
Tsunami: A LearnedMulti-dimensional
Index for Correlated Data and SkewedWorkloads

Jialin Ding, Vikram Nathan, Mohammad Alizadeh, Tim Kraska
Massachusetts Insititute of Technology

{jialind,vikramn,alizadeh,kraska}@mit.edu

ABSTRACT
Filtering data based on predicates is one of the most fundamental
operations for any modern data warehouse. Techniques to accel-
erate the execution of filter expressions include clustered indexes,
specialized sort orders (e.g., Z-order), multi-dimensional indexes,
and, for high selectivity queries, secondary indexes. However, these
schemes are hard to tune and their performance is inconsistent. Re-
cent work on learned multi-dimensional indexes has introduced the
idea of automatically optimizing an index for a particular dataset
and workload. However, the performance of that work suffers in the
presence of correlated data and skewed query workloads, both of
which are common in real applications. In this paper, we introduce
Tsunami,which addresses these limitations to achieve up to 6× faster
query performance and up to 8× smaller index size than existing
learned multi-dimensional indexes, in addition to up to 11× faster
queryperformanceand170× smaller indexsize thanoptimally-tuned
traditional indexes.

PVLDBReference Format:
Jialin Ding, Vikram Nathan, Mohammad Alizadeh, Tim Kraska. Tsunami: A
LearnedMulti-dimensional Index forCorrelatedData andSkewedWorkloads.
PVLDB, 14(2): 74 - 86, 2021.
doi:10.14778/3425879.3425880

1 INTRODUCTION
Filtering through data is the foundation of any analytical database
engine, and several advances over the past several years specifically
target database filter performance. For example, column stores [11]
delay or entirely avoid accessing columns (i.e., dimensions) which
are not relevant to a query, and they often sort the data by a single
dimension in order to skip over records that do not match a query
filter over that dimension.

If data has to be filtered by more than one dimension, secondary
indexes can be used. Unfortunately, their large storage overhead and
the latency incurredbychasingpointersmake themviableonlywhen
the predicate on the indexed dimension has a very high selectivity.
An alternative approach is to use (clustered)multi-dimensional in-
dexes; thesemaybe tree-based data structures (e.g., k-d trees, R-trees,
or octrees) or a specialized sort order over multiple dimensions (e.g.,
a space-filling curve like Z-ordering or hand-picked hierarchical

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 2 ISSN 2150-8097.
doi:10.14778/3425879.3425880

sort). Many state-of-the-art analytical database systems use multi-
dimensional indexes or sort orders to improve the scan performance
of queries with predicates over several columns [1, 8, 16].

However, multi-dimensional indexes have significant drawbacks.
First, these techniques are hard to tune and require an admin to
carefully pick which dimensions to index, if any at all, and the order
inwhich they are indexed. This decisionmust be revisited every time
the data or workload changes, requiring extensive manual labor to
maintain performance. Second, there is no single approach (even if
tuned correctly) that dominates all others [30].

To address the shortcomings of traditional indexes, recent work
has proposed the idea of learnedmulti-dimensional indexes [9, 25, 30,
44, 46]. In particular, Flood [30] is a in-memory multi-dimensional
index that automatically optimizes its structure to achieve high
performance on a particular dataset and workload. In contrast to
traditional multi-dimensional indexes, such as the k-d tree, which
are created entirely based on the data (see Fig. 1a), Flood divides
each dimension into some number of partitions based on the ob-
served data and workload (see Fig. 1b, explained in detail in §2). The
Cartesian product of the partitions in each dimension form a grid.
Furthermore, to reduce the index size, Flood uses models of the CDF
of each dimension to locate the data.

However, Flood faces a number of limitations in real-world sce-
narios. First, Flood’s grid cannot efficiently adapt to skewed query
workloads in which query frequencies and filter selectivities vary
across the data space. Second, if dimensions are correlated, then
Flood cannot maintain uniformly sized grid cells, which degrades
performance and memory usage.

To address these limitations, we propose Tsunami, an in-memory
read-optimized learned multi-dimensional index that extends the
ideas of Floodwith new data structures and optimization techniques.
First, Tsunami achieves high performance on skewed query work-
loads by using a lightweight decision tree, called a Grid Tree, to
partition space into non-overlapping regions in a way that reduces
query skew. Second, Tsunami achieves high performance on corre-
lated datasets by indexing each region using an Augmented Grid,
which uses two techniques—functional mappings and conditional
CDFs—to efficiently capture information about correlations.

While recent work explored how correlation can be exploited to
reduce the size of secondary indexes [20, 45], our work goes much
further. We demonstrate not only how to leverage correlation to
achieve faster and more compact multi-dimensional indexes (in
which the data is organized based on the index) rather than sec-
ondary indexes, but also how to integrate the optimization for query
skew and data correlation into a full end-to-end solution. Tsunami
automatically optimizes the data storage organization as well as the
multi-dimensional index structure based on the data and workload.

74

https://doi.org/10.14778/3425879.3425880
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425880

Figure 1: Indexes must identify the points that fall in the green query rectangle. To do so, they scan the points in red. (a) K-d
tree guarantees equally-sized regions but is not optimized for the workload. (b) Flood is optimized using the workload but
its structure is not expressive enough to handle query skew, and cells are unequally sized on correlated data. (c) Tsunami is
optimized using the workload, is adaptive to query skew, andmaintains equally-sized cells within each region.

Like Flood [30], Tsunami is a clustered in-memory read-optimized
index over an in-memory column store. In-memory stores are in-
creasingly popular due to lower RAM prices [19] and our focus on
reads reflects the current trend towards avoiding in-place updates in
favor of incremental merges (e.g., RocksDB [37]). We envision that
Tsunami could serve as the building block for a multi-dimensional
in-memory key-value store or be integrated into commercial in-
memory (offline) analytics accelerators like Oracle’s Database In-
Memory (DBIM) [35].

In summary, we make the following contributions:
(1) Wedesignand implementTsunami,an in-memoryread-optimized

learned multi-dimensional index that self-optimizes to achieve
high performance and robustness to correlated datasets and
skewed workloads.

(2) We introduce two data structures, the Grid Tree and the Aug-
mented Grid, along with new optimization procedures that en-
able Tsunami to tailor its index structure and data organization
strategy to handle data correlation and query skew.

(3) We evaluate Tsunami against Flood, the original in-memory
learned multi-dimensional index, as well as a number of tra-
ditional non-learned indexes, on a variety of workloads over
real datasets. We show that Tsunami is up to 6× and 11× faster
than Flood and the fastest optimally-tuned non-learned index,
respectively. Tsunami is also adaptable to workload shift, and
scales across data size, query selectivity, and dimensionality.
In the remainder of this paper,wegive background (§2), present an

overview of Tsunami (§3), introduce its two core components—Grid
Tree (§4) andAugmentedGrid (§5), present experimental results (§6),
reviewrelatedwork (§7),propose futurework (§8), andconclude (§9).

