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ABSTRACT
Joins in native graph database management systems (GDBMSs) are

predefined to the system as edges, which are indexed in adjacency

list indices and serve as pointers. This contrasts with and can be

more performant than value-based joins in RDBMSs. Existing ap-

proaches to integrate predefined joins into RDBMSs adopt a strict

separation of graph and relational data and processors, where a

graph-specific processor uses left-deep and index nested loop joins

(INLJ) for a subset of joins. In this paper we study and experimen-

tally evaluate this technique’s performance against an alternative

technique that is based on using hash joins that use system-level

row IDs (RIDs). In this alternative approach, when a join between

two tables is predefined to the system, the RIDs of joining tuples

are materialized in extended tables and optionally in RID indices.

Instead of using the RID index to perform the join directly, we use it

primarily in hash joins to generate filters that can be passed to scans

using sideways information passing (sip), ensuring sequential scans.

We further compare these two approaches against: (i) the default

value-based joins of an RDBMS; and (ii) using materialized views

that can avoid evaluating predefined joins completely and instead

replace them with scans. We integrated our alternative approach

to DuckDB and call the resulting system GRainDB. Our evaluation
demonstrates that existing INJL-based approach can be very effi-

cient when entity relations contain very selective filters. However,

GRainDB’s approach is more robust and is either competitive with

or outperforms the INLJ-based approach across a wide range of

settings. We further demonstrate that GRainDB far improves the

performance of DuckDB, which uses default value-based joins, on

relational and graph workloads with large many-to-many joins,

making it competitive with a state-of-the-art GDBMS, and incurs

no major overheads otherwise.
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1 INTRODUCTION
Perhaps the two most commonly used data structures to model data

in enterprise database applications are tables, which are the core

structures of relational database management systems (RDBMSs),

and graphs, which are the core structures of several classes of

systems, most recently of property graph database management

systems (GDBMSs for short), such as Neo4j [3], TigerGraph [4],

DGraph [1], and GraphflowDB [15, 21, 28–30]. GDBMSs target what

are colloquially referred to as graph workloads. This is a colloquial
term as the distinction of application data and queries as graph vs

relational is not very descriptive. Data of many applications can

equivalently be modeled as a set of relations and queried in SQL

or a graph and queried in the query languages of GDBMSs, which

are generally similar to SQL. In the context of our paper, we use

this term to refer to workloads that contain large many-to-many

joins. For example, these workloads appear in social networking

applications for finding long paths between two people over many-

to-many friendship relationships or in financial fraud detection

applications for finding fraudulent patterns across many-to-many

money transfers across bank accounts.

Several economic and technical factors have lead researchers to

investigate techniques to support efficient graph querying natively

inside RDBMSs. For example, it is recognized that the data stored

in many specialized GDBMSs are extracted and replicated from

RDBMSs [8, 38, 40, 43] because users require the fast join capa-

bilities of GDBMSs for specialized applications. In addition, many

applications query their graphs by running predicates on node and

edge properties or grouping and aggregations, for which RDBMSs

already employ efficient techniques. Therefore leveraging mature

RDBMS technology to support graph workloads natively is highly

appealing to both users and vendors: users can avoid the challenges

of duplicating data and keeping multiple systems in sync, while

vendors can avoid the efforts to develop a new system from scratch.

We revisit this goal of extending an RDBMS natively with the fast

join capabilities of GDBMSs.

We begin by analyzing the primary differences between the

join evaluation techniques in RDBMSs and GDBMSs. We observe

that contemporary GDBMSs perform joins between node records

along predefined edges using dense record IDs of nodes, which serve

as pointers to directly look up nodes. We refer to such joins as

predefined/pointer-based joins, using a term used by Ted Codd to

describe the difference between GDBMS of his era and the value-

based joins of RDBMSs [11]. In some settings, these pointer-based

joins can be more efficient than using non-integer keys.

The common approach of implementing predefined joins in

GDBMS has two main components: (i) using adjacency list join

indexes that index for each node ID, the joining edge and node
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records; and (ii) using index nested loop join-style (INLJ) join oper-

ators, that directly use adjacency list indexes to perform the join.

Often a sequence of INLJ operators are used in left-deep join plans

to evaluate subgraph queries. This overall approach has also been

adopted to integrate predefined joins to RDBMSs, most recently by

the GR-Fusion system [17, 18] and also the GQ-Fast system [25] .

In GR-Fusion, SQL is extended to contain graph-specific con-

structs, using which users create graphs. The topologies of these

graphs, i.e., the vertices and edges without properties, are stored

in native adjacency list indexes, which are used during query pro-

cessing for graph traversals/many-to-many joins, using new graph-

specific operators, such as EdgeScan and PathScan. Parts of queries
that refer to graph-specific constructs compile to these specialized

graph operators, while the non-graph parts of queries compile to

existing operators of the RDBMS. Similar to GDBMSs, graph traver-

sals in GR-Fusion are evaluated with left deep join plans that use

INLJ operators, so avoid using efficient bushy plans. As we demon-

strate, this approach can also lead to inefficient accesses when a

query accesses properties of nodes and edges because scans of prop-

erties are done after joins are performed, instead of when scanning

base relations. GQ-Fast [25] follows a very similar approach that is

also based on using INLJ operators and adjacency list indexes to

directly perform joins.

In this paper, we propose and experimentally evaluate an alter-

native approach to integrate predefined/pointer-based joins into

RDBMSs. Our approach integrates predefined joins into a columnar

RDBMS by extending two components of the system:

•Physical Storage andQuery Processor:When a user predefines

a primary-foreign key join from table 𝐹 to table 𝑃 , where a column

of 𝐹 has a foreign key to a column of 𝑃 , this performs an ALTER

TABLE command that inserts an additional 𝑅𝐼𝐷𝑝 column to 𝐹 that

contains for each row 𝑟 𝑓 in 𝐹 the row ID (RID) of row 𝑟𝑝 in 𝑃

that 𝑟 𝑓 points to. RIDs are dense integer-based system-level IDs in

columnar RDBMS that are used to identify the physical locations

of the column values of each row. They are therefore system-level

pointers, similar to node IDs in GDBMSs. Our approach relies on

this property of RIDs.

In order to use these pointers to perform the primary-foreign key

joins, we rewrite queries to replace primary-foreign key equalities

with RID equalities. Equality predicates in many columnar RDBMSs

are primarily evaluated with hash-joins. To exploit the pointer-

nature of predefined joins, we employ sideways information passing
(sip) from hash join operators to base tables scans to select only the

RIDs that successfully join in these hash joins.

• Indexing Sub-system: A common way to represent many-to-

many relationships between two sets of entities in relational databa-

ses is to have a table 𝐹 that contains two foreign keys on two

other (not necessarily different) tables 𝑃1 and 𝑃2. For simplicity of

terminology, we refer to such 𝐹 as a relationship table and 𝑃𝑖 as entity
tables. If the joins with both entity tables have been predefined to

the system, users can additionally build an index on table 𝐹 on the

two extended RID columns 𝑅𝐼𝐷𝑝1 and 𝑅𝐼𝐷𝑝2. This index is stored

in the adjacency list format and serves two purposes. First, it is

used to generate further information to pass when a query joins

𝑃1, 𝐹 , and 𝑃2 and when a hash join operator builds a table of 𝑃1 or

𝑃2. Second, when a query refers to 𝐹 only to facilitate the join of

tuples in 𝑃1 and 𝑃2, namely, the query contains no predicates on

𝐹 and projects out 𝐹 ’s columns, the index allows us to reduce the

number of joins in query plans.

We integrated this alternative approach into the DuckDB colum-

nar RDBMS [35, 36] and call the extended system GRainDB. We

perform extensive experimental evaluation of our approach to

compare its performance against: (i) value-based joins by com-

paring it against vanilla DuckDB plans; (ii) left-deep INLJ plans

of GDBMSs; and (iii) using materialized views to evaluate prede-

fined joins, which can replace actual joins with scans of views.

We demonstrate that GRainDB improves the median query exe-

cution time of DuckDB by 3.6x on the relational JOB benchmark

which contains many-to-many joins, and by 22.5x on the LDBC

SNB graph benchmark, making a columnar RDBMS competitive

with the state-of-the-art GraphflowDB GDBMS [15]. We further

show that our alternative apporach can be more efficient than both

left-deep INLJ-based plans of GDBMSs (and GR-Fusion and GQ-

Fast) on many queries, such as those with selective predicates on

tables that represent edges/relationships, and against materialized

views. In our detailed experimental analysis, we also show that

using sip makes the optimizer of a system more robust because its

semi-join computations can mitigate a poor join order selection of

the optimizer. Our code, queries, and data are available here [2].

2 RELATEDWORK
We next review prior work that leverage RDBMSs for supporting

graph applications and the literature on sip and join indexes. GR-

Fusion [17, 18] performs graph querying natively inside an RDMBS.

Users define graphs as views over tables, The topology of graph

views is stored natively in an adjacency list index. In contrast, the

node and edge properties are stored as pointers to the underlying

tables. Users refer to the paths in a graph view as if they are a sepa-

rate table using a new Paths construct in the FROM clause of SQL.

