𝑄 (𝐷) can be enumerated according to rank with worst-case delay

𝑂
(
|𝐷 |1−𝜖 log |𝐷 |

)
, using 𝑂

(
|𝐷 |1+(𝑚−1)𝜖

)
preprocessing time and

𝑂

(
|𝐷 |𝑚 (1−𝜖)

)
space, for any 0 ≤ 𝜖 ≤ 1.

Theorem 2 enables users to carefully control the space usage, pre-

processing time and delay. For both Theorem 1 and Theorem 2, we

can show that the delay guarantee is optimal subject to a conjecture

about the running time of star join-project queries in Subsection 4.2.

3. Experimental Evaluation. Our final contribution is an exten-

sive experimental evaluation for practical join-project queries on

real-world datasets (Section 6). To the best of our knowledge, this is

the first comprehensive evaluation of how existing state-of-the-art

relational and graph engines execute join-project queries in the

presence of ranking. We choose MariaDB, PostgreSQL, two popular

open-source RDBMS, and Neo4j as our baselines. We highlight two

key results. First, our experimental evaluation demonstrates the bot-

tleneck of serially performing materialization, de-duplicating, and

sorting. Even with LIMIT 10 (i.e. return the top-10 ranked results),

the engines are orders of magnitude slower than our algorithm.

For some queries, they cannot finish the execution in a reasonable

time since they run out of main memory. On the other hand, our

algorithm has orders of magnitude smaller memory footprint that

allows for faster execution. The second key result is that all baseline

engines are agnostic of the ranking function. The execution time of

the queries is identical for both the sum and lexicographic ranking

function. However, our algorithm uses the additional structure of

lexicographical ordering and can execute queries 2− 3× faster than

the sum function. For queries with unions and cycles, our algorithm

maintains its performance improvement over the baselines.

2 PROBLEM SETTING

In this section we present the basic notions and terminology, and

then discuss our framework. We focus on the class of join-project

1025

Figure 1: Illustration of join tree for a join-project query

𝑄 = 𝜋𝐴,𝐸 (𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶, 𝐷) Z 𝑅4 (𝐷, 𝐸)).

queries, which are defined as

𝑄 = 𝜋A (𝑅1 (A1) Z 𝑅2 (A2) Z . . . Z 𝑅𝑚 (A𝑚))

Here, each relation has schema 𝑅𝑖 (A𝑖), where A𝑖 is an ordered

set of attributes. Let A = A1 ∪ A2 ∪ · · · ∪ A𝑚 . The projection

operator 𝜋A only keeps a subset of the attributes from A. The join
we consider is natural join, where tuples from two relations can be

joined if they share the same value on the common attributes. A

join-project query is full if A = A. Unlike prior work on ranked

enumeration, in this paper we place no restriction on the set of

attributes in the projection operator. For simplicity of presentation,

we do not consider selections; these can be easily incorporated

into our algorithms. As an example, the SQL query in Example 1

corresponds to the following query: 𝜋𝐴,𝐵 (𝑅1 (𝐴,𝐶) Z 𝑅2 (𝐵,𝐶)).
A database 𝐷 is a set of relations, whose size is defined as the

total number of tuples in all relations denoted as |𝐷 |. For tuple 𝑡 , we
will use the shorthand 𝑡 [𝐴] to denote 𝜋𝐴 (𝑡). We use E to denote

the set of all relations in the database.

Acyclic Queries and Join Trees. A join-project query𝑄 is acyclic

if and only if it admits a join tree T . In a join tree, each relation is a

node, and for each attribute 𝐴, all nodes in the tree containing 𝐴

form a connected subtree. For simplicity, we will use node 𝑖 to refer

to the node corresponding to relation 𝑅𝑖 in T . Given a join tree T ,
pick any node to be the root, and then orient each edge towards the

root. Let T𝑖 be the subtree rooted at node 𝑅𝑖 . Let parent(𝑅𝑖) be the
(unique) parent of 𝑅𝑖 , and anchor(𝑅𝑖) = 𝑅𝑖 ∩ parent(𝑅𝑖) to be the

anchor attributes between𝑅𝑖 and its parent. Let child(𝑅𝑖) be the set
of children nodes of 𝑅𝑖 . Finally, we fix the ordering of the projection

attributes in A to be the order of visiting them in the in-order

traversal of T . Finally, we defineA𝜋
𝑖
as the ordered set of projection

attributes in subtree rooted at node 𝑖 (including projection attributes

of node 𝑖). As a convention, we define anchor(𝑟) = ∅, 𝐴𝜋
𝑟 = ∅ for

the root 𝑟 and child(𝑅𝑖) = ∅ for a leaf node 𝑅𝑖 .

Example 2. Consider a join-project query 𝑄 = 𝜋𝐴,𝐸 (𝑅1 (𝐴, 𝐵) Z 𝑅2
(𝐵,𝐶) Z 𝑅3 (𝐶, 𝐷) Z 𝑅4 (𝐷, 𝐸)) under the ranking function SUM
defined over attributes 𝐴, 𝐸. In other words, for every output tuple 𝑡 ,

the score of the tuple is 𝑡 [𝐴] + 𝑡 [𝐸]. Figure 1 shows the join tree for

the query. We fix 𝑅3 as the root with 𝑅2 as the left child and 𝑅4 (a leaf

node) as the right child. 𝑅1, as a leaf node, is also the only child of 𝑅2.

Figure 2: Examples of GHD and fhw. The leftmost is the min-

imal GHD of a cycle join 𝑄 = 𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3) Z
· · · Z 𝑅𝑛−1 (𝐴𝑛−1, 𝐴𝑛) Z 𝑅𝑛 (𝐴𝑛, 𝐴1) with fhw = 2. The mid-

dle is the minimal GHD of a bi-clique join 𝑄 =Z𝑖∈[𝑛], 𝑗∈[𝑚]
𝑅 (𝑖−1)𝑚+𝑗 (𝐴𝑖 , 𝐵 𝑗) with fhw = 𝑚. The rightmost is the mini-

mal GHD of a butterfly join 𝑄 = 𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3) Z
𝑅3 (𝐴1, 𝐴4) Z 𝑅4 (𝐴4, 𝐴3) with fhw = 2.

Generalized Hypertree Decompositions. A weight assignment

u = (𝑢𝐹)𝐹 ∈E is said to be a fractional edge cover if (𝑖) for every
𝐹 ∈ E, 𝑢𝐹 ≥ 0; and (𝑖𝑖) for every 𝑋 ∈ A,∑𝐹 :𝑋 ∈𝐹 𝑢𝐹 ≥ 1. The

fractional edge cover number for A, denoted 𝜌∗ (A) is the minimum

of

∑
𝐹 ∈E 𝑢𝐹 over all possible edge covers. A generalized hypertree

decomposition (GHD) of a query𝑄 is a tuple (T, (B𝑡)𝑡 ∈𝑉 (T)) where
T is a tree and every B𝑡 (called the bag of 𝑡) is a subset of A for

each node 𝑡 of the tree such that: (𝑖) each variables of each 𝐹 ∈ E
is contained in some bag; and (𝑖𝑖) for each 𝐴 ∈ A, the set of nodes
{𝑡 | 𝐴 ∈ B𝑡 } is connected in T. The fractional hypertree width of

a decomposition is defined as max𝑡 ∈𝑉 (T) 𝜌
∗ (B𝑡), where 𝜌∗ (B𝑡)

is the fractional edge cover number of the attributes in B𝑡 . The

fractional hypertree width of a query 𝑄 , denoted fhw(𝑄), is the
minimum fractional hypertree width over all possible GHDs of

𝑄 . Figure 2 gives examples of GHDs of popular queries and their

width. For an acyclic query, it holds that fhw = 1 and any join tree

is a valid GHD.

Computational Model. To measure the running time of our algo-

rithms, we use the uniform-cost RAMmodel [34], where data values

as well as pointers to databases are of constant size. Throughout

the paper, all complexity results are with respect to data complexity,

where the query is assumed fixed. It is important to note that we

focus on the main memory setting. We further assume existence of

perfect hashing that allows constant time lookups in hash tables.

2.1 Ranking Functions

The ordering of query results in𝑄 (𝐷) can be specified by a ranking

function, or through the ORDER BY clause of a SQL query in practice.

Formally, a total order ⪰ on the tuples in 𝑄 (𝐷) defined over the

attributes A, is induced by a ranking function rank that maps each

tuple 𝑡 ∈ 𝑄 (𝐷) to a real number rank(𝑡) ∈ R. In particular, for two

tuples 𝑡1, 𝑡2, we have 𝑡1 ⪰ 𝑡2 if and only if rank(𝑡1) ≥ rank(𝑡2). We

assume that dom(𝐴) for any 𝐴 ∈ A is also equipped with a total

order ⪰. We present an example of a ranking function below.

Example 3. Consider a function𝑤 : dom(𝐴) → R for any attribute

𝐴 ∈ A. For each query result 𝑡 , we define its rank as rank(𝑡) =∑
𝐴∈A𝑤 (𝑡 [𝐴]), the total sum of the weights over all attributes in A.

1026

We will focus on SUM and LEXICOGRAPHIC in this paper. We

note that both functions are instantiations of a more general class

of decomposable functions [24]. The ideas introduced for SUM and
LEXICOGRAPHIC are readily applicable to more complicated func-

tions including products, a combination of sum and products, etc.

2.2 Problem Parameters

Given a join-project query 𝑄 and a database 𝐷 , an enumeration

query asks to enumerate the tuples of 𝑄 (𝐷) according to some

specific ordering defined by rank. We study this problem in a similar

framework as [58], where an algorithm is decomposed into:

• a preprocessing phase that takes time 𝑇𝑝 and computes a

data structure of size 𝑆𝑝

• an enumeration phase (i.e. the online query phase) that

outputs 𝑄 (𝐷) without duplicates under the specified or-

dering whenever a user query is issued. This phase has

full access to any data structures constructed in the pre-

processing phase. The time between outputting any two

consecutive tuples (and also the time to output the first

tuple, and the time to notify that the enumeration has com-

pleted after the last tuple) is at most 𝛿 .