2 BACKGROUND
Tsunami is an in-memory clustered multi-dimensional index for a
single table. Tsunami aims to increase the throughput performance
of analytics queries by decreasing the time needed to filter records
based on range predicates. Tsunami supports queries such as:

SELECT SUM(R.X)

FROM MyTable

WHERE (a ≤ R.Y ≤ b) AND (c ≤ R.Z ≤ d)

where SUM(R.X) can be replaced by any aggregation. Records in a
𝑑-dimensional table can be represented as points in 𝑑-dimensional
data space. For the rest of this paper,weuse the terms record andpoint
interchangeably. To place Tsunami in context, we first describe the k-
d tree as an example of a traditional non-learned multi-dimensional
index, and Flood, which originally proposed the idea of learned
in-memory multi-dimensional indexing.

2.1 K-d Tree: A Traditional Non-Learned Index
The k-d tree [4] is a binary space-partitioning tree that recursively
splits 𝑑-dimensional space based on the median value along each
dimension, until the number of points in each leaf region falls be-
low a threshold, called the page size. Fig. 1a shows a k-d tree over
2-dimensional data that has 8 leaf regions. The points within each
region are stored contiguously in physical storage (e.g., a column
store). By construction, the leaf regions have a roughly equal number
of points. To process a query (i.e., identify all points that match the
query’s filter predicates), the k-d tree traverses the tree to find all leaf
regions that intersect the query’s filter, then scans all points within
those regions to identify points that match the filter predicates.

75

The k-d tree structure is constructed based on the data distribu-
tion but independently of the query workload. That is, regardless of
whether a region of the space is never queried orwhether queries are
more selective in some dimensions than others, the k-d tree would
still build an index over all data points with the same page size and
index overhead. While other traditional multi-dimensional indexes
split space in differentways [3, 27, 31, 47], they all share the property
that the index is constructed independent of the query workload.

2.2 Flood: A Learned Index
In contrast, Flood [30] optimizes its layout based on the workload
(Fig. 1b). We first introduce how Flood works, then explain its two
key advantages over traditional indexes, then discuss its limitations.

Given a 𝑑-dimensional dataset, Flood first constructs compact
models of the CDF of each dimension. The choice of modeling tech-
nique is orthogonal; Flood uses a Recursive Model Index [23], but
one could also use a histogram or linear regression. Flood uses these
models to divide the domain of each dimension into equally-sized
partitions: let 𝑝𝑖 be the number of partitions in each dimension
𝑖 ∈ [0,𝑑). Then a point whose value in dimension 𝑖 is 𝑥 is placed
into the ⌊𝐶𝐷𝐹𝑖 (𝑥) ·𝑝𝑖 ⌋-th partition of dimension 𝑖 . This guarantees
that each partition in a given dimension has an equal number of
points. When combined, the partitions of each dimension form a
𝑑-dimensional grid with

˛
𝑖∈[0,𝑑) 𝑝𝑖 cells, which are ordered. The

points within each cell are stored contiguously in physical storage.
Flood’s query processing workflow has three steps, shown in

Fig. 1b: (1) Using the per-dimension CDFmodels, identify the range
of intersecting partitions in each dimension, and take the Cartesian
product to identify the set of intersecting cells. (2) For each intersect-
ing cell, identify the corresponding range in physical storage using
a lookup table. (3) Scan all the points within those physical storage
ranges, and identify the points that match all query filters.

2.2.1 Flood’s Strengths. Flood has two key advantages over tradi-
tional indexes such as the k-d tree1. First, Flood can automatically
tune its grid structure for a given query workload by adjusting the
number of partitions in each dimension to maximize query perfor-
mance. For example, in Fig. 1b, there are many queries in the upper-
right region of the data space that have high selectivity over dimen-
sionY.Therefore, Flood’s optimization techniquewill placemorepar-
titions in dimension Y than dimension X, in order to reduce the num-
ber of points those queries need to scan. In other words, Flood learns
which dimensions to prioritize over others and adjusts the number
of partitions accordingly, whereas non-learned approaches do not
take the workload into account and treat all dimensions equally.

Flood’s second key advantage is its CDFmodels. The advantage
of indexing using compact CDF models, as opposed to a tree-based
structure such as a k-d tree, is lower overhead in both space and time:
storing 𝑑 CDFmodels takes much less space than storing pointers
and boundary keys for all internal tree nodes. It is also much faster
to identify intersecting grid cells by invoking 𝑑 CDFmodels than by
pointer chasing to traverse down a tree index.

The combination of these two key advantages allows Flood to
outperform non-learned indexes by up to three orders of magnitude
while using up to 50× smaller index size [30].

1Flood’s minor third advantage, the sort dimension, is orthogonal to our work.

2.2.2 Flood’s Limitations. However, Flood has two key limitations.
First, Flood only optimizes for the average query, which results in
degraded performance when queries are not uniform. For example,
in Fig. 1b there are a few queries in the lower-left region of the data
space that, unlike the many queries in the upper-right region, have
high selectivity over dimension X. Since these queries are a small
fractionof the totalworkload, Flood’s optimizationwill not prioritize
their performance.As a result, Floodwill need to scan a large number
of points to create the query result (red points in Fig. 1b). Flood’s
uniform grid structure can only optimize for the average selectivity
in each dimension and is not expressive enough to optimize for both
the upper-right queries and lower-left queries independently. The
workload in Fig. 1 is an example of a skewedworkload.Query skew is
common in real workloads: for example, queries often hit recent data
more frequently than stale data, and operations monitoring systems
only query for health metrics that are exceedingly low or high.

Second, Flood’s model-based indexing technique can result in
unequally-sized cells when data is correlated. In Fig. 1b, even though
the CDF models guarantee that the three partitions over dimen-
sion X have an equal number of points, as do the six partitions over
dimension Y, the 18 grid cells are unequally sized. This degrades
performance and space usage (§5.1). Correlations are common in real
data: for example, the price and distance of a taxi ride are correlated,
as are the dates on which a package is shipped and received.

The goal of our work, Tsunami, is to maintain the two advantages
of Flood—optimization based on the queryworkload and a compact/-
fast model-based index structure—while also addressing Flood’s
limitations in the presence of data correlations and query skew.

3 TSUNAMI DESIGNOVERVIEW
Tsunami is a learned multi-dimensional index that is robust to data
correlation and query skew.We first introduce the index structure
and how it is used to process a query. We then provide an overview
of the offline procedureswe use to automatically optimize Tsunami’s
structure.