Then, part of the query that enumerates paths and their constraints

are evaluated with special operators, such as VertexScan or Path-

Scan, whose results are tuples that can be input to further relational

operators. Therefore this approach creates dual query processing

pipelines inside the system. One advantage of this approach is that

the original relational operators remain unchanged because out-

puts from the graph pipeline are regular tuples. However, PathScan

enumerates only paths, so some other patterns, such as stars, need

to be evaluated by the vanilla relational query processor. Instead,

our approach is purely relational and can improve equality joins

on arbitrary queries. Second, paths are enumerated through DFS

or BFS algorithms, which are akin to left-deep plans that use index

nested loop join operators. These plans can be suboptimal compared

to bushy plans, which can be generated in GRainDB. This is fur-

ther exacerbated if vertex and edge properties need to be scanned

during DFS of BFS by following pointers to the tables, which can

lead to many random accesses. In contrast, the alternative hash

join- and sip-based approach we integrated in GRainDB uses adja-

cency list indices to generate information to pass to scan operators

but performs scans always sequentially. We intended but could

not compare our solution against GR-Fusion. Since GR-Fusion’s

join evaluation approach is based on GDBMSs approach of imple-

menting predefined joins, we will instead use existing GDBMSs to

compare the pros and cons of GR-Fusion’s approach.
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GQ-Fast [25] supports a restricted subset of SQL called “rela-

tionship queries” which contain joins of tables that are similar to

path queries, followed with aggregations. Similar to GRainDB and

GR-Fusion, GQ-Fast stores relationship tables in CSR-like indices.

However, similar to GR-Fusion, the joins are limited to paths and

evaluated with left-deep index nested loop join operators that are

equivalent to DFS traversals. Unlike GRainDB and GR-Fusion, GQ-

Fast is implemented as a standalone system and does not integrate

these techniques into an underlying RDBMS to support more gen-

eral queries, which is left as future work [25]. However, even this

envisioned integration is similar to GR-Fusion, where the GQ-Fast

layer is a separate query processor whose outputs are given to the

query processor of the RDBMS. We intended to but could not com-

pare against GQ-Fast because the system supports a very limited

set of queries (e.g., none of the LDBC queries are supported).

Another approach is to develop a translation layer between a

graph data model and query language to the relational model and

SQL and leverage the underlying RDBMS without modifications.

IBM DB2 Graph [40], SQLGraph [39], and SAP Hana’s graph data-

base extension [37] adopt this approach. This is very attractive for

commercial vendors because it is lightweight but this approach is

not performance focused and is limited by the underlying RDBMS’s

baseline performance of value-based joins.

SIP is a term used for techniques that use information passed

“sideways” from non-local parts of a query plan in an operator 𝑜 ,

i.e., from operators that are not immediate children of 𝑜 . SIP has

been used in RDBMSs to avoid scanning large tables or indices or

data from remote compute nodes [9, 14, 19, 31, 32, 44]. The use of

sip closest to our work has been proposed by Neumann et al. [32]

inside the RDF-3X system that manages RDF databases. This work

has proposed using sip to avoid scans of large fractions of indices

that store RDF triples. This work specifically targets queries with

large joins but small outputs that contain sub-queries with non-

selective filters. Evaluation of these sub-queries in regular execution

requires large index scans, but by passing information from other

sub-queries, the system can avoid scanning parts of the index. Zhu

et al. [44] similarly used sip to avoid large table scans in in-memory

star schema data warehouses when using left-deep query plans

in queries. Our use of sip to integrate predefined joins is similar

to the use of sip in these works with several differences. In these

systems, joins are value-based so passing the values, which may be

of arbitrary data types, requires compacting the keys in probabilistic

data structures, specifically bloom filters. This requires running

hash functions both when creating the filter as well as performing

the semi-joins in scans. Since our pointer-based predefined joins

are over dense integer-based ID, we can directly compact the keys

in a deterministic bitmap filter and avoid any hash computations.

As was done in reference [44], we also demonstrate that using sip

in graph or relational workloads with large many-to-many joins

make the system more robust by analyzing GRainDB’s plan space.

The analogue of adjacency list indices in our solution is the

RID indices (Section 6) that we use to index tables that are part of

predefined joins. Our RID indices can be seen as a form of join

index [22, 24, 33, 34, 41, 42]. Valduriez originally introduced join

indices [42] to index results of arbitrary join queries, e.g., consisting

of equality or inequality predicates, and index for each RID of one

table, the list of matching RIDs from one or more other tables.

Similar to join indices, our RID indices store RID keys and list of

RID values but are over base tables instead of results of join queries.

Our use of RID indices is closest to reference [33]’s use of bitmap-

ped join indices in select-project-join queries over databases with

star schemas. This work uses one join index 𝐼𝑛𝑑𝑖 for each dimension

table 𝐷𝑖 . 𝐼𝑛𝑑𝑖 indexes for each RID 𝑗 of 𝐷𝑖 the list of RIDs of fact

table 𝐹 that 𝑗 joins with. The assumption is that 𝐷𝑖 are small, so

each RID list is very large, so it is more efficient to store RID lists as

bitmaps. The authors consider a specific query template, where a

set of 𝐷𝑖 that have separate selection predicates 𝑝𝑖 are joined with

𝐹 . Then by computing the AND/OR of the bitmaps 𝑏𝑖 of each RID

𝑗 in 𝐷𝑖 that passes 𝑝𝑖 , a bitmask filter is generated that identifies

the RIDs of 𝐹 that are part of the join. Finally, for each tuple 𝑡𝑘
from 𝐹 that passes this filter, the tuple from 𝐷𝑖 that join with 𝑡𝑘 is

fetched. In contrast, our approach does not compress RID lists in RID

indices nor use fast bit operations. Instead, insidemodified hash-join

operators, we use uncompressed RID lists to generate bitmapped

filters and pass these filters to downstream scans through sip. At

the same time, our approach is more general and can be applied to

any query, specifically non-star joins, that contain predefined joins.

Finally, our extended RID indices facilitate joins between 3 tables

(instead of only 2 tables) and can be used to reduce the number of

join operations in some special cases (Section 6.2).

Join indices are a form of simplematerialized views [6, 16], except

they store RID values from two or more tables instead of the actual

output columns of join queries. We also compare our approach to a

setup where instead of predefining a join, we create an equivalent

materialized view. As such, materialized views reduce the number

of joins in the query, but unlike our approach, they alone cannot

avoid scanning large tables when there are other predicates on

the tables that represent nodes or edges. As we demonstrate, on

many queries in our workloads, materialized views indeed improves

performance over vanilla DuckDB but not as much as GRainDB.

3 PRELIMINARIES
In Sections 4-7, we describe our proposed approach of using hash

join- and sip to implement predefined joins in RDBMSs. Throughout

these sections, we assume that we are given a select-project-join

query 𝑄 and the underlying RDBMS has generated a query plan 𝑇

for 𝑄 that consist of a tree of table scan, filter, projection, and join

operators, where the joins are inner joins. Our techniques modify

𝑇 to generate a new query plan 𝑇 ′ that replaces some of the join

operators with modified join operators called SJoin, SJoinIdxR,
or SJoinIdxM and some of the scan operators with a modified

scan operator called ScanSJ. We first describe our changes to the

physical storage of relations when users predefine joins in Section 4.

We then describe our new operators and RID indices in Sections 5

and 6 along with our rule-based plan transformation algorithm.

Finally we discuss several implementation details in Section 7.

4 RID MATERIALIZATION
Users predefine their joins using a PREDEFINE JOIN command that

we added to the SQL dialect in DuckDB. In this command users spec-

ify an equality join from a table 𝐹 (𝐴𝑓 1
, ...𝐴𝑓 𝑘𝑓 ) to 𝑃 (𝐴𝑝1, ..., 𝐴𝑝𝑘𝑝 )

on attributes 𝐴𝑓 𝑡1
= 𝐴𝑝𝑧1

, ..., 𝐴𝑓 𝑡ℓ = 𝐴𝑝𝑧ℓ , such that 𝐴𝑓 𝑡1
, ..., 𝐴𝑓 𝑡ℓ

forms a foreign key to 𝑃 . In response, the system adds a new column

RID(𝐴𝑓 𝑡1
, ..., 𝐴𝑓 𝑡ℓ ) to 𝐹 that contains for each row 𝑟 𝑓 ∈ 𝐹 , the RID
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Table 1: Input tables for our running example.
(a) Person table.

Person
ID name
101 Mahinda

202 Karim

303 Carmen

404 Zhang

(b) Follows table.
Follows

ID1 ID2 year
101 202 2021

303 404 2019

101 303 2021

202 303 2020

101 404 2021

Table 2: Extended tables. RID columns are abbreviated as VR
and are in gray to indicate that they are not materialized.
The RID(ID𝑖) columns of Follows’ are abbreviated as R𝑖.
(a) Extended Person table.

Person
VR ID name
0 101 Mahinda

1 202 Karim

2 303 Carmen

3 404 Zhang

(b) Extended Follows table.
Follows′

VR R1 ID1 R2 ID2 year
0 0 101 1 202 2021

1 2 303 3 404 2019

2 0 101 2 303 2021

3 1 202 2 303 2020

4 0 101 3 404 2021

of the row 𝑟𝑝 ∈ 𝑃 to which 𝑟 𝑓 has the foreign key. This column

is visible only to the system and not to users. RIDs in columnar

RDBMSs serve as system-level pointers and can be used to compute

the locations of rows in storage. Therefore the RID(𝐴𝑓 𝑡1
, ..., 𝐴𝑓 𝑡ℓ )

column stores for each 𝑟 𝑓 the pointer to the matching 𝑟𝑝 . Multiple

joins on 𝐹 can be predefined, which is common for relationship

tables that represent many-to-many joins between two entity tables.