Prior work [24] has shown that for acyclic joins without pro-

jections, there exists an algorithm with 𝑇𝑝 = 𝑆𝑝 = 𝑂 (|𝐷 |) that can
achieve 𝛿 = 𝑂 (log |𝐷 |) delay under ranking. However, the problem

of ranked enumeration when projections are involved is wide open.

Using Existing Algorithms. One possible solution to the problem

is to set the weights of non-projection attributes to 0. This will

ensure that for SUM function, only the projection attributes are

considered in the ranking and existing algorithms for full join

queries could be used. However, this proposal gives poor delay

guarantees and is as expensive as enumerating the full join result.

For example, for the four path query in Example 2, the output of the

query could be constant in size but the full join can be as large as

Ω(|𝐷 |2) which is prohibitively expensive, but our algorithm would

only require 𝑂 (|𝐷 |) in this case. In general, a join with ℓ relations

may require as much as Ω(|𝐷 |ℓ−1) time to output the smallest tuple.

We describe more details and the formal proof in [23].

3 GENERAL ACYCLIC QUERIES

We first describe the main algorithm of enumerating acyclic join-

project queries for SUM ordering in Subsection 3.1, followed by

a specialized algorithm for LEXICOGRAPHIC ordering in Subsec-

tion 3.2. Before we describe the algorithm, we introduce two key

data structures that will be used: cell and priority queues.

Definition 1. A cell, denoted as 𝑐 = ⟨𝑡, [𝑝1, . . . , 𝑝𝑘], 𝑞⟩, is a vector
consisting of three values: (i) a tuple 𝑡 ∈ 𝑅𝑖 for node 𝑖 in the join tree

T , (ii) an array of pointers [𝑝1, . . . , 𝑝𝑘] where the ℓ𝑡ℎ pointer points

to a cell defined for ℓ𝑡ℎ child of node 𝑖 in T , (iii) a pointer 𝑞 that can

only point to another cell defined for node 𝑖 .

Given a cell 𝑐 defined for node 𝑖 , one can reconstruct the tuple

over A𝜋
𝑖
in constant time (dependent only on the query size, which

is a constant) by traversing the pointers recursively. We will use

output(c) to denote the utility method that performs this task. Note

that the time and space complexity of creating a cell is 𝑂 (1) since

the size of the query and the database schema is assumed to be

a constant. This implies that we only need to insert/access a con-

stant number of entries in the vector representing a cell. Similarly,

output(c) also takes𝑂 (1) time since the join tree size is a constant.

Priority queue. A priority queue is a data structure for maintain-

ing a set 𝑆 of elements, each with an associated value called a key.
The space complexity of a priority queue containing |𝑆 | elements

is𝑂 (|𝑆 |). We will use an implementation of a priority queue (e.g., a

Fibonacci heap [31]) with the following properties: (i) an element

can be inserted in 𝑂 (1) time, (ii) the min element can be obtained

in 𝑂 (1) time, and (iii) the min element can be popped and deleted

in 𝑂 (log |𝐷 |) time. We will use the priority queue in conjunction

with a cell in the following way: for two cells 𝑐1 and 𝑐2, the pri-

ority queue uses rank(output(c1)) and rank(output(c2)) in the

comparator function to determine the relative ordering of 𝑐1 and

𝑐2. If rank(output(c1)) = rank(output(c2)), then we break ties

according to the lexicographic order of output(c1) and output(c2).
The choice of lexicographic ordering is not driven by any specific

consideration; as long as the ties are broken consistently, we can

use other tie-breaking criteria too. Once again, the comparator func-

tion only takes a 𝑂 (1) time to compare since the ranking function

rank(output(c)) can be evaluated in constant time.

3.1 General Algorithm

In this section, we present the algorithm for Theorem 1. At a high

level, each node 𝑖 in the join tree will materialize, in an incremental

fashion, all tuples over the attributes A𝜋
𝑖
∪ anchor(𝑅𝑖) in sorted

order. In order to efficiently store the materialized output, we will

use the cell data structure. Since we need to sort the materialized

output, each node in the join tree maintains a set of priority queues

indexed by 𝜋anchor(𝑅𝑖) (𝑢), 𝑢 ∈ 𝑅𝑖 . The values of the priority queue

are the cells of node 𝑖 . For example, given the join tree from Exam-

ple 2, node 2 containing 𝑅2 will incrementally materialize the sorted

result of the subquery 𝜋𝐶,𝐴 (𝑅2 (𝐵,𝐶) Z 𝑅1 (𝐴, 𝐵)) that is indexed
by the values 𝜋𝐶 (𝑅2 (𝐵,𝐶)) since A𝜋

2
= {𝐴} and anchor(𝑅2) = {𝐶}.

Note that there may be multiple possible join trees for a given

acyclic query. Our algorithm is applicable to all join trees. In fact,

any node in the join tree can be chosen as the root without any

impact on the time and space complexity.

Preprocessing Phase.We begin by describing the algorithm for

preprocessing in Algorithm 1. We assume that a join tree has been

fixed and the input instance𝐷 does not contain any dangling tuples,

i.e., tuples that will not contribute in the join; otherwise, we can

invoke the Yannakakis algorithm [66] to remove all dangling tuples.

We initialize a set of empty priority queues for every node in the join

tree. We proceed in a bottom up fashion and perform the following

steps. For each leaf relation 𝑅𝑖 ∈ T , we create a cell ⟨𝑡, [],⊥⟩
for each tuple 𝑡 ∈ 𝑅𝑖 and insert it into PQ𝑖 [𝜋anchor(𝑅𝑖) (𝑡)]. For
each non-leaf relation 𝑅 𝑗 ∈ T , we create a cell for 𝑡 ∈ 𝑅 𝑗 , which

points to the top of the priority queue in each child node of 𝑅 𝑗 that

can be joined with 𝑡 . This cell is then added to the priority queue

PQ𝑖 [𝜋anchor(𝑅𝑖) (𝑡)]. Note that we only have one priority queue for
the root relation 𝑟 since anchor(𝑟) = ∅ by definition.

Example 4. Continuing with the 4-path query running example,

consider the following instance 𝐷 as shown below.

1027

h(1, 1), [],?i 1

h(2, 1), [],?i 2

h(1, 2), [],?i 1

h(1, 1), [100],?i 1
h(2, 1), [200],?i 1

100

101

200

201

300

301

400

401

h(1, 1), [],?i 1
h(1, 2), [],?i 2

h(3, 2), [],?i 3

h(1, 1), [300, 400],?i 2 500R3(C, D)

R2(B, C)

R1(A, B)

R4(D, E)

PQ3[]

PQ4[1]

PQ2[1]

PQ1[1]

PQ1[2]

(a) Data structure state after the preprocessing phase. Each mem-

ory location has a cell and the partial score of the partial answer

R3(C, D)

R2(B, C)

R1(A, B)

R4(D, E)

h(2, 1), [],?i 2

100

101

200

201h(3, 2), [],?i 3

h(1, 1), [], 101i 1

h(1, 2), [], 201i 1

h(2, 1), [200],?i 1

h(1, 1), [101],?i 2

h(2, 1), [201],?i 3

300

301

h(1, 1), [100], 302i 1

h(2, 1), [200], 303i 1

302

303
400

401h(1, 2), [],?i 2

h(1, 1), [], 401i 1

h(1, 1), [302, 400],?i 3

h(1, 1), [300, 401],?i 3

500

501

502

h(1, 1), [300, 400],?i 2

PQ3[]

PQ4[1]

PQ2[1]

PQ1[1]

PQ1[2]

(b) Data structure after one iteration of procedure Enum()

Figure 3: Example to demonstrate the preprocessing and enumeration phase of the general algorithm

Algorithm 1: PreprocessAcyclic

Input : Input query 𝑄 , database instance 𝐷 ; join tree T ;
ranking function rank.

Output :Priority Queues PQ
1 foreach 𝑅𝑖 ∈ T in post order traversal do

2 foreach 𝑡 ∈ 𝑅𝑖 do
3 𝑢 ← 𝜋anchor(𝑅𝑖) (𝑡);
4 if PQ𝑖 [𝑢] does not exist then
5 PQ𝑖 [𝑢] ← ∅; /* Initialize a priority queue */
6 𝐿 ← ∅;
7 foreach 𝑅 𝑗 is the child of 𝑅𝑖 do

8 𝐿.insert(PQ 𝑗 [𝜋anchor(𝑅 𝑗) (𝑢)] .top());
9 PQ𝑖 [𝑢] .insert(⟨𝑡, 𝐿,⊥⟩);

𝐴 𝐵

1 1

2 1

1 2

3 2

𝑅1
𝐵 𝐶

1 1

2 1

𝑅2
𝐶 𝐷

1 1

1 2

𝑅3
𝐷 𝐸

1 1

1 2

𝑅4

As we saw before, Figure 1 shows the join tree along with the anchor

attributes in each relation. Figure 3a shows the state of priority queues

after the preprocessing step. After the full reducer pass, tuple (1, 2)
is removed from 𝑅3 because there is no join tuple that can be formed

using it. Then, we start constructing the cells for each node starting

with the leaf nodes. Since 𝐵 is the anchor for relation 𝑅1, we create two

priority queues PQ1 [1] and PQ1 [2]. For PQ1 [1], we create the cells
for tuples (1, 1) and (2, 1). For convenience, the cells are followed by
the partially aggregated score. Consider relation 𝑅2 (𝐵,𝐶). The cell for
tuple (1, 1) in PQ2 [1] points to the top of PQ1 [1] (shown as pointer

with address 100). The root bag consists of a single tuple entry which

points to the cells at locations 300 and 400. The output tuple that can

be formed by the root bag is (𝐴 = 1, 𝐸 = 1).

