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ABSTRACT
Interactive graph search leverages human intelligence to categorize

target labels in a hierarchy, which is useful for image classification,

product categorization, and database search. However, many ex-

isting interactive graph search studies aim at identifying a single

target optimally, and suffer from the limitations of asking too many

questions and not being able to handle multiple targets.

To address these two limitations, in this paper, we study a new

problem of budget constrained interactive graph search for multiple

targets called kBM-IGS problem. Specifically, given a set of mul-

tiple targets T in a hierarchy and two parameters 𝑘 and 𝑏, the

goal is to identify a 𝑘-sized set of selections S, such that the close-

ness between selections S and targets T is as small as possible, by

asking at most a budget of 𝑏 questions. We theoretically analyze

the updating rules and design a penalty function to capture the

closeness between selections and targets. To tackle the kBM-IGS
problem, we develop a novel framework to ask questions using

the best vertex with the largest expected gain, which provides

a balanced trade-off between target probability and benefit gain.

Based on the kBM-IGS framework, we first propose an efficient

algorithm STBIS to handle the SingleTarget problem, which is a spe-

cial case of kBM-IGS. Then, we propose a dynamic programming

based method kBM-DP to tackle theMultipleTargets problem. To

further improve efficiency, we propose two heuristic but efficient

algorithms, kBM-Topk and kBM-DP+. Experiments on large real-

world datasets with ground-truths verify both the effectiveness and

efficiency of our algorithms.

PVLDB Reference Format:
Xuliang Zhu, Xin Huang, Byron Choi, Jiaxin Jiang, Zhaonian Zou, Jianliang

Xu. Budget Constrained Interactive Search for Multiple Targets. PVLDB,

14(6): 890-902, 2021.

doi:10.14778/3447689.3447694

1 INTRODUCTION
Crowdsourcing, such as Amazon’s Mechanical Turk [1] and Crowd-

Flower [2], allows organizations to design human-aided services

in which humans can help solve tasks and get rewards. In real

applications, many tasks such as object categorization [23], entity

resolution [30, 31], filtering noisy data [14, 25], ranking [21], and

labeling [5], are complex and difficult to resolve algorithmically.

With regard to human-aided object categorization, the graph search
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Figure 1: An example of uncategorized image in Figure 1(b)
has target labelsT ={“cat”, “fish”} in hierarchy in Figure 1(a).

problem concerns leveraging human intelligence to categorize the

target labels of a given object in a label hierarchy, which has a

wide range of applications including image classification [10, 17],

product categorization [22], and relational database search [29].

Recently, Tao et al. [29] investigated the problem of interactive
graph search (IGS) to locate one unique target vertex in a hierarchy

H , with as few questions as possible. For example, Figure 1(a)

shows a hierarchical tree with several labeled vertices. A directed

edge from one vertex to another represents the concept-instance

relationship, e.g., “pet” is a general concept of four instances “cat”,

“dog”, “rabbit”, and “turtle”. Note that the target is unknown in

advance. To identify the target, interaction is allowed to iteratively

ask questions using the vertices in the hierarchy, e.g., “Is this a

wild (animal)?”, “Is this a pet?”. Assuming that the target is “pet”

in Figure 1(a), we need to ask at least five questions of “Is this 𝑥?”,

where 𝑥 ∈ {“pet”, “cat”, “dog”, “rabbit”, “turtle”}, to get the answers

{Yes, No, No, No, No} and then determine the exact target of “pet”.

Effective algorithms with theoretical guarantee are proposed for

finding the exact target using at most ⌈log
2
ℎ⌉ (1+⌊log

2
𝑛⌋)+(𝑑−1) ·

⌈log𝑑 𝑛⌉ questions [29], where 𝑛, 𝑑 , ℎ are respectively the number

of vertices, the maximum out-degree, and the hierarchy height in

H . However, two issues remain open:

• Finding nearly-optimal targets using a constrained budget.

IGS [29] may incur a high cost to identify the exact target. It

does not limit the number of questions that can be asked. In

the worst case, the proposed algorithm asks (𝑑 − 1) · ⌊log𝑑 𝑛⌋
questions to optimally identify the target. In real hierarchy

datasets, the out-degree 𝑑 could be large, e.g., ImageNet has

𝑑 = 391 and 𝑛 = 74, 401 [10]. Thus, users may need to an-

swer 782 questions, which is not very practical. Moreover,

asking questions is potentially costly [23], which motivates

the problem of budget constrained IGS to bound the total cost.

• Identifying multiple targets. Existing studies on the IGS prob-

lem [17, 29] only consider a single target, where the answer

has one and only one target. However, in real applications
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of object categorization, an object may have multiple labels.

Even worse, it is difficult to determine in advance how many

labels the object may have. For example, Figure 1(b) shows an

uncategorized image object. Both “cat” and “fish” are suitable

to label the object, but either one alone is not good enough.

To address the above issues, in this paper, we propose a new kBM-

IGS problem of interactive graph search for identifying multiple

targets T using a constrained budget to ask at most 𝑏 questions.

Specifically, in each round, our kBM-IGS scheme asks a question

in the form “Given a query vertex 𝑞 in treeH , can vertex 𝑞 reach

one of targets in T ?” and receives the answer from human-assisted

interactions. On the basis of the previous answers, the kBM-IGS
scheme determines the next question to ask. Finally, it selects a set

of vertices to represent the targets after 𝑏 questions are answered.

However, it is significantly challenging to identify the most suit-

able selections in the kBM-IGS problem, for the following reasons.

First, the number of targets is unknown in advance, which may

have one or more ground-truth labels. Second, in the worst case, a

total of 𝑂 (𝑛) questions is needed to find the exact targets, which

makes the selection of 𝑏 questions difficult. Third, since the targets

are unknown, another challenge is how to measure the goodness

of a solution, i.e., the closeness between selections and targets.

In light of the above, our problem is formulated as finding a

𝑘-sized selection set of vertices to approach the targets as close as

possible, w.r.t. an input number of 𝑘 and a budget of 𝑏 questions. For

example, consider the hierarchy and the uncategorized image object

in Figure 1. Assume that 𝑘 = 2 and 𝑏 = 2. We ask two questions

of “Is this 𝑥?”1, where 𝑥 is “pet” and “fish”, respectively, and both

answers are Yes. After that, we cannot ask any more questions to

verify the other four specified pets, i.e., “cat”, “dog”, “rabbit”, and

“turtle”. Thus, we select “pet” and “fish” as the solution. Assume that

the targets are “cat” and “fish”. It can be seen that the selections of

“pet” and “fish” are close to the targets, since “pet” is a generalization

of “cat”. On the other hand, “animal” is also a good label, but it is

far from “cat” and worse than our selection “pet”.

To tackle the kBM-IGS problem, we propose a novel kBM-IGS
framework, which uses a greedy strategy to ask the best question

with the largest expected gain at each round. Specifically, vertices

have different probabilities to be targets and may get Yes/No an-

swers for questions asked. In general, a vertex at the top level of the

hierarchy has a high probability of getting a Yes answer. However,
the benefit of getting a Yes answer can be less than a No answer,
which implies that none of descendants are targets. Therefore, we

propose an expected gain to trade-off the target probability and

benefit gain. Thus, the kBM-IGS framework can find the vertex

with the largest expected gain to ask the next question. On the basis

of the kBM-IGS framework, we first propose an efficient algorithm

STIGS to solve the SingleTarget problem, which is a special case of

kBM-IGS with |T | = 1. Different from the SingleTarget problem,

it is difficult to calculate the gains in the MultipleTargets problem.

We then develop a kBM-DPmethod to calculate the optimal penalty

between the 𝑘-sized selections and potential targets. To further im-

prove efficiency, we propose two heuristic but efficient algorithms.

To summarize, we make the following contributions:

1
The question is equivalent to a search question in the form “Given a query vertex𝑞 in tree H, can

vertex 𝑞 reach one of targets in T?”

• We propose a new kBM-IGS problem of budget constrained

interactive graph search for identifying multiple targets in a

hierarchical tree. We raise the problem of finding the 𝑘-sized

selections close to multiple targets using a constrained number

of 𝑏 questions, and formally design a penalty function to mea-

sure the closeness between selections and targets (Section 3).

• We give theoretical analysis of potential targets and Yes candi-

date, which offers useful updating rules to prune disqualified

candidates. On the basis of the updating rules and expected

gains, we propose a novel kBM-IGS framework to tackle the

kBM-IGS problem by asking 𝑏 good questions (Section 4).

• We tackle one instance of kBM-IGS problem, the SingleTarget
problem, where the target involves a single answer. On the

basis of the kBM-IGS framework, we derive new updating

rules and propose a greedy algorithm STBIS. (Section 5).

• We propose three efficient algorithms for identifying multi-

ple targets based on the kBM-IGS framework, including a

dynamic programming algorithm kBM-DP and two improved

fast algorithms kBM-Topk and kBM-DP+ (Section 6).

• We conduct extensive experiments on real-world datasets with

ground-truth multiple targets to validate the efficiency and ef-

fectiveness of proposed framework and algorithms (Section 7).

2 RELATEDWORK
Our work is related to human-assisted data processing tasks [13,

16, 24, 25, 30, 32, 33], hierarchy construction [6, 8, 27], and object

categorization problems [7, 11, 12, 15, 19, 28, 34]. Table 1 shows a

detailed comparison of the three most relevant studies, IGS [29],

BinG [17], HGS [23], and our kBM-IGS. Tao et al. [29] propose an

interactive graph search (IGS) method for identifying a single target

in a directed hierarchy. The general idea is to apply heavy-path de-

composition to produce a balance representation of hierarchy and

tackle the problem by binary searches. Li et al. [17] model the single

target problem as a decision tree construction problem. They pro-

pose a greedy based method for interactive graph search (denoted

as BinG), which improves the performance of IGS [29]. Both studies
consider a single target and find the exact result using an unlimited

budget of questions. Consider the example shown in Figure 2. As-

sume that the target is 𝑟 . Both IGS [29] and BinG [17] would ask all

its children to determine whether 𝑟 is the target, which takes 𝑛 − 1

questions. Different from these two studies [17, 29], our proposed

framework can tackle both SingleTarget andMultipleTargets prob-
lems and select the representative targets within a bounded budget.