Tsunami Structure. Tsunami is a composition of two indepen-
dent data structures: the Grid Tree (§4) and the Augmented Grid
(§5). The Grid Tree is a space-partitioning decision tree that divides
𝑑-dimensional data space into some number of non-overlapping
regions. In Fig. 1c, the Grid Tree divides data space into three regions
by splitting on dimension X.

Within each region, there is anAugmentedGrid. EachAugmented
Grid indexes the points that fall in its region. In Fig. 1c, Regions 1
and 3 each have their own Augmented Grid. Region 2 is not given
an Augmented Grid because no queries intersect its region. An Aug-
mentedGrid is essentially a generalization of Flood’s index structure
that uses additional techniques to capture correlations. In Fig. 1c, the
Augmented Grids use 𝐹 :𝑌 →𝑋 and𝐶𝐷𝐹 (𝑌 |𝑋) instead of Flood’s
𝐶𝐷𝐹 (𝑌) (explained in §5.2).
Tsunami QueryWorkflow. Tsunami processes a query in three
steps: (1) Traverse the Grid Tree to find all regions that intersect
the query’s filter. (2) In each region, identify the set of intersecting
Augmented Grid cells (§5), then identify the corresponding range in
physical storage using a lookup table. (3) Scan all the points within
those physical storage ranges, and identify the points that match all
query filters.

76

Figure 2: A single grid cannot efficiently index a skewed
query workload, but a combination of non-overlapping
grids can.We use this workload as a running example.

TsunamiOptimization.Tsunami’s offline optimization procedure
has two steps: (1) Optimize the Grid Tree using the full dataset and
sample query workload (§4.3). (2) In each region of the optimized
Grid Tree, construct an Augmented Grid that is optimized over only
the points and queries that intersect its region (§5.3).

Intuitively, Tsunami separates the two concerns of query skew
and data correlations into its two component structures, Grid Tree
and Augmented Grid, respectively. Each structure is optimized in
a way that addresses its corresponding concern. We now describe
each structure in detail.

4 GRID TREE
In this section, we first discuss the performance challenges posed
by skewed workloads. We then formally define query skew, and we
describeTsunami’s solution formitigatingquery skew: theGridTree.

4.1 Challenges of Query Skew
A query workload is skewed if the characteristics of queries (e.g.,
frequency or selectivity) vary in different parts of the data space.
Fig. 2a shows an example of sales data from 2016 to 2020. Points are
uniformly distributed in time. The query workload is composed of
two distinct query “types”: the red queries𝑄𝑟 filter uniformly over
one-year spans, whereas the green queries𝑄𝑔 filter over one-month
spans only over the last year. If we were to impose a grid over the
data space, we intuitively would want many partitions over the past
year in order to obtain finer granularity for𝑄𝑔 , whereas partitions
prior to 2019 should be more widely spaced, because𝑄𝑟 does not
require much granularity in time. However, with a single grid it is
not possible accommodate both while maintaining an equal number
of points in each partition (Fig. 2a).

Instead, we can split the data space into two regions: before 2019
and after 2019 (Fig. 2b). Each region has its own grid, and the two
grids are independent. The right region can therefore tailor its grid
for𝑄𝑔 by creatingmany partitions over time. On the other hand, the
left region does not need to worry about𝑄𝑔 at all and places few par-
titions over time, and can instead add more partitions over the sales
dimension. This intuition drives our solution for tackling query skew.

Table 1: Terms used to describe the Grid Tree

Term Description

𝑑 Dimensionality of the dataset
𝑆 𝑑-dimensional data space: [0,𝑋0)× ···× [0,𝑋𝑑−1)
𝑄 Set of queries
𝑈𝑛𝑖𝑖 (𝑎,𝑏) Uniform distribution over [𝑎,𝑏) in dimension 𝑖 ∈ [0,𝑑)
𝑃𝐷𝐹𝑖 (𝑄,𝑎,𝑏) Empirical PDF of queries𝑄 over [𝑎,𝑏) in dimension 𝑖
𝐻𝑖𝑠𝑡𝑖 (𝑄,𝑎,𝑏,𝑛) Approximate PDF of queries𝑄 over range [𝑎,𝑏)

in dimension 𝑖 using a histogramwith𝑛 bins
𝐸𝑀𝐷 (𝑃1,𝑃2) Earth Mover’s Distance between distributions 𝑃1,𝑃2
𝑆𝑘𝑒𝑤𝑖 (𝑄,𝑎,𝑏) Skew of query set𝑄 over range [𝑎,𝑏) in dimension 𝑖

Figure 3: Query skew is computed independently for each
query type (𝑄𝑔 and 𝑄𝑟) and is defined as the statistical
distance between the empirical PDF of the queries and the
uniform distribution.

4.2 Reducing Query Skewwith a Grid Tree
We first formally define query skew.We then describe at a high level
how Grid Tree tackles query skew and how to process queries using
theGrid Tree.We then describe how to find the optimal Grid Tree for
a givendataset andqueryworkload.Weuse the terminology inTab. 1.

4.2.1 Definition ofQuery Skew. The skew of a set of queries𝑄 with
respect to a range [𝑎,𝑏) in dimension 𝑖 is

𝑆𝑘𝑒𝑤𝑖 (𝑄,𝑎,𝑏)=𝐸𝑀𝐷 (𝑈𝑛𝑖𝑖 (𝑎,𝑏),𝑃𝐷𝐹𝑖 (𝑄,𝑎,𝑏))
where𝑈𝑛𝑖𝑖 (𝑎,𝑏) is auniformdistributionover [𝑎,𝑏) and𝑃𝐷𝐹𝑖 (𝑄,𝑎,𝑏)
is theempiricalPDFofqueries in𝑄 over [𝑎,𝑏). Eachquerycontributes
a unit mass to the PDF, spread over its filter range in dimension 𝑖 .
𝐸𝑀𝐷 is the Earth Mover’s Distance, which is a measure of the dis-
tance between two probability distributions.

Fig. 3a shows the same data and workload as in Fig. 2. Fig. 3b-c
show the PDF of 𝑄𝑔 and 𝑄𝑟 , respectively. The skew is intuitively
visualized (though not technically equal to) the shaded area be-
tween the PDF and the uniform distribution. Although𝑄𝑔 is highly

77

skewed over the time dimension, Fig. 3d shows that by splitting
the time domain at 2019, we can reduce the skew of 𝑄𝑔 because
𝑆𝑘𝑒𝑤𝑌𝑒𝑎𝑟 (𝑄𝑔 ,2016,2019) and 𝑆𝑘𝑒𝑤𝑌𝑒𝑎𝑟 (𝑄𝑔 ,2019,2020) are low.

