
ParaX: Boosting Deep Learning for Big Data Analytics on
Many-Core CPUs

Lujia Yin
NUDT

Changsha, China
ylj1992nudt@gmail.com

Yiming Zhang
NiceX Lab, NUDT
Changsha, China

Contact:zym@nicexlab.com

Zhaoning Zhang
NUDT

Changsha, China
zzningxp@gmail.com

Yuxing Peng
NUDT

Changsha, China
pengyuxing@aliyun.com

Peng Zhao
Intel Research
Shanghai, China

patric.zhao@intel.com

ABSTRACT
Despite the fact that GPUs and accelerators are more efficient in
deep learning (DL), commercial clouds like Facebook and Amazon
now heavily use CPUs in DL computation because there are large
numbers of CPUs which would otherwise sit idle during off-peak
periods. Following the trend, CPU vendors have not only released
high-performance many-core CPUs but also developed efficient
math kernel libraries. However, current DL platforms cannot scale
well to a large number of CPU cores, making many-core CPUs inef-
ficient in DL computation. We analyze the memory access patterns
of various layers and identify the root cause of the low scalability,
i.e., the per-layer barriers that are implicitly imposed by current
platforms which assign one single instance (i.e., one batch of in-
put data) to a CPU. The barriers cause severe memory bandwidth
contention and CPU starvation in the access-intensive layers (like
activation and BN).

This paper presents a novel approach called ParaX, which boosts
the performance of DL on many-core CPUs by effectively allevi-
ating bandwidth contention and CPU starvation. Our key idea is
to assign one instance to each CPU core instead of to the entire
CPU, so as to remove the per-layer barriers on the executions of the
many cores. ParaX designs an ultralight scheduling policy which
sufficiently overlaps the access-intensive layers with the compute-
intensive ones to avoid contention, and proposes a NUMA-aware
gradient server mechanism for training which leverages shared
memory to substantially reduce the overhead of per-iteration pa-
rameter synchronization. We have implemented ParaX on MXNet.
Extensive evaluation on a two-NUMA Intel 8280 CPU shows that
ParaX significantly improves the training/inference throughput
for all tested models (for image recognition and natural language
processing) by 1.73× ∼ 2.93×.

PVLDB Reference Format:
Lujia Yin, Yiming Zhang, Zhaoning Zhang, Yuxing Peng, and Peng Zhao.
ParaX: Boosting Deep Learning for Big Data Analytics on Many-Core
CPUs. PVLDB, 14(6): 864-877, 2021.
doi:10.14778/3447689.3447692

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/nicexlab/parax-source.

1 INTRODUCTION
The big data era brings severe challenge for data analytics as in-
formation becomes available in such volume, velocity and variety
[7] that it cannot be processed by traditional algorithms and sys-
tems. In recent years, deep learning (DL) has been emerging as an
effective approach for many fields of big data analytics [25, 55, 75]
such as image recognition [39, 54, 69], natural language processing
[35, 61, 62], and recommendation [27, 41, 52]. The basic processing
of deep learning includes two separate phases, namely, (i) train deep
neural network (DNN) models which evolve by iteratively tuning
their model parameters with stochastic gradient descent (SGD) [18]
on many batches of training data, and (ii) infer the results of input
data by using the trained models.

DL platforms, such as TensorFlow [16], PyTorch [11], Caffe [48],
and MXNet [22], support both CPUs and GPUs for training and
inference of DNN models. Although CPUs are less efficient than
GPUs for deep learning, they are now widely used in both training
and inference in the cloud environment [12, 37, 38]. This is not
only because CPUs can provide low latency (with small batch sizes)
for online inference but also because there are large numbers of
CPUs which would otherwise sit idle during off-peak periods. For
instance, FBLearner [38] is a hybrid system of Facebook, which
mainly (i) uses GPUs in training and offline inference for high
throughput and (ii) adopts CPUs in online inference for low latency.
Since the diurnal load cycles leave a significant number of CPUs
available, FBLearner also heavily uses CPUs in its offline training
and inference tasks. Further, Facebook’s CPU-based inference sys-
tem improves the performance of many-core CPUs by batching and
co-locating inference jobs [37].

Following the trend, CPU vendors have not only released high-
FLOPS (floating point operations per second) many-core CPUs
but also developed high-performance math libraries (similar to
cuDNN [24] for GPUs) to accelerate x86-based kernel computation
on the DL platforms [16, 22, 48]. As a result, the training and in-
ference throughput of CPUs has been effectively improved (§2),

doi:10.14778/3447689.3447692

864

https://doi.org/10.14778/3447689.3447692
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/nicexlab/parax-source
https://doi.org/10.14778/3447689.3447692

C
P

U

u
ti

liz
at

io
n

 r
at

io

0 10 20 30
Time (ms)

0

50%

100%

25%

75%

B
an

d
w

id
th

u

ti
liz

at
io

n
 r

at
io

0 10 20 30
Time (ms)

Act

Conv

BN

0

50%

100%

25%

75%

Figure 1: Utilizations of memory bandwidth and CPU cycles
in the inference of ResNet50, running MXNet on Intel 8280
(one NUMA node with 28 cores).

demonstrating the potential of many-core CPUs for throughput-
demanding deep learning tasks.

However, it is still challenging to fully exploit the power of many-
core CPUs on the mainstream DL platforms, which are originally
designed for and currently focused on GPU-based deep learning
computation. This is mainly because CPUs and GPUs adopt dif-
ferent hardware designs especially in their memory architectures:
GPUs have smaller on-chip memory with much higher bandwidth,
while CPUs use main memory with lower bandwidth but much
larger capacity. Current DL platforms rely on GPUs’ high memory
bandwidth for high throughput [33] and overlook this difference
for CPU-based training and inference, making them not scale to
the many cores of CPUs.

To understand this problem, we run mainstream DL platforms
(MXNet [22], TensorFlow [16] and PyTorch [11]) on an Intel Xeon
8280 CPU [5] with one NUMA (non-uniform memory access) node
of 28 cores to infer ResNet50 [39], and measure the utilization of
memory bandwidth and CPU cycles. Figure 1 depicts the result
for MXNet, where it is the memory bandwidth that bounds the
executions of the activation (Act) and batch normalization (BN)
layers and causes CPU starvation. About half the bandwidth is idle
at the convolution (Conv) layers, which results in a low (overall)
utilization of 61.3% of the precious CPU memory bandwidth. Ten-
sorFlow and PyTorch perform even worse than MXNet (not shown
in Figure 1), respectively achieving only 57.0% and 54.6% memory
bandwidth utilization.

The root cause of the low utilization of the precious memory
bandwidth is that in current DL platforms only one single instance
is assigned to one CPU (referred to as one-instance-per-CPU), where
an instance is a batch of input data jointly processed in an iteration.
Although assigning one instance to a GPU which has high memory
bandwidth can fully exploit the parallelism inside the batch (by
dividing the batch into partitions each being assigned to one core),
Figure 1 shows that it is inefficient to assign only one instance to a
many-core CPU which has much lower bandwidth. This is because
one-instance-per-CPU implicitly imposes the per-layer barriers on
the executions of the many cores which are jointly processing the
batch.

We categorize the layers in DNNs into two classes, namely, the
compute-intensive layers that execute complex arithmetic opera-
tions (like convolution and general matrix multiplication (GEMM)),
and the access-intensive layers that execute much simpler element-
wise operations (like activation and BN), which will be analyzed via
experiments in §3. As shown in Figure 1, the per-layer barriers en-
force synchronous executions of the operations, making the limited
memory bandwidth of many-core CPUs become a bottleneck and
causing intermittent CPU starvation at the access-intensive layers.
Note that memory bandwidth would not bound the throughput
when the number of cores is much smaller (in ordinary multi-core
CPUs) or the bandwidth is much higher (in GPUs), in which cases
the total compute capacity does not saturate the bandwidth.

Based on the observation, in this paper we present ParaX, a novel
approach that boosts the performance of deep learning on many-
core CPUs. Our key idea is to break the input data of an iteration
(a.k.a. mini-batch [59]) into batches (i.e., instances) and assign one
instance to each CPU core (referred to as one-instance-per-core)
instead of to the entire CPU, so as to allow each core to individually
process its batch and thus remove the per-layer barriers on the
executions of the cores (§4.1). Note that one-instance-per-core does
not increase the number of cores involved in an iteration compared
to one-instance-per-CPU which can occupy all the cores for the
single instance by adopting MKL-DNN (a.k.a. oneDNN) [13], but
improves the memory bandwidth utilization. ParaX designs an
ultralight scheduling policy which sufficiently overlaps the access–
intensive layers and compute-intensive ones on different cores to
avoid contention. We show this could be achieved by leveraging
the randomness of the layers’ execution times, complemented with
delayed initiation [74] when training relatively shallow networks.