......
v1 v2 v3 vn-1

r

Figure 2: A hierarchy has 𝑛 vertices with the target 𝑟 .

Parameswaran et al. [23] also investigate both SingleTarget and
MultipleTargets problems with bounded budgets and propose HGS
to find multiple targets using 𝑏 questions. However, the novelty of

our problem is the consideration of the interactive setting, which
enables dynamic algorithm designs and brings significant perfor-
mance benefits. First, theHGS scheme is a non-interactive algorithm
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Table 1: Comparison with relevant studies IGS [29], BinG [17], and HGS [23]. Here, 𝑏 is the budget of questions, and 𝑛, 𝑑 , ℎ are
respectively the number of vertices, the maximum out-degree, and the height in the hierarchy.

Method Interactive Targets Budget Questions (Worst Case) Time (Each Question) Time (Total)

IGS [29] ✓ Single × ⌈log
2
ℎ⌉ (1 + ⌊log

2
𝑛⌋) + (𝑑 − 1) · ⌈log𝑑 𝑛⌉ 𝑂 (1) 𝑂 (𝑛 log𝑛)

BinG [17] ✓ Single × 𝑛 − 1 𝑂 (𝑛) 𝑂 (𝑛2)

HGS [23]

× Single ✓ 𝑏 / 𝑂 (𝑛 log𝑛)
× Multiple ✓ 𝑏 / 𝑂 (𝑏2𝑛6)

kBM-IGS
✓ Single ✓ 𝑏 𝑂 (𝑛) 𝑂 (𝑏𝑛)
✓ Multiple ✓ 𝑏 𝑂 (𝑛ℎ2𝑑𝑘2) 𝑂 (𝑏𝑛ℎ2𝑑𝑘2)

that asks all 𝑏 questions in one go and then, based on the workers’

answers, does the best to figure out where the targets are. Its objec-

tive is to choose the 𝑏 questions wisely to minimize the size of the

candidate set. As a result, it may not be able to find the candidates

close to the targets. In contrast, our proposed approach leverages

the answers of the previous 𝑙 questions (1 ≤ 𝑙 ≤ 𝑏 − 1) to dynami-
cally determine the (𝑙 + 1)-th question. Such interaction allows our

algorithm to quickly narrow down the search space and efficiently

guide the search towards the targets. Second, the HGS algorithm
divides the whole hierarchy into 𝑏 subtrees and asks a question on

each root of the 𝑏 subtrees. It has an extreme time complexity of

𝑂 (𝑏2𝑛6) [23]. Different fromHGS, our dynamic approach works by

asking one question each time on a single vertex that achieves the

largest expected gain based on the previous answers. In other words,

our approach is a greedy algorithm that runs 𝑏 times to identify

𝑏 questions in 𝑂 (𝑏𝑛ℎ2𝑑𝑘2) time. It is more effective and efficient

than HGS, as will be validated by the experiments in Section 7.

3 PRELIMINARIES
In this section, we present definitions and formulate our problem.

3.1 Hierarchical Tree
LetH = (𝑉 , 𝐸) be a directed hierarchical tree rooted at 𝑟 with a set

𝑉 of vertices and a set 𝐸 of directed edges, where the root 𝑟 ∈ 𝑉
and the edge set 𝐸 = {⟨𝑣,𝑢⟩ : 𝑣 is the parent of 𝑢}. Let the height
of H be ℎ and 𝑛 = |𝑉 |. For 𝑣 ∈ 𝑉 , we denote its children of 𝑣 by

child(𝑣) = {𝑢 : ⟨𝑣,𝑢⟩ ∈ 𝐸} and its unique parent by par(𝑣) where
⟨par(𝑣), 𝑣⟩ ∈ 𝐸. Given two vertices 𝑢 and 𝑣 , we say that 𝑢 can reach

𝑣 (denoted as 𝑢 → 𝑣), if and only if there exists a directed path

from 𝑢 to 𝑣 in H . If 𝑢 cannot reach 𝑣 , we use 𝑢 ↛ 𝑣 to represent

it. Note that 𝑣 → 𝑣 and 𝑟 → 𝑣 for any vertex 𝑣 ∈ 𝑉 . Moreover,

the distance from 𝑢 to 𝑣 is denoted by dist⟨𝑢, 𝑣⟩, as the length of

the shortest path from 𝑢 to 𝑣 in H . Note that dist⟨𝑣, 𝑣⟩ = 0 and

dist⟨𝑢, 𝑣⟩ = +∞ if𝑢 ↛ 𝑣 . In addition, the ancestors and descendants

of a vertex 𝑣 are denoted by anc(𝑣) = {𝑢 ∈ 𝑉 : 𝑢 → 𝑣} and des(𝑣) =
{𝑢 ∈ 𝑉 : 𝑣 → 𝑢}, respectively.

Example 1. Figure 3 shows an example of hierarchical tree 𝐻
rooted by 𝑣0. The children of 𝑣3 are child(𝑣3) = {𝑣6, 𝑣7, 𝑣8} and its par-
ent is 𝑣1. We have anc(𝑣3) = {𝑣0, 𝑣1, 𝑣3} and des(𝑣3) = {𝑣3, 𝑣6, 𝑣7, 𝑣8}.
The distance dist⟨𝑣0, 𝑣3⟩ = 2 and dist⟨𝑣2, 𝑣3⟩ = +∞.

3.2 kBM-IGS Interactive Scheme
In the following, we introduce the scheme of budget-based interac-

tive search for identifying multiple targets. In contrast to IGS [29]

and BinG [17], our kBM-IGS has new rules and features for asking

v6 v7

v3

v8

v4

v1

v5

v9

v0

v2

Figure 3: The hierarchical tree used in the running example.

a limited number of questions. The interactive scheme has four

components: targets, questions, Yes-candidates, and selections.

Targets. The targets are a set of vertices in tree H , denoted as

T ⊆ 𝑉 . The goal of our kBM-IGS if finding the target set T , which
needs to be identified through a few rounds of question-asking.The

targets T can be chosen arbitrarily from𝑉 , which have two charac-

teristics: variant cardinality and target independence. First, in terms

of target cardinality, we categorize T into two types, SingleTarget
and MultipleTargets, following [23]. If the size of T is known and

|T | = 1, we call it SingleTarget. If the size of T is unknown and

variant with |T | ≥ 1, we call it MultipleTargets, which does not

constrain the size of T . On the other hand, the target set T must

satisfy the property of target independence, that is, any two vertices

in T are not related [23]:

∀𝑣,𝑢 ∈ T , if 𝑣 ≠ 𝑢, then 𝑣 ↛ 𝑢.

Consider the example shown in Figure 1(a), where we assume the

target set is T ={“cat”, “fish”}. Although “pet” is also a correct ter-

minology to represent the object in Figure 1(b), it is not suitable to

be added into T , as it would violate the property of target indepen-

dence as “pet” reaches “cat” in Figure 1(a). Actually, “cat” is a more

precise label to describe the object than “pet” in this example.

Questions. To identify targets, one can ask a search question in

the form “Given a query vertex 𝑞 in treeH , can vertex 𝑞 reach one

of targets in T ?”. Formally,

Definition 1 (Questions). Given a query vertex 𝑞 and targets
T in treeH , the search question is defined as reach(𝑞). The boolean
answer of reach(𝑞) is either Yes or No.
If reach(𝑞) = Yes, then ∃𝑡 ∈ T such that 𝑞 → 𝑡 ;
Otherwise, reach(𝑞) = No, i.e., ∀𝑡 ∈ T , 𝑞 ↛ 𝑡 .

For example, in Figure 1(a), the question “Can the vertex labeled

‘bear’ reach one of targets in T ?” will get the No answer. None of
“bear”, “black bear”, and “brown bear” will be the correct label. On

the contrary, the question “Can the vertex labeled ‘pet’ reach one of
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targets in T ?” will get the Yes answer. One-shot question asking is

limited to figure out where the targets are in a large treeH . One can

interactively ask more questions to identify the targets accurately.

However, in our kBM-IGS setting, we are given a budget 𝑏 for

the number of questions that can be asked. This is because asking

questions is usually costly in real applications, e.g., on Mechanical

Turk [1]. It is also not practical to ask users numerous questions

as they may not be willing to answer too many questions. After 𝑏

rounds of question-asking, one finally makes a decision to choose

the answers to represent the targets.

Yes-candidates. We say that a vertex 𝑣 is a Yes-candidate for tar-
gets T if and only if ∃𝑡 ∈ T such that 𝑣 → 𝑡 . Obviously, the

root 𝑟 is always a Yes-candidate for any targets T . We define the

Yes-candidates as the set of Yes-candidate for targets T as follows.

Definition 2 (Yes-candidates). Given the targets T in tree H ,
and several rounds of asking questions 𝑄 = {𝑞0, 𝑞1, ..., 𝑞𝑙 } where 𝑙 is
a positive integer and 𝑞0 = 𝑟 , the Yes-candidates are defined as

Y =
⋃

𝑞𝑖 ∈𝑄,reach(𝑞𝑖 )=Yes
anc(𝑞𝑖 ) .

Example 2. Assume that the targets T = {𝑣2, 𝑣8} in Figure 3
and the questions 𝑄 = {𝑣0, 𝑣2, 𝑣3, 𝑣5}. The answers are reach(𝑣2) =
Yes, reach(𝑣3) = Yes, and reach(𝑣5) = No, thus Y = {𝑣0, 𝑣1, 𝑣2, 𝑣3}.

Selections. The selections, denoted as S, are a subset of Yes candi-
dates Y, which are selected by the algorithms to match the targets

T as closely as possible. For example, in Figure 1, assume that we

have questioned “pet” and get the Yes answer. We can select “an-

imal”, “domestication”, or “pet” because they must be the correct

label.

Overall, the goal of kBM-IGS interactive scheme is to use a few

questions to determine the selectionsS ⊆ Y to approach the targets

T as closely as possible.