In concept, 𝑃𝐷𝐹𝑖 (𝑄,𝑎,𝑏) is a continuous probability distribution.
However, inpracticeweapproximate𝑃𝐷𝐹𝑖 (𝑄,𝑎,𝑏) usingahistogram:
we discretize the range [𝑎,𝑏) into 𝑛 bins. If a query 𝑞’s filter range
intersects with𝑚 contiguous bins, then it contributes 1/𝑚mass to
each of the bins. Therefore, the total histogrammass will be |𝑄 |. We
call this histogram𝐻𝑖𝑠𝑡𝑖 (𝑄,𝑎,𝑏,𝑛).

In this context, a probabilitydistributionover a rangeofhistogram
bins [𝑥,𝑦), where 0≤𝑥 <𝑦 ≤𝑛, is a (𝑦−𝑥)-dimensional vector. We
can concretely compute skew over the bins [𝑥,𝑦):

𝑈𝑛𝑖𝑖 (𝑄,𝑥,𝑦) [𝑗]=
˝
𝑥≤𝑘<𝑦𝐻𝑖𝑠𝑡𝑖 (𝑄,𝑎,𝑏,𝑛) [𝑘]

𝑦−𝑥 for 𝑥 ≤ 𝑗 <𝑦

𝑃𝐷𝐹𝑖 (𝑄,𝑥,𝑦) [𝑗]=𝐻𝑖𝑠𝑡𝑖 (𝑄,𝑎,𝑏,𝑛) [𝑗] for 𝑥 ≤ 𝑗 <𝑦

𝑆𝑘𝑒𝑤𝑖 (𝑄,𝑥,𝑦)=𝐸𝑀𝐷 (𝑈𝑛𝑖𝑖 (𝑄,𝑥,𝑦),𝑃𝐷𝐹𝑖 (𝑄,𝑥,𝑦))

Westore thebinboundariesof thehistogram, so there is a simplemap-
ping function from a value 𝑎 to its bin 𝑥 . Therefore, throughout this
section,wewill use𝑆𝑘𝑒𝑤𝑖 (𝑄,𝑎,𝑏) and𝑆𝑘𝑒𝑤𝑖 (𝑄,𝑥,𝑦) interchangeably.

4.2.2 Grid TreeDesign. Given a queryworkload that is skewed over
a data space, the aim of the Grid Tree is to divide the data space into a
number of non-overlapping regions so that within each region, there
is little query skew.

The Grid Tree is a space-partitioning decision tree, similar to a
k-d tree. Each internal node of the Grid Tree divides space based on
the values in a particular dimension, called the split dimension 𝑑𝑠 .
Unlike a k-d tree, which is a binary tree, internal nodes of the Grid
Tree can split on more than one value. If an internal node splits on
values𝑉 = {𝑣1,...,𝑣𝑘 }, then the node has 𝑘 +1 children. To process
a query, we traverse the Grid Tree to find all regions that intersect
with the query’s filter predicates. If there is an index over the points
in that region (e.g., an Augmented Grid), then we delegate the query
to that index and aggregate the returned results. If there is no index
for the region, we simply scan all points in the region.

Note that the Grid Tree is not meant to be an end-to-end index.
Instead, the Grid Tree’s purpose is to efficiently reduce query skew,
while using lowmemory. This way, the user is free to use any index-
ing schemewithin each region,withoutworrying about intra-region
query skew.

4.3 Optimizing the Grid Tree
Given a dataset and sample queryworkload, our optimization goal is
to reduce query skew as much as possible while maintaining a small
and lightweight Grid Tree. We present the high-level optimization
algorithm, then dive into details. Our procedure is as follows: (1)
Group queries in the sample workload into some number of clusters,
which we call query types (§4.3.1). (2) Build the Grid Tree in a greedy
fashion. Start with a root node that is responsible for the entire data
space 𝑆 . Recursively, for each node 𝑁 responsible for data space
𝑆𝑁 , pick the split dimension 𝑑𝑠 ∈ [0,𝑑) and the set of split values
𝑉 = {𝑣1,...,𝑣𝑘 } that most reduce query skew (§4.3.2). 𝑑𝑠 and𝑉 define
𝑘+1 non-overlapping sub-spaces of 𝑆𝑁 . Assign a child node to each
of the 𝑘 + 1 sub-spaces and recurse for each child node. If a node
𝑁 has low query skew (§4.3.2), or has below a minimum threshold

number of intersecting points or queries, then it stops recursing and
becomes a leaf node, representing a region.

4.3.1 ClusteringQuery Types. It is not enough to consider the query
skew of the entire query set𝑄 as a whole, because queries within
this set have different characteristics and therefore are best indexed
in different ways. For example, we showed in Fig. 2 that𝑄𝑔 and𝑄𝑟

are best indexed with different partitioning schemes. Considering
all queries as awhole canmask the effects of skew because the skews
of different query types can cancel each other out.

Therefore, we cluster queries into types that have similar selectiv-
ity characteristics. First, queries that filter over different sets of di-
mensions are automatically placed in different types. For each group
of queries that filter over the same set of𝑑 ′ dimensions,we transform
each query into a 𝑑 ′-dimensional embedding in which each value is
set to the filter selectivity of the query over a particular dimension.
We run DBSCAN over the 𝑑 ′-dimensional embeddings with eps set
to 0.2 (this worked well for all our experiments and we never tuned
it). DBSCAN automatically determines the number of clusters. The
choice of clustering algorithm is orthogonal to the Grid Tree design.

Real query workloads have patterns and can usually be divided
into types. For example, many analytic workloads are composed
of query templates, for which the dimensions filtered and rough
selectivity remains constant, but the specific predicate values vary.
However, even if there are no patterns in theworkload, theGrid Tree
is still useful because there can still be query skewover a single query
type (i.e., query frequency varies in different parts of data space).