For training, ParaX follows synchronous SGD [18] to update
model parameters for every iteration. However, the many instances
on one CPU will potentially increase the overhead of per-iteration
synchronization, which may even completely counteract the ben-
efit of layer overlapping. To address this problem, ParaX designs
a NUMA-aware gradient server mechanism (§4.2) that leverages
shared memory to substantially reduce the overhead compared to
the state-of-the-art parameter server (PS) [58] or ring-allreduce
(RAR) [68] mechanisms, which are inefficient for synchronization
of many cores on a CPU since they are designed for distributed
scenarios and cannot adapt to the NUMA architecture of many-core
CPUs.

This paper makes the following contributions. To the best of
our knowledge, we are the first to (i) uncover the reason (per-layer
barriers) of the inefficiency of current DL platforms on many-core
CPUs, and (ii) propose one-instance-per-core for both training
and inference. We have implemented ParaX on MXNet. Extensive
evaluation on a two-NUMA Intel 8280 CPU (§5) shows that ParaX
significantly improves the throughput of training and inference
for all tested models (for image recognition and natural language
processing) respectively by 1.73× ∼ 2.93× and 2.08× ∼ 2.11×.

The rest of this paper is organized as follows. §2 reviews the
background. §3 analyzes the problem of deep learning on many-
core CPUs. §4 introduces the design of ParaX for improving mem-
ory bandwidth utilization. §5 presents the evaluation results. §6
discusses related work. And finally §7 concludes the paper and
discusses future work.

865

0

100

200

300

400

500

600
Th

ro
u

gh
p

u
t

(s
am

p
le

s/
s)

i7-7700K
Platinum 8280
P100

(a)Training (b)Inference

0

400

800

1200

1600

2000

Figure 2: Throughput comparison.

2 BACKGROUND
2.1 Recent Advances in Many-Core CPUs
The competition between CPUs and GPUs has been long lived in
the market of deep learning hardware. Although in recent years
it has been widely accepted that GPUs are more suitable for high-
throughput tasks (model training and offline inference) and CPUs
perform better in low-latency tasks (online inference), most recently
CPUs are also widely used in throughput-demanding scenarios so
that commercial cloud vendors could adapt to the diurnal load
cycles in the cloud [12, 38]. For instance, Intel not only designs
the new series of many-core CPUs [5] but also develops the math
kernel DNN library [13]. This section briefly introduces the state-of-
the-art many-core CPUs in hardware parameters (cores/FLOPs and
memory bandwidth/capacity), libraries, and performance (latency
and throughput).
Cores and FLOPs. GPUs have much more cores than CPUs. For
instance, a Tesla P100 [3] GPU has 60 SM (Streaming Multiproces-
sor) each of which has 64 CUDA cores, so there are totally 3840
CUDA cores on P100. In contrast, Intel CPUs have at most tens of
cores [5]. Counterintuitively, their difference in FLOPS is not as
high as expected. For instance, the single-precision performance
of NVIDIA Tesla P100 is 10.6 TFLOPS. For two-NUMA Intel Xeon
Platinum 8280 CPUs (which has 56 cores with 2.70 GHz frequency
with AVX512 [4] support for 64 single-precision arithmetic compu-
tation), the single-precision performance is 2.70 × 56 × 64 ≈ 9.66
TFLOPS.
Memory bandwidth and capacity.GPUmemory hasmuch higher
bandwidth than CPU memory. For example, the peak bandwidth of
P100’s on-chip memory is 732 GB/sec, while the theoretical band-
width of the state-of-the-art DDR4-SDRAM [63] is 25.6 GB/sec.
Memory bandwidth is one of the main factors that limit the through-
put of CPUs. On the upside, however, CPUs usually have much
larger memory capacity compared to GPUs. For example, it is com-
mon for commodity servers to have 256 GB main memory, while
the state-of-the-art GPUs have at most 48 GB on-chip memory [6].
Besides, the cache sizes in CPUs are also larger than that in GPUs.
For example, the L3-cache size of Platinum 8280 is 39,424 KB, while
P100’s counterpart cache size is 4096 KB.
Libraries and applications. CPUs and GPUs adopt different mech-
anisms for multithreading. Intel Xeon CPUs (with MKL-DNN) relies

1 2 4 8 14 28 56
ResNet50 CPU 0.016129 0.017857 0.02381 0.029762 0.044643 0.073638 0.127551

GPU 0.02 0.019802 0.020101 0.02005 0.028689 0.049383 0.092715
MobileNet CPU 0.008 0.008621 0.01 0.011111 0.013861 0.018182 0.027586

GPU 0.0125 0.010989 0.011236 0.010959 0.0112 0.017284 0.031461

1 2 4 8 14 28 56
ResNet50 CPU+PARAX

GPU
MobileNet CPU+PARAX

GPU

1 2 4 8 14 28 56
CPU 0.2 0.31 0.45 0.53 0.62 0.68 0.77

0

2

4

6

8

10

1 2 4 8 14 28 56

La
te
n
cy
 (
s)

Batchsize
ResNet50 CPU ResNet50 GPU
MobileNetv1 CPU MobileNetv1 GPU

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8 14 28 56
Batchsize

(a)Cold start (b)Hot start

Figure 3: Inference latency comparison.

on OpenMP [17] to awaken multiple threads from a pool, each of
which executes the kernel on a data partition using one core with
SIMD (Single Instruction Multiple Data) like AVX512 [4]. In con-
trast, GPUs (with cuDNN) relies on CUDA [14] to assign the threads
to blocks which are further assigned to SMs, where threads in the
same block are executed with SIMT (Single Instruction Multiple
Threads) [60].
Performance. We measure the training throughput of an i7-7700k
CPU (with 4 cores) and a two-NUMA Platinum 8280 CPU (with 56
cores), running ResNet50 [39], MobileNet-v1 [44], and Inception-
BN [46] on MXNet (batch size = 64), respectively. For comparison,
we also evaluate the same applications using a Tesla P100 GPU
(with 3840 cores). The result (Figure 2) shows that (i) CPUs have
already made remarkable progress in throughput, and (ii) there is
still a huge performance gap between many-core CPUs and GPUs
for throughput-demanding scenarios.

We also compare the inference latencies of 8280 CPU and P100
GPU, as shown in Figure 3. We run MXNet adopting one-instance-
per-CPU and keep the total batch size small for emulating the online
inference scenario with stringent latency requirement. Figure 3a
depicts the cold start latencies (from launching programs to out-
putting results) where CPUs have much smaller latencies, mainly
because (i) GPUs have to do extra initialization work (e.g., loading
models into GPU memory) and (ii) CPUs have higher single-core
frequency. Autotune [15] is turned off otherwise cuDNN would
need a fewmore seconds to search the best kernels. Figure 3b shows
the hot start latencies (from entering the networks to outputting
the results), where CPUs have slightly higher latencies for inference
with 𝐵 > 4. Note that the inference latencies with cold start are
important for GPUs, since it is common for context switching in the
cloud environment [38] where tenants share the expensive GPUs
with relatively small on-chip memory capacity.

2.2 Deep Learning on NUMA
Many-core CPUs adopt the NUMA (non-uniform memory access)
architecture [51] where a CPU has𝑚 NUMA nodes (𝑚 ≥ 1) each
having its local memory shared by its cores. Although the𝑚 NUMA
nodes of a CPU can access all the main memory, a NUMA can access
its local memory faster than the non-local memory.

866

NUMA

Inst

G W

Core Core Core…

Update weights
Compute gradients
Access weights

Figure 4: MXNet adopts one-instance-per-CPU for model
training, where MXNet assigns one single instance to one
CPU.

Thread
Pool

Thread
Pool

... ...

T0

T1

Tp-1

T0

T1

Tp-1

OPk+1OPk

Outputk+1

Outputk

(Inputk+1)
Inputk

Figure 5: One-instance-per-CPU imposes per-layer barriers.

Current DL platforms (such as TensorFlow [16], PyTorch [11],
Caffe [48], and MXNet [22]) all adopt the “one-instance-per-CPU”
paradigm for model training and inference. A DNNmodel is trained
by iterating a large dataset many times (i.e., epochs). Within each
epoch, the dataset is partitioned into mini-batches, each being the
input for a training iteration. A mini-batch is broken into multiple
batches, each being a processing instance1 which individually travels
through the DNN model layer-by-layer. Figure 4 shows an example
of the training procedure on a one-NUMA CPU. In every iteration,
a single instance is assigned to the CPU and divided into partitions
each being assigned to one core. The many cores jointly process
the batch (exploiting the intra-batch parallelism) by reading the
weights from memory, executing the layers one by one, computing
the gradients, and updating the weights.