Enumeration Phase. We describe the enumeration procedure

in Algorithm 2. The high-level idea is to output answers by re-

peatedly popping elements from the root priority queue. It may be

Algorithm 2: EnumAcyclic

Input : Input query 𝑄 , database instance 𝐷 ; join tree T ;
ranking function rank; Priority queues PQ

Output :𝑄 (𝐷) in ranked order

1 procedure Enum()
2 last← ∅;
3 while PQ𝑟 [∅] ≠ ∅ do
4 𝑜 ← PQ𝑟 [∅] .top();
5 if is_equal(𝑜, last) = false then

6 print output(𝑜), last← 𝑜 ; /* new output */
7 Topdown (𝑜, 𝑟);
8 procedure Topdown(𝑐, 𝑗) /* 𝑐 = ⟨𝑡, [𝑝1, . . . , 𝑝𝑘], next⟩ */
9 𝑢 ← 𝜋anchor(𝑅 𝑗) (𝑐.𝑡);

10 if 𝑐.next = ⊥ then

11 while true do

12 temp← pop(PQ 𝑗 [𝑢]);
13 foreach 𝑅𝑖 is a child of 𝑅 𝑗 do

14 𝑝′
𝑖
← Topdown(𝑐.𝑝𝑖 , 𝑖) ;

15 if 𝑝′
𝑖
≠ ⊥ then

16 PQ 𝑗 [𝑢] .insert(⟨𝑡, [𝑐.𝑝1, . . . , 𝑝′𝑖 , . . . 𝑐 .𝑝𝑘],⊥⟩)

17 if 𝑅 𝑗 is not the root then

18 𝑐.next← addressof (PQ 𝑗 [𝑢] .top());
19 if is_equal(temp, PQ 𝑗 [𝑢] .top()) = false

then break;
20 return 𝑐.next;
21 procedure is_equal(𝑐1, 𝑐2)
22 if rank(output(𝑐1))≠ rank(output(𝑐2)) then return

false

23 foreach 𝐴 ∈ A do

24 if output(𝑐1) [𝐴] < output(𝑐2) [𝐴] then return

false

25 return true;

1028

possible that multiple tuples of the root priority queue output the

same final result. In order to deduplicate answers, we compare the

answer at the current top of the priority queue with the previous

answer (line 5), and output it only if they are different. Then, we

invoke the procedure Topdown to insert new candidates into the

priority queue. This procedure will be recursively propagated over

the join tree until it reaches the leaf nodes. Observe that once the

new candidates have been inserted, the next pointer of a cell is

updated by pointing to the topmost element in the priority queue.

This chaining materializes the answers for a particular node that

can be reused and is key to avoiding repeated computation.

Example 5. Continuing our running example, Figure 3b shows the

state of the priority queues after one complete iteration of procedure

Enum(). We first pop the only element in root priority queue and note

that the output tuple (𝐴 = 1, 𝐸 = 1) is enumerated. Then we call

Topdown with cell at memory 500 and root (node 3) as arguments

(denoted as Topdown(∗500, 3)). The next for the cell is ⊥ so we pop

the cell at 500 from the priority queue (shown as greyed out in the

figure) and recursively call Topdown(∗300, 2). The cell at memory

location 300 has next = ⊥. Therefore, we enter the while loop, pop the
cell and recursively call Topdown(∗100, 1). We have now reached the

leaf node. The anchor attribute value for cell at 100 is 𝑢 = 1, so we

pop the current cell from PQ1 [1] (greyed out cell at 100), find the next
candidate at the top of PQ1 [1] (which is cell at 101), chain it to the

cell at 100 by assigning next = 101 and return the cell at 101 to the

parent. When the program control returns from the recursive call back

to node 2, we create a new cell (at memory address 302) that points to

101 and insert it into the priority queue. However, observe that the cell

at memory location 301 also generates 𝐴 = 1, a duplicate since cell at

300 also generated it. This is where the equality check at line 19 comes

in. Since both cells at 300 and 301 generate the same value, we also

pop off the cell at 301 in the subsequent while loop iteration, find its

next candidate and create the cell at 303, and insert into the priority

queue. This ensures that all elements in PQ2 [1] generating the same

𝐴 value are removed, ensuring no duplicates at the root level. Finally,

the control returns to the root level Topdown call. The recursive call

to the right child (node 4) create a new cell 401 and we insert two cells

at the root priority queue, cell 501 and 502 that correspond to output

tuple (𝐴 = 2, 𝐸 = 1) and (𝐴 = 1, 𝐸 = 2) respectively.

We are now ready to formally prove Theorem 1.

Lemma1. The delay guarantee of EnumAcyclic is atmost𝑂 (|𝐷 | log |𝐷 |).

Lemma 2. PreprocessAcyclic running in 𝑂 (|𝐷 | log |𝐷 |) time,

generates a data structure of size 𝑂 (|𝐷 |).

Lemma 3. EnumAcyclic enumerates the query result 𝑄 (𝐷) in
ranked order correctly.

Together, the above lemmas establish Theorem 1. We defer the

full proofs to [23]. We also show how we can recover logarithmic

delay guarantee for full queries from [24, 62].

3.2 Improvement for Lexicographic Ranking

The algorithm from last section is also applicable to LEXICOGRAPHIC
ranking function. In fact, we can transform LEXICOGRAPHIC with
an attribute ordering of 𝐴1, 𝐴2, · · · , 𝐴𝑚 , into SUM by defining a

ranking function rank(𝑡) = ∑𝑚
𝑖=1 10

𝑚−𝑖 · 𝑤 (𝜋𝐴𝑖
(𝑡)) for tuple 𝑡 ,

while preserving the LEXICOGRAPHIC ordering. In this section, we

present an alternative algorithm by exploiting the special structural

properties of LEXICOGRAPHIC, that the global ranking also implies

local ranking over every output attribute. Moreover, it admits to

enumerate query results not only in lexicographic order as given

by ORDER BY 𝐴1, 𝐴2, · · · , 𝐴𝑚 but also arbitrary ordering on each

attribute (for instance, ORDER BY 𝐴1 ASC, 𝐴2 DESC . . .).

Preprocessing Phase. In this phase, we perform the full reducer

pass to remove all dangling tuples and create hash indexes for the

base relations in sorted order. We also sort dom(𝐴𝑖).

Enumeration Phase. Given an attribute order of output attributes

A = {𝐴1, 𝐴2, · · · , 𝐴𝑚}, we start by fixing the minimum value in

dom(𝐴1) as 𝑎1. Then, we perform the two-phase semi-joins to re-

move tuples that cannot be joined with value 𝑎1, and find the values

in dom(𝐴2) that survive after semi-joins, denoted as L𝐴2
(𝑎1). Sim-

ilarly, we fix the minimum value in L𝐴2
(𝑎1) as 𝑎2, and perform

the two-phase semi-joins for finding the values in dom(𝐴3) that
can be joined with both 𝑎1, 𝑎2. We continue this process until all

attributes in A have been fixed, and end up with enumerating such

a query result (with fixed values). Then, we backtrack and continue

the process until all values in attribute 𝐴1 are exhausted.

Algorithm 3: EnumAcyclicLexi(𝑡 , L, 𝑖)
Input : Input query 𝑄 , database 𝐷

Output :𝑄 (𝐷) ⋉ 𝑡 in lexicographic order of 𝐴𝑖 , · · · , 𝐴𝑚
1 if 𝑖 =𝑚 then output 𝑡 and return;
2 foreach 𝑎 ∈ L do

3 L′ ← 𝜋𝐴𝑖+1 (𝜎𝐴𝑖=𝑎 (𝑅𝑖+1 ⋉ 𝑡)) ; /* by semi-joins */
4 𝑡 ′ ← (𝑡, 𝑎); /* create new tuple */
5 EnumAcyclicLexi(𝑡 ′,L′, 𝑖 + 1);

Algorithm 3 takes as input an acyclic query 𝑄 , an database

𝐷 , an integer 𝑖 ∈ {1, · · · ,𝑚}, a tuple 𝑡 defined over attributes

𝐴1, · · · , 𝐴𝑖−1, and a set of values L ⊆ dom(𝐴𝑖) that can be joined

with 𝑡 in 𝐷 . The original problem can be solved by invokingbreak
EnumAcyclicLexi(∅, dom(𝐴1), 1) for sorted dom(𝐴1).

Lemma 4. EnumAcyclicLexi enumerates 𝑄 (𝐷) correctly in lexico-

graphic order with delay guarantee 𝑂 (|𝐷 |) after preprocessing time

𝑇𝑝 = 𝑂 (|𝐷 | log |𝐷 |) and space complexity 𝑂 (|𝐷 |).

4 STAR QUERIES

In this section, we present a specialized data structure for the star

query, which is represented as: 𝑄★
𝑚 = 𝜋A (𝑅1 (𝐴1, 𝐵) Z 𝑅(𝐴2, 𝐵) Z

· · · Z 𝑅𝑚 (𝐴𝑚, 𝐵)). where A = {𝐴1, · · · , 𝐴𝑚}. All relations in a star

query join on exactly the same attribute(s). In this following, we

present a specialized data structure on ranked enumeration for 𝑄★
𝑚

in Section 4.1, and prove the optimality in Section 4.2.

4.1 The Algorithm

Consider the star query 𝑄★
𝑚 , a database 𝐷 and a ranking function

rank. Now we present a data structure for Theorem 2.