From now on, we assume that if the query set 𝑄 is composed
of 𝑡 query types, then we can divide𝑄 into 𝑡 subsets𝑄1,...,𝑄𝑡 . For
example, in Fig. 3 there are 2 types,𝑄𝑟 and𝑄𝑔 . Note that each query
can only belong to one query type, but queries in different types are
allowed to overlap in data space. We now redefine skew:

𝑆𝑘𝑒𝑤𝑖 (𝑄,𝑎,𝑏)=
1≤𝑖≤𝑡

𝑆𝑘𝑒𝑤𝑖 (𝑄𝑡 ,𝑎,𝑏)

4.3.2 Selecting the Split Dimension and Values. Given a Grid Tree
node 𝑁 over a data space 𝑆𝑁 and a set of queries𝑄 that intersects
with 𝑆𝑁 , our goal is to find the split dimension 𝑑𝑠 and split values
over that dimension𝑉 = {𝑣1,...,𝑣𝑘 } that achieve the largest reduction
in query skew. For a dimension 𝑖 ∈ [0,𝑑) and split values 𝑉 , the
reduction in query skew is defined as

𝑅𝑖 (𝑄,0,𝑋𝑑 ,𝑉)=𝑆𝑘𝑒𝑤𝑖 (𝑄,0,𝑋𝑑)−
h
𝑆𝑘𝑒𝑤𝑖 (𝑄,0,𝑣1)

+𝑆𝑘𝑒𝑤𝑖 (𝑄,𝑣𝑘 ,𝑋𝑑)+
1≤𝑖<𝑘

𝑆𝑘𝑒𝑤𝑖 (𝑄,𝑣𝑖 ,𝑣𝑖+1)
i

Note that skew reduction is defined per dimension, not over all
𝑑 dimensions simultaneously. Therefore, we independently find
the largest skew reduction 𝑅𝑚𝑎𝑥𝑖 = max𝑉 (𝑅𝑖) for each dimen-
sion 𝑖 ∈ [0,𝑑) (explained next), then pick the split dimension 𝑑𝑠 =
argmax𝑖 (𝑅𝑚𝑎𝑥𝑖).

For example, inFig. 3,𝑆𝑘𝑒𝑤𝑆𝑎𝑙𝑒𝑠 is already lowbecausebothquery
types are distributed relatively uniformly over Sales, so 𝑅𝑚𝑎𝑥Sales
is low. On the other hand, 𝑆𝑘𝑒𝑤𝑌𝑒𝑎𝑟 is high. We can achieve very
large 𝑅𝑚𝑎𝑥Year using𝑉 = {2019}. Therefore, we select 𝑑𝑠 =Year and
𝑉 = {2019}.

If max𝑖 (𝑅𝑚𝑎𝑥𝑖) is below someminimum threshold (by default 5%
of |𝑄 |) or if 𝑆𝑁 intersects below aminimum threshold of points or

78

Figure 4: Skew tree over the range [0, 1000) with eight leaf
nodes. The covering set that achieves lowest combined skew
is shaded green. Based on the boundaries of the covering set,
we extract the split values𝑉 = {250,375,500}.

queries (by default 1% of the total points or queries in the entire data
space), then 𝑑𝑠 is rejected and 𝑁 becomes a leaf Grid Tree node.

We now explain how to find the split values𝑉 that maximize 𝑅𝑑𝑠
for each candidate split dimension 𝑑𝑠 ∈ [0,𝑑). We introduce a data
structure called the skew tree, which is simply a tool to help find the
optimal𝑉 ; it is never used when running queries. The skew tree is
a balanced binary tree (Fig. 4). Each node represents a range over
the domain of dimension 𝑑𝑠 . The root node represents the entire
range [0,𝑋𝑑𝑠), and every node represents the combined ranges of
the nodes in its subtree. A skew tree node whose range is [𝑎,𝑏) will
store the value 𝑆𝑘𝑒𝑤𝑑𝑠 (𝑄,𝑎,𝑏). In other words, each skew tree node
stores the query skew over the range it represents.

Creating the skew tree requires 𝐻𝑖𝑠𝑡𝑑𝑠 (𝑄, 0, 𝑋𝑑𝑠). By default,
we instantiate the histogram with 128 bins. Note that we are un-
able to compute a meaningful skew over a single histogram bin:
𝑆𝑘𝑒𝑤𝑑𝑠 (𝑄,𝑥,𝑥 +1) is always zero, because a single bin has no way
to differentiate the uniform distribution from the query PDF. There-
fore, the skew tree will only have 64 leaf nodes. However, if there
are fewer than 128 unique values in dimension𝑑𝑠 , we create a bin for
each unique value. In this case, there is truly no skewwithin each
histogram bin, so the skew tree has as many leaf nodes as unique
values in 𝑑𝑠 , and the skew at each leaf node is 0.

A set of skew tree nodes is called covering if their represented
ranges do not intersect and the union of their represented ranges is
[0,𝑋𝑑𝑠). We want to solve for the covering set with minimum com-
bined query skew. This is simple to do via dynamic programming in
two passes over the skew tree nodes: in the first pass, we start from
the leaf nodes and work towards the root node, and at each node we
annotate the minimum combined query skew achievable over the
node’s subtree. In the secondpass,we start from the root andwork to-
wards the leaves, and check if a node’s skew is equal to the annotated
skew: if so, the node is part of the optimal covering set. The bound-
aries between the ranges of nodes in the optimal covering set form𝑉 .

As a final step, we do a single ordered pass over all the nodes in
the covering set, in order of the range they represent, and merge
nodes if the query skew of the combined node is not more than a
constant factor (by default, 10%) larger than the sumof the individual
query skews. For example, in Fig. 4 if 𝑆𝑘𝑒𝑤𝐴 (𝑄,0,375)<15·1.1, then
the first two nodes of the covering set would be merged, and 250
would be removed as a split value. This step counteracts the fact that
the binary tree may split at superfluous points, and it also acts as a
regularizer that prevents too many splits.

Table 2: Example skeleton over dimensions 𝑋,𝑌, 𝑍 , and all
skeletons one “hop” away. Restrictions are explained in
§5.2.1 and §5.2.2 (e.g., [𝑋→𝑍,𝑌 |𝑋,𝑍] is not allowed).

Ex. skeleton [𝑋,𝑌 |𝑋,𝑍] (i.e.,𝐶𝐷𝐹 (𝑋) ,𝐶𝐷𝐹 (𝑌 |𝑋) , and𝐶𝐷𝐹 (𝑍))

One hop away [𝑋,𝑌,𝑍] [𝑋,𝑌 |𝑍,𝑍] [𝑋,𝑌→𝑋,𝑍]
[𝑋,𝑌→𝑍,𝑍] [𝑋,𝑌 |𝑋,𝑍 |𝑋] [𝑋,𝑌 |𝑋,𝑍→𝑋]

5 AUGMENTEDGRID
In this section,we describe the challenges posed by data correlations,
and we introduce our solution to address those challenges: the Aug-
mented Grid. Note that the Grid Tree (§4) optimizes only for query
skew reduction, and the points within each regionmight still display
correlation.

5.1 Challenges of Data Correlation
We broadly define a pair of dimensions𝑋 and𝑌 to be correlated if
they are not independent, i.e., if𝐶𝐷𝐹 (𝑋)≠𝐶𝐷𝐹 (𝑋 |𝑌) and vice versa.
In the presence of correlated dimensions, it is not possible to impose
a grid that has equally-sized cells by partitioning each dimension
independently (see Fig. 1b). As a result, points will be clustered into
a relatively few number of cells, so any query that hits one of those
cells will likely scan many more points than necessary.