3 ANALYSIS
A neural network contains a sequence of successive layers where
one layer’s output is the next layer’s input. The computation of a
layer is called an operation, such as convolution, GEMM, activation,
BN, etc. Current DL platforms leverage the cuDNN or MKL-DNN
libraries to exploit the intra-batch parallelism, which enable all the
cores of a GPU or CPU to execute the operations on the assigned
batch of data.

In the state-of-the-art one-instance-per-CPU paradigm, each
core runs a thread and all the cores jointly process a single instance
layer-by-layer. Figure 5 illustrates the processing of the many cores
on an instance (one-instance-per-CPU), where each 𝑇𝑖 is a thread

1In most cases the two terms “instance” and “batch” are interchangeable.

0

0.5

1

1.5

2

2.5

3

CPU GPU

Ti
m

e
o

f
co

m
p

u
te

-i
n

te
n

si
ve

La

ye
rs

 /
 t

im
e

o
f

ac
ce

ss
-

in
te

n
si

ve
 L

ay
er

s

ResNet50 LSTM NCF

Figure 6: Inference time ratios (𝐵 = 64) of compute-intensive
layers vs. access-intensive layers, respectively for CPU (Intel
8280) and GPU (NVIDIA P100). 𝐵 = 128 and 256 have similar
results.

running on one core. At the 𝑘th layer, multiple threads are awak-
ened from the thread pool, each executing the operation (𝑂𝑃 (𝑘))
on a partition of the instance in parallel to exploit the intra-batch
parallelism. We categorize the layers into two classes, namely, the
compute-intensive layers that execute compute-intensive opera-
tions (like convolution and GEMM) which conduct complex arith-
metic computations, and the access-intensive layers that execute
access-intensive2 operations (like activation and BN) which are
element-wise and usually have less computation complexity. When
the total memory bandwidth demand at an access-intensive layer
exceeds the maximum capacity, it will cause bandwidth contention
which leads to starvation of the cores (Figure 1) and consequently
longer execution times.

To understand the impact of bandwidth contention, we evaluate
the ratios of the execution times of the compute-intensive layers
to that of the access-intensive layers, running MXNet on a one-
NUMA Intel 8280 CPU (with MKL-DNN), respectively for inference
of ResNet50 [39], RNN (two-layer LSTM) [43], and NCF (Neural
Collaborative Filtering) [40]. The result is shown in Figure 6, where
the execution times of the compute-intensive layers are (< 1.5×)
comparable to that of the access-intensive layers. In contrast, when
conducting the same experiment on a P100 GPU (with cuDNN), the
execution times of the compute-intensive layers are up to 2.7× that
of the access-intensive layers (also shown in Figure 6).

We further analyze the scalability of the compute-intensive op-
erations (convolution) and the access-intensive operations (BN and
activation), by executing them layer by layer using a one-NUMA
8280 CPU to infer ResNet50 on MXNet. The result (Figure 7) shows
that the speedups of the three operations are similar before the
numbers of threads (𝑛) increase up to 7. Afterwards, the speedups
of BN and activation increase very little, while that of convolution
is still almost linear with 𝑛. This is because the bandwidth utiliza-
tion of BN and activation almost reaches the maximum bandwidth
capacity when 𝑛 > 7, while that of convolution reaches only about
one half the maximum capacity even when the number of cores is
as high as 𝑛 = 28.

2More accurately, they should be called compute-non-intensive since they have much
less arithmetic computations (but similar amount of input/output data) compared to
compute-intensive ones.

867

0%

25%

50%

75%

100%

1 2 4 7 14 21 28 B
an

d
w

id
th

 u
ti

liz
at

io
n

 r
at

io

Conv BW uti BN BW uti Act BW uti

0

5

10

15

20

Sc
al

in
g

Conv Scaling

BN Scaling

Act Scaling

Figure 7: Speedups and utilization of different operations, as
the numbers of threads increase.

Compared to the compute-intensive operations, although the
access-intensive operations have less arithmetic computations in
the training and inference on many-core CPUs, they have similar
amount of input and output data. This makes the memory band-
width become a potential bottleneck on the critical paths of execu-
tions of the access-intensive operations. In contrast, the compute-
intensive operations perform significantly more computations per
memory access, which could amortize the memory access cost.
Therefore, the overall throughput on many-core CPUs is largely
decided by the overall memory bandwidth utilization.

4 DESIGN
4.1 One-Instance-Per-Core
To alleviate the problem of memory bandwidth contention, our
basic idea is to overlap the executions of various layers (including
convolution, GEMM, activation, BN, etc.) on different cores, so that
the compute-intensive layers (e.g., convolution and GEMM) could
“lend” the surplus bandwidth to the access-intensive ones (e.g.,
activation and BN). As shown in Figure 5, however, one-instance-
per-CPU implicitly imposes the per-layer barriers for the executions
on all the cores that are jointly processing the instance and thus
prevents “bandwidth lending” (Figure 8a).

Inspired by data parallelism [19, 29, 58] which is widely exploited
in distributed deep learning, ParaX proposes to divide the input
data of an iteration into batches (instances) and assign each CPU
core with one instance, which we refer to as one-instance-per-core.
As shown in Figure 8b, this allows each core to individually process
its instance without barriers, making it possible for the access-
intensive layers to make use of the surplus bandwidth of the simul-
taneous compute-intensive layers. Note that one-instance-per-core
is different from the distributed DL scenarios [29, 58] where multi-
ple GPU/CPU nodes process the same model and each individual
node is responsible to train/infer a batch: distributed DL platforms
are to integrate more resources and cannot adapt to the NUMA
architecture, while ParaX is mainly focused on improving the uti-
lization of existing resources (memory bandwidth and CPU cycles).

By removing the per-layer barriers, one-instance-per-core pro-
vides an opportunity for bandwidth lending between the many
cores of a CPU, each of which runs one thread processing one
instance. To improve the bandwidth utilization, intuitively ParaX
need to elaborately schedule the threads on the cores so that their
access-intensive layers could execute in different time slices. Since

(a) One-instance-per-CPU

Thread Pool

…
𝑇0

𝑇𝑝−1

(b) One-instance-per-core
Inst 0 𝑇

Inst 1 𝑇

Inst p-1 𝑇

… …

Compute-
intensive OPs

Access-
intensive OPs

Figure 8: Layer overlapping.

the executions of operations usually have sub-second durations,
however, it is impractical to conduct fine-grained scheduling for a
large number of threads.

Fortunately, we observe that there is certain randomness for the
execution times of the same operations on the same-sized batches,
especially when the number of threads is relatively large and the
network is deep enough. Therefore, ParaX adopts an ultralight
overlap scheduling policy, which relies on the randomness of op-
erations’ execution times to overlap the executions of access- and
compute-intensive layers on different cores. Consider an 𝑖th layer
in a DNN model illustrated in Figure 8b. The threads randomly
make different progresses during the executions of the first (𝑖−1)th
layers. Consequently, the executions of the access-intensive and
compute-intensive layers of the threads will statistically overlap
with each other, thus implicitly realizing memory bandwidth lend-
ing between the threads executing different instances and enabling
ParaX to achieve high bandwidth utilization.

4.2 Gradient Server for Efficient Training
ParaX follows synchronous SGD [18] (for guaranteeing conver-
gence [77]) to update the parameters by using the gradients from
the instances for every training iteration. The downside of one-
instance-per-core for parameter update is that it potentially in-
creases the synchronization overhead as the numbers of instances
increases, which might even completely counteract the benefit
of layer overlapping (as evaluated in §5.2). Existing synchroniza-
tion mechanisms of current DL platforms, such as PS (parameter
server) [58] and RAR (ring-allreduce) [68], are initially targeted for
distributed scenarios and thus not suitable for synchronization of
the many instances on a CPU.

We briefly discuss the inefficiency of PS in synchronization. Fig-
ure 9 shows a PS-based training iteration adopting one-instance-
per-core on an 𝑚-NUMA CPU (𝑚 = 2), where for each 𝑝-core
NUMA node there is one dedicated thread occupying one core to
serve as the parameter server (PS0/PS1), and the remaining 𝑝 − 1
(worker) cores process 𝑝−1 instances. A worker (i) pulls the weights
(𝑊 = {𝑊𝑖 } where 𝑖 = 0, 1, · · · ,𝑚 − 1) from the𝑚 servers (PS𝑖) by
copying𝑊𝑖 in memory via sockets, (ii) computes its gradients (𝑔)
using its instance, and (iii) pushes 𝑔 to each of the servers (𝑔𝑖 to
PS𝑖) by adding 𝑔𝑖 to the gradients (𝐺𝑖). PS𝑖 finally updates 𝐺𝑖 to
its weights (𝑊𝑖). Clearly, the PS mechanism not only wastes CPU

868

PS0

Core

Inst

Core…

Inst

Core

G0 W0 W0,W1 …

NUMA0

W0,W1

PS1

Core

Inst

Core…

Inst

Core

W1 G1W0,W1 …

NUMA1

W0,W1

Update weightsCopy weights Access weights

Figure 9: One-instance-per-core + PS. For brevity we omit
the lines from instances to𝐺𝑖 for computing gradients (blue
arrowed lines in Figure 4).