1029

Algorithm 4: PreprocessStar

Input : Input star query 𝑄★
𝑚 , ranking function rank and

database 𝐷 ; degree threshold 𝛿 ≥ 1

Output :Heavy output O𝐻 and priority queue PQ
1 foreach 𝑖 ∈ {1, 2, · · · ,𝑚} do
2 𝑅𝐻

𝑖
← {𝑡 ∈ 𝑅𝑖 : |𝜎𝐴𝑖=𝜋𝐴𝑖

(𝑡) | ≥ 𝛿};
3 𝑅𝐿

𝑖
← {𝑡 ∈ 𝑅𝑖 : |𝜎𝐴𝑖=𝜋𝐴𝑖

(𝑡) | < 𝛿};

4 Compute O𝐻 ← 𝜋A

(
𝑅𝐻
1
Z · · · Z 𝑅𝐻𝑚

)
;

5 Sort O𝐻 by rank;

6 for 𝑖 ∈ {0, 1, . . . ,𝑚 − 1} do
7 𝑄𝑖 ← 𝑅𝐻

1
Z · · · Z 𝑅𝐻

𝑚−1 Z 𝑅𝐿
𝑖
Z 𝑅𝑖+1 Z · · · Z 𝑅𝑚 ;

8 T𝑖 ← a join tree for 𝑄 with 𝑅𝑖 as root and all other

relations as children of 𝑅𝑖 ;

9 PreprocessAcyclic(𝑄𝑖 ,T𝑖);
10 next←EnumAcyclic(𝑄𝑖 ,T𝑖);
11 PQ .insert(next); /* insert the smallest tuple into PQ */

Preprocessing Phase. Without loss of generality, assume that

there is no dangling tuples in 𝐷 . Moreover, if A does not include an

attribute 𝐴, we can remove efficiently 𝑅𝑖 using a semi-join. We first

fix a degree threshold 𝛿 ≥ 1 (whose value will be determined later).

For each 𝑖 ∈ {1, 2, · · · ,𝑚}, a value 𝑎𝑖 ∈ dom(𝐴) is heavy if it has de-

gree larger than 𝛿 in 𝑅𝑖 , i.e., |𝜎𝐴=𝑎𝑖 (𝑅𝑖) | ≥ 𝛿 , and light otherwise. A

tuple 𝑡 = (𝑎𝑖 , 𝑏) ∈ 𝑅𝑖 is heavy if 𝑎𝑖 is heavy. For 𝑅𝑖 , let 𝑅𝐻𝑖 , 𝑅𝐿
𝑖
be the

set of heavy and light tuples in 𝑅𝑖 . An output 𝑡 = (𝑎1, 𝑎2, . . . , 𝑎𝑚) ∈
𝑄★
𝑚 (𝐷) is heavy if 𝑎𝑖 is heavy in 𝑅𝑖 for each 𝑖 ∈ {1, 2, · · · ,𝑚}, and

light otherwise. In this way, we can divide the output 𝑄★
𝑚 (𝐷) into

O𝐻 and O𝐿 , containing all heavy and light output tuples sepa-

rately. In the preprocessing phase, our goal is to materialize all

heavy output tuples (O𝐻) ordered by rank. Details are described

in Algorithm 4. We compute O𝐻 = 𝜋A

(
𝑅𝐻
1
Z 𝑅𝐻

2
Z · · · Z 𝑅𝐻𝑚

)
by invoking the Yannakakis algorithm [66], and then sort O𝐻 by

rank. Next, we insert the smallest query result from O𝐻 into the

priority queue. Then, we define 𝑚 different subqueries as 𝑄𝑖 =

𝜋A

(
𝑅𝐻
1
Z · · · Z 𝑅𝐻

𝑖−1 Z 𝑅𝐿
𝑖
Z 𝑅𝑖+1 Z · · · Z 𝑅𝑚

)
where tuples in

relation 𝑅 𝑗 are heavy for any 𝑗 < 𝑖 and tuples in relation 𝑅𝑖 are

light. For such 𝑄𝑖 , we consider a join tree T𝑖 in which 𝑅𝑖 is the

root and all other relations are children of 𝑅𝑖 . We preprocess a data

structure for 𝑄𝑖 with T𝑖 , by invoking Algorithm 1.

Enumeration Phase. As described in Algorithm 5, the high-level

idea in the enumeration is to perform a (𝑚 +1)-way merge over O𝐻
and 𝑄𝑖 ’s. Specifically, we maintain a priority queue PQ with one

entry for each subquery𝑄𝑖 and one entry for O𝐻 . Once the smallest

element is extracted from PQ (say 𝑡 generated by 𝑄𝑖), we extract

the next smallest candidate from 𝑄𝑖 (if there is any) and insert it

into PQ. Moreover, finding the smallest candidate output result

from O𝐻 is trivial since O𝐻 have been materialized in a sorted way

in the preprocessing phase. We conclude this subsection with the

formal statement of the result.

Algorithm 5: EnumStar

Input :Star query 𝑄★
𝑚 , ranking function rank and

database 𝐷 ; Output of O𝐻 and priority queue PQ
Output :𝑄★

𝑚 (𝐷) in ranked order

1 while PQ ≠ ∅ do
2 𝑡 ← PQ .pop();

3 output 𝑡 ; /* enumerate the result */
4 if 𝑡 ∉ O𝐻 then

5 𝑖 ← smallest positive index such that 𝜋𝐴 𝑗
(𝑡) is

heavy for all 𝑗 < 𝑖 and 𝜋𝐴𝑖
(𝑡) is light;

6 next← EnumAcyclic(𝑄𝑖 ,T𝑖);
7 PQ .insert(next);
8 else PQ .insert(O𝐻 .pop());

Lemma 5. Algorithm 4 runs in time 𝑇 = 𝑂 (|𝐷 | · (|𝐷 |/𝛿)𝑚−1) and
requires space 𝑆 = 𝑂 ((|𝐷 |/𝛿)𝑚). Algorithm 5 correctly enumerates

the result of the query in ranked order with delay 𝑂 (|𝐷 | log |𝐷 |/𝛿).

4.2 Tradeoff Optimality

We next present conditional optimality for our tradeoff achieved in

Theorem 2. Before showing the proof, we first revisit a result on

unranked evaluation for 𝑄★
𝑚 in [7]:

Lemma 6 ([7]). There exists a combinatorial
1
algorithm that can

evaluate 𝑄★
𝑚 on any database 𝐷 in time 𝑂

(
|𝐷 | · |𝑄★

𝑚 (𝐷) |
1− 1

𝑚

)
.

This result was presented over a decade ago without any im-

provement since then. Thus, it is not unreasonable to conjecture

that Lemma 6 is optimal. Based on its conjectured optimality, we

can show the following result for unranked enumeration.

Lemma 7. Consider star query 𝑄★
𝑚 , database 𝐷 and some constant

𝜖 ∈ [0, 1]. If there exists an algorithm that supports𝑂 (|𝐷 |1−𝜖 log |𝐷 |)-
delay enumeration after 𝑂 (|𝐷 |1+(𝑚−1)𝜖−𝜖 ′) preprocessing time for

some constant 𝜖′ > 0, the optimality of Lemma 6 will be broken.

The lower bound holds for any ranking function. Lemma 7 im-

plies that for star queries, both Theorem 1 and Theorem 2 are

optimal. Before concluding this section, we also remark on the

question of whether the logarithmic factor that we obtain in the

delay guarantee is removable. Prior work [24] showed that for the

following simple join query 𝑄 = 𝑅(𝑥) Z 𝑆 (𝑦) over SUM, there
exists no algorithm supporting constant-delay enumeration after

linear preprocessing time. Note that this does not rule out a sub-

logarithmic delay guarantee, which remains an open problem.

5 GENERAL QUERIES

In this section, we will describe how to extend the algorithm for

acyclic queries to handle cyclic queries. The key idea is to transform

the cyclic query into an acyclic one, by constructing a GHD as

defined in Section 2. A GHD automatically implies an algorithm

for cyclic joins. After materializing the results of the subquery

induced by each node in the decomposition, the residual query

1
An algorithm is called combinatorial if it does not use algebraic techniques such as

fast matrix multiplication.

1030

becomes acyclic. Hence, we can apply our algorithm for acyclic

queries directly obtaining the following:

Theorem 3. For a join-project query 𝑄 , a database instance 𝐷 and

a ranking function rank ∈ {SUM, LEXICOGRAPHIC}, the query results

𝑄 (𝐷) can be enumerated according to rank with 𝑂 (|𝐷 |fhw log |𝐷 |)
delay, after 𝑂 (|𝐷 |fhw log |𝐷 |) preprocessing time.

We now go one step further and extend our algorithm to queries

that are unions of join-project queries (UCQs) using an idea intro-

duced by [24, 62]. A UCQ query is of the form𝑄 = 𝑄1∪𝑄2∪· · ·∪𝑄𝑚 ,

where each 𝑄𝑖 is a join-project query defined over the same projec-

tion attributes A. Semantically, 𝑄 (𝐷) = ⋃
𝑖 𝑄𝑖 (𝐷). Recent work by

Abo Khamis et al. [4] presents an improved algorithm (called PANDA)
that constructs multiple GHDs by partitioning the input database

into disjoint pieces and build a GHD for each piece. In this way,

the size of materialized subquery can be bounded by 𝑂 (|𝐷 |subw),
where subw is the submodular width [49] of input query 𝑄 . More-

over, subw ≤ fhw holds generally for query 𝑄 , thus improving the

previous result on fhw. By using Theorem 1 in conjunction with

data-dependent decompositions from PANDA we can immediately

obtain the following result:

Theorem 4. For a join-project query 𝑄 , a database instance 𝐷 and

a ranking function rank ∈ {SUM, LEXICOGRAPHIC}, the query results

𝑄 (𝐷) can be enumerated according to rank with 𝑂 (|𝐷 |subw log |𝐷 |)
delay, after 𝑂 (|𝐷 |subw log |𝐷 |) preprocessing time.