One way to mitigate this issue is by increasing the number of par-
titions in each dimension, to formmore fine-grained cells. However,
increasing the number of cells would counteract the two advantages
of grids over trees: (1) Space overhead increases rapidly (e.g., dou-
bling the number of partitions in each dimension increases index
size by 2𝑑). (2) Time overhead also increases, because each cell incurs
a lookup table lookup. Therefore, simply making finer-grained grids
is not a scalable solution to data correlations.

5.2 A Correlation-Aware Grid
Tsunami handles data correlations while maintaining the time and
space advantage of grids by augmenting the basic grid structure
with newpartitioning strategies that allow it to partition dimensions
dependently instead of independently. We first provide a high level
description of the Augmented Grid, then dive into details.

An Augmented Grid is a grid in which each dimension𝑋 ∈ [0,𝑑)
is divided into 𝑝𝑋 partitions and uses one of three possible strategies
for creating its partitions: (1) We can partition𝑋 independently of
other dimensions, uniformly in𝐶𝐷𝐹 (𝑋). This is what Flood does for
every dimension. (2) We can remove𝑋 from the grid and transform
query filters over𝑋 into filters over some other dimension𝑌 ∈ [0,𝑑)
using a functional mapping 𝐹 :𝑋→𝑌 (§5.2.1). (3) We can partition𝑋
dependent on another dimension𝑌 ∈ [0,𝑑), uniformly in𝐶𝐷𝐹 (𝑋 |𝑌)
(§5.2.2).

A specific instantiation of partitioning strategies for all dimen-
sions is called a skeleton. Tab. 2 shows an example. We “flesh out”
the skeleton by setting the number of partitions in each dimension
to create a concrete instantiation of an Augmented Grid. Therefore,
an Augmented Grid is uniquely defined by the combination of its
skeleton 𝑆 and number of partitions in each dimension 𝑃 .

5.2.1 Functional Mappings. A pair of dimensions𝑋 and𝑌 is mono-
tonically correlated if as values in𝑋 increase, values in𝑌 only move

79

Figure 5: Functionalmapping creates equally-sized cells and
reducesscannedpoints for tightmonotoniccorrelations.The
query is in green, scanned points are red, and the mapping
function is purple, with error bounds drawn as dashed lines.

in one direction. Linear correlations are one subclass of monotonic
correlations. Formonotonically correlated𝑋 and𝑌 , we conceptually
defineamapping functionas a function𝐹 :R2→R2 that takes a range
[𝑌𝑚𝑖𝑛,𝑌𝑚𝑎𝑥] over dimension𝑌 and maps it to a range [𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥]
over dimension𝑋 with the guarantee that any point whose value in
dimension𝑌 is in [𝑌𝑚𝑖𝑛,𝑌𝑚𝑎𝑥] will have a value in dimension𝑋 in
[𝑋𝑚𝑖𝑛,𝑋𝑚𝑎𝑥]. In this case, we call𝑌 themapped dimension and we
call𝑋 the target dimension. For simplicity, we place a restriction: a
target dimension cannot itself be a mapped dimension. Similar ideas
were proposed in [20, 45].

Concretely,we implement themapping function as a simple linear
regression𝐿𝑅 trained topredict𝑋 from𝑌 ,with lower andupper error
bounds 𝑒𝑙 and 𝑒𝑢 . Therefore, a functional mapping is encoded in four
floating point numbers and has negligible storage overhead. Given a
range [𝑌𝑚𝑖𝑛,𝑌𝑚𝑎𝑥], themapping function produces𝑋𝑚𝑖𝑛 =𝑌𝑚𝑖𝑛−𝑒𝑙
and𝑋𝑚𝑎𝑥 =𝑌𝑚𝑎𝑥 +𝑒𝑢 . Note that the idea of functional mappings can
generalize to all monotonic correlations, as in [45]. However, in our
experience the vast majority of monotonic correlations in real data
are linear, so we use linear regressions for simplicity.

Given a functional mapping, any range filter predicate (𝑦0 ≤𝑌 ≤
𝑦1) over dimension𝑌 can be transformed into a semantically equiv-
alent predicate (𝑥0 ≤ 𝑋 ≤ 𝑥1) over dimension 𝑋 , where (𝑥0,𝑥1) =
𝐹 (𝑦0,𝑦1). This gives us the opportunity to completely remove the
mapped dimension from the 𝑑-dimensional grid, to obtain equally-
sized cells. Fig. 5 demonstrates the benefits of functional mapping.
The grid without functional mapping has unequally-sized cells,
which results in many points scanned. On the other hand, the grid
with functional mapping has equally-sized cells and is furthermore
able to “shrink” the size of the query to a semantically equivalent
query by inducing a narrower filter over dimension X using the
mapping function. This results in fewer points scanned.

5.2.2 Conditional CDFs. Functional mappings are only useful for
tight monotonic correlations. Otherwise, the error bounds would
be too large for the mapping to be useful. For loose monotonic corre-
lations or generic correlations, we instead use conditional CDFs. For
a pair of generically correlated dimensions𝑋 and𝑌 , we partition𝑋
uniformly in𝐶𝐷𝐹 (𝑋) and we partition𝑌 uniformly in𝐶𝐷𝐹 (𝑌 |𝑋),
resulting in equally-sized cells. In this case, we call 𝑋 the base di-
mension and 𝑌 the dependent dimension. For simplicity, we place

Figure 6: Conditional CDFs create equally-sized cells and
reduce scanned points for generic correlations. The query is
in green, and scanned points are in red.

restrictions: a base dimension cannot itself be a mapped dimension
or a dependent dimension.

Concretely, if there are 𝑝𝑋 and 𝑝𝑌 partitions over𝑋 and𝑌 respec-
tively, we implement𝐶𝐷𝐹 (𝑌 |𝑋) by storing 𝑝𝑋 histograms over𝑌 ,
one for each partition in 𝑋 . When a query filters over 𝑌 , we first
find all intersecting partitions in𝑋 , then for each𝑋 partition inde-
pendently invoke𝐶𝐷𝐹 (𝑌 |𝑋) to find the intersecting partitions in
𝑌 . The storage overhead is proportional to 𝑝𝑋𝑝𝑌 , which is minimal
compared to the existing overhead of the grid’s lookup table, which
is proportional to

˛
𝑖∈[0,𝑑)𝑝𝑖 .

Fig. 6 shows an example of using conditional CDFs. Both grids
have 𝑝𝑋 =𝑝𝑌 =4. By partitioning𝑌 using𝐶𝐷𝐹 (𝑌 |𝑋), the grid on the
right has staggered partition boundaries, which create equally-sized
cells and results in fewer points scanned. Additionally, the regions
outside the cells (shaded in gray) are guaranteed to have no points,
which allows the query to avoid scanning the first and last partitions
of𝑋 , even though they intersect the query.