Example 1. Table 1 shows a simple database with two tables, a
Person(ID, name) table and a Follows(ID1, ID2, year) table, that
will serve as our running example. The ID1 and ID2 columns in
Follows are both foreign keys to the ID column of Person. Table 2
shows the extended Follows table (as Follows’) when a user prede-
fines the Person.ID = Follows.ID1 and Person.ID = Follows.ID2
joins. The Follows table is extended with RID(ID1) and RID(ID2)
columns (abbreviated as RID1 and RID2) that contain the RIDs of the
rows in Person that match the values in the ID1 and ID2 columns,
respectively. Both Person and Follows tables also have RID columns
(abbreviated as VR) that show the contiguous RIDs of the rows in these
tables. These are shown in gray to indicate that unlike RID(ID1) and
RID(ID2) columns, they are not materialized in storage.

5 SJOIN: THE SIP OF RIDS
Our implementation of predefined joins consists of two steps:

Step 1: Rule-based query optimization. Algorithm 1 gives the

pseudocode of our first rule-based optimization algorithm (a second

one is described in Section 6.2). We recursively traverse the sys-

tem’s default logical plan𝑇 for a query (lines 1 and 2) and find each

join operator that evaluates a predefined join from 𝐹 to 𝑃 . In our im-

plementation, these are HashJoin operators because DuckDB eval-

uates equality joins with HashJoin. Upon finding these HashJoins,
we perform one of two actions. We review the first case here and

will review the second case in Section 6.1:

Join Replacement Case 1 (Lines 8-10): 𝐹 is on the build and 𝑃 is on the
probe side. In this case, we make the following changes to 𝑇 :

• HashJoin is replaced with a new operator called SJoin (line 9).

Algorithm 1 ReplaceHashJoinsWithSJoins. 𝑇 .op refers to the root

operator in a (sub-) plan tree 𝑇 .

input: DuckDB’s optimized plan tree 𝑇

output: A plan tree 𝑇 ∗ possibly with SJoin/SJoinIdxR operators.

1: 𝑇 ∗
𝑙
← ReplaceHashJoinsWithSJoins(𝑇𝑙 );

2: 𝑇 ∗𝑟 ← ReplaceHashJoinsWithSJoins(𝑇𝑟 );

3: if ((𝐹 , 𝑃 ) = FindPredefinedJoin(𝑇.op)) ̸= NULL then
4: return RewriteJoinAndScans(𝑇 , 𝐹 , 𝑃 );

5: return 𝑇 ;

6:

7: function RewriteJoinAndScans(𝑇 , 𝐹 , 𝑃 ):

8: if (𝐹 is on the build and 𝑃 is on the probe side) then
9: (i) replace 𝑇.op with SJoin;
10: (ii) replace the scan of 𝑃 with ScanSJ of 𝑃 .

11: else if 𝑃 is on the build and 𝐹 is on the probe side and the

appropriate RID index on 𝐹 exists then
12: (i) replace 𝑇.op with SJoinIdxR;
13: (ii) replace the scan of 𝐹 with ScanSJ of 𝐹 .

• Scan(𝐹 ) operator (on the build side sub-tree) is modified to scan

the materialized RID column of 𝐹 (omitted in Algorithm 1).

• Every probe-side Scan(𝑃 ) operator is replaced with a modified

scan operator, which we call ScanSJ (for semi join) (line 10).

Step 2: Sideways information passing during query evalua-
tion: Suppose an SJoin operator has replaced a HashJoin operator
in 𝑇 and a ScanSJ(𝑃 ) has replaced the standard Scan(𝑃 ) in the Join

Replacement Case 1. Then during query evaluation we use sip to

pass information from SJoin to ScanSJ(𝑃 ) as follows. SJoin is a

specialized hash join operator that first reads all of the tuples from

its build side. These tuples contain materialized RID values in 𝐹 and

point to the tuples in 𝑃 . SJoin then constructs two bitmask filters:

• Zone bitmask: For each zone of 𝑃 , i.e., a block of tuples on disk,

indicates whether the zone has any matching tuples joining with

𝐹 . This bitmask contains 1 bit for each zone and is constructed

by taking the modulo of the RIDs with the zone size.

• Row bitmask: Indicates whether each row 𝑟𝑝 of 𝑃 joins with an 𝐹

tuple. This bitmask contains |𝑃 | many bits and is constructed by

directly setting the positions of the seen RIDs to 1.

SJoin then passes both of these bitmasks to all of the ScanSJ(𝑃 )
operators in its probe side recursively. The zone bitmask is used

to skip over scanning zones of 𝑃 whose bits are 0. For zones with

matching tuples, The ScanSJ operator scans the zone into vectors

as regular scan operator and adds a new RID vector to the inter-

mediate tuples that store the RIDs of the scanned tuples. Finally,

ScanSJ attaches the row bitmask of this zone as a selector vector,

which filters out the 𝑃 tuples without matching 𝐹 tuples, to the

intermediate tuples.

Note that passing bitmask filters sideways from SJoin operator

down to all ScanSJ(𝑃 ) operators is a safe operation in our setting

of select-project-join queries. Observe that the bitmask filter gener-

ated by SJoin is the set of RIDs of 𝑃 that will successfully join with

𝐹 tuples in the SJoin. Let 𝑃 .𝑅 be the (virtual) RID column of 𝑃 . One

can therefore think of the bitmask filter as a runtime predicate on

𝑃 .𝑅. One can further think of applying this predicate as the last op-

erator of the probe-side of SJoin. Therefore by passing the bitmask
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filter to the ScanSJ(𝑃 ) operators, we are pushing this predicate

down the probe side sub-tree. By algebraic rules for pushing down

predicates [12], this predicate can be pushed down through any

selection, projection, or (inner) join operator. In general, this infor-

mation cannot be safely passed to all ScanSJ operators, e.g., if the

probe-side sub-tree of SJoin contains a group by and aggregation,

limit, or outer join operator. We give an example.

Example 2. Consider a query that finds two hop friends of Karim:

SELECT *
FROM Pers. P1,Follows F1,Pers. P2,Follows F2,Pers. P3
WHERE P1.ID=F1.RID1 AND F1.RID2=P2.ID AND P2.ID=F2.RID1

AND F2.RID2=P3.ID AND P1.name = Karim

Figure 1a shows an example plan for this query that has: (i) re-
placed two HashJoins with SJoin operators; (ii) replaced two Scan
Person table operators (for P2 and P3) with ScanSJ; and (iii) modi-
fied the Scan Follows operators to read thematerialized RID columns.
HashJoin1 and HashJoin2 operators are not replaced with SJoin
because the Scans of F1 and F2 are on their probe sides. SJoin oper-
ators pass two bitmasks, shown at the ScanSJ P2 and ScanSJ P3
operators. The top one is the zone bitmask and the bottom one is the
row bitmask. The figure assumes zones of size 2. In our running exam-
ple, HashJoin1 joins the (1, 202, Karim) and (1, 202, P2.RID=2, 303,
2020) tuples, which is given to SJoin1. Because the only matching
P2 in this tuple has RID 2, the row bitmask passed to ScanSJ P2 is
[0, 0, 1, 0] and the zone bitmask is [0, 1]. ScanSJ P2 only scans the
second zone and puts the [1, 0] selector vector to the two tuples in
this zone (filtering out the tuple with RID 3). The output of SJoin1 is
(1, 202, Karim, 2, 303, Carmen, 2020) and the following HashJoin2

produces (1, 202, Karim, 2, 303, Carmen, 2020, P3.RID=3, 404, 2019).
This is given to SJoin2 (during build), which passes the [0, 1] zone
bitmask and the [0,0,0,1] row bitmask to ScanSJ P3. The final output
is (1, 202, Karim, 2, 303, Carmen, 2020, 3, 404, Zhang, 2019).

6 THE RID INDEX AND ITS APPLICATIONS
Next, we describe two applications of indexing the materialized

RIDs in table 𝐹 in an index. We call this index the RID index.

6.1 The RID Index and Reverse Information
Passing

In our approach of evaluating predefined joins so far, we can pass

RID values only from 𝐹 to scans of 𝑃 and not vice versa. In many

settings, 𝐹 is a much larger table than 𝑃 , and the ability to filter

tuples of 𝐹 by obtaining information from 𝑃 can be very beneficial.

For example, in LDBC benchmark with scale 30, Knows table is

41x larger than Person. However, given a row 𝑟𝑝 ∈ 𝑃 , we cannot
directly find from the RID value of 𝑟𝑝 the RIDs of rows 𝑟 𝑓 1

, ..., 𝑟 𝑓 𝑝 ∈
𝐹 that join with 𝑟𝑝 , as this list is not materialized in 𝑃 . Instead,

we construct a RID index on 𝐹 that for each 𝑟𝑝 returns this list. In

our implementation, users can construct RID index on any table 𝐹

on which at least one join has been predefined (say to a table 𝑃 ).

Therefore, 𝐹 already has a materialized RID(𝐴𝑖𝑡1
, ..., 𝐴𝑖𝑡ℓ ) column

and its own virtual RID column. The RID index stores for each value

in the RID(𝐴𝑖𝑡1
, ..., 𝐴𝑖𝑡ℓ ) column the RIDs of 𝑟 𝑓 1

, ..., 𝑟 𝑓 𝑝 ∈ 𝐹 that

join with 𝑟𝑝 . Similar to adjacency list indices in GDBMSs, we store

the RID index using a compressed sparse row data structure [10].