Example 6. Consider the 4-cycle (butterfly) query 𝜋𝐴,𝐶 (𝑅1 (𝐴, 𝐵) Z
𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐶, 𝐷) Z 𝑅4 (𝐷,𝐴)) with ranking function rank(𝑡) =
𝜋𝐴 (𝑡) + 𝜋𝐶 (𝑡). With fhw = 2, Theorem 4 implies that the query

results can be enumerated according to rank with 𝑂 (|𝐷 |2 log |𝐷 |)
delay, after 𝑂 (|𝐷 |2) preprocessing time. With subw = 3

2
, Theorem 4

implies that query results can be enumerated according to rank with

delay 𝑂 (|𝐷 |3/2 log |𝐷 |), after 𝑂 (|𝐷 |3/2 log |𝐷 |) preprocessing time.

A note on optimality. The reader may wonder whether the expo-

nent of fhw and subw in Theorem 3 and Theorem 4 are truly neces-

sary. For the triangle query 𝑄△ (𝑥,𝑦) = 𝑅(𝑥,𝑦) Z 𝑆 (𝑦, 𝑧) Z 𝑇 (𝑧, 𝑥)
which is the simplest cyclic query, fhw = subw = 3/2 and even after

30 years, the original AYZ algorithm [6] that detects the existence

of a triangle in 𝑂 (|𝐷 |3/2) time still remains the best known combi-

natorial algorithm. It is widely conjectured [1, 2, 40, 50] that there

exists no better algorithm. As noted in [4], the notion of submod-

ular width was suggested as the yardstick for optimality. Indeed,

the groundbreaking results by Marx [49] rules out algorithms with

better dependence than subw in the exponent for a small of class

of queries but a general unconditional lower bound still remains

out of reach. Thus, any improvement in the exponent would auto-

matically imply a better algorithm for cycle detection since ranked

enumeration is at least as hard. In [23], we formally show that

the exponential dependence of subw in Theorem 4 is unavoidable

subject to popular conjectures.

6 EXPERIMENTAL EVALUATION

In this section, we perform an extensive evaluation of our pro-

posed algorithm. Our goal is to evaluate three aspects: (𝑎) how fast

our algorithm is compared to state-of-the-art implementations for

both SUM and LEXICOGRAPHIC ranking functions on various queries

and datasets, (𝑏) test the empirical performance of the space-time

tradeoff in Theorem 2, (𝑐) investigate the performance of our algo-

rithm on various cyclic queries based on different shapes and (𝑑)
test the scalability behavior of our algorithm.

6.1 Experimental Setup

We use Neo4j 4.2.3 community edition, MariaDB 10.1.472 and Post-

greSQL 11.12 for our experiments. All experiments are performed

on a Cloudlab machine [25] running Ubuntu 18.04 equipped with

two Intel E5-2630 v3 8-core CPUs@2.40 GHz and 128 GB RAM. We

focus only on the main memory setting and all experiments run

on a single core. Since the join queries are memory intensive, we

take special care to ensure that only one DBMS engine is running

at a time, restart the session for each query to ensure temp tables

in main memory are flushed out to avoid any interference, and also

monitor that no temp tables are created on the disk. We only keep

one database containing a single relation when performing experi-

ments. We switch off all logging to avoid any performance impact.

For PostgreSQL and MariaDB, we allow the engines to use the full

main memory to ensure all temp tables are resident in the RAM

and sorting (if any) happens without any disk IOs by increasing the

sort buffer limit. For Neo4j, we allow the JVM heap to use the full

main memory at the time of start up. We also build bidirectional

B-tree indexes for each relation ahead of time and create named

indexes in Neo4j. All of our algorithms are implemented in C++

and compiled using the GNU C++ 7.5.0 compiler that ships with

Ubuntu 18.04. Each experiment is run 5 times and we report the

median after removing the slowest and the fastest run.

6.1.1 Small-Scale Datasets. We use two real world small scale

datasets for our experiments: the DBLP dataset, containing relation-

ship between authors and papers, and the IMDB dataset, containing

relationship between actors, directors, and movies. We use these

datasets for two reasons: (𝑖) both datasets have been found to

be useful and studied extensively in practical problems such as

similarity search [67], citation graph analysis [56], and network

analysis [13, 26]. (𝑖𝑖) small-scale datasets allow experiments to

finish for all systems allowing us to make a fair comparison and

develop a fine-grained understanding. In line with prior work [38],

for each tuple we assign the weight attribute (and add it to the table

schema) in two ways: first, we assign a randomly chosen value,

and second, logarithmic weights in which the weight of the entity

(author and paper in DBLP) 𝑣 is log
2
(1+𝑑𝑒𝑔𝑣), where 𝑑𝑒𝑔𝑣 denotes

its degree in the relation. The schema for both datasets is as shown

below (underlined attributes are primary keys for the relation):

(1) DBLP: AuthorPapers(𝑎𝑖𝑑, 𝑝𝑖𝑑), Author(𝑎𝑖𝑑, 𝑛𝑎𝑚𝑒,𝑤𝑒𝑖𝑔ℎ𝑡),
Paper(𝑎𝑖𝑑, 𝑡𝑖𝑡𝑙𝑒, 𝑣𝑒𝑛𝑢𝑒,𝑦𝑒𝑎𝑟,𝑤𝑒𝑖𝑔ℎ𝑡, 𝑖𝑠_𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ).

(2) IMDB: PersonMovie(𝑝𝑖𝑑,𝑚𝑖𝑑), Company(𝑐𝑖𝑑, 𝑛𝑎𝑚𝑒, 𝑛𝑎𝑡𝑖𝑜𝑛),
Person(𝑝𝑖𝑑, 𝑛𝑎𝑚𝑒, 𝑟𝑜𝑙𝑒,𝑤𝑒𝑖𝑔ℎ𝑡),
Movie(𝑚𝑖𝑑, 𝑛𝑎𝑚𝑒,𝑦𝑒𝑎𝑟, 𝑔𝑒𝑛𝑟𝑒, 𝑐𝑖𝑑,𝑤𝑒𝑖𝑔ℎ𝑡)

Queries.We consider 4 acyclic join queries as shown in Figure 4 for

the small-scale datasets, which are commonly seen in practice [14,

60]. Intuitively, the first three queries find all the top-k weighted

2-hops, 3-hops and 4-hops reachable attribute pairs within the

2
Compared with MySQL, MariaDB performed better in our experiments, hence we

report the results for MariaDB

1031

DBLP
2hop = SELECT DISTINCT A1 .name,A2 .name FROM Author AS A1, Author AS A2, AuthorPapers AS AP1, AuthorPapers as AP2,
Paper AS P WHERE AP1 .pid = AP2 .pid AND AP1 .aid = A1 .aid AND AP2 .aid = A2 .aid AND P.is_research =true ORDER BY
A1 .weight + A2 .weight LIMIT k;

DBLP
3hop = SELECT DISTINCT A.name, P.name FROM Author AS A, Paper AS P, AuthorPapers AS AP1, AuthorPapers as AP2,
AuthorPapers as AP3 WHERE AP1 .pid = AP2 .pid AND AP2 .aid = AP3 .aid AND AP1 .aid = A.aid AND AP3 .pid = P.pid AND P.is_research =

true ORDER BY A.weight + P.weight LIMIT k;

DBLP
4hop = SELECT DISTINCT A1 .name,A2 .name FROM Author AS A1, Author AS A2, AuthorPapers AS AP1, AuthorPapers as AP2,
AuthorPapers as AP3, AuthorPapers as AP4, Paper AS P1, Paper AS P2 WHERE AP1 .pid = AP2 .pid AND AP2 .aid = AP3 .aid AND
AP3 .pid = AP4 .pid AND AP3 .pid = P2 .pid AND AP1 .pid = P1 .pid AND AP1 .aid = A1 .aid AND AP4 .aid = A2 .aid AND P1 .is_research =true
AND P2 .is_research =true ORDER BY A1 .weight + A2.weight LIMIT k;

DBLP3star = SELECT DISTINCT A1 .name,A2 .name,A3 .name FROM Author AS A1, Author AS A2, Author AS A3, AuthorPapers AS AP1,
AuthorPapers as AP2, AuthorPapers as AP3, Paper AS P WHERE AP1 .pid = AP2 .pid = AP3 .pid AND AP1 .aid = A1 .aid AND
AP2 .aid = A2 .aid AND AP3 .aid = A3 .aid AND AP3 .pid = P.pid AND P.is_research =true ORDER BY A1 .weight + A2 .weight + A3 .weight
LIMIT k;

Figure 4: Network analysis queries for DBLP. Queries for IMDB are defined similarly (see [23]).

DBLP network. As remarked by in [17, 41, 60], these queries are

of immense practical interest (e.g., see Table 4 in [60]). Queries for

IMDB dataset are defined similarly in [23]. In Subsection 6.2.2, we

also investigate the performance for cyclic queries.

6.1.2 Large-Scale Datasets. We also perform experiments on two

real-world large scale relational datasets and one relational bench-

mark. The first dataset is from the Friendster [44] online social

network that contains 1.8𝐵 tuples. In the social network each, user

is associated with multiple groups. The second dataset is the Meme-

tracker [44] dataset which describes user generated memes and

which users have interacted with the meme. The dataset contains

418𝑀 tuples. For both Friendster and Memetracker, we use weights

for users as the number of groups they belong to and the num-

ber of memes they create respectively. Finally, we also use the

queries containing a ranking function from the LDBC Social Net-

work Benchmark [27] with scale factor SF = 10, a publicly available
benchmark, to perform scalability experiments.

Queries. For Friendster and Memetracker, we use two popular

queries that are used in network analysis. Similar to the DBLP

queries, we identify the ranked user pairs in the two hop and three

hop neighborhoods for all users. The ranking is the sum of weights

of the user pair. These queries have widespread application in

understanding information flow in a network [51] and are used in

recommendation systems [30, 47]. For LDBC benchmark, we use

the multi-source version of Q3, Q10 andQ11. Each of these queries

are variants of the neighborhood analysis and contains UNION.