3.3 Penalty between Selections and Targets
Given a budget of questions that can be asked and an unknown

number of targets, it is challenging to determine the locations of

targets in a large treeH . Instead of giving a simple boolean result,

we develop a metric to quantify the goodness of our selections. In

the following, we introduce another important feature of penalty in

kBM-IGS. The penalty is an evaluation metric defined on the basis

of distance, which measures the closeness between S and T .
Pair-wise Penalty. Assume that we use a vertex 𝑣 ∈ 𝑉 to cover a

given target 𝑡 ∈ T . If 𝑣 = 𝑡 , the choice 𝑣 exactly identifies the target

𝑡 . If 𝑣 ≠ 𝑡 , it needs to give a penalty score for using 𝑣 to cover the

target 𝑡 . Hence, we give a definition of pair-wise penalty score

f⟨𝑣, 𝑡⟩ =
{dist⟨𝑣, 𝑡⟩, if 𝑣 ∈ anc(𝑡)
dist⟨𝑟, 𝑡⟩, if 𝑣 ∉ anc(𝑡) (1)

By the above definitions, we consider two cases: 1) 𝑣 ∈ anc(𝑡)
and 2) 𝑣 ∉ anc(𝑡). First, for 𝑣 ∈ anc(𝑡), indicating 𝑣 → 𝑡 , the best

selection 𝑣 should have dist⟨𝑣, 𝑡⟩ = 0. The further the distance

dist⟨𝑣, 𝑡⟩, the larger the penalty. Second, for 𝑣 ∉ anc(𝑡), indicating
𝑣 ↛ 𝑡 , we give a full penalty of the largest distance between 𝑟

and 𝑡 , for using 𝑣 to cover 𝑡 , i.e., f⟨𝑣, 𝑡⟩ = dist⟨𝑟, 𝑡⟩. The deeper the
location of target 𝑡 , the larger the penalty. As a result, if a target

can be reached by our selections, we use the shortest distance to

indicate its closeness. Otherwise, if a target is not reachable from

our selections, we give a distance-based penalty.

Set-wise Penalty. Based on pair-wise penalty, we give the defini-

tions of set-wise penalty distance below.

Definition 3 (Penalty). Given a set of targets T and a set of
selections S, the penalty of S covering a target 𝑡 ∈ T is defined as
the minimum penalty of using a vertex 𝑣 ∈ S to cover 𝑡 , denoted as

f (S, 𝑡) = min

𝑣∈S
f⟨𝑣, 𝑡⟩ = min

𝑣∈S∪{𝑟 }
dist⟨𝑣, 𝑡⟩. (2)

Moreover, the penalty of S covering targets T is defined as the total
penalty sum of S covering all targets 𝑡 ∈ T , denoted by

f (S,T) =
∑︁
𝑡 ∈T

f (S, 𝑡) =
∑︁
𝑡 ∈T

min

𝑣∈S∪{𝑟 }
dist⟨𝑣, 𝑡⟩. (3)

Obviously, if S = T , the penalty is f (S,T) = 0. The smaller

the penalty, the better the selections S. In Figure 3, assume that

S = {𝑣2, 𝑣3} andT = {𝑣2, 𝑣5, 𝑣8}, thus f⟨𝑣2, 𝑣8⟩ = 3 and f⟨𝑣3, 𝑣8⟩ = 1.

The set-wise penalty f (S, 𝑣8) = 1, f (S, 𝑣5) = 2 and f (S,T) = 3.

3.4 Problem Formulation
We formulate the problem of budget constrained interactive graph

search for multiple targets (kBM-IGS) as follows.

Problem 1 (kBM-IGS problem). Given a hierarchical directed
tree H = (𝑉 , 𝐸) rooted at 𝑟 , a target set T ⊆ 𝑉 , a budget of 𝑏 ≥ 1

questions that can be asked, and a positive integer 𝑘 , the problem
is asking 𝑏 questions 𝑄 = {𝑞0, 𝑞1, ..., 𝑞𝑏 } one by one to determine
a non-empty set of selections S∗ ⊆ Y such that |S∗ | ≤ 𝑘 and the
penalty f (S∗,T) is the smallest. Equivalently,

S∗ = arg min

S⊆Y, |S |≤𝑘
f (S,T)

s.t., Y =
⋃

𝑞𝑖 ∈𝑄,reach(𝑞𝑖 )=Yes
anc(𝑞𝑖 ) .

Note that the maximum number of selections 𝑘 where 𝑘 ≥ |S|,
could be either larger or smaller than |T | as we do not know the

number of targets T in real applications. For the example in Figure 1

with 𝑘 = 2 and 𝑏 = 5, assume that we get Yes answers for questions
“pet” and “fish” and No answers for questions “wild”, “shell”, and
“whale”. The best selections are S∗ ={“pet”, “fish”}.

3.5 Applications
We motivate the kBM-IGS problem with two useful applications.

Image categorization.New images (e.g., biomedical images, surveil-

lance photos, and user-uploaded images in online social networks)

are continuously being generated and need to be classified by hu-

mans to identify objects and labels [23, 29]. Our kBM-IGS scheme

can leverage the crowd-aided intelligence to identify multiple ob-

jects in an image using a budget constrained interactive graph

search. First, an image may have multiple labels, e.g., the image

shown in Figure 1(b) has two labels “cat” and “fish”. Second, an-

swering a question involves certain communication, latency, and

monetary costs. Given a limited budget for rewards, it is necessary

to constrain the total number of questions to be asked and select

the most suitable labels to categorize the image.
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Cold-start recommendation. Due to the lack of users’ prefer-

ences in cold-start recommendations, online platforms (e.g., Twitter,

TikTok, and YouTube) can ask a few questions to identify users’

interests and then offer personalized recommendations in a more

effective way. Users’ preferences may be diverse, which are usually

not limited to a single interest, e.g., one may like “traveling”, “finan-

cial news”, “movies”, and so on. To avoid users becoming bored due

to being asked too many questions, our kBM-IGS scheme can ask

only a small number of questions using an interest hierarchy and

adjust asking strategy dynamically based on the previous answers.

Remark. In practical crowdsourcing applications, while human

mistakes are inevitable, they can be minimized or eliminated by

adopting effective quality control measures such as expert review,

majority voting, group consensus, and so on [9]. As validated in [29],

the influence of such mistakes on the outcome of the graph search

algorithms is negligible. Thus, as with the previous works [17, 23,

29], we assume in our algorithm design that the workers always

give correct answers. For those cases where human mistakes are

not eliminated and the workers give wrong answers, we will assess

the quality of our methods in Section 7.

4 THE PROPOSED FRAMEWORK
In this section, we analyze the properties of kBM-IGS problem and

briefly introduce our algorithmic framework.

4.1 Theoretical Analysis
We first give new definitions of potential targets and then analyze

the relationships between questions and potential targets.

Potential targets. We first define the potential targets, denoted

by P, as a candidate set of vertices that could be exact targets of

T where T ⊆ P . Obviously, if no question has been asked, every

vertex 𝑣 ∈ 𝑉 could be a potential target due to the limited prior

information, i.e., P = 𝑉 . However, as more questions are asked, the

potential targets could decrease as some vertices may be pruned

from P for violating the target constraints, no matter whether the

question answer is Yes or No. We have the following lemmas.

Lemma 1. Given a vertex 𝑞 ∈ 𝑉 , if the question reach(𝑞) = No,
all vertices 𝑢 ∈ des(𝑞) are not targets, which should be pruned from
potential targets, i.e., des(𝑞) ∩ P = ∅.

Proof. First, for reach(𝑞) = No, 𝑞 cannot reach any target 𝑡 ∈
T . For each vertex𝑢 ∈ des(𝑞),𝑢 also cannot reach any target 𝑡 ∈ T ,
𝑢 ∉ T . Thus, des(𝑞) ∩ T = ∅, and all vertices des(𝑞) can be pruned

from potential targets, denoted as des(𝑞) ∩ P = ∅. □

Lemma 2. Given a vertex 𝑞 ∈ 𝑉 , if the question reach(𝑞) = Yes,
all vertices 𝑢 ∈ anc(𝑞) \ {𝑞} are not targets, which should be pruned
from potential targets, i.e., anc(𝑞) ∩ P = {𝑞}.

Proof. For reach(𝑞) = Yes, ∃𝑡 ∈ T satisfies 𝑞 → 𝑡 . By the

independence property of targets, for other target 𝑡 ′ ∈ T , 𝑡 ′ ≠ 𝑡 ,

we can get 𝑡 ′ ↛ 𝑡 . Thus, for the vertex 𝑢 ∈ anc(𝑞) \ {𝑞}, 𝑢 → 𝑡 , so

𝑢 ∉ T and all vertices 𝑢 can be pruned from potential targets. □

For example, if we question the vertex 𝑣3 in Figure 3 and get the

No answer, the vertices 𝑣3, 𝑣6, 𝑣7, 𝑣8 will be pruned fromP. Similarly,

if we get the Yes answer, the vertices 𝑣0, 𝑣1 will be pruned.

u
Y
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...

...

...

P ...

v

Figure 4: An example of Yes-candidates and potential targets. The
red vertices get Yes answer, the blue vertices get No answers and the
black vertices are not questioned. The red area is the Yes-candidates
and the black area is the potential targets.

Properties of Yes-candidates and potential targets. Next, we
analyze the properties of the Yes-candidates and potential targets.

Lemma 3. Y ∩ P ≠ ∅ always holds.

Proof. A complete proof is reported in the article [35]. □

Lemma 4. For a vertex 𝑡 ∈ 𝑉 is a target, 𝑡 ∈ T , if and only if
reach(𝑡) = Yes and reach(𝑢) = No for all 𝑢 ∈ child(𝑡).

Proof. A complete proof is available in [35]. □

Theorem 1. If P ⊆ Y, the targets are exactly as T = P.

Proof. For∀𝑡 ∈ P, reach(𝑡) = Yes. By Lemma 2, reach(𝑣) = No
holds for 𝑣 ∈ child(𝑡). Moreover, by Lemma 4, P ⊆ T . As the
definition of potential targets T ⊆ P, thus P = T . □

Figure 4 shows an example of Yes-candidates and potential tar-

gets. P∩Y ≠ ∅. If the children of𝑢 and 𝑣 are all questioned and get

the No answer, P = {𝑢, 𝑣} ⊆ Y and the targets will be T = {𝑢, 𝑣}.

4.2 kBM-IGS Framework
In this section, we introduce a novel kBM-IGS framework for iden-

tifying multiple targets via a series of 𝑏 interactive questions. The

key idea is asking good questions to reduce potential targets P and

refine Y to be specified by Theorem 1.