Core

Inst

Core…

Inst

Core

GW

NUMA0

Inst

Core…

Inst

Core

WG

NUMA1

G
SInst Inst

Core

Update weightsAccess weights

Figure 10: One-instance-per-core + gradient server (GS). All
instances as well as the GS share the same weights and thus
GS does not need to “copy weights” compared to PS.

cycles but also induces high synchronization delay. Different from
PS, RAR reduces communication by organizing the instances into a
ring which exchange gradients with the neighbors in two separate
phases. However, its ring update greatly slows down the synchro-
nization procedure (also evaluated in §5.2).

To improve the synchronization efficiency, ParaX designs a
NUMA-aware gradient server (GS) mechanism which leverages
shared memory to allow worker instances to directly access the
weights. As shown in Figure 10, one CPU runs one gradient server
which does not possess its own weights but shares the weights with
the instances, in order to eliminate the costly per-iteration memory
copy. On each NUMA there is a complete copy of the weights in
the local memory, so as to avoid frequent remote memory accesses
within an iteration.

Algorithm 1 shows the pseudocode of one training iteration
based on the gradient server mechanism, where𝑚 is the number
of NUMA nodes, 𝑝 is the number of instances (equal to the num-
ber of cores in one-instance-per-core) on a NUMA, 𝑊𝑖 = 𝑊 is
(the complete copy of) the shared weights (𝑊) stored in the local
memory of NUMA 𝑖 (𝑖 = 0, 1, · · · ,𝑚 − 1), 𝐺 is the global gradients
distributed in the local memory of the 𝑛 NUMAs, and 𝑔

𝑗
𝑖
is the

gradients calculated by instance 𝑗 (𝑗 = 0, 1, · · · , 𝑝 − 1) on NUMA 𝑖 .
Each instance individually performs Forward() and Backward()

to calculate the local gradients (𝑔 𝑗
𝑖
), and aggregates 𝑔 𝑗

𝑖
to the global

gradients (𝐺). Note that the aggregate step (𝐺 += 𝑔
𝑗
𝑖
) may access

the remote memory of another NUMA, but which is infrequent
and will not affect the overall performance. After all local gradients
have been aggregated to 𝐺 , the gradient server will add 𝐺 to the𝑚
copies of the weights𝑊𝑖 (𝑖 = 0, 1, · · · ,𝑚− 1) in the𝑚 NUMA’s local

Algorithm 1 A Training Iteration Based on GS

for all 𝑖 = 0, 1, · · · ,𝑚-1 do in parallel
for all 𝑗 = 0, 1, · · · , 𝑝-1 do in parallel

/**** Initialization ****/
instance𝑗

𝑖
.bind(core𝑗

𝑖
)

if Network is shallow then // Discussed in §4.4
Calculate delay 𝑡 according to its launching group
instance𝑗

𝑖
.sleep(𝑡)

end if
/**** Forward/Backward ****/
Forward(𝑑 𝑗

𝑖
,𝑊𝑖)

𝑔
𝑗
𝑖
=Backward(𝑑 𝑗

𝑖
,𝑊𝑖)

𝐺 += 𝑔 𝑗
𝑖
// Mutual exclusion

end for
end for
/**** Synchronization ****/
for all 𝑖 = 0, 1, · · · ,𝑚-1 do in parallel
𝑊𝑖 += 𝐺 · 𝑙𝑟 // Executed by gradient server

end for

memory. Also note that the𝑚 copies of𝑊𝑖 are identical because
they are updated in exactly the same way.

4.3 One-Instance-Per-𝑥-Core
Compared to the existing one-instance-per-CPU paradigm, one-
instance-per-core increases the number of instances and effectively
improves memory bandwidth utilization for many-core CPUs. For
distributed training, however, too many instances in an iteration
may affect the training accuracy [34, 50]. Consider an 𝑛-machine
cluster where each machine has𝑚 𝑝-core NUMAs, one-instance-
per-core will lead to 𝑛 ×𝑚 × 𝑝 instances each processing one batch
of input data in an iteration. Too many instances decreases the
training accuracy, because either the total batch size of all instances
is too large or the per-instance sample number is too small [65, 73].

To avoid the inaccuracy problem, we design the more general
one-instance-per-𝑥-core paradigm by extending one-instance-per-
core: a CPU is assigned with multiple instances each of which is
jointly processed by 𝑥 cores. Existing studies [53] have shown that
for distributed training in moderate-sized clusters the accuracy
will almost keep unchanged if issuing at most 𝑘 = 4 instances per
NUMA node with appropriate batch sizes (e.g., 64) and adopting a
linear scaling learning rate. For example, for distributed training
with multiple machines each having a one-NUMA CPU (𝑝 = 28),
assigning 𝑘 = 4 instances to each machine (i.e., each instance is
jointly processed by 𝑥 = 𝑝/𝑘 = 7 cores) can guarantee the accuracy.

We have partially implemented one-instance-per-𝑥-core for ParaX
on a single machine, which will be evaluated together with one-
instance-per-core in §5.2 and §5.4. For distributed training with
multiple machines, however, one-instance-per-𝑥-core requires tight
cooperation between the NUMA-aware synchronization mecha-
nism (i.e., gradient server discussed in §4.2) and the distributed
communication framework (PS or RAR) for both intra- and inter-
machine parameter updates, which has not yet been implemented
in ParaX and will be studied in our future work.

869

4.4 Delayed Initiation
The randomness-based overlap scheduling policy (§4.1) effectively
overlaps the executions of access- and compute-intensive opera-
tions for DNN models. However, a potential problem of overlap
scheduling is that at the first few layers of a training iteration, the
randomness might not be enough for sufficient operation over-
lapping. Although not a problem for deep networks with a large
number of layers, it may affect the performance of relatively shallow
networks of which the total number of layers is small. Therefore,
ParaX complements overlap scheduling with delayed initiation [74]
to address this issue.

Consider a CPU with𝑚 NUMA nodes each having 𝑝 cores partic-
ipate in the training. For one-instance-per-core, ParaX has totally
𝑚 × 𝑝 worker threads organized into 𝑚 thread pools, each pro-
cessing one instance on one core. We divide the 𝑝 threads of each
NUMA into 𝑛 subsets each having 𝑝/𝑛 threads, and select one sub-
set from each of the𝑚 pools to form a launching group (consisting
of totally𝑚𝑝/𝑛 threads). At the beginning of an iteration, ParaX in
turn initiates the 𝑛 launching groups with an interval of 𝑡 between
two successive initiations, where 𝑡 is a configurable parameter (usu-
ally at the scale of tens of milliseconds) to explicitly overlap all the
launching groups within the duration of the first group’s first few
layers.

4.5 Discussion
To satisfy the performance requirement of common desktop, server,
and cloud applications, currently CPU memory has much lower la-
tency and higher capacity than GPU memory. However, CPUs view
memory bandwidth as a secondary performance metric, as most
applications running on CPUs do not have such high bandwidth
requirement.

As demonstrated in Figure 1, the low CPU memory bandwidth
causes severe bandwidth contention and affects the execution of
access-intensive operations in DL training and inference, conse-
quently lowering the performance of CPU-based DL. Although
ParaX effectively alleviates the bandwidth contention problem
by overlapping the access-intensive operations with the compute-
intensive ones, the software-based solution will be possibly not
able to fully exploit the computing capacity of modern many-core
CPUs, as they have increasingly higher FLOPS which will be even
comparable with GPUs in the near future. Our analysis on band-
width requirement of memory accesses (§3) implies that the band-
width contention problem could be addressed by designing new
DL-friendly CPU memory architecture, where we could add an
additional level of on-chip high-bandwidth cache with less strin-
gent latency requirement that can be below or in parallel with
the L3-cache, possibly integrated with different cache scheduling
policies.

5 EXPERIMENT
We have implemented ParaX on MXNet (v1.5 with default config-
uration). We choose MXNet as the basis for implementing ParaX,
mainly because (i) MXNet performs better than other mainstream
platforms in many-core CPU based DL (as evaluated in §1), and (ii)
the modular design of MXNet facilitates the integration of ParaX.

We have realized one-instance-per-core (as well as one-instance-
per-𝑥-core) with overlap scheduling and gradient servers. Delayed
initiation is disabled in our evaluation. The machine installs one
two-NUMA Intel Platinum 8280 CPU with 28 2.70 GHz cores per
NUMA (totally 56 cores), 39424KB L3-Cache, 192GB six-channel
DDR4-2933 memory, and two Intel 750 PCIe 400GB NVM-Express
SSDs.