6.2 Small Scale Experiments

In this section, we compare the empirical performance of the al-

gorithm given by Theorem 1 (labeled as LinDelay in all figures)

against the baselines for each query. In order to perform a fair com-

parison, we materialize the top-𝑘 answers in-memory since other

engines also do it. However, a strength of our system is that if a

downstream task only requires the output as a stream, we are able

to enumerate the result instead of materializing it, which is not

possible with other engines.

Sum ordering. Figure 5 shows the main results for the DBLP

and IMDB datasets when the ranking function is the sum function

and the weights are chosen randomly. Let us first review the re-

sults for the DBLP dataset. Figure 5a shows the running time for

different values of 𝑘 in the limit clause. The first observation is

that all engines materialize the join result, followed by dedupli-

cating and sorting according to the ranking function which leads

to poor performance for all baselines. This is because all engines

treat sorting and distinct clause as blocking operators, verified by

examining the query plan. On the other hand, our approach is limit-

aware. For small values of 𝑘 , we are up to two orders of magnitude

faster and as the value of 𝑘 increases, the total running time of

our algorithm increases linearly. Even when our algorithm has to

enumerate and materialize the entire result, it is still faster than

asking the engines for the top-10 results. This is a direct benefit

of generating the output in deduplicated and ranked order. As the

path length increases from two to three and four path (Figure 5b

and Figure 5c), the performance gap between existing engines and

our approach also becomes larger. We also point out that all en-

gines require a large amount of main memory for query execution.

For example, MariaDB requires about 40GB of memory for exe-

cuting DBLP
4hop. In contrast, the space overhead of our algorithm

is dominated by the size of the priority queue. For DBLP dataset,

our approach requires a measly 1.3GB, 4GB, 3GB and 2.7GB total

space for DBLP
2hop,DBLP3hop,DBLP4hop and DBLP3star respec-

tively. For DBLP
3hop,DBLP4hop and DBLP3star, we also implement

breadth first search (BFS) followed by a sorting step using the idea

of Algorithm 3. As it can be seen from the figures, BFS and sort pro-

vides an intermediate strategy which is faster than our algorithm

for large values of 𝑘 but at the cost of expensive materialization

of the entire result, which may not be always possible (and is the

case for IMDB dataset). However, deciding to use BFS and sort

requires knowledge of the output result size, which is unknown

apriori and difficult to estimate. For the IMDB dataset, we observe

a similar trend of our algorithm displaying superior performance

compared to all other baselines. In this case, BFS and sorting even

for DBLP
4hop is not possible since the result is almost 0.5 trillion

items. For DBLP3star, none of the engines were able to compute

1032

the result after running for 5 hours when main memory ran out.

BFS and sort also failed due to the size being larger than the main

memory limit. Lastly, Neo4j was consistently the best performing

(albeit marginally) engine among all baselines. While there is little

scope for rewriting the SQL queries to try to obtain better perfor-

mance, Neo4j has graph-specific operators such as variable length

expansion. We tested multiple rewritings of the query to obtain the

best performance (although this is the job of the query optimizer),

which is finally reported in the figures. Regardless of the rewritings,

Neo4j still treats materializing and sorting as a blocking operator

which is a fundamental bottleneck.

Lexicographic ordering. Figures 6a,6b,6c and 6d show the run-

ning time for different values of 𝑘 in the limit clause for lexico-

graphic ranking function on DBLP (i.e. we replace A1 .weight +
A2 .weight with A1 .weight,A2 .weight in the ORDER BY clause) for

random weights. The first striking observation here is that the

running time for all baseline engines is identical to that of sum

function. This demonstrates that existing engines are also agnostic

to the ranking function in the query and fail to take advantage

of the additional structure. However, lexicographic functions are

easier to handle in practice than sum because we can avoid the use

of a priority queue altogether. This in turn leads to faster running

time since push and pops from the priority queue are expensive

due to the logarithmic overhead and need for re-balancing of the

tree structure. Thus, we obtain a 2× improvement for lexicographic

ordering as compared to the sum function.

Join ordering. At this point, the reader may wonder what is the

impact of different join orderings on the query execution time for

DBMS engines in the presence of ORDER BY. To investigate this, we
supply join order hints to each of the engines. We run the queries

on all possible join order hints to find the best possible running

time. We found that the join order hints had virtually no impact on

execution time. For instance, DBLP
4hop on Neo4J takes 5521.61𝑠

without any join hints and the best possible join ordering reduces

the time to 5418.23𝑠 , a mere 1.8% reduction. This is not surprising

since the bottleneck for all engines is the materialization of the

unsorted output, which is orders of magnitude larger than the final

output and ends up being the dominant cost. In fact, for queries

containing only self-joins, join order hints do not have any impact

on the query plan because all relations are identical. Further, the

number of possible join orderings that may need to be explored

is exponential in the number of relations. On the other hand, our

algorithm has the advantage of bypassing the materialization due

to the delay based problem formulation and use of multi-way joins.

Logarithmic weights. Instead of choosing the weights randomly,

we also investigate the behavior when the weights scale logarithmi-

cally w.r.t. to the degree. We observed that all systems as well as our

algorithm had identical execution times. This is not surprising con-

sidering that no algorithm takes into account the actual distribution

of the weights. This observation points to an additional opportunity

for optimization where one could use the weight distribution to

allow for fine-grained, data-dependent processing. We leave the

study of this problem for future work.

6.2.1 Enumeration with Preprocessing. We next investigate the em-

pirical performance of the preprocessing step and its impact on the

result enumeration as described by Theorem 2. For all experiments

in this section, we fix 𝑘 to be large enough to enumerate the entire

result (which is equivalent to having no limit clause at all).

Sum ordering. Figure 7a and Figure 7b show the tradeoff between

space used by the data structure constructed in the preprocessing

phase and running time of the enumeration algorithm forDBLP
2hop

and IMDB
2hop repectively. We show the tradeoff for 6 different

space budgets but the user is free to choose any space budget in

the entire spectrum. As expected, the time required to enumerate

the result is large when there is no preprocessing and it gradually

drops as more and more results are materialized in the preprocess-

ing phase. The sum of preprocessing time and enumeration time

is not a flat line: this is because as an optimization, we do not use

priority queues in the preprocessing phase. Instead, we can simply

use the BFS and sort algorithm for all chosen nodes which need to

be materialized. This is a faster approach in practice as we avoid use

of priority queues but priority queues cannot be avoided for enu-

meration phase. We observe similar trend for DBLP3star, IMDB3star
on both datasets as well.

6.2.2 Cyclic Queries. We also compare the performance of our

algorithm to other systems for cyclic queries. We choose four cyclic

queries found commonly in practice inspired by [62]: four cycle, six

cycle, eight cycle and bowtie query (two four cycles joined at a com-

mon attribute). Figure 10 shows the performance of our algorithm

on the DBLP dataset for the sum function. As the table shows, our

algorithm is able to process all queries within 200 seconds, with the

bowtie query being the most computationally intensive. In contrast,

for 𝑘 = 10 the fastest performing engine Neo4J required 240s (450s)

for four cycle (six cycle). It did not finish execution for eight cycle

and bowtie query due to an out of memory error. For the IMDB
dataset, our algorithm was able to process all queries, while Neo4J

was not able to process any query (except four cycle) due to its

large memory requirement. We defer those experiments to [23].

6.3 Large Scale Experiments and Scalability

In this section, we investigate the performance of our techniques

on the large scale datasets. Figure 8a and 8b shows the time to find

the top-𝑘 answers for the Memetracker dataset on two neighbor-

hood and three neighborhood queries. Compared to the small scale

datasets, the execution time increases rapidly even for low values

of 𝑘 . This is attributed to the high duplication of answers, which

leads to a rapidly increasing priority queue size. None of MariaDB,

Postgres and Neo4J were able to finish, or even to find the top-10

answers, within 5 hours in our experiments. The same trend is also

observed for the Friendster dataset as shown in Figure 8d and 8c.

Similar to the small-scale datasets, lexicographic functions were

faster than the sum function for our algorithm but DBMS engines

were unable to finish query execution. We also conduct scalability

experiments on LDBC benchmark queries that contain the ORDER
BY clause. Figure 9 shows the scalability of our algorithm for finding

answers of queries Q3, Q10, Q11. As the scale factor increases, the

execution time also increases linearly. For each of these queries,

all engines require more than 3 hours to compute the result even

for SF = 10 and 𝑘 = 10. This is because of the serial execution

plan generated by the engines, forcing the materialization of the

unsorted result before sorting and filtering for top-𝑘 .

1033

101 102 103 104 105 106 3.3 · 107

k in limit clause

10−1

100

101

T
im

e
in

se
c.

(a) DBLP
2hop

101 102 103 104 105 106 5 · 107

k in limit clause

100

101

102

T
im

e
in

se
c.

MariaDB PostgreSQL Neo4J LINDELAY BFS and sort

(b) DBLP
3hop

102 103 104 105 106 107 1.5 · 108

k in limit clause

100

101

102

103

T
im

e
in

se
c.

(c) DBLP
4hop

101 102 103 104 105 106 6 · 107

k in limit clause

10−1

100

101

102

T
im

e
in

se
c.

(d) DBLP3star

102 103 104 105 106 107 1.8 · 108

k in limit clause

100

101

102

T
im

e
in

se
c.

(e) IMDB
2hop

102 103 104 105 106 107 7.6 · 108

k in limit clause

101

102

103
T

im
e

in
se

c.

(f) IMDB
3hop

102 103 104 105 106 107 108

k in limit clause

101

102

T
im

e
in

se
c.

(g) IMDB
4hop

102 103 104 105 106

k in limit clause

100

101

102

T
im

e
in

se
c.

(h) IMDB3star

Figure 5: Comparing our algorithm with state-of-the-art engines for sum function

101 102 103 104 105 106 3.3 · 107

k in limit clause

10−1

100

101

T
im

e
in

se
c.