When there is a RID index, we apply the following transforma-

tion rule, which is the second Join Replacement Case in Algorithm 1:

Join Replacement Case 2 (Lines 11-13): 𝑃 is on the build and 𝐹 is on
the probe side and there is a RID index on 𝐹 for this predefined join.
In this case we make the following changes to the plan tree:

• HashJoin is replaced with an operator called SJoinIdxR (line 12).

• Scan(𝑃 ) operator (on the build side sub-tree) is modified to scan

the materialized RID column of 𝑃 (omitted in Algorithm 1).

• Every probe-side Scan(𝐹 ) operator is replaced with ScanSJ.

Similar to SJoin, SJoinIdxR builds a hash table, now of tuples

from 𝑃 and constructs the bitmasks for the sip as follows: For each

tuple 𝑟𝑝 from the build side, SJoinIdxR consults the RID index to

find the RIDs of the 𝐹 tuples that join with 𝑟𝑝 and sets the bits

corresponding to these RIDs. Then, these bitmasks are passed to

the ScanSJ(𝐹 ) operators, which filter out the 𝐹 tuples without any

matching 𝑃 tuples in SJoinIdxR. The pseudocode of SJoinIdxR is

shown in Algorithm 2 in the longer version of our paper [20]. Note

that the RID index is a join index and generates the RIDs of all of

the matching tuples 𝐹 . Therefore, by the same argument we made

in Section 5, passing down of these bitmasks down to ScanSJ(𝐹 )
is safe in our setting, as it follows the algebraic rules for pushing

down predicates [12].

Example 3. Figure 2 shows the RID index that indexes the (RID1,
RID) columns of the Follows table. Ignore the Follows(RID2) val-
ues in the figure for now. Figure 1b shows the plan we now generate in
presence of this RID index. The two HashJoin operators from the plan
in Figure 1a are replaced with SJoinIdxR operators and the previous
Scan operators of the Follows table are replaced with ScanSJ oper-
ators. The figure also shows bitmasks that the new ScanSJ operators
take. For example, the ScanSJ 𝐹1 operator takes a row bitmask with
only the index 3 set to 1 and zone bitmask with only index 2 set to 1.
This is because the RID of the (1, 202, Karim) tuple is 1 and 1’s list
of matching RIDs contains only the RID 3 of Follows, because 202
joins with (3, 1, 202, 2, 303, 2020) (see Table 2).

6.2 The Extended RID Index and Join Merging
Many-to-many joins between two tables 𝑃1 and 𝑃2 that represent

two (possibly same) sets of entities are often facilitated through a

third relationship table 𝐹 . This is, for example, the case in our run-

ning example, where the Follows table is joined with two Person
tables. Therefore, it can be beneficial to predefine two joins on 𝐹 .

In this case, each row 𝑟 𝑓 of 𝐹 would contain the virtual RID of 𝐹

and two materialized RIDs, one for row 𝑟𝑝1
∈ 𝑃1 and the other

𝑟𝑝2
∈ 𝑃2 that 𝑟 𝑓 joins with. Consider building a RID index from

the RIDs of 𝑃1 to lists of the RIDs of 𝐹 tuples. For each RID of 𝑃1,

say 𝑖1, we store a list 𝐿𝑖1 = {𝑟 𝑓1 , ..., 𝑟 𝑓𝑘 } of RIDs of 𝐹 tuples that

have 𝑖1 in their materialized RID column for 𝑃1. We can also ex-

tend 𝐿𝑖 to store the RIDs of 𝑃2 tuples along with the RIDs of F as

follows: {(𝑟 𝑓1 , 𝑟𝑝21
), ..., (𝑟 𝑓𝑘 , 𝑟𝑝2𝑘

)}. This is similar to how GDBMSs

store both the edge IDs and neighbor node IDs in their adjacency

lists. Analogous to forward and backward adjacency list indices in

GDBMSs, one can similarly build a second RID index that stores

for each RID of 𝑃2 a list of RIDs of joining 𝐹 and 𝑃1 tuples. Figure 2

is an example “forward” extended RID index for the Follows table,

that stores for each “source” Person tuple 𝑟𝑝 , the list of RIDs of the
joining Follows tuples, shown as Follows(RID) values, as well
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(a) Plan without a RID index.
(b) Plan with a RID index when columns of
Follows tables are in the final projection.

(c) Plan with a RID index when columns
of Follows tables are projected out.

Figure 1: Example plans for our running example queries with different system configurations.

Figure 2: A RID index on Follows in the CSR format.

as the RIDs of the “destination” Person tuples that these Follows
tuples point to, shown as Follows(RID2) values.

Consider a query that performs a join of 𝑃1 ⊲⊳ 𝐹 ⊲⊳ 𝑃2 with the

predefined conditions, but 𝐹 is only used to facilitate the join. That

is: (i) there are no filters or other joins on 𝐹 ; and (ii) the final

projection does not contain any columns of 𝐹 . We call the scan of

𝐹 in this case an unfiltered scan operator. Then, we can directly

join the 𝑃1 tuples with 𝑃2 tuples using an extended RID index,

without ever scanning the 𝐹 table and joining 𝐹 with 𝑃1 or 𝑃2. This

is because for each tuple 𝑡𝑝1
∈ 𝑃1, the extended RID index already

contains the RIDs of every tuple 𝑡𝑓 of 𝐹 that joins with 𝑡𝑝1
and the

RIDs of corresponding 𝑃2 tuples that are materialized in 𝑡𝑓 . We

call this the join merging optimization. Specifically, in our query

optimization step, we look for two consecutive join operators 𝐽1,

evaluating 𝑃1 ⊲⊳ 𝐹 , and 𝐽1’s parent 𝐽2, evaluating 𝑃2 ⊲⊳ 𝐹 such that

conditions (i) and (ii) above are satisfied. We replace 𝐽1 and 𝐽2 with

a new SJoinIdxM operator 𝑆 . 𝑆 takes as its build side 𝐽1’s build side

and as its probe side 𝐽2’s probe side, and we drop the unfiltered

scan of 𝐹 , i.e., the probe side of 𝐽1.

Algorithm 3 in the longer version of our paper [20] shows the

pseudocode of the join merging transformation algorithm. Given

DuckDB’s original plan 𝑇 , we apply the join merging rule after

the SJoin replacement rule (Algorithm 1). We note that since both

of our transformation rules are deterministic, for each 𝑇 , our rule-

based optimizer always returns a unique𝑇 ∗. During evaluation, for
each 𝑃1 tuple 𝑟𝑝 , 𝑆 looks for the RIDs of joining 𝑃2 tuples directly

from the extended RID index, and passes these RIDs as bitmasks to

the ScanSJ(𝑃2) operators on its probe side, without ever scanning

𝐹 . The join with 𝐹 happens implicitly while accessing the RID index

to read the RIDs of 𝑃2 tuples.

Example 4. Figure 1c shows our plan in the presence of an extended
RID index from RID1 to RID2 columns of Follows. Observe that
compared to the plan in Figure 1b, we have merged SJoinIdxR1

and SJoin1 into a new SJoinIdxM1 operator, and SJoinIdxR2 and
SJoin2 into a new SJoinIdxM2 operator.
7 IMPLEMENTATION CONSIDERATIONS
We next elaborate on the optimizer and the update handling un-

der our proposed approach. We use the default join optimizer of

DuckDB to generate an initial plan𝑇𝑑 and then replace some of the

hash joins in a rule-based approach with our S-Join variants to

obtain 𝑇 ∗
𝑑
. Even if 𝑇𝑑 is the best default join order of DuckDB, in

principle modifying another plan 𝑇 with predefined joins can out-

perform𝑇 ∗
𝑑
. Therefore, one can extend our integration to develop a

sip-aware optimizer to generate such plans. In Section 8, we present

a plan spectrum study on a subset of the JOB benchmark queries to

study the effects of predefined joins on the plan space of DuckDB.

We also evaluated how much performance opportunity there was

to improve 𝑇 ∗
𝑑
, if a sip-aware optimizer could pick the optimal plan

𝑇 ∗𝑠 with predefined joins. Although we found several queries for

which we could obtain improvements, broadly we found𝑇 ∗
𝑑
and𝑇 ∗𝑠

competitive and chose not to modify the optimizer of the system.

Second, although we do not focus on updates, our integration

requires further considerations for handling updates. Insertions

of a tuple 𝑡 to a table 𝐹 that has a predefined join to 𝑃 requires

finding the RID of the tuple in 𝑃 that 𝑡 refers to and inserting it

in the system-visible RID(𝐴𝑖𝑡1
, ..., 𝐴𝑖𝑡ℓ ) column 𝐹 . If there is a RID

index on 𝐹 , possibly an extended one, we need to further update

the index. Deletions also require additional handling. Observe that

because we use RIDs as pointers, we materialize them in system-

visible RID columns or a RID index. Therefore once a tuple 𝑡 is

assigned a RID, it needs to remain fixed. When a tuple 𝑡 with the

RID 𝑘 is deleted, the system needs to keep track of the gap in 𝑘 and

assign it to the next inserted tuple. The system cannot shift tuples

with RIDs 𝑘 + 1, which would change a large number of RIDs and

require updating the references to these RIDs. Reusing gaps or IDs

is common practice both in RDBMSs and GDMBSs, e.g., MySQL [5]

reuses gaps left by deleted tuples for new insertions.