We evaluate ParaX in training and inferring various DNN mod-
els including image recognition (ResNet [39], MobileNet [44], and
Inception-BN [46]) and natural language processing (LSTM [43]
and GNMT [71]),

Next we first briefly introduce these DNN models.
First, ResNet adds shortcut connections between layers in the

DNN networks, so as to avoid the problems of gradient vanishing
and exploding when the number of layers is high.

Second, MobileNet replaces common convolutions with depth-
wise convolutions to reduce parameters while keeping accuracy
for mobile image processing.

Third, Inception-BN adds BN layers after the convolution lay-
ers in the Inception network, which contains various convolution
kernels in each sub-module to adapt to features at different scales.

Fourth, LSTM (long short-term memory) uses feedback connec-
tions to selectively remember useful patterns in long sequences. An
LSTM has four GEMM layers, four sigmoid activation layers, and
two tanh activation layers.

If not specified, the data type used in our evaluation is FP32.
The setting of per batch size in ParaX is relatively straightforward:
too large (> 64) batch sizes will tend to exceed the memory capac-
ity (§5.3) since ParaX adopts one-instance-per-core for many-core
CPUs, and too small batch sizes (< 32) will lead to inaccuracy for
training and low throughput for inference [37, 38]. Therefore, if not
specified, for training the per-instance batch size is 𝐵 = 64 (which
ensures convergence) and thus the total batch size is 𝐵 times the
number of instances, and for inference the total batch size is a fixed
value (64×56 = 3, 584). An exception is that for ResNet50/ResNet101
on ImageNet, when training with 56 instances ParaX uses 𝐵 = 32
(instead of 64) and thus the total batch size is 1792, and when infer-
ring ParaX uses a fixed total batch size of 1792 (instead of 3584), to
avoid exceeding the memory capacity. This is because higher batch
sizes for them will exceed the maximum memory capacity of the
machine (as evaluated in §5.3).

In the rest of this section, our experiments seek to answer the
following questions:

• How does ParaX perform when training and inferring var-
ious DNN models, compared to the original MXNet that
assigns one single instance to the many-core CPU? And
what is the resource utilization and scalability (§5.1)?

• How (and why) does the gradient server mechanism out-
perform the state-of-the-art PS and RAR communication
mechanisms in per-iteration parameter update for model
training (§5.2)?

• What is the impact of the total batch sizes on the training
and inference performance of ParaX as well as the memory
footprint (§5.3)?

• And how does ParaX perform in various applications in-
cluding image recognition and NLP (§5.4)?

870

0
0.5
1

1.5
2

2.5
3

Re
sN

et
50

M
ob

ile
N
et
v1

LS
TM

Re
sN

et
50

M
ob

ile
N
et
v1

LS
TM

Training Inference

MXNet PARAX

Figure 11: ParaX vs. MXNet.

0%

20%

40%

60%

80%

100%

O
P

 r
at

io

Conv BN Act

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30 35 40 45 50

C
P

U
 u

ti
liz

at
io

n
 r

at
io

Time (s)
CPU utilization ratio

Figure 12: OP ratios & CPU utilization.

5.1 Micro Benchmarks
We evaluate the throughput of ParaX in training and inferring
ResNet (with 50 layers and using ImageNet [30]), MobileNet-v1
(with 28 layers and using ImageNet), and LSTM (with 2 layers 650
hidden neurons per layer and using the Sherlock Holmes dataset
[8]). ParaX adopts one-instance-per-core and gradient servers, and
relies on randomness for layer overlapping. ParaX does not adopt
delayed initiation since the networks are deep enough. For compar-
ison we also evaluate MXNet, which adopts one-instance-per-CPU
and thus has no synchronization overhead for training.

Figure 11 shows the speedups of ParaX to MXNet, where for
training and inference the speedups are respectively 1.73× ∼ 2.93×
and 2.08× ∼ 2.11×. Unlike ResNet and MobileNet-v1, LSTM train-
ing is sensitive to the per-instance batch size (𝐵), and thus we also
evaluate the throughput of MXNet for LSTM with 𝐵 = 128 and 256.
The result (not shown in Figure 11 for brevity) shows that ParaX
has the speedups of 2.76× and 2.49×, respectively.

The advantage of ParaX mainly comes from two factors, namely,
(i) the gradient server update mechanism (which we will evaluate in
§5.2), and (ii) the overlapping of the compute- and access-intensive
operations. Therefore, we also measure the degree of overlapping,
i.e., the ratios of the convolution/BN/Activation operations during
the inference of ResNet50 on ParaX. The result is shown in Figure 12,
which demonstrates that the executions of the different kinds of
operations are effectively overlapped.

We further measure the effectiveness of overlapping schedul-
ing, i.e., the CPU utilization during the inference of ResNet50 on
ParaX, with a total batch size of 1792. Figure 12 shows the CPU
utilization for a period of 50 seconds (measured with vtune [9]),

0

100

200

300

400

500

600

1 2 4 7 14 28 56Th
ro

u
gh

p
u

t
(s

am
p

le
s/

s)

Threads
ResNet50 MXNet ResNet50 PARAX

MobileNetv1 MXNet MobileNetv1 PARAX

Figure 13: Training scalability.

0

1000

2000

3000

4000

1 2 4 7 14 28 56Th
ro

u
gh

p
u

t
(s

am
p

le
s/

s)

Threads
ResNet50 MXNet ResNet50 PARAX

MobileNetv1 MXNet MobileNetv1 PARAX

Figure 14: Inference scalability.

where the utilization keeps always high. The mean utilization of
the entire training procedure achieves as high as 94.8%. We also
measure the mean memory bandwidth utilization during the in-
ference, which (not shown in this figure) is about 88.6%, much
higher than that of the original MXNet (Figure 1). Compared to
the original one-instance-per-CPU paradigm adopted by current
DL platforms, ParaX significantly improves the CPU and memory
bandwidth utilizations.

We also evaluate the scalability of ParaX and compare it with
that of MXNet, respectively in training and inferring ResNet50 and
MobileNet-v1. We increase the number of involved cores from 1 to
56, andmeasure the corresponding throughput of ParaX andMXNet.
The results are depicted in Figures 13 and 14, where ParaX has much
better scalability than MXNet in both training and inference. This
is because ParaX not only maximizes the utilizations of memory
bandwidth and CPU cycles (in both training and inference) but
also minimizes the synchronization overhead of multi-instance
parameter updates (in training).

5.2 Gradient Servers
This subsection compares GS (gradient server) of ParaX with the
state-of-the-art PS (parameter server) and RAR (ring-allreduce)
mechanisms for per-training-iteration parameter update.

We first evaluate the throughput when training ResNet50 on
ParaX with different numbers of instances, adopting gradient server
(GS), parameter server (PS), and ring-allreduce (RAR), respectively.
The PS mechanism has already been integrated in the original
MXNet, and RAR is ported from Horovod [68]. Since PS and RAR

871

0

40

80

120

160

1(56) 2(54) 4(52) 8(48) 12(48) 26(52) 54(54)Th
ro

u
gh

p
u

t
(s

am
p

le
s/

s)

Instances (worker threads)

PS RAR GS

Figure 15: Gradient server vs. PS/RAR (adopting one-instance-
per-𝑥-core). For example, 4(52) means 4 instances on 52 cores,
i.e., one-instance-per-13-core.

0

100

200

300

2(54) 4(52) 8(48) 12(48) 26(52) 54(54)

La
te

n
cy

 (
m

s)

Instances (worker threads)

PS RAR GS

Figure 16: Update latency comparison (adopting one-
instance-per-𝑥-core).

are originally targeted for distributed scenarios, they both need a
dedicated server thread occupying one core on each NUMA node.
Consequently, there only remain at most 56− 2 = 54 cores on the 2-
NUMA CPU available for training instances. Since all the instances
must occupy the same numbers of cores, several cores have to be
wasted in some of the tests. For example, if we issue four instances
then each instance has at most 13 cores, and thus the total number
of cores available for training is 52. Consequently, 54− 52 = 2 cores
are wasted.

For fairness we use the same numbers of cores when comparing
different mechanisms (even though all the 56 cores can be used
for training in GS). The result is shown in Figure 15, where the
numbers in the parenthesis represent the actual numbers of cores
(worker threads) used for specific numbers of instances. For example,
the result of 4(52) represents the training throughput when using 4
instances and 52 cores.