5.3 Optimizing the Augmented Grid
Given a dataset and sample query workload, our optimization goal
is to find the best Augmented Grid, i.e., the settings of the parame-
ters (𝑆,𝑃) that achieves lowest average query time over the sample
workload, where 𝑆 is the skeleton and 𝑃 is the number of partitions
in each dimension.

This optimization problem is challenging in two ways: (1) For a
specificsettingof (𝑆,𝑃),wecannotknowtheaveragequery timewith-
out actually running the queries, which can be very time-intensive.
Therefore, we create a cost model to predict average query time, and
we optimize for lowest average predicted query time (§5.3.1). (2) The
search space over skeletons is exponentially large. For each dimen-
sion, there are𝑂 (𝑑) possible partitioning strategies, since there are
up to 𝑑−1 choices for the other dimension in a functional mapping
or conditional CDF. Therefore, the search space of skeletons has size
𝑂 (𝑑𝑑). To efficiently navigate the joint search space of (𝑆,𝑃), we use
adaptive gradient descent (§5.3.2).

5.3.1 Cost Model. We use a simple analytic linear cost model to
predict the runtime of a query 𝑞 on dataset𝐷 and an instantiation
of the Augmented Grid with parameters (𝑆,𝑃):

Time=𝑤0 (# cell ranges)+𝑤1 (# scanned points) (# filtered dims)

80

We now explain each term of this model. A set of adjacent cells in
physical storage is called a cell range. Instead of doing a lookup on
the lookup table for every intersecting cell, we only look up the first
and last cell of a cell range. Furthermore, skipping to each new cell
range in physical storage likely incurs a cache miss.𝑤0 represents
the time to do a lookup and the cache miss of accessing the range
in physical storage.

The𝑤1 term models the time to scan points (e.g., all red points
in previous figures). Since data is stored in a column store, only the
dimensions filtered by the query need to be accessed.𝑤1 represents
the time to scan a single dimension of a single point.

Importantly, the features of this cost model can be efficiently com-
puted or estimated: the number of cell ranges is easily computed
from𝑞 and (𝑆,𝑃). The number of filtered dimensions is obvious from
𝑞. The number of scanned points is estimated using 𝑞, (𝑆,𝑃), and a
sample of𝐷 .

Note that we do not model the time to actually perform the ag-
gregation after finding the points that intersect the query rectangle.
This is because aggregation is a fixed cost that must be incurred
regardless of index choice, so we ignore it when optimizing.

5.3.2 Adaptive Gradient Descent. We find the (𝑆,𝑃) that minimizes
average query time, as predicted by the cost model, using adaptive
gradient descent (AGD). We first enumerate AGD’s high level steps,
then provide details for each step. AGD is an iterative algorithm that
jointly optimizes 𝑆 and 𝑃 :
(1) Using heuristics, initialize (𝑆0,𝑃0).
(2) From (𝑆0,𝑃0), take a gradient descent step over 𝑃0 using the cost

model as the objective function, which gives us (𝑆0,𝑃1).
(3) From (𝑆0,𝑃1), perform a local search over skeletons to find the

skeleton 𝑆 ′ that minimizes query time for (𝑆 ′,𝑃1). Set 𝑆1=𝑆 ′. It
may be that 𝑆 ′=𝑆0, that is, the skeleton does not change in this
step.

(4) Repeat steps 2 and 3 starting from (𝑆1,𝑃1) until we reach a min-
imum average query time.
In step 1, we first initialize 𝑆 , then 𝑃 . We make a best guess at the

optimal skeleton using heuristics: for each dimension𝑋 , use a func-
tional mapping to dimension𝑌 if the error bound is below 10% of𝑌 ’s
domain. Else, partition using𝐶𝐷𝐹 (𝑋 |𝑌) if not doing so would result
in more than 25% of cells in the 𝑋𝑌 grid hyperplane being empty.
Else, partition𝑋 independently using𝐶𝐷𝐹 (𝑋). Given the initial 𝑆 ,
we initialize 𝑃 proportionally to the average query filter selectivity
in each grid dimension (i.e., excluding mapped dimensions).

In step2,weuse the insight that thecostmodel is relatively smooth
in 𝑃 : changing the number of partitions usually smoothly increases
or decreases the cost. Therefore, we take the numerical gradient over
𝑃 at (𝑆,𝑃) and take a step in the gradient direction.

In step 3, we take advantage of the insight that an incremental
change in 𝑃 is unlikely to cause the skeleton 𝑆 ′ to differ greatly from
𝑆 . Therefore, step 3 will only search over 𝑆 ′ that can be created by
changing the partitioning strategy for a single dimension in 𝑆 (e.g.,
skeletons one “hop” away in Tab. 2).

While we could conceivably use black box optimization methods
such as simulated annealing to optimize (𝑆,𝑃), AGD takes advantage
of the aforementioned insights into the behavior of the optimization
and is therefore able to find lower-cost Augmented Grids, which we
confirm in §6.6.

6 EVALUATION
We first describe the experimental setup and then present the re-
sults of an in-depth experimental study that compares Tsunamiwith
Flood and several other indexing methods on a variety of datasets
and workloads. Overall, this evaluation shows that:
(1) Tsunami is consistently the fastest index across tested datasets

and workloads. It achieves up to 6× higher query throughput
than Flood and up to 11× higher query throughput than the
fastestoptimally-tunednon-learned index.Furthermore,Tsunami
has up to 8× smaller index size than Flood and up to 170× smaller
index size than the fastest non-learned index (§6.3).

(2) Tsunami canoptimize its index layout and reorganize the records
quickly for anewquerydistribution, typically inunder 4minutes
for a 300 million record dataset (§6.4).

(3) Tsunami’s performance advantage over other indexes scales
with dataset size, selectivity, and dimensionality (§6.5).

6.1 Implementation and Setup
We implement Tsunami in C++ and perform optimization in Python.
We perform our query performance evaluation via single-threaded
experiments on an Ubuntu Linux machine with Intel Core i9-9900K
3.6GHzCPUand64GBRAM.Optimization anddata sorting for index
creation are performed in parallel for Tsunami and all baselines.

All experiments use 64-bit integer-valued attributes. Any string
values are dictionary encoded prior to evaluation. Floating point
values are typically limited to a fixed number of decimal points (e.g.,
2 for price values). We scale all values by the smallest power of 10
that converts them to integers.

Evaluation is performed on data stored in a custom column store
with one scan-time optimization: if the range of data being scanned
is exact, i.e., we are guaranteed ahead of time that all elementswithin
the rangematch the query filter, we skip checking each value against
the query filter. For common aggregations, e.g. COUNT, this removes
unnecessary accesses to the underlying data.