8 EVALUATION
We next evaluate our hash join- and sip-based approach of imple-

menting predefined joins with several alternatives. Our approach

is implemented inside DuckDB and we call this version of DuckDB

as GRainDB.
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8.1 Setup
Baseline Systems:We compare GRainDB against the following

baseline systems: (i) vanilla DuckDB; (ii) DuckDB-MV, which is

the DuckDB configuration where we extend our original databases

with a set of materialized views corresponding to the joins prede-

fined in GRainDB; and (iii) GraphflowDB, a state-of-art academic

graph database system [15, 21, 28, 29], which uses INLJ-based imple-

mentation of predefined joins. We use the version of GraphflowDB

from the reference [15]. We also performed preliminary experi-

ments with Neo4j’s community edition, but as with several prior

work [15, 21, 28] did not find it competitive with GraphflowDB (or

GRainDB) on many queries and omit these experiments.

As we explained in Section 2, we also intended but could not

compare against GQ-Fast and GR-Fusion. One of our goals was to

show that the pure left-deep and INLJ-based plans used by these

approaches can be suboptimal to bushy and hash join-based plans of

GRainDB. Instead, we will perform this comparison against similar

plans from Neo4j and GraphflowDB.

Benchmarks: We expect predefined joins to provide performance

improvements on queries with the following properties: (i) Existence
of predefined joins:As a necessary condition, the query must contain

at least one predefined join. (ii) Existence of selective predicates on 𝐹

and/or 𝑃 : This is critical because when 𝐹 (or 𝑃 ) has a selective predi-

cate, the bitmask filters used by sipmore effectively reduces the scan

of 𝑃 (or 𝐹 ). (iii) Existence of one/many-to-many joins:We also expect

to see performance improvements when queries contain one/many-

to-many joins for two reasons. First, predefined joins primarily

improves join performance (as opposed to say aggregations), and

the join performance is often an important runtime factor in queries

with one/many-to-many joins. Second, the application of reverse in-

formation passing from 𝑃 to 𝐹 and the join-merging optimizations

can primarily benefit queries with one/many-to-many joins. This

is because these optimizations require a RID index, which is gener-

ally built on tables that represent one/many-to-many relationships

between two other tables.

In light of these, we used one relational and one graph benchmark

that contain queries that satisfy these properties and for a more

complete evaluation, a second relational workload that does not.

• Join order benchmark (JOB) on the IMDB dataset [23], which

contains more than 2.5 M movie titles produced by 235K dif-

ferent companies with over 4 M actors. When using GRainDB,

we predefine every one-to-many primary foreign key relation-

ship in the database and for tables that represent many-to-many

relationships, such as movie-companies, we build a RID index.

• LDBC Social Network Benchmark [7] (SNB) benchmark at scale

factor 10 and 30, which is a commonly used graph benchmark

that models a social networking application with users, forums,

and posts. In relational format, LDBC10 dataset contains 8 entity

(i.e, node) and 10 relationship (i.e., edge) tables, with a total num-

ber of 36.5M and 123.6M tuples, respectively. LDBC30 contains

106.8M entity and 385.2M relationship tuples. We used SNB pri-

marily to compare against DuckDB with materialized views and

GraphflowDB (and Neo4j, which was not competitive). Graph-

flowDB does not implement several language features, such as

recursive queries. Therefore, we slightly modified the benchmark

and refered to it as SNB-M, for modified. We removed queries

involving shortest paths and decomposed queries with variable-

length joins into multiple queries, each of which has a fixed path

join (we denote each version with a suffix -ℓ , where ℓ denotes

the length). In the longer version of this paper [20], we list our

full SNB-M queries. SNB is generated in both relational and prop-

erty graph formats. We use the relational format in DuckDB and

GRainDB. For every edge type in the graph format of SNB, e.g.,

Knows edges, we build a RID index over the corresponding table in

GRainDB. For each predefined join in GRainDB, we create a mate-

rialized view that joins two tables and project all their properties

in DuckDB-MV, e.g., predefined join Person.ID=Knows.P1ID, we

create a materialized view on the subquery SELECT * FROM

Person JOIN Knows ON Person.ID=Knows.P1ID. We also created

an index on primary key columsn of these views.

• TPC-H benchmark at scale factor 10. We include TPC-H to per-

form a sanity check that making the primary-foreign key joins

on such traditional workloads does not hurt performance. We

do not expect GRainDB to provide meaningful improvements on

TPC-H as it does not contain selective many-to-many joins. We

predefined every one-to-many primary foreign key relationships

in GRainDB, such as customer and orders. Although we did not

expect performance speedups, we still found several queries on

which we obtained non-negligible runtime improvements.

System Configurations and Hardware:We set DuckDB to the

in-memory mode. DuckDB is still in early stage and does not in-

tegrate full cardinality estimation. We observed that this limits its

ability to choose good join orders on many instances, especially

in queries with large joins and selective predicates. GRainDB can

improve DuckDB’s plans with poor join orders as well as good join

orders. We demonstrate this in Section 8.3.3 where we analyze the

plan spectrums of GRainDB and DuckDB. However, using poor join

orders decreases GRainDB’s competitiveness with GraphflowDB.

To isolate the influence of join order selection, we injected the true

cardinalities of sub-queries into the system. In the longer version

of this paper [20], we present a demonstrative experiment that

shows that: (i) GRainDB’s improvement factors over DuckDB is

similar when we use DuckDB’s default cardinality estimates or

true cardinalities; and (ii) injecting true cardinalities improves the

performance of both DuckDB and GRainDB. We note that making

true cardinality estimates is not realistic in practice. To verify that

GRainDB does not strictly require true cardinalities to perform

well, we also injected into the system Postgres’s cardinality esti-

mates (also presented in the longer version of this paper [20]). We

observed that using Postgres’s cardinalities leads to very similar

results to injecting true cardinalities. In light of this demonstra-

tive experiment, we present DuckDB’s performance under true

cardinalities in the following sections.

GraphflowDB is already an inmemory system. TheGraphflowDB

version we use does not contain an optimizer, so does not need to

estimate cardinalities. We manually picked the systems’ best join

order, which for many queries was obvious.

All experiments were conducted on a machine with two Intel E5-

2670 @2.6GHz CPUs and 256 GB of RAM, consisting of 16 physical

cores and 32 logical cores. Because GraphflowDB runs only in serial

mode, we set DuckDB to run in serial mode as well. All reported

times are averages of five successive runs after a warm-up running.

1017



Figure 3: Runtimes (in ms) of DuckDB and GRainDB on JOB,
SNB-M and TPC-H, and DuckDB-MV and GraphflowDB on

SNB-M.

Table 3: Detailed percentiles of runtimes (in ms) for DuckDB
and GRainDB on JOB.

Min 5th 25th 50th 75th 95th Max
DuckDB 96.0 203.6 652.4 1110.0 1797.0 2939.9 3584.6

GRainDB 5.8 27.4 176.4 309.0 614.2 1878.5 3104.4

Our measurements reflect the end-to-end query evaluation time,

and a timeout of 10 minutes is imposed on each running.

8.2 End-To-End Benchmarks
We first present end-to-end evaluations on JOB, SNB-M, and TPC-H.

8.2.1 JOB: Relational Workload with Selective Many-to-Many Joins.
The box plots of DuckDB and GRainDB on JOB are shown in Fig-

ure 3. Each boxplot shows the distribution of the runtimes of the

queries in the workloads, specifying the 5th, 25th, 50th, 75th, and

95th percentiles of the distribution with marks. As we expect, we

observe GRainDB outperforms DuckDB by large margins. JOB

contains 113 queries. Table 3 lists detailed percentiles for query

execution times of DuckDB and GRainDB of these queries. We

see consistent large runtime reductions for each percentile. For

example, the 25th percentile, median, and 75th percentile query

execution times reduce respectively from 652.4ms to 176.4ms (3.7x),

from 1110ms to 309ms (3.6x), and from 1797ms to 614.2ms (2.9x).

For reference, Table 4 presents the execution times of a subset of

the queries in JOB. Specifically, JOB queries contain between 2 to

6 variants and we present the first variant of each query in the

table. The full table can be found in the longer version of this pa-

per [20]. Importantly, we see consistent runtime improvements on

all queries, with a few exceptions. Table 4 also presents the reduc-

tion on the amount of scanned tuples for each query in DuckDB and

GRainDB. Although runtime reductions depend on many factors,

the reductions in scanned tuples is a good proxy for explaining

when sip and predefined joins improve performance. For example,

we observe that the queries in which we observe the largest im-

provement factors, such as Q6a, Q21a, Q27a and Q32a, have large

reductions in scanned tuples by 348.9x, 182.2x, 185.4x, and 53.8x.

In contrast, queries with negligible improvements, such as Q5a and

Q20a have no or small (1.3x) reductions in scanned tuples.

8.2.2 SNB-M: Graph Workload with Selective Many-to-Many Joins.
The box plots of DuckDB, GRainDB, and GraphflowDB on SNB-M

are shown in Figure 3 (ignore the DuckDB-MV bar chart for now).

Table 5 also lists detailed percentiles for query execution times of

the systems (simiarly, ignore the DuckDB-MV row for now). We

see that GraphflowDB outperforms DuckDB by large margins on

SNB-M. Specifically for the 25th percentile, median, and 75th per-

centile query execution times, GraphflowDB outperforms DuckDB

respectively by 10.7x (68.4ms vs 6.4ms), 22.5x (441.8ms vs 20.8ms),

and 14.1x (989.0ms vs 70.3ms). However, by predefining the joins

in SNB-M, GRainDB closes this gap significantly, making DuckDB

competitive with GraphflowDB. Specifically for the 25th percentile,

median, and 75th percentile query execution times, GRainDB and

GraphflowDB compare as follows: 5.0ms vs 6.4ms (0.78x), 19.6ms

vs 20.8ms (0.94x), and 119.4ms vs 70.3ms (1.7x).