Motivations. We use a toy example H in Figure 3 to show the

general ideas of our framework. Assume that P = 𝑉 and Y = {𝑟 }.
First, we consider a vertex 𝑣1 and ask the question reach(𝑣1). If
reach(𝑣1) = No, all the descendants of 𝑣1 can be pruned from P,
which achieves a considerable gain by reducing |P | from 10 to 2.

But, if reach(𝑣1) = Yes, P will only reduce 𝑣0, which achieves a

limited gain. Unfortunately, assuming that the targets are randomly

distributed in𝑉 , 𝑣1 has a low probability of getting reach(𝑣1) = No.
This is because there exist 8 descendants of 𝑣1, and if any vertex

𝑢 ∈ des(𝑣1) is the target, reach(𝑣1) = Yes holds. Thus, 𝑣1 may not

be a good choice for questioning. Second, we consider a leaf vertex

𝑣9. If reach(𝑣9) = Yes, we surely know that 𝑣9 is one desired target,

i.e., 𝑣9 ∈ T , which achieves lots of gains. But, if reach(𝑣9) = No, P
will only reduce 𝑣9, which achieves a limited gain. However, it has

a high probability of getting reach(𝑣9) = No and a low probability

to reach(𝑣9) = Yes. We need to select good vertices by making a

balanced trade-off between the probability and gains. To do so, the

kBM-IGS framework develops a ranking evaluation function for

vertices, which is based on target probability and gain score.
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Algorithm 1 kBM-IGS Framework

Input: A hierarchy tree H = (𝑉 , 𝐸) , a budget 𝑏, a number 𝑘 .

Output: Selections S with |S | ≤ 𝑘 .

1: Let Y ← {𝑟 }, P ← 𝑉 ;

2: Initialize the probability pr(𝑣) for every vertex 𝑣 ∈ 𝑉 ;

3: for 𝑖 ← 1 to 𝑏 do
4: for 𝑣 ∈ P \ Y do
5: Calculate pYes (𝑣), pNo (𝑣), gYes (𝑣), gNo (𝑣) ;
6: Gain(𝑣) ← gYes (𝑣) · pYes (𝑣) + gNo (𝑣) · pNo (𝑣) by Def. 6;

7: 𝑞𝑖 ← arg max𝑣∈P\Y Gain(𝑣) ;
8: Ask the question reach(𝑞𝑖 ) ;
9: if reach(𝑞𝑖 ) = Yes then
10: Y ← Y ∪ anc(𝑞𝑖 ) by Def. 1;

11: Update the potential candidates P and vertex probabilities pr ac-
cordingly if needed;

12: if P ⊆ Y then break by Theorem. 1;

13: S∗ ← arg minS⊆Y,|S|≤𝑘 f (S, P) ;
14: return S∗;

Target probability. For a vertex 𝑣 , we denote the target probabil-
ities of reach(𝑣) = Yes and reach(𝑣) = No respectively as pYes (𝑣)
and pNo (𝑣), which satisfy pYes (𝑣) + pNo (𝑣) = 1. The specific calcu-

lations of pYes (𝑣) and pNo (𝑣) are based on the descendants des(𝑣),
which will be introduced in Sections 5 and 6.

Gain score. We first define the potential penalty. Instead of using

the targets T as in Problem 1, we define the potential penalty to

measure the minimum distance between feasible selections S and

potential targets P as we do not know the exact T , as follows.

Definition 4 (Potential Penalty). The potential penalty is
denoted as g(Y,P, 𝑘) = minS⊆Y, |S |≤𝑘 f (S,P).

The potential penalty g(Y,P, 𝑘) is to select the best 𝑘 vertices

from the Yes-candidates Y in order to identify the potential tar-

gets in P. The less |P | and the closer S to P is, the lower score

g(Y,P, 𝑘) is, which is better. Next, we present the definition of

gain score. For a given vertex 𝑣 ∈ 𝑉 with existing P and Y, we
ask a new question reach(𝑣), and present two gain scores for the

different answers reach(𝑣) = Yes and reach(𝑣) = No respectively,
as follows.

Definition 5 (Yes & No Gains). The gain of reach(𝑣) = Yes
is denoted as gYes (𝑣) = g(Y,P, 𝑘) −g( ˆY𝑣, ˆP𝑣, 𝑘) where ˆY𝑣 , ˆP𝑣 are
the updated potential targets and Yes-candidates after asking the
question reach(𝑣) = Yes; Similarly, the gain of reach(𝑣) = No is
denoted as gNo (𝑣) = g(Y,P, 𝑘)− g( ¯Y𝑣, ¯P𝑣, 𝑘) where ¯Y𝑣 , ¯P𝑣 are
the updated potential targets and Yes-candidates after asking the
question reach(𝑣) = No.

Based on the target probabilities and gain scores, we define an

integrated function of expected gain as follows.

Definition 6 (Expected Gain). Given a vertex 𝑣 inH , the ex-
pected gain of asking the question reach(𝑣) is denoted as

Gain(𝑣) = gYes (𝑣) · pYes (𝑣) + gNo (𝑣) · pNo (𝑣).

The larger the expected gain, the better the choice for question-

ing.

Algorithm. The algorithm of kBM-IGS framework is outlined in

Algorithm 1. The general idea is to use a greedy strategy to select

the vertex with the largest expected gain at each round of question-

asking. The framework has an input of a hierarchy treeH , a budget

of 𝑏 questions that can be asked, and a number 𝑘 . First, it initial-

izes the Yes-candidates Y as {𝑟 } and the potential targets P as the

whole vertex set𝑉 (line 1). Note that if the vertices have no probabil-

ities, we can set all vertices to have the same probability as
𝑘
𝑛 (line

2). The algorithm then iteratively selects one best vertex 𝑞𝑖 ∈ P \Y
and asks the question reach(𝑞𝑖 ) until the quota of 𝑏 questions is

used up (lines 3-12). For each round, it calculates the target probabil-

ities of pYes (𝑣), pNo (𝑣) and the Yes&No gains of gYes (𝑣), gNo (𝑣) for
each vertex 𝑣 ∈ P \ Y. Then, the expected gains of all vertices are

computed (lines 4-6). The algorithm next finds the vertex 𝑞𝑖 with

the largest expected gain and asks the question (lines 7-8). Accord-

ing to the answer, the Yes-candidates, potential targets, and vertex

probabilities are updated in accordance with the answer (lines 9-11).

Finally, after 𝑏 questions or the identification of exact targets, the al-

gorithm selects the best selection S∗ = arg minS⊆Y, |S |≤𝑘 f (S,P)
and return S∗ as the final selections (lines 13-14).

5 SINGLE TARGET SEARCH
In this section, we investigate one special case of kBM-IGS problem,

i.e., the SingleTarget problem [17, 29], where |T | = 1. On the basis

of the kBM-IGS framework, we develop a STBISmethod to identify

one vertex as S by asking 𝑏 questions.

5.1 Single Target Problem Analysis
As an instance problem, the SingleTarget problem inherits all prop-

erties of kBM-IGS described in Section 4 and enjoys its own prop-

erties. Assume that the initial P = 𝑉 and Y = {𝑟 }, and the target

T = {𝑡}. We can ask a question and interactively update P as P𝑛𝑒𝑤
and Y as Y𝑛𝑒𝑤 by obeying the two following rules.

First, as |T | = 1, for each question, the best strategy is to ask a

vertex 𝑣 that is a potential target 𝑣 ∈ P \Y. Otherwise, we consider
two cases. First, if we ask a vertex 𝑣 ∈ Y, the answer of reach(𝑣)
is always Yes; Second, if we ask a vertex 𝑣 ∈ 𝑉 \ (P ∪ Y), the
answer of reach(𝑣) is always No. Thus, it achieves no benefit gain

but wastes one question from the budget. Moreover, in contrast to

Lemma 2, in SingleTarget problem, more vertices can be pruned

after Yes answer as follows.

Lemma 5. For a vertex 𝑞 ∈ P \ Y, if reach(𝑞) = Yes, none of 𝑢 ∈
P \ des(𝑞) are potential targets and we update P𝑛𝑒𝑤 = des(𝑞) ∩ P.

Proof. A complete proof is available in [35]. □

Second, the Yes-candidates can be updated only when a ques-

tion reach(𝑣) = Yes by Def. 1, where the updated Yes-candidates
Y𝑛𝑒𝑤 = Y ∪ anc(𝑣). However, Y ⊆ Y𝑛𝑒𝑤 ⊆ anc(𝑡) always holds,
i.e., all Yes-candidates lie along the path from root 𝑟 to target 𝑡 . The

penalty function f (S,T) in Def. 3 tells us that keeping one vertex

𝑠 ∈ Y𝑛𝑒𝑤 closest to 𝑡 is enough. In other words, it achieves the

minimum penalty f (S,T) = f ({𝑠}, {𝑡}). Thus,Y𝑛𝑒𝑤 can be updated

as Y𝑛𝑒𝑤 = {𝑠}, where 𝑠 has the largest depth dist⟨𝑟, 𝑠⟩ in H and

the question reach(𝑠) = Yes.
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Lemma 6. For Y = {𝑠}, both Y ∩ P = {𝑠} and the penalty
g(Y,P, 1) = f ({𝑠},P) hold.

Proof. First, we prove 𝑠 ∈ P. Since 𝑠 ∈ Y, 𝑠 will not be pruned
from No questions according to Lemma 1. Furthermore, as 𝑠 is

the deepest vertex in Y, 𝑠 will not be pruned from Yes questions
according to Lemma 5. So, 𝑠 ∈ P andY ∩P = {𝑠}. Moreover, since

|Y| = |{𝑠}| = 1, g(Y,P, 1) = f ({𝑠},P). □

Based on the above properties, we have two useful updating

rules.

Rule 1. For a vertex 𝑣 ∈ P with reach(𝑣) = Yes, we update
the potential targets P𝑛𝑒𝑤 = des(𝑣) ∩ P and the Yes-candidates
Y𝑛𝑒𝑤 = {𝑣}.

Rule 2. For a vertex 𝑣 ∈ P with reach(𝑣) = No, we update the
potential targets P𝑛𝑒𝑤 = P \ des(𝑣) and keep the Yes-candidates
unchanged Y𝑛𝑒𝑤 = Y = {𝑠}.