The throughput almost always keeps growing for the GS mecha-
nism as the number of instances increases, except for 54 instances
when ParaX has to use batch size 𝐵 = 32 (instead of 64) due to
the memory capacity limitation (evaluated in a later experiment
in §5.3). In contrast, both the PS and RAR mechanisms suffer from
lower throughput when using more than four instances. When
using 54 instances with PS and RAR, the per-iteration synchroniza-
tion overhead almost counteracts all benefit of layer overlapping,

0
500

1000
1500
2000
2500
3000

2(54) 4(52) 8(48) 12(48) 26(52) 54(54)

D
at

a
ac

ce
ss

 (
M

B
)

Instances (worker threads)

PS RAR GS

Figure 17: Data accessed for parameter synchronization in
an iteration (adopting one-instance-per-𝑥-core).

if we compare the two results of 1(56) and 54(54). This is because
(as the numbers of instances increase) the cost of per-iteration
parameter update greatly counteracts the benefit of layer overlap-
ping. Note that when using only one instance for all the 56 cores
all the three mechanisms have the same throughput, because no
synchronization occurs between the cores.

To understand the throughput advantage of GS (gradient server)
over PS (parameter server) and RAR (ring-allreduce), we mea-
sure the latency of per-iteration parameter update in training the
ResNet50 model, adopting the same configurations as the above
experiment. The result is shown in Figure 16, where the latency in-
creases as the numbers of instances increase for all the three update
mechanisms. The GS mechanism always has much lower latency
compared to PS and RAR, because the NUMA-aware GS mecha-
nism uses shared memory to keep one copy of shared weights for
each NUMA, so as to eliminate the costly memory copy overhead.
Besides lower update overhead, another important advantage not
shown in this experiment is that GS can use all the cores for training
while PS and RAR have to waste at least two cores dedicated for
updating parameters.

We also measure the volumes of data access (including both the
volume of data read and the volume of data write) for parameter
synchronization in a training iteration, respectively for the GS, PS,
and RAR mechanisms. The result is shown in Figure 17, where
the volume of data access of the PS mechanism is about twice that
of GS. This is because in PS both the pull and push operations
perform memory copies while in GS only push needs to do so
owing to the shared weights mechanism. Note that although RAR
has only slightly higher data accesses than GS, it has much higher
synchronization overhead as the instances are organized into a
ring and exchange gradients with the clockwise neighbors in two
separate phases.

5.3 Impact of Batch Sizes
To understand the impact of batch sizes on the performance, in this
subsection we evaluate the training and inference throughput of
ResNet50 and MobileNet-v1 on ParaX, as a function of the total
batch sizes. For training, we use a fixed per-instance batch size
𝐵 = 64 and vary the numbers of instances (𝑛) from 1 to 56. For
inference, we first use 1, 4, 14, and 56 instances each with 𝐵 = 1,
and afterwards fix the number of instances (= 56) and increase 𝐵
up to 64. The results are shown in Figures 18 and 19, where the

872

0

100

200

300

400

500

600

64×1 64×2 64×4 64×8 64×14 64×28 64×56

Th
ro

u
gh

p
u

t
(s

am
p

le
s/

s)

Batchsize

ResNet MobileNetv1

6.8

3.7

12.5

6.6

23.9

12.2
23.8

46.3 80.1

40.5

159

78.5 155

Figure 18: Training throughput vs. total batch size = 𝐵 × 𝑛 (𝑛
is instance number) on ParaX. Memory footprint (in GB) is
labeled on the bars.

0

500

1000

1500

2000

2500

3000

3500

Th
ro

u
gh

p
u

t
(s

am
p

le
s/

s)

Batchsize
ResNet MobileNetv1

1.1
0.7 1.4

0.8 2.2

1.2

5.5

2.9

9.9

5.1

18.8

9.7

36.5

18.8

74

37

145

73 146

Figure 19: Inference throughput vs. total batch size = 𝐵 × 𝑛 (𝑛
is instance number) on ParaX. Memory footprint (in GB) is
labeled on the bars.

throughput increases fast at first and slowly after the total batch
sizes are relatively high. For training, this is because after 64 × 14
the numbers of instances have the marginal effect on memory
bandwidth utilization; while for inference, this is because after
16 × 56 the batch sizes have only marginal effect on computation
efficiency.

Figures 18 and 19 also label the memory footprint (in GB) on
the bars for different total batch sizes, respectively when training
and inferring ResNet50 and MobileNet-v1 on ParaX. Training has
slightly more memory footprint than inference, because it experi-
ences more complex processing (e.g., back propagation). As shown
in the two figures, ResNet cannot use the total batch size 3584
(= 64 × 56) because it will exceed the maximum memory capacity
(192 GB). Since the operations have already been sufficiently over-
lapped, the batch size and memory capacity are not a bottleneck for
the performance of ParaX. Almost all the models (except RestNet50
and ResNet101) evaluated in this section can have a total batch size
of 3584 when we have 192 GB memory. We also test various total
batch sizes on P100, and the result (not depicted due to lack of space)
shows that its maximum total batch size is 448 for both ResNet50

0

100

200

300

400

500

ResNet50 ResNet101 MobileNetv1 MobileNetv2 Inception-BN

Th
ro

u
gh

p
u

t
(s

am
p

le
s/

s)

Instances 1 2 4 8 14 28 56

Figure 20: Training with ImageNet.

0

500

1000

1500

2000

ResNet50 ResNet101 MobileNetv1 MobileNetv2 Inception-BN
Th

ro
u

gh
p

u
t

(s
am

p
le

s/
s)

Instances 1 2 4 8 14 28 56

Figure 21: Inference with ImageNet.

and MobileNet-v1 due to the relatively small GPU memory capacity
(16 GB for P100).

5.4 Applications
In this section we in turn evaluate ParaX with more applications
(for image recognition and natural language processing).

5.4.1 Image Recognition. We evaluate ParaX in training and in-
ferring various models (ResNet, MobileNet, and Inception-BN) for
image recognition. On the Intel 8280 CPU with two NUMA nodes
each having 28 cores, we vary the numbers of instances (from 1 to
56) to compare the throughput of various ParaX configurations of
one-instance-per-CPU, one-instance-per-𝑥-core, and one-instance-
per-core. The datasets include ImageNet (ILSVRC2012) [30] and
CIFAR10 [1]. ImageNet has 1,280,000 training images from 1000
categories. The images in ImageNet are all natural images with high
resolutions (224 × 224). In contrast, the CIFAR10 dataset contains
60,000 relatively small (32 × 32) images.

Figures 20 and 21 show the throughput of five CNN models
(ResNet50, ResNet101, MobileNet-v1, MobileNet-v2, and Inception-
BN) on ImageNet, respectively for training and inference. As intro-
duced at the beginning of §5, in training the per-instance batch size
is 𝐵 = 64 (except for 56-instance ResNet 𝐵 = 32), and in inference
the total batch size is a fixed value of 3584 (except for ResNet it is
1792). Note that all the cores are used in these experiments no mat-
ter the numbers of instances. ParaX achieves the best performance
when issuing 56 instances for all the five models, demonstrating
that the one-instance-per-core paradigm effectively improves the
utilizations of memory bandwidth and CPU cycles.

873

0

3000

6000

9000

12000

15000

Training InferenceTh
ro

u
gh

p
u

t
(s

am
p

le
s/

s)

Instances 1 2 4 8 14 28 56

Figure 22: Cifar10-ResNet50.

0

2000

4000

6000

8000

Training InferenceTh
ro

u
gh

p
u

t
(s

am
p

le
s/

s)

Instances 1 2 4 8 14 28 56

Figure 23: Cifar10-ResNet101.

Figures 22 and 23 respectively show the throughput of ResNet50
and ResNet101 with CIFAR10, for both training (with per-instance
batch size𝐵 = 64) and inference. (with the total batch size= 64×56 =
3584). The result is similar to that with ImageNet, except that for
inference the best throughput is achieved with 28 instances in
both ResNet50 and ResNet101. This is mainly because the number
of channels of ResNet is compressed when training with Cifar10,
which increases the dependence on the memory bandwidth and
thus lowers the effectiveness of the overlapping scheduling.

5.4.2 Natural Language Processing. We evaluate ParaX in training
and inferring the Word-LM (word language model) and GNMT
(Google neural machine translation) models for natural language
processing, as the numbers of instances increases from 1 to 56. We
use the Sherlock Holmes [8] dataset for Word-LM and IWSLT2015
[31] for GNMT.

For Word-LM, we train and infer a two-layer LSTM, which has
650 hidden neurons on each layer. Figure 24 shows the throughput
of Word-LM for both training (with per-instance batch size 𝐵 = 64)
and inference (with the total batch size = 64×56 = 3584). The result
is similar to that for CNN models (§5.4.1), where the throughput
increases as the number of instances increases, but Word-LM scales
better than CNN models because it mainly contains GEMM (rather
than convolution) operations.

We evaluate the GNMT model which has 128 hidden neurons on
each layer with the same configurations as the above experiment.
GNMT consists of three separate networks (encoder, decoder, and
attention), where the encoder and decode contain an eight-layer
LSTM each so as to translate entire sentences with high accuracy.