Table 6 shows the detailed execution times of each query for

all systems (again ignore the DuckDB-MV row for now). We see

that GRainDB outperforms DuckDB on almost all queries by up

to 90x, except for IS1 and IS4, which are two small queries exe-

cuted within 2ms. Similarly, GraphflowDB outperforms DuckDB

in most queries by up to 426.6x. We observe that there are also

9 queries in which GRainDB outperforms GraphflowDB by large

margins. We analyzed each of these queries to study GRainDB’s

performance advantages. First are IS01 and IS04-IS07, which are

point lookup queries over large base tables with inexpensive joins.

Here, GraphflowDB resorts to sequential scans of these tables/nodes

while GRainDB (and DuckDB) uses a primary key index. This is not

an inherent limitation of GraphflowDB plans and can be remedied if

GraphflowDB also supports primary key indexes. On the remaining

4 queries, GRainDB plans have two separate advantages.

• Bushy vs Left-deep Plans: IC1-3, IC6-2, IC11-2 are three queries
in which GRainDB outperforms DuckDB and uses a bushy plan.

We describe IC6-2 as an example. IC6-2 is a complex query with

8 joins in SQL. In graph version, this is a 5-path query with

selective predicates on both ends of the path. GraphflowDB does

not implement bushy plans, so this query is implemented with a

left-deep plan. This is less performant than the bushy plan that

GRainDB uses that breaks the path into two parts. In the longer

version of this paper [20], we show the plans from both systems.

This is an example of when the left-deep plan-based approaches

to evaluate such path queries, which are used in systems like

GR-Fusion and GQ-Fast, can be suboptimal to bushy plans.

• Hash Join vs Index Nested Loop Joins and Scanning Edges Before
vs After Joins: The IC9-2 query is a smaller query with 4 joins in

SQL. This is a 3-path query that also has filters on both ends. Now

both systems use left-deep plans. The majority of the time in this

query is spent in the very last join, which requires joining 7681

tuples from a Person table with a Comments table. 2.7M of these

tuples successfully join with the 7681 tuples and 2.4M of these

also pass a filter on the Comments table. In graph terms, 7681

Person nodes have 2.7M outgoing Comment edges (so an average

degree of 351). GraphflowDB follows these steps: (i) joining nodes
with edges: looks up the edges of each of the 7681 keys in a

large adjacency list index that point to Comments. This performs

7681 random lookups into a hash table of size 26.5M, and then

generates 2.7M intermediate tuples. (ii) property scan and edge
filtering: reads the necessary properties of the 2.7M Comments and
runs the filter predicates on these edges. In contrast, GRainDB

follows these steps: (i) hash table build: creating a hash table of

size 7681; (ii) edge scanning and filtering: sequentially scanning a
large Comments table with 26.5M tuples and running a predicate

on them which returns 2.4M tuples; (iii) joining nodes with edges:
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Table 4: Runtimes (in ms) of DuckDB and GRainDB on each query in JOB.

1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a 15a 16a 17a
DuckDB 234.2 207 1491.4 216 96 885.4 879.8 1307.4 1933.2 1404.2 264.2 684 981.2 1644.2 987.8 652.4 1164.8

GRainDB
34.2 154.0 328.0 114.2 116.4 57.0 203.4 349.8 554.8 614.2 44.4 242.4 336.8 202.2 283.4 177.6 486.0

6.8x 1.3x 4.5x 1.9x 0.8x 15.5x 4.3x 3.7x 3.5x 2.3x 6.0x 2.8x 2.9x 8.1x 3.5x 3.7x 2.4x
Scan Reduction 751.2x 23.9x 97.2x 58.7x 1x 348.9x 47.0x 9.2x 6.0x 13.0x 73.7x 44.8x 42.4x 142.1x 7.4x 14.4x 10.7x

18a 19a 20a 21a 22a 23a 24a 25a 26a 27a 28a 29a 30a 31a 32a 33a
DuckDB 1797.0 2632.4 1118.4 1629.2 1471.8 866.6 2554.8 2318.8 1074.6 761.4 2068.4 2742.6 2198.0 2523.8 126.0 336.2

GRainDB
612.6 491.6 1071.6 54.2 864.0 296.8 788.8 1376.6 733.4 44.4 240.2 266.6 673.0 612.0 8.2 149.4

2.9x 5.4x 1.0x 30.1x 1.7x 2.9x 3.2x 1.7x 1.5x 17.1x 8.6x 10.3x 3.3x 4.1x 15.4x 2.3x
Scan Reduction 13.8x 7.8x 1.3x 182.2x 7.6x 8.2x 8.7x 32.2x 15.7x 185.4x 156.9x 10.8x 282.2x 165.5x 53.8x 2.6x

Table 5: Detailed percentiles of runtimes (in ms) for
DuckDB, GRainDB, and GraphflowDB on SNB-M.

Min 5th 25th 50th 75th 95th Max
DuckDB 0.2 1.5 68.4 441.8 989.0 2762.5 4647.0

DuckDB-MV 0.2 0.48 9.0 166.0 612.0 2580.7 4258.0

GRainDB 0.2 0.7 5.0 19.6 119.4 1482.4 2768.0

GraphflowDB 2.1 2.5 6.4 20.8 70.3 888.2 1473.6

and finally doing 2.4M lookups into this very small hash table

and performing the join. Now the joins happen after a sequential

scan and filter of the “edge” table, leveraging columnar RDBMS

techniques highly optimized for sequential scans and filters of

large columns. In addition, in the final join, now the lookups are

performed on a very small hash-table instead of a large adjacency

list index. This is more performant than performing the joins

by lookups into a large index and non-sequentially scanning

and filtering the joined edges. We will present a more controlled

experiment to demonstrate this difference in Section 8.3.2.

8.2.3 Comparison against Materialized Views. Materialized views

is a commonly used technique to improve the performance of

DBMSs. The goal of our next experiment is to compare the perfor-

mance of our predefined joins to a DuckDB configuration that has

one corresponding materialized view for each of the joins we pre-

define on SNB-M. We call this configuration DuckDB-MV. Specif-

ically, for each predefined join between 𝐹 ⊲⊳𝜌 𝑃 that we have

in our GRainDB setup for SNB-M, we define a materialized view

𝑀𝑉𝐹⊲⊳𝜌𝑃 = Π∗(𝐹 ⊲⊳𝜌 𝑃 ). 𝜌 here is an abbreviation for the the

equality condition between 𝐹 and 𝑃 and Π∗ represents selecting all

columns from 𝐹 and 𝑃 . Note that the primary benefit we expect

from a materialized view is to avoid performing a binary join and

instead replace it with a scan of the view. To obtain this benefit, we

select all columns of 𝐹 and 𝑃 in𝑀𝑉𝐹⊲⊳𝜌𝑃 . If non-join columns are

projected out, we cannot replace the predefined join with a scan

of 𝑀𝑉𝐹⊲⊳𝜌𝑃 in our queries because all of SNB-M queries contain

projections or predicates on non-join columns of 𝐹 or 𝑃 for each

of our predefined join. To run these projections or predicates, we

would need to join𝑀𝑉𝐹⊲⊳𝜌𝑃 with 𝑃 or 𝐹 , defeating the primary pur-

pose of using𝑀𝑉𝐹⊲⊳𝜌𝑃 . We could alternative define more granular

views with additional predicates, but this would limit the use these

views to only queries with those exact predicates. Instead in our

approach, we can benefit from our implementation of predefined

joins under arbitrary additional predicates on 𝑃 and 𝐹 .

DuckDB does not have native support for materialized views,

therefore, we cannot let the system decide which views to use. In-

stead, we created each𝑀𝑉𝐹⊲⊳𝜌𝑃 as separate table in DuckDB and

manually rewrote each query 𝑄 in SQL, in all possible ways. Our

algorithm can be seen as a simplified and brute-forced version of

the transformational query rewrite algorithm described in refer-

ence [13]. The algorithm first rewrites 𝑄 in all possible ways with

one materialized view by enumerating every pair of joins in the

FROM clause and checks if it can be replaced by a view. This gives us

rewrites 𝑄1,1, ..., 𝑄1,𝑘 . Then we iteratively take each query rewrite

𝑄𝑘,𝑖 and repeat the above step by only considering the remaining

base tables in the query. We report the best performance number

of DucDB-MV across all of its rewritings.

Figure 3 shows the boxplot for DuckDB-MV, Table 6 shows the

performance of DuckDB-MV on each query, and Table 5 shows

DuckDB-MV’s detailed runtime percentiles. Similar to GRainDB,

DuckDB-MV consistently outperforms vanilla DuckDB. However,

with a few exceptions, the performance improvements are less than

GrainDB. We analyzed the GRainDB and DuckDB-MV plans and

observed that in many cases GRainDB outperforms DuckDB-MV,

because it can avoid scans of largest tables by sip that DuckDB-

MV plans cannot. We take IC03-2 as an example. This query con-

tains a join between Place and Comments with a selective filter

pl_name=’China’ on Place. Comments is a much larger table than

Place with 26.5M tuples vs 1460 tuples of Place. In DuckDB-

MV, this query runs the filter predicate directly on the large view

𝑀𝑉𝑃𝑙𝑎𝑐𝑒⊲⊳𝐶𝑜𝑚𝑚𝑒𝑛𝑡 of size 26.5M. Instead GRainDB runs this pred-

icate on the small Place table, and through sip reduces the scan

of of Comment table from 26.5M to 3.8M, leading to the join of two

small tables. Although DuckDB-MV avoids this join completely, this

benefits is not larger than the cost of scanning the large view. In the

longer version of this paper [20], we show the plans for DuckDB-

MV using𝑀𝑉𝑃𝑙𝑎𝑐𝑒⊲⊳𝐶𝑜𝑚𝑚𝑒𝑛𝑡 and GRainDB on this query. Similar

behavior exists on several other queries (e.g., IC06-1, IC07, and

IC08). The only queries where DuckDB-MV outperforms GRainDB

are IS1 and IS7. As we explained in Section 8.2.2 both of these are

point look up queries with inexpensive joins and vanilla DuckDB

already outperforms GRainDB on these queries.