5.2 The STBIS Algorithm

Probability calculation. Before asking any questions, each ver-

tex has an equal probability of being the target. Thus, we let each

vertex 𝑢 have a probability of pr(𝑢) = 1

𝑛 where 𝑛 = |𝑉 |. Our
proposed algorithm can be easily extended to other vertex prob-

ability distribution based on historical query logs as [17]. There-

fore, for a vertex 𝑣 , the target probability for each vertex 𝑣 fol-

lows pYes (𝑣) =
∑
𝑢∈des(𝑣) pr(𝑢) and the no probability follows

pNo (𝑣) = 1−pYes (𝑣). As more question answers are discovered, the

vertex probabilities need to be updated accordingly. The updated

probability after each question is calculated as:

pr(𝑢) =

pr(𝑢) · |P ||P𝑛𝑒𝑤 |

, 𝑢 ∈ P𝑛𝑒𝑤

0, 𝑢 ∉ P𝑛𝑒𝑤
(4)

whereP𝑛𝑒𝑤 is the potential targets after asking a question reach(𝑞𝑖 )
where 1 ≤ 𝑖 ≤ 𝑏. The general idea is to assign impossible targets

with a probability value of zero and keep the sum probability as 1.

STBIS algorithm. The detailed procedure of STBIS is outlined in

Algorithm 2, which finds the vertices with the largest gain to ask

interactive questions and finally identifies a selection to represent

the target within 𝑏 questions. The algorithm first initializes the

Yes-candidates Y as a root 𝑟 and potential targets P = 𝑉 (line

1), and uniformly assigns the vertex probability (line 2). Then, it

calculates the Yes&No probability (line 5), the Yes&No gain scores

(lines 6-9), and the expected gain Gain(𝑣) (line 10) for all potential
targets 𝑣 ∈ P. Next, the algorithm chooses a vertex 𝑞𝑖 ∈ P with the

largest expected gain and ask question reach(𝑞𝑖 ) (lines 11-12). If
reach(𝑞𝑖 ) = Yes, it updates P𝑛𝑒𝑤 = des(𝑞𝑖 ) andY = {𝑞𝑖 } by Rule 1
(lines 13-14); Otherwise, if reach(𝑞𝑖 ) = No, it updates P𝑛𝑒𝑤 =

P \ des(𝑞𝑖 ) by Rule 2 (lines 15-16). It updates the probability using

Eq. 4 (lines 17-18), and assign P = P𝑛𝑒𝑤 . Finally, the algorithm
returns the vertex 𝑠 ∈ Y as the selection (line 21) and terminates

early if P = Y by Theorem 1 (line 20).

Example 3. Assume that T = {𝑣5} and 𝑏 = 2 in Figure 3. Table 2
shows the expected gains of all vertices. In the first round, Algorithm 2
questions 𝑣3 and gets the No answer. Then, 𝑣3, 𝑣6, 𝑣7, 𝑣8 are pruned.

Algorithm 2 STBIS

Input: A hierarchy tree H = (𝑉 , 𝐸) , root 𝑟 , budget 𝑏, and 𝑘 = 1.

Output: One selection 𝑠 .

1: Let Y ← {𝑟 }, P ← 𝑉 ;

2: Assign the probability pr(𝑣) = 1/𝑛 for 𝑣 ∈ 𝑉 ;

3: for 𝑖 ← 1 to 𝑏 do
4: for 𝑣 ∈ P \ Y do
5: pYes (𝑣) ←

∑
𝑢∈des(𝑣) pr(𝑢) , pNo (𝑣) ← 1 − pYes (𝑣) ;

6: Calculate
ˆP𝑣 as P𝑛𝑒𝑤 ← P ∩ des(𝑣) by Rule 1;

7: Update gYes (𝑣) ← f (Y, P) − f ( {𝑣 }, P𝑛𝑒𝑤 ) ;
8: Calculate

¯P𝑣 as P𝑛𝑒𝑤 ← P \ des(𝑣) by Rule 2;

9: Update gNo (𝑣) ← f (Y, P) − f (Y, P𝑛𝑒𝑤 ) ;
10: Gain(𝑣) ← gYes (𝑣) · pYes (𝑣) + gNo (𝑣) · pNo (𝑣) ;
11: 𝑞𝑖 ← arg max𝑣∈P\Y Gain(𝑣) ;
12: Ask the question reach(𝑞𝑖 ) ;
13: if reach(𝑞𝑖 ) = Yes then
14: P𝑛𝑒𝑤 ← P ∩ des(𝑞𝑖 ) ; Y ← {𝑞𝑖 };
15: else
16: P𝑛𝑒𝑤 ← P \ des(𝑞𝑖 ) ; Y keeps unchanged;

17: Update pr(𝑢) = 0 for 𝑢 ∈ P \ P𝑛𝑒𝑤 ;

18: Update pr(𝑢) = pr(𝑢) · |P |
|P𝑛𝑒𝑤 | for 𝑢 ∈ P𝑛𝑒𝑤 ;

19: P ← P𝑛𝑒𝑤 ;

20: if P = Y then return 𝑠 ∈ Y;
21: return 𝑠 ∈ Y;

Table 2: The values of gYes, gNo, pYes, and pNo of first question
and the Gain in two questions. Here, 𝑏 = 2 and T = {𝑣5}.

Node 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

gYes 9 20 17 20 19 20 20 20 20

gNo 19 1 11 2 5 3 3 3 3

pYes 0.8 0.1 0.4 0.1 0.2 0.1 0.1 0.1 0.1

pNo 0.2 0.9 0.6 0.9 0.8 0.9 0.9 0.9 0.9

Gain1
11 2.9 13.4 3.8 7.8 4.7 4.7 4.7 4.7

Gain2 6 2.33 / 3.17 6 / / / 4

The vertices 𝑣1 and 𝑣5 get the maximum gain in the second round. If
𝑣5 is selected, the penalty is 0. If 𝑣1 is selected, the penalty is 1.

Complexity analysis. STBIS in Algorithm 2 takes 𝑂 (𝑛) time to

generate a question, which uses a DFS procedure to calculate ex-

pected gain Gain(𝑣) for all vertices 𝑣 [35]. The overall time com-

plexity of STBIS takes 𝑂 (𝑏𝑛) time in 𝑂 (𝑛) space for generating 𝑏
questions.

6 MULTIPLE TARGETS SEARCH
In this section, we propose efficient algorithms for identifying 𝑘

selections for multiple targets. We first introduce the probability

setting and updating rules for the identification of multiple targets.

Then, we propose a kBM-DP method using dynamic programming

techniques and improve its efficiency by leveraging the techniques

of non-diverse selections and bounded pruning.

6.1 Multiple Targets Scheme
We start by presenting probability setting and updating rules.

Target probability. As there exist multiple targets with |T | ≥ 1,

we assume that each vertex has an independent probability of being
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Algorithm 3 kBM-DP

Input: A hierarchy tree H = (𝑉 , 𝐸) , a budget 𝑏, a number 𝑘 .

Output: Selections S with |S | ≤ 𝑘 .

1: Let Y ← {𝑟 }, P ← 𝑉 ;

2: Assign the probability pr(𝑣) = 𝑘/𝑛 for 𝑣 ∈ 𝑉 ;

3: for 𝑖 ← 1 to 𝑏 do
4: for 𝑣 ∈ P \ Y do
5: pNo (𝑣) ←

∏
𝑢∈des(𝑣)∩P (1 − pr(𝑢)) ;

6: pYes (𝑣) ← 1 − pNo (𝑣) ;
7: Calculate Gain(𝑣) for all 𝑣 ∈ P \ Y using Algorithm 4;

8: 𝑞𝑖 ← arg max𝑣∈P\Y Gain(𝑣) ;
9: Ask the question reach(𝑞𝑖 ) ;
10: if reach(𝑞𝑖 ) = Yes then
11: Y ← Y ∪ anc(𝑞𝑖 ) by Rule 3;

12: P𝑛𝑒𝑤 ← P \ (anc(𝑞𝑖 ) \ {𝑞𝑖 }) by Rule 3;

13: else
14: P𝑛𝑒𝑤 ← P \ des(𝑞𝑖 ) by Rule 4;

15: Update pr(𝑢) = 0 for 𝑢 ∈ P \ P𝑛𝑒𝑤 ;

16: Update pr(𝑢) = pr(𝑢) · |P |
|P𝑛𝑒𝑤 | for 𝑢 ∈ P𝑛𝑒𝑤 ;

17: P ← P𝑛𝑒𝑤 ;

18: if P ⊆ Y then break;
19: S∗ ← arg minS⊆Y,|S|≤𝑘 f (S, P) ;
20: return S∗;

a target. As our problem aims at finding 𝑘 selections and |T | is
unknown, let pr(𝑣) be the vertex probability of 𝑣 and pr(𝑣) = 𝑘

𝑛 .

Thus, the target probability of a vertex 𝑣 is computed as follows.

The probability of reach(𝑣) = No is denoted as the No probability
pNo (𝑣) =

∏
𝑢∈des(𝑣)∩P (1 − pr(𝑢)), representing that none of ver-

tices 𝑢 ∈ des(𝑣) ∩ P is a target. Moreover, we update the target

probabilities with more questions asked.

Rules of updating P andY. Following Def. 2 and Lemmas 1 and

2, we have the following rules for updating P and Y.

Rule 3. For a vertex 𝑣 ∈ P with reach(𝑣) = Yes, we update the
potential targets P𝑛𝑒𝑤 = P \ (anc(𝑣) \ {𝑣}) and update the Yes-
candidates Y𝑛𝑒𝑤 = Y ∪ anc(𝑣).

Rule 4. For a vertex 𝑣 ∈ P with reach(𝑣) = No, we update the
potential targets P𝑛𝑒𝑤 = P \ des(𝑣) and keep the Yes-candidates
unchanged Y𝑛𝑒𝑤 = Y.

According to Rules 3 and 4, we compute both gYes (𝑣) and gNo (𝑣),
which equals g(Y,P, 𝑘)− g(Y𝑛𝑒𝑤 ,P𝑛𝑒𝑤 , 𝑘) by Def. 5. However, as

we know that g(Y,P, 𝑘) = minS⊆Y, |S |≤𝑘 f (S,P), it is difficult

to efficiently compute the penalty g(Y,P, 𝑘) with a straightfor-

ward enumeration of S ⊆ Y for 𝑘 > 1. In the following sections,

we mainly focus on developing efficient approaches to compute

g(Y,P, 𝑘) and update Yes&No gain scores gYes (𝑣) and gNo (𝑣).