0

2000

4000

6000

8000

10000

12000

14000

16000

Training Inference

Th
ro
u
gh

p
u
t
(s
am

p
le
s/
s)

Instances 1 2 4 8 14 28 56

Figure 24: Word-LM.

0

20

40

60

80

100

120

Training Inference

Th
ro
u
gh

p
u
t
(k
w
p
s)

1 2 4 8 14 28 56Instances

Figure 25: GNMT.

The result is shown in Figure 25, where the throughput is measured
as the number of (1000) words translated per second. From the
result we get similar conclusion as in the Word-LM experiment.

6 RELATEDWORK
6.1 Memory Wall for DL Computation
With the development of semiconductor technology, many-core
CPUs have broken through the power limitation and greatly im-
proved the performance via core parallelism. However, due to the
mismatch between the total compute capacity and the memory
bandwidth, memory wall [42, 72] lowers the DL performance of
CPUs compared to GPUs and accelerators (such as Brainwave [32],
Centaur [45], and TPU [64]). The memory bandwidth has become a
major performance bottleneck as the number of CPU cores greatly
increases.

Memory bandwidth contention has been widely studied for deep
learning on GPUs and accelerators. For example, Prophet [20] and
Baymax [21] realize precise QoS prediction on non-preemptive
accelerators to improve bandwidth utilization. Compared to these
studies, ParaX removes the per-layer barriers to mix different op-
erations and improves utilization based on operation execution
randomness without precise prediction.

Deep learning on CPUs has drawn less attention than on GPUs
and accelerators. For example, TensorDIMM [56], DeepRecSys [36],

874

and RecNMP [49] improve CPU-based recommendation perfor-
mance with tensor operations and near-memory processing; Deep-
CPU [76] improves CPU-based RNNs by sharing weights in L3
cache and leveraging fusion. Compared to these studies that fo-
cus on specific deep learning applications and models, ParaX is
applicable to all applications and accelerates all models based on
one-instance-per-core, where shared weights in L3-cache is just a
byproduct of gradient servers and fusion is orthogonal to ParaX.

For x86-based CPU architectures, the math kernel library for
Deep Neural Networks (MKL-DNN a.k.a. oneDNN [28]) has devel-
oped a series of optimizations for specific operations (like convolu-
tion). MKL-DNN alleviates the mismatch between compute capacity
and memory bandwidth via architecture-specific techniques such
as optimal threading, cache-blocking, vectorization, and register-
blocking. For example, Intel has changed the memory layout for
many-core CPUs from “NCHW” to “nChw8c” [28], which makes
memory accesses in the innermost loops as contiguous as possible
to increase the cache hit ratio. These optimizations demonstrate the
problem of memory bandwidth contention and inspire our design.

6.2 DL on Multi-Core CPUs
DimmWitted [75]was an earlyworkwhich studied three approaches
for data analytics based on multi-core (but not many-core) CPUs
with last-level cache (LLC) optimization, namely, PerCore, PerNode,
and PerMachine, respectively corresponding to one-instance-per-
core/-node/-CPU in this paper.

DimmWitted mainly targeted linear models like support vector
machine, logistic regression, least squares regression, and linear
programming. For neural networks, DimmWitted updated model
parameters for each epoch instead of each iteration, which is dif-
ferent from all state-of-the-art methods including ParaX. With the
per-epoch update paradigm, the authors found that the PerNode
approach with communication through the last-level cache per-
formed the best for a shallow (seven-layer) neural network on a
small dataset (MNIST [2]).

DimmWitted achieved different conclusion from ParaX’s result
that one-instance-per-core is optimal for most cases (in, e.g., Fig-
ures 20 ∼ 25). This is not only because DimmWitted was applied
to a shallow network on multi-core CPUs (with 6 ∼ 10 cores per
NUMA) using a non-mainstream (per-epoch) parameter update
paradigm, but also because its PerCore approach did not adopt the
NUMA-aware GS mechanism (§4.2).

6.3 Optimizations for DL
Recent studies propose to limit the model sizes to satisfy the low
latency requirement of emerging applications. For example, Quan-
tization [47] converts floating-point arithmetic in DNNs into fixed-
point (e.g., from fp32 to int8) which could theoretically achieve
four times speedup for inference making real-time inference practi-
cal on mobile devices.

Further, researchers propose to use fewer bits for quantification
with higher speedups [26, 57, 66]. For example, BWN (Binary Neu-
ral Network) [26] uses binary weights, TWN (Ternary Weight Net-
work) [57] uses weights of +1, 0 and −1, and XNOR-Net [66] adopts

binary convolutional neural networks. However, quantization in-
evitably reduces the accuracy of the models due to compression
and approximation.

Tensor compilers (such as TVM [23], GLOW [67], and Tensor-
Comprehensions [70]) provide end-to-end optimizations under dif-
ferent architectures, so as to ease model deployment for developers
by summarizing the optimization experiences of various DL opera-
tions from a high level of abstraction and allowing users to explore
efficient implementation space in an automated or semi-automated
way. These designs are orthogonal to the one-instance-per-core
paradigm and we will integrate ParaX with these compilers in our
future work.

7 CONCLUSION
Large numbers of CPUs are now heavily used for DL in the cloud,
routinely running training and inference tasks since they would
otherwise sit idle during off-peak periods. Unfortunately, the state-
of-the-art platforms cannot support efficient DL on many-core
CPUs, because they overlook the low memory bandwidth property
of many-core CPUs and assign a single instance to one CPU (in the
same way as in GPU-based DL). This causes synchronous execu-
tions of operations (layers) and consequently results in intermittent
memory bandwidth contention and CPU starvation.

This paper proposes ParaX, an effective method that improves
memory bandwidth utilization for scaling DL to many CPU cores.
The key idea behind ParaX is to assign one instance to each core
(instead of to each CPU), so as to overlap the cores’ executions of
different operations. ParaX designs the ultralight scheduling pol-
icy and gradient server mechanism. We have implemented ParaX
and evaluated it with various models. The results show that ParaX
achieves much higher DL performance compared to existing meth-
ods on many-core CPUs.

In the future, we plan to enhance ParaX to fully support dis-
tributed deep learning on multiple machines installing many-core
CPUs. Besides, ParaX follows synchronous SGD to ensure conver-
gence, and we will study ParaX with asynchronous SGD. We expect
ParaX to achieve similar accelerations in DL on many-core CPUs
for other MKL-DNN-based platforms like TensorFlow and PyTorch,
because they all suffer from the low memory bandwidth utiliza-
tion problem caused by the per-layer execution barriers. Currently
ParaX is implemented on MXNet, and we will implement ParaX on
other popular deep learning platforms. We will also integrate ParaX
with tensor compilers. The bandwidth contention problem could be
addressed by adding an additional level of on-chip high-bandwidth
cache, which will also be studied in the future. The source code of
ParaX is available at [10].

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insight-
ful comments. We thank Zheng Qin and Huiba Li for the discus-
sion at PDL. Lujia Yin and Yiming Zhang are co-primary authors.
This work was supported by the National Key Research and De-
velopment Program of China (2016YFB1000101) and the National
Natural Science Foundation of China (NSFC) under Grant Numbers
61772541, 61872376, and 61932001.

875

REFERENCES
[1] 2009. https://www.cs.toronto.edu/~kriz/cifar.html. Online; accessed Jan 31, 2021.
[2] 2012. http://yann.lecun.com/exdb/mnist/. Online; accessed Jan 31, 2021.
[3] 2016. https://www.nvidia.com/en-us/data-center/tesla-p100/. Online; accessed

Jan 31, 2021.
[4] 2017. https://software.intel.com/en-us/articles/intel-avx-512-instructions. On-

line; accessed Jan 31, 2021.
[5] 2019. https://software.intel.com/en-us/articles/performance-boosting-in-seldon.

Online; accessed Jan 31, 2021.
[6] 2019. https://www.nvidia.com/en-us/design-visualization/quadro/rtx-8000/. On-

line; accessed Jan 31, 2021.
[7] 2020. https://blog.udacity.com/2020/08/machine-learning-for-big-data.html. On-

line; accessed Jan 31, 2021.
[8] 2020. https://www.kaggle.com/idevji1/sherlock-holmes-stories. Online; accessed

Jan 31, 2021.
[9] 2020. https://software.intel.com/en-us/vtune. Online; accessed Jan 31, 2021.
[10] 2020. https://github.com/nicexlab/parax-source. Online; accessed Jan 31, 2021.
[11] 2021. https://pytorch.org/. Online; accessed Jan 31, 2021.
[12] 2021. docs.aws.amazon.com/dlami/latest/devguide/deep-learning-containers-

eks-tutorials-cpu-training.html. Online; accessed Jan 31, 2021.
[13] 2021. https://github.com/oneapi-src/oneDNN. Online; accessed Jan 31, 2021.
[14] 2021. https://developer.nvidia.com/about-cuda. Online; accessed Jan 31, 2021.
[15] 2021. https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.

html. Online; accessed Jan 31, 2021.
[16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265–
283.