(a) DBLP
2hop

101 102 103 104 105 106 5 · 107

k in limit clause

10−1

100

101

102

T
im

e
in

se
c.

(b) DBLP
3hop

102 103 104 105 106 107 1.5 · 108

k in limit clause

100

101

102

103
T

im
e

in
se

c.

(c) DBLP
4hop

101 102 103 104 105 106 6 · 107

k in limit clause

100

101

T
im

e
in

se
c.

(d) DBLP3star

Figure 6: Comparing our linear delay algorithm with state-of-the-art engines for lexicographic function.

39619341730.1
Extra Space used in MB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
in

se
c.

(a) DBLP
2hop

0.01 0.10 1.00 10.00
Extra Space used in GB

0

20

40

60

80

100

120

T
im

e
in

se
c.

Preprocessing Time Enumeration Time Total Time

(b) IMDB
2hop

530019666779410.1
Extra Space used in MB

0

20

40

60

80

100

120

T
im

e
in

se
c.

(c) DBLP3star

9650251050
Extra Space used in GB

0

200

400

600

800

1000

1200

T
im

e
in

se
c.

(d) IMDB3star

Figure 7: Comparing the preprocessing and enumeration tradeoff for sum function when enumerating the entire result

101 102 103 104

k in limit clause

30
35
40
45
50
55
60
65
70

T
im

e
in

se
c.

(a) Memetracker 2-neighborhood

101 102 103 104

k in limit clause

102

103

T
im

e
in

se
c.

(b) Memetracker 3-neighborhood

101 102 103 104

k in limit clause

50

60

70

80

90

100

T
im

e
in

se
c.

(c) Friendster 2-neighborhood

101 102 103 104

k in limit clause

101

102

103

T
im

e
in

se
c.

(d) Friendster 3-neighborhood

Figure 8: LinDelay performance on large-scale datasets

1034

SF = 10 SF = 20 SF = 30 SF = 40 SF = 40

Q3 5.91s 9.63s 13.47s 18.23s 22.18s

Q10 2.82s 3.47s 4.65s 5.23s 6.46s

Q11 0.78s 1.07s 1.56s 1.82s 2.36s

Figure 9: Scalability for different scale factors (SF) in LDBC

k = 10 k = 10
2 k = 10

3 k = 10
4

four cycle 0.85s 0.95s 1.2s 1.8s

six cycle 13.1s 17.7s 25.6s 38.2s

eight cycle 33.4s 48.7s 63.9s 77.8s

bowtie 112s 125s 156s 192s

Figure 10: Cyclic query performance on theDBLP dataset for

different values of 𝑘 in the LIMIT clause.

7 RELATEDWORK

Top-𝑘 . Top-k ranked enumeration of full join queries has been

studied extensively by the database community for both certain [5,

12, 35, 36, 45, 46, 55, 61] and uncertain databases [57, 68]. Most of

these works exploit the monotonicity property of scoring functions,

building offline indexes and integrate the function into the cost

model of the query optimizer in order to bound the number of

operations required per answer tuple. We refer the reader to [35]

for a comprehensive survey. We note that none of these works

consider non-trivial join-project queries (see Appendix in [23] for

more discussion). Ours is the first work to consider the ranked

enumeration of arbitrary join-project queries.

Rank aggregation algorithms. Top-k processing over ranked lists

of objects has a rich history. The problem was first studied by Fagin

et al. [28, 29] where the database consists of 𝑁 objects and𝑚 ranked

streams, each containing a ranking of the 𝑁 objects with the goal

of finding the top-𝑘 results for coordinate monotone functions. The

authors proposed Fagin’s algorithm (FA) and Threshold algorithm

(TA), both of which were shown to be instance optimal for database

access cost under sorted list access and random access model. A

key limitation of these works is that it expects the input to be

materialized, i.e., 𝑄 (𝐷) must already be computed and stored for

the algorithm to perform random access.

Unranked enumeration of query results. Recent work by Kara

et al. [37] showed that for a small but important fragment of CQs

known as hierarchical queries, it is possible to obtain a tradeoff be-

tween preprocessing and delay guarantees. Importantly, this result

is applicable even in the presence of arbitrary projection. However,

the authors did not investigate how to add ranking because adding

priority queues at different location in the join tree leads to dif-

ferent complexities. In fact, follow up work [22] showed that the

same unranked enumeration could be performed with better delay

guarantees under certain settings. Our work considers the class of

CQs with arbitrary projections and we are also able to extend the

main result to UCQs, an even broader class of queries. Naturally,

our algorithm automatically recovers the existing results for full

CQs as well [24, 62], in addition to the first extensive empirical

evidence on how ranked enumeration can be performed for CQs

containing projections beyond free-connex queries.

Factorization and Aggregation. Factorized databases [11, 19, 53]

exploit the distributivity of product over union to represent query

results compactly and generalize the results on bounded fhwto
the non-Boolean case [53]. [3] captures a wide range of aggre-

gation problems over semirings. Factorized representations can

also enumerate the query results with constant delay according to

lexicographic orders of the variables [10]. For that to work, the lexi-

cographic order must "agree" with the factorization order. However,

it was shown in [24] that the algorithm for lexicographic ordering

is not optimal. Further, since all prior work in this space using the

concept of variable ordering, adding projections to the query forces

the building of a GHD that can materialize the entire join query

result, which is expensive and an unavoidable drawback.

Ranked enumeration. Both Chang et al. [16] and Yang et al. [65]

provide any-𝑘 algorithms for graph queries instead of the more

general CQs; Kimelfeld and Sagiv [39] give an any-𝑘 algorithm for

acyclic queries with polynomial delay. Recent work on ranked enu-

meration of MSO logic over words is also of particular interest [15].

None of these existing works give any non-trivial guarantees for

CQs with projections. Ours is the first work in this space that pro-

vides non-trivial guarantees.

8 CONCLUSION

In this paper, we study the problem of ranked enumeration for

CQs with projections. We present a general algorithm that can

enumerate query results according to two commonly-used ranking

functions (SUM, LEXICOGRAPHIC) with near-linear delay after near-

linear preprocessing time. We also show how to extend our results

to a broader class of queries known as UCQs. For star queries, an

important and practical fragment of CQs, we further show how to

achieve a smooth tradeoff between the delay, preprocessing time

and space used for data structure. Extensive experiments demon-

strate that our methods are up to three orders of magnitude better

when compared to popular open-source RDBMS and specialized

graph engines. This work opens up several exciting future work

challenges. The first important problem is to extend our results

from main memory setting to the distributed setting. Since the cost

of I/O must also be taken into account, it becomes important to

identify the optimal priority queue storage layout to ensure that

access cost is low. It would also be interesting to develop output bal-

anced algorithms. The second exciting challenge is to incorporate

approximation into the ranking. For some applications, it may be

sufficient to get an approximately ordered output which could lead

to improved running time guarantees. Finally, it would be useful to

re-rank the query results when the ranking function is changed by

the user and extend our ideas to non-monotone ranking functions.

ACKNOWLEDGMENTS

This research was supported in part by National Science Founda-

tion grants CRII-1850348 and III-1910014. We would like to thank

the anonymous reviewers for their careful reading and valuable

comments. We also thank Wim Martens for pointing us to the

reference [14] that motivates the study of star queries.

1035

REFERENCES

[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures

imply strong lower bounds for dynamic problems. In 2014 IEEE 55th Annual

Symposium on Foundations of Computer Science. IEEE, 434–443.

[2] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. 2018. Matching

triangles and basing hardness on an extremely popular conjecture. SIAM J.

Comput. 47, 3 (2018), 1098–1122.

[3] Mahmoud Abo Khamis, Hung Q Ngo, and Atri Rudra. 2016. FAQ: questions asked

frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems. 13–28.

[4] Mahmoud Abo Khamis, Hung Q Ngo, and Dan Suciu. 2017. What do Shannon-

type Inequalities, Submodular Width, and Disjunctive Datalog have to do with

one another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems. 429–444.

[5] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. 2011. Best position algo-

rithms for efficient top-k query processing. Information Systems 36, 6 (2011),

973–989.

[6] Noga Alon, Raphael Yuster, and Uri Zwick. 1994. Finding and counting given

length cycles. In European Symposium on Algorithms. Springer, 354–364.

[7] Rasmus Resen Amossen and Rasmus Pagh. 2009. Faster join-projects and sparse

matrix multiplications. In Proceedings of the 12th International Conference on

Database Theory. ACM, 121–126.

[8] Renzo Angles and Claudio Gutierrez. 2011. Subqueries in SPARQL. AMW 749

(2011), 12.

[9] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On acyclic

conjunctive queries and constant delay enumeration. In International Workshop

on Computer Science Logic. Springer, 208–222.

[10] Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. 2013.

Aggregation and ordering in factorised databases. Proceedings of the VLDB

Endowment 6, 14 (2013), 1990–2001.

[11] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodnỳ. 2012. FDB: A query

engine for factorised relational databases. Proceedings of the VLDB Endowment 5,

11 (2012), 1232–1243.

[12] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Christian Theobalt, and Ger-

hard Weikum. 2006. Io-top-k: Index-access optimized top-k query processing.

(2006).

[13] Maria Biryukov. 2008. Co-author network analysis in DBLP: Classifying personal

names. In International Conference on Modelling, Computation and Optimization

in Information Systems and Management Sciences. Springer, 399–408.

[14] Angela Bonifati, Wim Martens, and Thomas Timm. 2020. An analytical study of

large SPARQL query logs. The VLDB Journal 29, 2 (2020), 655–679.

[15] Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros. 2021. Ranked

enumeration of MSO logic on words. ICDT (2021).

[16] Lijun Chang, Xuemin Lin, Wenjie Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin.

2015. Optimal enumeration: Efficient top-k tree matching. Proceedings of the

VLDB Endowment 8, 5 (2015), 533–544.