6.2 kBM-DP Algorithm
In this section, we propose a kBM-DP algorithm for identifying

multiple targets based on the kBM-IGS framework in Algorithm 1.

The kBM-DP algorithm. The algorithm of kBM-DP is presented

in Algorithm 3. The algorithm first initializes the Yes-candidatesY,
the potential targets P, and the independent probability pr(𝑣) = 𝑘

𝑛
for each vertex 𝑣 ∈ 𝑉 (lines 1-2). Then, it iteratively selects one

best vertex 𝑣 ∈ P \ Y with the largest Gain(𝑣) and asks question

Algorithm 4 kBM-DP: Calculate Expected Gains

Input: H = (𝑉 , 𝐸) , pYes (.) , pNo (.) , P, Y, and 𝑘 .
Output: Gain(𝑣) for all vertices 𝑢 ∈ P \ Y.
1: Calculate DP(𝑢, 𝑤,𝑘) for all vertices 𝑢 ∈ P and 𝑤 ∈ anc(𝑢) in Eq. 5.

2: for 𝑣 ∈ P \ Y do
3:

ˆP ← P \ (anc(𝑣) \ {𝑣 }) ; // reach(𝑣) = Yes
4: gYes (𝑣) = g(Y, P, 𝑘) − calgYes (𝑣, 𝑘) ;
5:

¯P ← P \ des(𝑣) ; // reach(𝑣) = No
6: gNo (𝑣) = g(Y, P, 𝑘) − calgNo (𝑣, 𝑘) ;
7: Gain(𝑣) ← gYes (𝑣) · pYes (𝑣) + gNo (𝑣) · pNo (𝑣) by Def. 6;

8: procedure calgYes(𝑢,𝑘)
9: for 𝑣 ∈ anc(𝑢) do
10: Recalculate DP𝑌 (𝑣, 𝑘) by Eq. 6;

11: for 𝑤 ∈ anc(𝑣) \ {𝑣 } do
12: Recalculate DP𝑁 (𝑣, 𝑤, 𝑘) by Eq. 7;

13: DP(𝑣, 𝑤, 𝑘) ← min{DP𝑁 (𝑣, 𝑤, 𝑘),DP𝑌 (𝑣, 𝑘) };
14: g( ˆY, ˆP, 𝑘) ← DP(𝑟, 𝑟, 𝑘) ;
15: return g( ˆY, ˆP, 𝑘) ;
16: procedure calgNo(𝑢,𝑘)
17: for 𝑣 ∈ anc(𝑢) do
18: for 𝑤 ∈ anc(𝑣) ∩ Y \ {𝑣 } do
19: Recalculate DP𝑁 (𝑣, 𝑤, 𝑘) by Eq. 7;

20: if 𝑣 ∈ Y then
21: Recalculate DP𝑌 (𝑣, 𝑘) by Eq. 6;

22: DP(𝑣, 𝑤, 𝑘) ← min{DP𝑁 (𝑣, 𝑤, 𝑘),DP𝑌 (𝑣, 𝑘) };
23: else
24: DP(𝑣, 𝑤, 𝑘) ← DP𝑁 (𝑣, 𝑤, 𝑘) ;
25: g( ¯Y, ¯P, 𝑘) ← DP(𝑟, 𝑟, 𝑘) ;
26: return g( ¯Y, ¯P, 𝑘) ;

reach(𝑣) until all 𝑏 questions have been asked (lines 3-18). At the

𝑖-th round of asking question, it updates the target probabilities for

all vertices P \ Y (lines 4-6). The algorithm invokes Algorithm 4

to calculate all expected gains (line 7). Next, the algorithm asks

question reach(𝑞𝑖 ), and updates the vertex probabilities, P and Y
accordingly by Rules 3 and 4 (lines 10-16). Finally, the algorithm

returns the selections S∗ = arg minS⊆Y, |S |≤𝑘 f (S,P) (line 19).
In the following, we introduce a dynamic programming algo-

rithm for calculating the expected gains in Algorithm 4.

Computing g(Y,P, 𝑘). An intuitive approach enumerates all 𝑘-

sized selections S ⊆ Y for finding the best selections 𝑆∗, which
is inefficient. Thus, we use a dynamic programming technique to

calculate the minimum g(Y,P, 𝑘) efficiently. The general idea is to

divide the global calculation into sub-problems of finding 𝑘 ′ ≤ 𝑘

selection vertices optimally in a subtree 𝑇𝑢 rooted by a vertex 𝑢.

The vertex𝑤 ∈ S ∩ anc(𝑢) is a selection closest to 𝑢. Note that if

S ∩ anc(𝑢) = ∅, we consider𝑤 = 𝑟 . Obviously, let 𝑢 = 𝑟,𝑤 = 𝑟 and

𝑘 ′ = 𝑘 , this subproblem is the same as the best selection of 𝑆 . Thus,

our objective is to calculate it from the sub-problems. We consider

two cases of whether we select vertex 𝑢 or not for each subtree 𝑇𝑢 .

On one hand, if 𝑢 ∈ Y and we select vertex 𝑢 into the selections S,
for each child node 𝑣1, 𝑣2 ..., 𝑣𝑥 ∈ child(𝑢) ∩ P, the sub-problem is

how to find additional 𝑘𝑥 optimal vertices in the subtrees rooted

by 𝑣𝑥 with the closest selected vertex 𝑢 and

∑
𝑘𝑥 ≤ 𝑘 ′ − 1; On the

other hand, if we do not select vertex 𝑢 into the answer S, for each
child node 𝑣1, 𝑣2 ..., 𝑣𝑥 ∈ child(𝑢) ∩ P, the sub-problem is how to

find additional 𝑘𝑥 optimal vertices in 𝑇𝑥 with the closest selected
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Table 3: The values of gYes, gNo, and Gain. Here, T = {𝑣5, 𝑣8}.

Node 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

gYes 8 1 12 9 10 12 12 12 11

gNo 19 1 11 2 5 3 3 3 3

Gain1
9.85 1 11.59 3.4 6.8 4.8 4.8 4.8 4.6

gYes / 0 / 0 1 0 0 0 2

gNo / 1 / 1 3 1 1 1 2

Gain2
/ 0.75 / 0.75 2.12 0.75 0.75 0.75 2

vertex 𝑤 and

∑
𝑘𝑥 ≤ 𝑘 ′. The optimal answer is the best solution

among the above two answers.

States and transfer equations.We define two states ofDP𝑌 (𝑢, 𝑘)
andDP𝑁 (𝑢,𝑤, 𝑘) first. In the subtree𝑇𝑢 ,DP𝑌 (𝑢, 𝑘) is the minimum

value of f (S ∪ {𝑢},P ∩ des(𝑢)) with selected (𝑘 − 1)-size set S ⊆
des(𝑢). Similarly, DP𝑁 (𝑢,𝑤, 𝑘) is the minimum value of f (S ∪
{𝑤},P ∩ des(𝑢)) with selected 𝑘-size set S ⊆ des(𝑢) \ {𝑢} and
𝑤 ∈ anc(𝑢) ∩ Y is the closest selected vertex to 𝑢. On the basis

of DP𝑌 (𝑢, 𝑘) and DP𝑁 (𝑢,𝑤, 𝑘), we define the state DP(𝑢,𝑤, 𝑘) as
the optimal 𝑘-size selection in the subtree 𝑇𝑢 with closest selected

vertex𝑤 ∈ anc(𝑢) ∪ P, which satisfies the equation as follows.

DP(𝑢,𝑤, 𝑘) =
{

min{DP𝑌 (𝑢, 𝑘),DP𝑁 (𝑢,𝑤, 𝑘)},𝑢 ∈ Y, 𝑘 ≥ 1

DP𝑁 (𝑢,𝑤, 𝑘), 𝑢 ∉ Y 𝑜𝑟 𝑘 = 0

(5)

Next, we propose the transfer equation ofDP𝑌 (𝑢, 𝑘) andDP𝑁 (𝑢,
𝑤, 𝑘) as follows.

DP𝑌 (𝑢, 𝑘) = min{
∑︁

𝑥 ∈child(𝑢)∩P
DP(𝑥,𝑢, 𝑘𝑥 )}

subject to

∑︁
𝑥 ∈child(𝑢)∩P

𝑘𝑥 = 𝑘 − 1.
(6)

DP𝑁 (𝑢,𝑤, 𝑘) = dist⟨𝑤,𝑢⟩ +min{
∑︁

𝑥 ∈child(𝑢)∩P
DP(𝑥,𝑤, 𝑘𝑥 )}

subject to

∑︁
𝑥 ∈child(𝑢)∩P

𝑘𝑥 = 𝑘.
(7)

Furthermore, we can use the Knapsack dynamic programming

technique [26] to tackle the transfer equations in Eqs. 6 and 7.

Assume that a number 𝑘 represents the total capacity. Given a set

of vertices child(𝑢) ∩ P = {𝑥1, ..., 𝑥𝑙 }, for each vertex 𝑥𝑖 where

1 ≤ 𝑖 ≤ 𝑙 , DP(𝑥𝑖 ,𝑤, 𝑘𝑥𝑖 ) represents an item value and the item

volume is 𝑘𝑥𝑖 ≤ 𝑘 . We assume that 𝐹 (𝑖, 𝑘 ′) is the state that has the
minimum value of the first 𝑖 items with a total of 𝑘 ′ capacity. The
equation of state transformation is shown as follows.

𝐹 (𝑖, 𝑘 ′) = min

0≤ 𝑗≤𝑘′
{𝐹 (𝑖 − 1, 𝑘 ′ − 𝑗) + DP(𝑥𝑖 ,𝑤, 𝑗)}.

For initialization, we set 𝐹 (𝑖, 𝑗) = +∞ for 1 ≤ 𝑖 ≤ 𝑙, 0 ≤ 𝑗 ≤ 𝑘

and 𝐹 (0, 0) = 0. The return value is 𝐹 (𝑙, 𝑘) = min{∑𝑥 ∈child(𝑢)∩P
DP(𝑥,𝑤, 𝑘𝑥 )} with the constraint

∑
𝑥 ∈child(𝑢)∩P 𝑘𝑥 = 𝑘 .