[17] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. 2001. Parallel programming in OpenMP. Morgan kaufmann.

[18] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Józefowicz. 2016. Revisiting
Distributed Synchronous SGD. CoRR abs/1604.00981 (2016). arXiv:1604.00981
http://arxiv.org/abs/1604.00981

[19] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
2016. Revisiting distributed synchronous SGD. arXiv preprint arXiv:1604.00981
(2016).

[20] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and
Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-Preemptive Acceler-
ators to Improve Utilization in Warehouse-Scale Computers. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017.
ACM, 17–32.

[21] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: QoS
Awareness and Increased Utilization for Non-Preemptive Accelerators in Ware-
house Scale Computers. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, ASP-
LOS ’16, Atlanta, GA, USA, April 2-6, 2016, Tom Conte and Yuanyuan Zhou (Eds.).
ACM, 681–696. https://doi.org/10.1145/2872362.2872368

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, and Luis Ceze. 2018. TVM: An
automated end-to-end optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). 578–594.

[24] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[25] Tyson Condie, Paul Mineiro, Neoklis Polyzotis, and Markus Weimer. 2013. Ma-
chine learning for big data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013, Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias (Eds.). ACM,
939–942. https://doi.org/10.1145/2463676.2465338

[26] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in neural information processing systems. 3123–3131.

[27] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. ACM, 191–198.

[28] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidy-
nathan, Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey.
2016. Distributed deep learning using synchronous stochastic gradient descent.
arXiv preprint arXiv:1602.06709 (2016).

[29] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.

1223–1231.
[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

agenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248–255.

[31] Nadir Durrani, Barry Haddow, Philipp Koehn, and Kenneth Heafield. 2014. Edin-
burgh’s phrase-based machine translation systems for WMT-14. In Proceedings
of the Ninth Workshop on Statistical Machine Translation. 97–104.

[32] Jeremy Fowers, Kalin Ovtcharov, Michael K. Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2019. Inside Project Brainwave’s Cloud-Scale, Real-Time AI Processor. IEEE
Micro 39, 3 (2019), 20–28. https://doi.org/10.1109/MM.2019.2910506

[33] Evangelos Georganas, Kunal Banerjee, Dhiraj Kalamkar, Sasikanth Avancha,
Anand Venkat, Michael Anderson, Greg Henry, Hans Pabst, and Alexander
Heinecke. 2019. High-Performance Deep Learning via a Single Building Block.
arXiv preprint arXiv:1906.06440 (2019).

[34] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[35] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 6645–6649.

[36] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen,
Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. 2020. Deep-
RecSys: A System for Optimizing End-To-End At-scale Neural Recommendation
Inference. In ISCA 2020.

[37] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim M. Hazelwood, Mark Hempstead, Bill Jia,
Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy,
Liang Xiong, and Xuan Zhang. 2020. The Architectural Implications of Face-
book’s DNN-Based Personalized Recommendation. In IEEE International Sym-
posium on High Performance Computer Architecture, HPCA 2020, San Diego, CA,
USA, February 22-26, 2020. IEEE, 488–501. https://doi.org/10.1109/HPCA47549.
2020.00047

[38] Kim M. Hazelwood, Sarah Bird, David M. Brooks, Soumith Chintala, Utku Diril,
Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James
Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong,
and XiaodongWang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In IEEE International Symposium on High Performance
Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018. 620–629.
https://doi.org/10.1109/HPCA.2018.00059

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[40] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th interna-
tional conference on world wide web. International World Wide Web Conferences
Steering Committee, 173–182.

[41] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.
2004. Evaluating collaborative filtering recommender systems. ACM Transactions
on Information Systems (TOIS) 22, 1 (2004), 5–53.

[42] Mark D Hill and Michael R Marty. 2008. Amdahl’s law in the multicore era.
Computer 41, 7 (2008), 33–38.

[43] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[44] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[45] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. 2020. Centaur:
A Chiplet-based, Hybrid Sparse-Dense Accelerator for Personalized Recommen-
dations. (2020).

[46] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[47] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, An-
drew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization
and training of neural networks for efficient integer-arithmetic-only inference.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2704–2713.

[48] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 675–678.

[49] Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark Hemp-
stead, Brandon Reagen, Xuan Zhang, David M. Brooks, Vikas Chandra, Utku

876

Diril, Amin Firoozshahian, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng
Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail
Smelyanskiy, and Xiaodong Wang. 2020. RecNMP: Accelerating Personalized
Recommendation with Near-Memory Processing. In ISCA 2020.

[50] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2016. On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016).

[51] Jeffrey S Kimmel, Robert A Alfieri, A Miles, William K McGrath, Michael J
McLeod, Mark A O’connell, and Guy A Simpson. 2000. Operating system for a
non-uniform memory access multiprocessor system. US Patent 6,105,053.

[52] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[53] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997 (2014).

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[55] Arun Kumar, Matthias Boehm, and Jun Yang. 2017. Data Management in Ma-
chine Learning: Challenges, Techniques, and Systems. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Confer-
ence 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou,
Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1717–1722. https:
//doi.org/10.1145/3035918.3054775

[56] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and Tensor Operations
in Deep Learning. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-16,
2019. ACM, 740–753. https://doi.org/10.1145/3352460.3358284

[57] Fengfu Li, Bo Zhang, and Bin Liu. 2016. Ternary weight networks. arXiv preprint
arXiv:1605.04711 (2016).

[58] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling dis-
tributed machine learning with the parameter server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). 583–598.

[59] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. 2014. Efficient mini-
batch training for stochastic optimization. In The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014, Sofus A. Macskassy, Claudia Perlich, Jure Leskovec,
Wei Wang, and Rayid Ghani (Eds.). ACM, 661–670. https://doi.org/10.1145/
2623330.2623612

[60] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. 2010. CUDASW++ 2.0:
enhanced Smith-Waterman protein database search on CUDA-enabled GPUs
based on SIMT and virtualized SIMD abstractions. BMC research notes 3, 1 (2010),
93.

[61] Christopher D Manning, Christopher D Manning, and Hinrich Schütze. 1999.
Foundations of statistical natural language processing. MIT press.

[62] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association.

[63] Janani Mukundan, Hillery Hunter, Kyu-hyoun Kim, Jeffrey Stuecheli, and José F
Martínez. 2013. Understanding and mitigating refresh overheads in high-density
DDR4 DRAM systems. In ACM SIGARCH Computer Architecture News, Vol. 41.
ACM, 48–59.

[64] Eric B. Olsen. 2018. RNS Hardware Matrix Multiplier for High Precision Neural
Network Acceleration: "RNS TPU". In IEEE International Symposium on Circuits

and Systems, ISCAS 2018, 27-30 May 2018, Florence, Italy. IEEE, 1–5. https:
//doi.org/10.1109/ISCAS.2018.8351352

[65] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang Yu,
and Jian Sun. 2018. Megdet: A large mini-batch object detector. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 6181–6189.

[66] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision. Springer, 525–542.

[67] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, et al. 2018. Glow: Graph lowering compiler techniques for neural networks.
arXiv preprint arXiv:1805.00907 (2018).

[68] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799
http://arxiv.org/abs/1802.05799

[69] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[70] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

[71] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation. CoRR abs/1609.08144 (2016). arXiv:1609.08144 http:
//arxiv.org/abs/1609.08144

[72] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[73] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2018.
Imagenet training in minutes. In Proceedings of the 47th International Conference
on Parallel Processing. ACM, 1.

[74] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. 2010. Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems. 265–278.

[75] Ce Zhang and Christopher Ré. 2014. DimmWitted: A Study of Main-Memory
Statistical Analytics. Proc. VLDB Endow. 7, 12 (2014), 1283–1294. https://doi.org/
10.14778/2732977.2733001

[76] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, Elton Zheng, Olatunji
Ruwase, Jeff Rasley, Jason Li, Junhua Wang, and Yuxiong He. 2019. Accelerating
Large Scale Deep Learning Inference through DeepCPU at Microsoft. In 2019
USENIX Conference on Operational Machine Learning, OpML 2019, Santa Clara,
CA, USA, May 20, 2019, Bharath Ramsundar and Nisha Talagala (Eds.). USENIX
Association, 5–7. https://www.usenix.org/conference/opml19/presentation/
zhang-minjia

[77] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhiming Ma,
and Tie-Yan Liu. 2016. Asynchronous Stochastic Gradient Descent with Delay
Compensation for Distributed Deep Learning. CoRR abs/1609.08326 (2016).
arXiv:1609.08326 http://arxiv.org/abs/1609.08326

877