[17] Jinpeng Chen, Yu Liu, Guang Yang, and Ming Zou. 2018. Inferring tag co-

occurrence relationship across heterogeneous social networks. Applied Soft

Computing 66 (2018), 512–524.

[18] Philipp Christmann, Rishiraj Saha Roy, and GerhardWeikum. 2021. Efficient Con-

textualization using Top-k Operators for Question Answering over Knowledge

Graphs. arXiv preprint arXiv:2108.08597 (2021).

[19] Radu Ciucanu and Dan Olteanu. 2015. Worst-case optimal join at a time. Technical

Report. Technical report, Oxford.

[20] Olivier Corby and Catherine Faron-Zucker. 2007. Implementation of SPARQL

query language based on graph homomorphism. In International Conference on

Conceptual Structures. Springer, 472–475.

[21] Nilesh Dalvi and Dan Suciu. 2007. Efficient query evaluation on probabilistic

databases. The VLDB Journal 16, 4 (2007), 523–544.

[22] Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2021. Enumeration Algorithms

for Conjunctive Queries with Projection. In 24th International Conference on

Database Theory (ICDT 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[23] Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2022. Ranked Enumeration of

Join Queries with Projections. arXiv preprint arXiv:2201.05566 (2022).

[24] Shaleen Deep and Paraschos Koutris. 2021. Ranked Enumeration of Conjunctive

Query Results. In 24th International Conference on Database Theory.

[25] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.

2019. The design and operation of CloudLab. In 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19). 1–14.

[26] Ergin Elmacioglu and Dongwon Lee. 2005. On six degrees of separation in

DBLP-DB and more. ACM SIGMOD Record 34, 2 (2005), 33–40.

[27] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,

Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social net-

work benchmark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data. 619–630.

[28] Ronald Fagin. 2002. Combining fuzzy information: an overview. ACM SIGMOD

Record 31, 2 (2002), 109–118.

[29] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation al-

gorithms for middleware. Journal of computer and system sciences 66, 4 (2003),

614–656.

[30] Chenyuan Feng, Zuozhu Liu, Shaowei Lin, and Tony QS Quek. 2019. Attention-

based graph convolutional network for recommendation system. In ICASSP 2019-

2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 7560–7564.

[31] Michael L Fredman and Robert Endre Tarjan. 1987. Fibonacci heaps and their

uses in improved network optimization algorithms. Journal of the ACM (JACM)

34, 3 (1987), 596–615.

[32] Todd J Green, Shan Shan Huang, Boon Thau Loo, Wenchao Zhou, et al. 2013.

Datalog and recursive query processing. Now Publishers.

[33] Stephen Harris and Nigel Shadbolt. 2005. SPARQL query processing with conven-

tional relational database systems. In International Conference onWeb Information

Systems Engineering. Springer, 235–244.

[34] John E Hopcroft, Jeffrey D Ullman, and AV Aho. 1975. The design and analysis

of computer algorithms.

[35] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. 2008. A survey of top-k

query processing techniques in relational database systems. ACM Computing

Surveys (CSUR) 40, 4 (2008), 11.

[36] Ihab F Ilyas, Rahul Shah, Walid G Aref, Jeffrey Scott Vitter, and Ahmed K Elma-

garmid. 2004. Rank-aware query optimization. In Proceedings of the 2004 ACM

SIGMOD international conference on Management of data. ACM, 203–214.

[37] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020. Trade-offs

in static and dynamic evaluation of hierarchical queries. In Proceedings of the

39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.

375–392.

[38] Mehdi Kargar, Lukasz Golab, Divesh Srivastava, Jaroslaw Szlichta, and Morteza

Zihayat. 2020. Effective Keyword Search over Weighted Graphs. IEEE Transac-

tions on Knowledge and Data Engineering (2020).

[39] Benny Kimelfeld and Yehoshua Sagiv. 2006. Incrementally computing ordered

answers of acyclic conjunctive queries. In International Workshop on Next Gener-

ation Information Technologies and Systems. Springer, 141–152.

[40] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher lower bounds from

the 3SUM conjecture. In Proceedings of the twenty-seventh annual ACM-SIAM

symposium on Discrete algorithms. SIAM, 1272–1287.

[41] Onur Küçüktunç, Erik Saule, Kamer Kaya, and Ümit V Çatalyürek. 2012. Recom-

mendation on academic networks using direction aware citation analysis. arXiv

preprint arXiv:1205.1143 (2012).

[42] Eugene L Lawler. 1972. A procedure for computing the k best solutions to

discrete optimization problems and its application to the shortest path problem.

Management science 18, 7 (1972), 401–405.

[43] Jyoti Leeka, Srikanta Bedathur, Debajyoti Bera, and Medha Atre. 2016. Quark-X:

An efficient top-k processing framework for RDF quad stores. In Proceedings of the

25th ACM International on Conference on Information and Knowledge Management.

831–840.

[44] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[45] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F Ilyas, and Sumin Song. 2005.

RankSQL: query algebra and optimization for relational top-k queries. In Pro-

ceedings of the 2005 ACM SIGMOD international conference on Management of

data. ACM, 131–142.

[46] Chengkai Li, Mohamed A Soliman, Kevin Chen-Chuan Chang, and Ihab F Ilyas.

2005. RankSQL: supporting ranking queries in relational database management

systems. In Proceedings of the 31st international conference on Very large data

bases. VLDB Endowment, 1342–1345.

[47] Xiaoming Li, Hui Fang, and Jie Zhang. 2019. Supervised user ranking in signed

social networks. In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33. 184–191.

[48] Stefan Manegold, Martin L Kersten, and Peter Boncz. 2009. Database architecture

evolution: Mammals flourished long before dinosaurs became extinct. Proceedings

of the VLDB Endowment 2, 2 (2009), 1648–1653.

[49] Dániel Marx. 2013. Tractable hypergraph properties for constraint satisfaction

and conjunctive queries. Journal of the ACM (JACM) 60, 6 (2013), 1–51.

[50] Dániel Marx. 2021. Modern Lower Bound Techniques in Database Theory and

Constraint Satisfaction. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems. 19–29.

[51] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. 2014. Informa-

tion network or social network? The structure of the Twitter follow graph. In

Proceedings of the 23rd International Conference on World Wide Web. 493–498.

[52] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2012. Worst-case

optimal join algorithms. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI

symposium on Principles of Database Systems. ACM, 37–48.

[53] Dan Olteanu and Jakub Závodnỳ. 2015. Size bounds for factorised representations

of query results. ACM Transactions on Database Systems (TODS) 40, 1 (2015),

1–44.

[54] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and com-

plexity of SPARQL. ACM Transactions on Database Systems (TODS) 34, 3 (2009),

1036

http://snap.stanford.edu/data

1–45.

[55] Yan Qi, K Selçuk Candan, and Maria Luisa Sapino. 2007. Sum-max monotonic

ranked joins for evaluating top-k twig queries on weighted data graphs. In

Proceedings of the 33rd international conference on Very large data bases. VLDB

Endowment, 507–518.

[56] Erhard Rahm and Andreas Thor. 2005. Citation analysis of database publications.

ACM Sigmod Record 34, 4 (2005), 48–53.

[57] Christopher Re, Nilesh Dalvi, and Dan Suciu. 2007. Efficient top-k query eval-

uation on probabilistic data. In Data Engineering, 2007. ICDE 2007. IEEE 23rd

International Conference on. IEEE, 886–895.

[58] Luc Segoufin. 2015. Constant Delay Enumeration for Conjunctive Queries.

SIGMOD Record 44, 1 (2015), 10–17. https://doi.org/10.1145/2783888.2783894

[59] Juan F Sequeda and Daniel P Miranker. 2013. Ultrawrap: SPARQL execution on

relational data. Journal of Web Semantics 22 (2013), 19–39.

[60] Yizhou Sun and Jiawei Han. 2013. Mining heterogeneous information networks:

a structural analysis approach. Acm Sigkdd Explorations Newsletter 14, 2 (2013),

20–28.

[61] Panayiotis Tsaparas, Themistoklis Palpanas, Yannis Kotidis, Nick Koudas, and

Divesh Srivastava. 2003. Ranked join indices. In Proceedings 19th International

Conference on Data Engineering (Cat. No. 03CH37405). IEEE, 277–288.

[62] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and

Xiaofeng Yang. 2020. Optimal algorithms for ranked enumeration of answers to

full conjunctive queries. In Proceedings of the VLDB Endowment. International

Conference on Very Large Data Bases, Vol. 13. NIH Public Access, 1582.

[63] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2021. Beyond

Equi-joins: Ranking, Enumeration and Factorization. In Proceedings of the VLDB

Endowment. International Conference on Very Large Data Bases, Vol. 14. 2599–

2612.

[64] Konstantinos Xirogiannopoulos and Amol Deshpande. 2017. Extracting and

Analyzing Hidden Graphs from Relational Databases. In Proceedings of the 2017

ACM International Conference on Management of Data. ACM, 897–912.

[65] Xiaofeng Yang, Deepak Ajwani, Wolfgang Gatterbauer, Patrick K Nicholson,

Mirek Riedewald, and Alessandra Sala. 2018. Any-k: Anytime Top-k Tree Pattern

Retrieval in Labeled Graphs. In Proceedings of the 2018 World Wide Web Confer-

ence on World Wide Web. International World Wide Web Conferences Steering

Committee, 489–498.

[66] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB,

Vol. 81. 82–94.

[67] Xiao Yu, Yizhou Sun, Brandon Norick, Tiancheng Mao, and Jiawei Han. 2012.

User guided entity similarity search using meta-path selection in heterogeneous

information networks. In Proceedings of the 21st ACM international conference on

Information and knowledge management. 2025–2029.

[68] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2010. Finding top-k

maximal cliques in an uncertain graph. (2010).

1037

https://doi.org/10.1145/2783888.2783894