In our detailed evaluations in Section 8.3.4, we analyze the stor-

age overheads of our RID columns and compare it against material-

ized views (and adjacency lists of GraphflowDB).

8.2.4 TPC-H: Traditional OLAP Workloads. For completeness of

our work, we also compared the performances of DuckDB and

GRainDB on TPC-H, which does not contain many queries with se-

lective many-to-many joins. The box plots of DuckDB and GRainDB

are shown in Figure 3. The longer version of this paper [20] shows

detailed execution time of each query. As expected we do not see
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Table 6: Runtimes (in ms) of DuckDB, DcukDB-MV, GRainDB, and GraphflowDB on each query in SNB-M.
IS1 IS2 IS3 IS4 IS5 IS6 IS7 IC1-1 IC1-2 IC1-3 IC2 IC3-1 IC3-2

DuckDB 0.8 524.8 36.6 0.2 4.5 148.0 989.0 38.0 72.0 110.5 926.0 1177.8 4647.0

DcukDB-MV
0.8 133 3.8 0.2 0.4 42.0 3.0 9.0 38.0 94.0 906.0 1159.6 4258.0

1.0x 3.9x 9.6x 1.0x 11.3x 3.5x 329.7x 4.2x 1.9x 1.2x 1.0x 1.0x 1.1x

GRainDB
1.2 19.6 3.4 0.2 0.6 5.0 11.0 4.0 6.4 38.2 134.8 119.4 1665.0

0.7x 26.8x 10.8x 1.0x 7.5x 29.6x 90.0x 9.5x 11.2x 2.9x 6.9x 9.9x 2.8x

GraphflowDB
6.8 3.0 2.5 42.7 82.7 66.4 72.0 2.1 6.4 70.3 47.8 11.5 505.4

0.1x 175.8x 14.5x 0.005x 0.05x 2.2x 13.7x 18.3x 11.3x 1.6x 19.4x 102.6x 9.2x
IC4 IC5-1 IC5-2 IC6-1 IC6-2 IC7 IC8 IC9-1 IC9-2 IC11-1 IC11-2 IC12

DuckDB 402.0 636.0 3125.0 244.6 471.2 1186.8 1017.0 441.8 1312.6 35.8 68.4 788.4

DuckDB-MV
166.0 612.0 2936.0 223.0 442.0 336.0 967.0 414.0 827.0 6.0 42.0 597.0

2.4x 1.0x 1.1x 1.1x 1.1x 3.5x 1.1x 1.1x 1.6x 6.0x 1.6x 1.3x

GRainDB
54.0 174.0 2768.0 13.0 22.0 33.2 14.0 113.6 752.0 2.8 9.0 234.8

7.4x 3.7x 1.1x 18.8x 21.4x 35.7x 72.6x 3.9x 1.8x 12.8x 7.6x 3.4x

GraphflowDB
12.3 20.8 984.0 8.1 127.2 2.8 2.8 55.6 1473.7 2.6 14.4 28.8

32.6x 30.6x 3.2x 30.2x 3.7x 426.6x 359.5x 7.9x 0.9x 13.8x 4.8x 27.3x

significant speedups or slowdowns on this benchmark. GRainDB

replaces value-based hash joins with predefined joins in 13 of the 22

queries in TPC-H. The median runtime improvement out of these

queries is 1.1x, with the maximum slow-down and speedup of 0.8x

(so 1.2x slowdown) and 2.6x, respectively. Interestingly, even on a

benchmark of traditional analytical queries, we found two queries

with one/many-to-many joins on which replacing value-based joins

with predefined joins lead to visible speedups (2.6x for Q2 and 1.8x

for Q3) and no queries visibly slowed down, indicating the low

performance overheads of our implementation when queries are

not suitable to benefitting from predefined joins.

We further analyzed the 13 queries in which GRainDB replaced

DuckDB’s original plans to understand why these replacements

sometimes lead to large and sometimes small or no improvements.

Although the reasons that determine the exact performance fac-

tors are naturally query-specific, we made two main observations.

First, in the queries with very small improvements, sometimes the

DuckDB plan has a large relationship table 𝐹 (e.g., the lineitem
table with 60M tuples) on the build side of the hash join and the

scan of 𝐹 is dominant runtime factor. In this case, because the in-

formation is passed from 𝐹 to the already small probe side table 𝑃 ,

the benefits of reducing the scans of 𝑃 is small. Q14 is an example

for this case. Second, for queries whose performance is dominated

by the join of 𝐹 and 𝑃 , when the large 𝐹 table is on the probe side,

then, the improvement factor depends on the selectivity of the in-

formation passed from 𝑃 . For example in Q3, where we obtain a 1.8x

improvement, the bitmask passed from the orders to lineitem re-

duces the scan of 60M tuples to 5.8M. In contrast, Q5 has a sub-plan

with a very similar join, yet the information passed is less selective

(reduces 60M to 9.1M) and we obtain a 1.3x improvement.

8.3 Detailed Evaluation
We next provide a more detailed evaluation consisting of (i) an abla-

tion study to verify that each of the optimizations in our proposed

hash- and sip-based approach leads to additional performance ben-

efits; (ii) a controlled experiment comparing the performances of

INLJ-based plans and hash-join-based plans when joining relation-

ship tables with entity tables under varying selectivities; and (iii)

Figure 4: Ablation tests for different optimization levels in
GRainDB.

an analysis of the effects of our sip-based predefined joins in the

plan space of DuckDB on a suite of queries.

8.3.1 Ablation Study. We performed an ablation study, to show

the positive performance benefits of each of the optimizations we

integrated into DuckDB: (i) RID materialization (Section 4); (ii)

reverse information passing (Section 6.1); and (iii) extended RID

index and join merging (Section 6.2). We turned our optimizations

off in a specific order and in growing sets. We first turned off

extended RID index and join merging (-JM), then, we turned off

reverse information passing (-JM-RIP), and finally we turned off all

optimizations, which gives us vanilla DuckDB. Then we ran each

version of the system on the SNB-M benchmark. Figure 4 shows

the box plot charts of each version of the system. GR-FULL in the

figure is the configuration with all optimizations on. We see that

each optimization has a positive effect on performance, which can

be seen by inspecting the median and 25 percentile lines, which

consistently shift down as we add more optimizations. We see most

impact from the reverse information passing optimization, which

is expected as it allows passing information from smaller entity

tables (𝑃 in our notation) to much larger relationship tables (𝐹 in

our notation). In the longer version of this paper [20], we show the

runtime numbers of each query on each system configuration.

8.3.2 Performance of Predefined Joins Under Varying Entity vs Re-
lationship Table Selectivity. We next do a controlled experiment to

demonstrate the behavior of our sip- and hash-join based imple-

mentation under various selectivities on the 𝑃 and 𝐹 tables. Our

goals are twofold: (i) to show the cases when sip yields performance
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(a) MICRO-P. (b) MICRO-K.

Figure 5: Runtimes (in ms) of DuckDB, GRainDB, Graph-
flowDB and Neo4j on MICRO-P and MICRO-K benchmarks.

improvements; and (ii) to demonstrate the different performance

behaviors of INLJs, which GDBMSs use, vs hash joins, which many

RDBMSs use for equality joins. We take the LDBC30 dataset and

the 1-hop (𝑝1:𝑃𝑒𝑟𝑠𝑜𝑛)

𝑒 :𝐾𝑛𝑜𝑤𝑠−−−−−−→(𝑝2:𝑃𝑒𝑟𝑠𝑜𝑛) query, where the Person
and Knows tables have 18.4K and 7.5M tuples, respectively. We then

run two sets of micro-benchmark queries: (1) MICRO-P: we fix a

predicate with 99.9% selectivity on the creationDate property of

Knows and vary the selectivity of a predicate on the id property of

Person between 0.01% to 100%. (2) MICRO-K: we now fix a predi-

cate with 99.9% selectivity on the id property of Person and vary

the creationDate property of Knows between 0.01% to 100%. We

run each set of queries on DuckDB, GRainDB, GraphflowDB and

Neo4j. Our goal in including Neo4j in these experiments, which was

omitted in our baselines, is to show that the two GDBMSs behave

very similarly albeit in different performance levels.

In both sets of queries GraphflowDB and Neo4j’s executions are

as follows: (i) scan the Person nodes and their id property and run

the filter on id; (ii) join these nodes with their Knows edges by INLJ
using the Knows adjacency list index; (iii) read the creationDate
property of the joined edges and run a filter. We will momentarily

show that this execution is too rigid and can be suboptimal. This is

also the execution in systems such as GR-Fusion and GQ-Fast.