Update gYes (𝑢) and gNo (𝑢). For a vertex𝑢 that is questioned, only

the state of anc(𝑢) needs to be recalculated to update gYes (𝑢) and
gNo (𝑢). Algorithm 4 presents the details of gYes (𝑢) and gNo (𝑢) cal-
culations. First, the algorithm calculates DP(𝑢,𝑤, 𝑘) for all possible
states (line 1). Then, for 𝑢 ∈ P \ Y, it updates the corresponding
states and calculates gYes (𝑢) and gNo (𝑢) (lines 2-7). For computing

gYes (𝑢), it needs to update the states DP(𝑣,𝑤, 𝑘) for all 𝑣 ∈ anc(𝑢),

Algorithm 5 kBM-DP+: Calculate Expected Gains and Identify 𝑞𝑖

Input: H = (𝑉 , 𝐸) , pYes (.) , pNo (.) , P, Y, and 𝑘 .
Output: Question vertex 𝑞𝑖 .

1: Gain𝑚𝑎𝑥 ← 0;

2: Gain𝑖 (𝑣) ← UBgYes𝑖 (𝑣) · pYes (𝑣) + UBgNo𝑖 (𝑣) · pNo (𝑣) for all ver-
tices 𝑣 ∈ P \ Y, where UBgYes𝑖 (𝑣) = gYes (𝑖−1) (𝑣) and UBgNo𝑖 (𝑣) =
gNo (𝑖−1) (𝑣) .

3: Sort all vertices 𝑣 ∈ P \ Y in the descending order of Gain𝑖 (𝑣) ;
4: for 𝑣 ∈ P \ Y do
5: if Gain𝑚𝑎𝑥 > Gain𝑖 (𝑣) then return 𝑞𝑖 ;

6: gYes (𝑣) = g(Y, P, 𝑘) − calgYes (𝑣, 𝑘) ;
7: gNo (𝑣) = g(Y, P, 𝑘) − calgNo (𝑣, 𝑘) ;
8: Gain(𝑣) ← gYes (𝑣) · pYes (𝑣) + gNo (𝑣) · pNo (𝑣) ;
9: if Gain𝑚𝑎𝑥 < Gain(𝑣) then
10: Gain𝑚𝑎𝑥 ← Gain(𝑣) ; 𝑞𝑖 ← 𝑣;

11: return 𝑞𝑖 ;

𝑤 ∈ anc(𝑣) (lines 8-15). To computing gNo (𝑢), it updates the states
DP(𝑣,𝑤, 𝑘) for all 𝑣 ∈ anc(𝑢),𝑤 ∈ anc(𝑣) ∩ Y (lines 16-26).

Example 4. Assume that the targets are T = {𝑣5, 𝑣8}, the budget
𝑏 = 2, and 𝑘 = 2 in Figure 3. Table 3 shows the gains of all vertices. In
the first round, the algorithm questions 𝑣3 and gets the Yes answer.
Then, the vertices 𝑣0, 𝑣1 are pruned from P. The vertex 𝑣5 gets the
maximum gains in the second round and obtains the Yes answer.
Note that some leaf vertices get gYes (𝑣) = 0 because their parents are
better selections even if they get the Yes answer. The selections are
S = {𝑣3, 𝑣5} and the penalty is f (S,T) = 1.

Complexity analysis. The calculation of all states takes 𝑂 (𝑛ℎ𝑘2)
time. The update of each vertex takes 𝑂 (ℎ2𝑑𝑘2) times using Algo-

rithm 4. Overall, the kBM-DP in Algorithm 3 takes 𝑂 (𝑏𝑛ℎ2𝑑𝑘2)
time in 𝑂 (𝑛ℎ𝑘) space for generating 𝑏 questions.

6.3 Fast algorithms: kBM-Topk and kBM-DP+
In this section, we propose two fast algorithms of kBM-Topk and
kBM-DP+. The first method kBM-Topk uses an alternative penalty

function to improve the calculation of expected gain. The second

method kBM-DP+ develops an upper bound of Gain(𝑣) to prune

unnecessary vertices for updating the expected gains.

6.3.1 kBM-Topk. The penalty of g(Y,P, 𝑘) is complex to compute,

due to the dependence relationship of selections in S. To deal with

this issue, we propose a variant penalty function to approximate

g(Y,P, 𝑘), which can be efficiently computed. We begin with a

new definition of selected gain as follows.

IG(𝑥) =
∑︁

𝑣∈P∩des(𝑥)
𝑑𝑖𝑠𝑡 ⟨𝑟, 𝑣⟩−𝑑𝑖𝑠𝑡 ⟨𝑥, 𝑣⟩ = 𝑑𝑖𝑠𝑡 ⟨𝑟, 𝑥⟩ · |P∩des(𝑥) |.

The selected gain represents the reduced penalty after selecting 𝑥 .

The deeper the selected vertex and the larger the size of descendants,

the higher the selected gain. Thus, the general idea of kBM-Topk is

to select the top-𝑘 vertices that maximize the selected gain. Thus,

we propose a new potential penalty function:

g′(Y,P, 𝑘) = f ({𝑟 },P) − max

S⊆Y, |S |≤𝑘

∑︁
𝑥 ∈S

IG(𝑥) . (8)
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Table 4: The statistics of hierarchical tree datasets.

Name |𝑉 | Depth Avg Depth Max Degree # Queries

Image-COCO 200 5 2.63 37 107,774

ImageNet 74,401 19 8.78 391 16,188,196

Yago3 493,839 17 5.70 44,538 4,440,378

Compared with kBM-DP, the kBM-Topk algorithm uses the same

framework but adopts a heuristic penalty function g′(Y,P, 𝑘). The
kBM-Topk algorithm takes 𝑂 (𝑏𝑛ℎ log𝑛) time using 𝑂 (𝑛) space
for generating 𝑏 questions. The detailed kBM-Topk algorithm and

complexity analysis are available in [35].

6.3.2 kBM-DP+. In this section, we propose a pruning optimiza-

tion to accelerate the algorithm kBM-DP. The general idea is to
design an upper bound of expected gain and skip the update of

Gain(𝑣) for those vertices that are disqualified for achieving the

largest Gain(𝑣) in P \Y. In this way, we can prune lots of vertices

in most cases at each round of question asking, and quickly identify

a vertex 𝑞𝑖 with the largest gain.

An upper bound of Gain(𝑣). Consider a vertex 𝑣 at the 𝑖-th round

of question asking, the expected gain is denoted as Gain𝑖 (𝑣). Then,
we have an upper bound of Gain𝑖 (𝑣), denoted as Gain𝑖 (𝑣), satisfy-
ing Gain𝑖 (𝑣) = UBgYes𝑖 (𝑣) · pYes (𝑣) + UBgNo𝑖 (𝑣) · pNo (𝑣), where
UBgYes𝑖 (𝑣) = gYes (𝑖−1) (𝑣) and UBgNo𝑖 (𝑣) = gNo (𝑖−1) (𝑣). Note
that if 𝑣 is pruned in the previous round, we will set UBgYes𝑖 (𝑣)
= UBgYes (𝑖−1) (𝑣) and UBgNo𝑖 (𝑣) = UBgNo (𝑖−1) (𝑣). We observe

that both the Yes gain and No gain decrease with more questions

asked in most cases, due to the decreased P and increasedY. Thus,
we have UBgYes𝑖 (𝑣) ≥ gYes𝑖 (𝑣) and UBgNo𝑖 (𝑣) ≥ gNo𝑖 (𝑣). As a
result, Gain𝑖 (𝑣) ≥ Gain𝑖 (𝑣).
Algorithm. kBM-DP+ is a variant approach of kBM-DP in Al-

gorithm 3 using the pruning optimization in Algorithm 5, which

calculates expected gains and identifies the vertex 𝑞𝑖 for question

asking (replacing lines 7-8 of Algorithm 3). Specifically, the algo-

rithm first computes all upper bounds for vertices 𝑣 ∈ P \ Y and

then sorts the vertices in descending order of upper bounds (lines

2-3). Next, it calculates the expected gain Gain(𝑣) and prunes dis-

qualified vertices with an upper bound Gain𝑖 (𝑣) < Gain𝑚𝑎𝑥 where

Gain𝑚𝑎𝑥 keeps updated with the largest value of all possible ex-

pected gains (lines 4-10). Finally, it returns a vertex 𝑞𝑖 with the

largest expected gain. Note that we offline pre-compute the gYes
and gNo of all vertices for the first question inH , which asks the

same question for any targets.

7 EXPERIMENTS

Datasets.We use three real datasets of hierarchical trees, whose

detailed statistics are summarized in Table 4. First, ImageNet [3, 10]
is a hierarchical image dataset based on WordNet. It has 74,401

taxonomy vertices and 16 million images with ground-truth la-

bels. Second, we generate a small hierarchy with 200 taxonomy

vertices from COCO [18] and ImageNet [10], denoted as Image-
COCO, ensuring the successful and efficient running of all tested

algorithms. For target search on Image-COCO and ImageNet, we

randomly select a set of 1,000 images with a single label and an-

other set of 1,000 images with multiple labels for the SingleTarget
andMultipleTargets problems, respectively. Third, Yago3 [4, 20] is a
knowledge base frommultilingual Wikipedias. We use the ontology

structure yagoTaxonomy as the hierarchy for testing. It contains

493,839 taxonomy vertices, where an edge ⟨𝑣,𝑢⟩ means vertex 𝑢

is a “subClassOf” vertex 𝑣 . Moreover, Yago3 contains 4,440,378 ob-

jects from yagoTypes, where each object may have a single label

or multiple labels. For both the SingleTarget and MultipleTargets
problems, we select two sets of objects with a single label and with

multiple labels, respectively, using two methods. In the first method,

we randomly select 1,000 labeled objects from Yago3, denoted as

Yago3-I. In the second method, we first randomly select 1,000 cat-

egories from Yago3 and then pick a random labeled object under

each selected category, denoted as Yago3-II.