Figure 5a shows the results for MICRO-P. First, we note that on

all MICRO-P queries, DuckDB makes Person the build side as it

is already much smaller than Knows and gets even smaller as we

decrease the selectivity on the predicate on Person. Therefore, in
GRainDB, as we decrease the selectivity, we can pass selective infor-

mation to Knows table and decrease the amount of scanned Knows
tuples. We see that GRainDB outperforms DuckDB significantly

and closes the gap with GraphflowDB’s performance at these lower

selectivities. Second, observe that both GDBMSs have consistent

upward curves, indicating that their runtimes decrease as selectivity

on the Person nodes decreases. This happens because the amount

of join work that GDBMSs perform decreases proportionately as

fewer Person nodes pass the filter. We cannot observe this desirable

behavior with DuckDB because although its cost of hash table build

decreases, its probe cost, which is the dominant cost here, does

not. In fact, although broadly Neo4j is not competitive with other

systems, it can still outperform DuckDB at lower selectivities on

MICRO-P, because of its performance gains from decreasing selec-

tivity on Person. Unlike DuckDB, GRainDB however also behaves

similarly to GDBMSs and obtains this desirable behavior because it

can also decrease the amount of probes through sip.

We next analyze the results of MICRO-K, shown in Figure 5b.

First observe that now the GDBMSs do not react as positively to

the decreasing selectivity on Knows. This is because now selectivity

on Person is fixed, so the amount of probes GDBMSs perform is

fixed. So both Neo4j and GraphflowDB curves are relatively straight

(similar to the DuckDB curve in Figure 5a). Now note that DuckDB

has a downward curve. This is because at all selectivity levels

except 0.01% and 0.01%, DuckDB chooses Person as the build side.

Therefore, decreasing the selectivity proportionately decreases the

probe work. DuckDB can even outperform GraphflowDB when the

selectivity is low enough. Note also that as expected GRainDB does

not improve the performance of DuckDB now because although

it passes information from Person to Knows, this information is

not useful since Person does not have a selective predicate (it is

fixed at 99.9%). We see minor benefits at the lowest two selectivity

levels, when DuckDB starts to choose Knows as the build side, and

can pass selective information to scans of Person. Although we

do not observe major improvements, this shows the flexibility of

join processing in RDBMS, where there is no notion of node vs

edge tables and for hash joins, systems can make any table the

probe or build side. In contrast, GraphflowDB and Neo4j first scan

node records and then probe the adjacency list indices with the

IDs of these nodes to perform the join (and not vice versa). As the

MICRO-K benchmark demonstrates, this can prevent them from

benefiting from selective predicates on the edge records.
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Figure 6: Cumulative distributions of the number of
DuckDB and GRainDB plans (y-axis) that have runtimes

below different thresholds (x-axis).
8.3.3 Plan Spectrum Analyses. Prior work [44] has observed that

sip-based query processing makes systems broadly more robust

to join order selection by decreasing the performance differences

between different join orders. To demonstrate that our proposed

solution also has similar effects, we picked the first six query groups

in JOB, and for the first two variants of each query (so a total of 12

queries) performed a plan spectrum analysis as follows. We take

each plan𝑇 for each𝑄 , corresponding to one join order, and execute
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Table 7: Runtimes (in ms) of 𝑇 ∗
𝐷𝑢𝑐𝑘

and 𝑇 ∗𝑜𝑝𝑡 on JOB queries.
Q1a Q1b Q2a Q2b Q3a Q3b Q4a Q4b Q5a Q5b Q6a Q6b

𝑇 ∗
𝐷𝑢𝑐𝑘

34 3 154 143 328 502 114 73 116 146 57 97

𝑇 ∗𝑜𝑝𝑡 31 3 77 67 287 135 72 47 110 112 32 82

both the default version of 𝑇 (call it 𝑇𝑑 ) and the version where we

use sip-based predefined joins (call it 𝑇 ∗
𝑑
). We then plotted two

cumulative distribution lines for𝑄 , one for the set of𝑇𝑑 and one for

𝑇 ∗
𝑑
plans, which show the number of plans (on y-axis) for different

runtime value cutoffs (on x-axis). Figure 6 shows the distributions

we obtained for the first variants of these queries. The remaining

6 charts, which are similar to the ones in Figure 6, can be found

in the longer version of our paper [20]. Dashed and straight lines

are the distributions of 𝑇𝑑 and 𝑇 ∗
𝑑
plans, respectively. We observe

on left sides of the curves, which summarize the best performing

plans, the line showing𝑇 ∗
𝑑
is consistently above the line for𝑇𝑑 . This

shows that by predefining joins, we obtain larger sets of good plans.

In many queries we also observe runtimes that were not achievable

by any default plan. For example, on Q1a, while there are 60 plans

with a runtime of ≤ 200ms under predefined joins, there is no such

plan with default plans. We also observe that on the right ends of

many curves, which plot the set of worst-performing plans, the

curve for 𝑇 ∗
𝑑
plans is now below the curve for 𝑇𝑑 plans. This is also

expected because we expect there to be some plans that do not

benefit from predefined joins and instead incur minor overheads

that S-Join operators incur, e.g., to prepare bitmasks.

Let us call the 𝑇 ∗
𝑑
of a plan 𝑇𝑑 the predefined version of 𝑇𝑑 . Recall

that for a query𝑄 , GRainDB’s plan,𝑇 ∗
𝐷𝑢𝑐𝑘

is the predefined version

of the plan 𝑇𝐷𝑢𝑐𝑘 that DuckDB’s optimizer picks for 𝑄 . Next, we

analyzed the potential room for improvement on our rule-based

approach if a system implements a sip-aware optimizer. We do a

thought process and assume that an oracle sip-aware optimizer

could pick the best GRainDB plan 𝑇 ∗𝑜𝑝𝑡 , i.e., the best performing

𝑇 ∗
𝑑
, and compare it against 𝑇 ∗

𝐷𝑢𝑐𝑘
. Table 7 shows this comparison.

Although we did not find large rooms of improvement on most of

these queries, we still found several queries, Q2a, Q2b, and Q3b with

>2x improvements. The largest improvement is on Q3b, from 502ms

to 135ms (3.7x). Q3b is a join query with 4 tables, and contains a

selective predicate on a table called keyword that returns only 30

of the 134K tuples in this table. 𝑇 ∗
𝐷𝑢𝑐𝑘

uses a bushy plan. Instead,

𝑇 ∗𝑜𝑝𝑡 is a left-deep plan where the last-join has keyword on its build

side. Normally putting this table as the last join on a left-deep plan

is not efficient because joining the smaller tables first and creating

smaller intermediate results is more efficient. However, under sip,

this is a good plan because this can lead to iterative information

passing to reduce the amount of scans in other tables.

8.3.4 Storage Costs. We next measure the storage costs of RID

columns and indices and compare it against the costs of adjacency

lists in GraphflowDB and materialized views in DuckDB-MV. Same

as our ablation study, we turned optimizations off in a specific order

and in growing sets. GR-FULL contains all optimizations, thus its

storage overheads include the RID materialization, the RID index,

and the extended RID index over vanilla DuckDB. GR-JM turns

off the extended RID index. GR-JM-RSJ disables the RID index on

top of GR-JM. Table 8 shows our results and additional memory

consumption incurred by each optimization.

Table 8: Storage costs (in GB) of different optimizations.
DuckDB GR-JM-RSJ GR-JM GR-FULL

JOB 4.7 6.3(+1.6) 9.7(+3.4) 11.7(+2.0)

SNB-N 6.9 9.8(+2.9) 13.9(+4.1) 15.7(+1.8)

TPC-H 13.4 15(+1.6) 19.2(+4.2) 21.6(+2.4)

As our RID indices are similar to adjacency list indices in GDBMSs,

we also profiled the memory consumption of GraphflowDB. For

each RID index we have on SNB-M, there is a corresponding adja-

cency list in GraphflowDB. In total, GRainDB’s RID indices take

5.9GB while GraphflowDB’s indices take 2.8GB. This is expected be-

cause GraphflowDB implements several compression techniques [15],

such as compressing trailing 0s in IDs, which in SNB-M reduces 8

byte IDs to 4 bytes. Instead, we store each RID in 8 bytes.

Finally, we measured the space overheads of DuckDB-MV on

SNB-M. For DuckDB-MV we measured the additional space the

system takes for storing one materialized view for each predefined

join. Note that the performance of GRainDB we reported in Sec-

tion 8.2.3 used the GR-FULL configuration. Using our materialized

views takes 59.5GB space compared to 8.8GB (2.9+4.1+1.8) over-

heads of GR-FULL. This is expected because the materialized views

in DuckDB-MV include all columns of the projections while RID

indices only contain the integer RID columns. This comparison

should not be interpreted as an accurate comparison of the space

requirements of these two approaches because in practice a more

careful design of views based on a workload can include only a

subset of the columns or even remove some of the views (though

some RID indices can also be removed). The selection of views and

indices is a well studied problem [6, 27] but a detailed study of

selecting views and RID indices is beyond the scope of this paper.

9 CONCLUSIONS
We described a novel approach to integrate predefined and pointer-

based joins, which are prevalent in GDBMSs, into columnar RDBMSs.

Our approach is based on materializing and optionally indexing

RIDs similar to how edges are indexed in adjacency lists. In contrast

to native GDBMSs and prior implementations of predefined joins

in RDBMSs [17, 18, 25, 26] that use such indices in INLJs, we use

them primarily to generate filters that are passed from hash join op-

erators to scans. We also described an optimization that can use an

extended RID index to avoid scans of a relationship table entirely in

some settings. We presented extensive experiments demonstrating

the performance benefits and overheads of this approach against

vanilla value-based joins of DuckDB, INLJ-based implementation

of predefined joins in GDBMSs, and the use of materialized views

that can replace joins with scans.
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