Comparison methods.We compare our algorithms with state-of-

the-art methods HGS [23], IGS [29], and BinG [17]. Specifically,

• HGS: a dynamic programming Human-GS method for identi-

fying multiple targets with a bounded number of questions,

which generates 𝑏 questions offline in a non-interactive set-

ting [23]. Following the algorithms in [23], we implement two

methods, Single-Bounded and Multi-Bounded, for identifying a

single target and multiple targets, respectively.

• IGS: an interactive graph search algorithm for identifying a

single target [29]. The algorithm decomposes a hierarchy into

connected paths and finds the target through a series of binary

searches on individual paths.

• BinG: a greedy algorithm for identifying a single target, which

asks questions using an optimal vertex that prunes the largest

number of vertices [17]. It prunes the vertices P \ des(𝑢) for
reach(𝑢) = Yes. To identify multiple targets, we implement a

variant BinGmethod, which only prunes P ∩ anc(𝑢) \ {𝑢} for
reach(𝑢) = Yes.

Note that both IGS and BinG can ask unlimited questions to

identify the targets. In our problem setting, we terminate the algo-

rithms of IGS and BinG after asking 𝑏 questions. We also evaluate

and compare our proposed algorithms as follows.

• STBIS: identifies a single target in Algorithm 2.

• kBM-DP: a dynamic programming based method for identify-

ing multiple targets in Algorithms 3 and 4.

• kBM-Topk: uses an independent penalty function to select

top-𝑘 vertices in Section 6.3.1.

• kBM-DP+: uses an upper bound pruning technique to acceler-

ate kBM-DP in Algorithm 5.

After asking𝑏 questions, all algorithms return the selections from

Yes-candidates in the sameway following our kBM-IGS framework.

Evaluation metrics and parameter settings. For quality evalu-

ation, we use the penalty f (S,T) to measure the closeness between

selectionsS and targets T by Def. 3. For each experiment, we report

the averaged penalty score of searching targets on 1,000 selected im-

ages/objects. By default, we set the budget 𝑏 = 50, and assign 𝑘 = 1

and 𝑘 = 3 respectively for the SingleTarget and MultipleTargets
problems. The initial probability of each vertex 𝑣 is set as pr(𝑣) = 𝑘

𝑛 .

We denote the running time as INF and the penalty result as N/A,
if an algorithm cannot finish within 100 hours.
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Table 5: Quality evaluation (penalty scores) of different methods for identifying a single target.

Image-COCO ImageNet Yago3-I Yago3-II

Budget 𝑏 HGS IGS BinG STBIS HGS IGS BinG STBIS HGS IGS BinG STBIS HGS IGS BinG STBIS

5 1.48 1.42 1.21 1.20 4.59 4.50 3.98 3.89 2.04 2.03 1.60 1.61 2.61 2.60 2.30 2.27
10 1.34 1.15 0.79 0.78 4.50 3.87 3.10 3.04 1.92 1.63 1.15 1.05 2.48 2.20 1.69 1.53
20 1.20 0.77 0.47 0.47 4.34 3.02 1.80 1.79 1.83 1.18 0.71 0.65 2.30 1.61 1.12 1.05
50 0.98 0.41 0.18 0.18 4.21 1.41 0.67 0.67 1.71 0.82 0.41 0.39 2.14 1.04 0.73 0.67
100 0.52 0.19 0.00 0.00 3.79 0.68 0.28 0.28 1.66 0.71 0.30 0.27 2.07 0.90 0.56 0.54
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Figure 5: Quality evaluation (penalty scores) of different methods for identifying multiple targets.
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Figure 6: The running time of the five algorithms that ask 𝑏 questions on all datasets.

EXP-1: Quality evaluation of the SingleTarget problem. Ta-
ble 5 shows the penalty results of four methods HGS, IGS, BinG,
and STBIS for identifying a single target. For each dataset, we test

five different budgets of 𝑏, varying from 5 to 100. The smaller the

penalty scores, the closer the selections to the hidden targets. All

methods get lower penalty scores with increased budget 𝑏 as more

questions are asked to obtain better selections. Our method STBIS
achieves the best performance in all tests, except for one case of

𝑏 = 5 on Yago3-I. In particular, it outperforms HGS by 23%–1,253%.

While BinG has a competitive performance with STBIS, it is much

worse than our methods in the more challengingMultipleTargets
problem as will be shown in EXP-2.

EXP-2: Quality evaluation of theMultipleTargets problem.We

evaluate four methods HGS, BinG, kBM-Topk, and kBM-DP+ for

identifying multiple targets. Figures 5(a)-5(d) and Figures 5(e)-5(h)

report the penalty results on all datasets by varying budget 𝑏 and

selection size 𝑘 , respectively. Several observations are made. First,

HGS has the largest penalty scores on the small dataset Image-

COCO as shown in Figures 5(a) and 5(e). On the three large datasets

in Figures 5(b)-5(d) and 5(f)-5(h), HGS fails to finish within 100

hours, due to its high time complexity. Second, compared with

BinG, our methods kBM-DP+ and kBM-Topk get smaller penalty

scores by achieving an average of 2.1x better results. The main

reason is that BinG tends to ask questions on the vertices at the

bottom levels, which is likely to get a No answer with little gain of
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Question Label reach(𝑞𝑖 ) depth(𝑞𝑖 ) |P | |Y| f (S∗,T)
𝑞0 animal Yes 0 3,998 1 11

𝑞1 vertebrate Yes 2 3,996 3 7

𝑞2 mammal Yes 3 3,995 4 6

𝑞3 invertebrate No 1 3,219 4 6

𝑞4 aquatic vertebrate Yes 3 3,219 5 5

𝑞5 fish Yes 4 3,218 6 4

𝑞6 bird No 3 2,347 6 4

𝑞7 bony fish No 5 1,812 6 4

𝑞8 carnivore Yes 5 1,810 8 2

𝑞9 dog No 7 1,587 8 2

𝑞10 reptile No 3 1,291 8 2

𝑞11 ungulate No 5 988 8 2

𝑞12 felid (cat family) Yes 6 987 9 1

animal
 

invertebrate vertebrate

  aquatic
vertebrate

reptile bird

carnivore

mammal

 

fish

bony fish
dog felid

ungulate

q0

q1

q2

q3

q10 q6 q4

q11 q8

q5

q9 q12 q7

cat

Figure 7: Case study on the “animal” hierarchy in ImageNet. The targets T = {“fish”, “cat”}, 𝑏 = 12, and 𝑘 = 3. The selection set
of our algorithm is S ={“fish”, “mammal”, “felid”}, in which “felid” is the parent of “cat”. The penalty score is f (S,T) = 1.

reducing target penalties. In contrast, our methods kBM-Topk and

kBM-DP+ aim at asking questions on the vertices with the largest

expected gains based on the potential target distribution, thereby

achieving a better performance. Moreover, with increased budget 𝑏

and target number 𝑘 , kBM-Topk and kBM-DP+ get an even better

performance with lower penalty scores. Finally, between kBM-DP+
and kBM-Topk, kBM-DP+ incurs less penalties because it has a

better gain function for identifying diverse selections.

EXP-3: Efficiency evaluation. Figure 6 shows the running time

results of different algorithms for identifying multiple targets. All

methods take more time with increased budget 𝑏. Among all algo-

rithms, HGS and kBM-DP are the most inefficient. In particular,

HGS fails to finish on ImageNet, Yago3-I, and Yago3-II within 100

hours. On the other hand, kBM-Topk and BinG are the fastest algo-

rithms by adopting simple penalty functions to generate questions.

Specifically, kBM-Topk runs 2.8x faster on average than kBM-DP+
for different parameters of 𝑏 in Figures 6(a)-(d).

EXP-4: Quality evaluation with wrong answers. We conduct

a quality evaluation of our methods where human mistakes are not

eliminated and the workers give wrong answers. For each dataset,

we randomly select 𝑋% objects out of 1,000 objects and treat them

as difficult objects. We vary𝑋 ∈ [0, 50] on the ImageNet and Yago3-

I datasets. For each question that involves a difficult object, the

workers have a probability of giving a wrong answer, denoted as

𝑝 . In the experiment, we set the wrong probability 𝑝 = 10% and

budget 𝑏 = 50. Figure 8 shows the penalty results when varying the

percentage of difficult objects. The quality performances of kBM-

Topk and kBM-DP+ are only slightly degraded with the increasing

percentage of difficult objects, demonstrating their resilience to

wrong answers. Moreover, our methods kBM-Topk and kBM-DP+
still win BinG by at least 40%, even with wrong answers.

EXP-5: Case study of image categorization.We conduct a case

study of interactive search to identify multiple targets on ImageNet.

We extract the “animal” sub-hierarchy of ImageNet, which contains

nearly 4, 000 labels. We use the image shown in Figure 1(b) with

T ={“fish”, “cat”} for search. The left table in Figure 7 shows the

detailed process and statistics of all interactive questions asked by

kBM-DP+ with 𝑏 = 12 and 𝑘 = 3. For each question vertex 𝑞𝑖 , we

report the label of𝑞𝑖 , the answer reach(𝑞𝑖 ), the depth of𝑞𝑖 inH , |P |,
|Y|, and the penalty f (𝑆∗,T). We also show the questioned vertices
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Figure 8: Quality evaluation with wrong answers.

in a simplified hierarchy on the right side of Figure 7. The red

vertices get a Yes answer and the blue vertices get aNo answer. The
interactive process clearly shows that our questions approach the

targets quickly in a top-down manner within 12 questions, which

achieves a very small penalty of 1 between selections and targets.

Finally, kBM-DP+ identifies the selections S = {“fish”, “mammal”,

“felid”}. Note that “felid” means the cat family, which is the parent

of the target “cat”.

8 CONCLUSION
In this paper, we study the problem of kBM-IGS to identify multi-

ple targets in a hierarchy using a constrained budget of interactive

questions. To effectively tackle the problem, we propose a novel

kBM-IGS framework to select the vertex with the maximum ex-

pected gain to ask question. On the basis of the kBM-IGS frame-

work, we develop STBIS algorithm to identify a single target and a

dynamic programming based method kBM-DP to identify multiple

targets. To further improve the efficiency, we propose two heuristic

algorithms kBM-Topk and kBM-DP+ to ask question on the vertex

with the best alternative gain. Extensive experiments validate the

effectiveness and efficiency of our proposed algorithms.
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