We compareTsunami to other solutions implemented on the same
column store, with the same optimizations, if applicable:
(1) Clustered Single-Dimensional Index: Points are sorted by the

most selective dimension in the query workload. If a query filter
contains this dimension, we locate the endpoints using binary
search. Otherwise, we perform a full scan.

(2) TheZ-Order Index is amultidimensional index that orders points
by their Z-value [14]; contiguous chunks are grouped into pages.
Given a query, the index finds the smallest and largest Z-value
contained in the query rectangle and iterates through each page
with Z-values in this range. Pages maintain min/max metadata
per dimension to prune irrelevant pages.

(3) TheHyperoctree [27] recursively subdivides space equally into
hyperoctants (the 𝑑-dimensional analog to 2-dimensional quad-
rants), until the number of points in each leaf is below a prede-
fined but tunable page size.

(4) The k-d tree [4] recursively partitions space using the median
value along each dimension, until the number of points in each
leaf falls below the page size. The dimensions are selected in a
round robin fashion, in order of selectivity.

(5) Flood, introduced in §2.2.Weuse the implementation of [30]with
two changes: we use Tsunami’s cost model instead of Flood’s

81

Table 3: Dataset and query characteristics.

TPC-H. Taxi Perfmon Stocks

records 300M 184M 236M 210M
query types 5 6 5 5
dimensions 8 9 7 7
size (GB) 19.2 13.2 13.2 11.8

original random-forest-based cost model, and we perform re-
finement using binary search instead of learned per-cell models
(see [30] for details).Weverified that these changes did notmean-
ingfully impact performance. Furthermore, removing per-cell
models dramatically reduces Flood’s index size (on average by
20× [30]), and this allows us tomore directly evaluate the impact
of design differences between Flood and Tsunami without any
confounding effects from implementation differences.

There are a number of other multi-dimensional indexing techniques,
such as Grid Files [31], UB-tree [36], and R∗-Tree [3].We decided not
to evaluate against these because Flood already showed consistent
superiority over them [30]. We also do not evaluate against other
learnedmulti-dimensional indexes because theyare either optimized
for disk [25, 46] or optimize only based on the data distribution, not
the query workload [9, 44] (see §7).

6.2 Datasets andWorkloads
We evaluate indexes on three real-world and one synthetic dataset,
summarized in Tab. 3. Queries are synthesized for each dataset, and
include amix of range filters and equality filters. The queries for each
dataset comes from a certain number of query types (§4.3.1), each
of which answers a different analytics question, with 100 queries of
each type. All queries perform a COUNT aggregation. Since all indexes
must pay the same fixed cost of aggregation, performing different
aggregations would not change the relative ordering of indexes in
terms of query performance.

The Taxi dataset comes from records of yellow taxi trips in New
York City in 2018 and 2019 [32]. It includes fields capturing pick-
up and drop-off dates/times, pick-up and drop-off locations, trip
distances, itemized fares, and driver-reported passenger counts.
Our queries answer questions such as “How commonwere single-
passenger trips between two particular parts of Manhattan?” and
“What month of the past year saw the most short-distance trips?”.
Queries display skew over time (more queries over recent data), pas-
senger count (different query types about very low and very high
passenger counts), and trip distance (more queries about very short
trip distances). Query selectivity varies from 0.25% to 3.9%, with an
average of 1.3%.

The performance monitoring dataset Perfmon contains logs of
all machines managed by a major US university over the course of
a year. It includes fields capturing log time, machine name, CPU
usages, and system load averages. Our queries answer questions
such as “When in the last month did a certain set of machines experi-
ence high load?”. Queries display skew over time (more queries over
recent data) and CPU usage (more queries over high usage). Query
selectivity varies from 0.50% to 4.9%, with an average of 0.79%. The
original dataset has 23.6M records, but we use a scaled dataset with
236M records.

Table 4: Index Statistics after Optimization.

TPC-H Taxi Perfmon Stocks

Tsunami

NumGrid Tree nodes 39 35 42 54
Grid Tree depth 4 2 4 4
Num leaf regions 27 31 36 39
Min points per region 3.5M 1.9M 2.6M 2.4M
Median points per region 5.9M 3.3M 3.7M 3.2M
Max points per region 10M 6.7M 26M 41M
Avg FMs per region 0.67 0.55 0 1.1
Avg CCDFs per region 1.3 1.9 1.75 1.8
Total num grid cells 1.5M 99K 80K 220K

Flood

Num grid cells 920K 840K 530K 250K

The Stocks dataset consists of daily historical stock prices of over
6000 stocks from 1970 to 2018 [12]. It includes fields capturing daily
prices (open, close, adjusted close, low, and high), trading volume,
and the date. Our queries answer questions such as “Which stocks
saw the lowest intra-day price change while trading at high vol-
ume?” and “What one-year span in the past decade saw the most
stocks close in a certain price range?”. Queries display skew over
time (more queries over recent data) and volume (different query
types about very low and very high volume). Query selectivity is
tightly concentrated around 0.5%±0.04%. The original dataset has
21M records, but we use a scaled dataset with 210M records.

Our last dataset is TPC-H [42]. For our evaluation, we use only
the fact table, lineitem, with 300M records (scale factor 50) and
create queries by using filters commonly found in the TPC-H query
workload. Our queries include filters over quantity, extended price,
discount, tax, ship mode, ship date, commit date, and receipt date.
They answer questions such as “Howmany high-priced orders in the
past year used a significant discount?” and “Howmany shipments
by air had below ten items?”. Query selectivity varies from 0.40% to
0.64%, with an average of 0.54%.

6.3 Overall Results
Fig. 7 compares Tsunami to Flood and the non-learned baselines.
Tsunami and Flood are automatically optimized for each dataset/-
workload. For the non-learned baselines, we tuned the page size to
achieve best performance on each dataset/workload. Tsunami is con-
sistently the fastest of all the indexes across datasets and workloads,
and achieves up to 6× faster queries than Flood and up to 11× faster
queries than the fastest non-learned index.

Tab. 4 shows statistics of the optimized Tsunami index structure.
TheGridTree depth and the number of leaf regions are relatively low,
which confirms that the Grid Tree is lightweight, as desired. Because
skew does not occur uniformly across data space, the number of
points in each region can vary by over an order of magnitude.

The Grid Tree typically has a low number of nodes (Tab. 4), so the
vast majority of Tsunami’s index size comes from the cell lookup ta-
bles for theAugmentedGrids ineach region.Tsunamioftenhas fewer
total grid cells than Flood (Tab. 4) because partitioning space via the
GridTreegivesTsunamifine-grainedcontrolover thenumberof cells

82

Figure 7: Tsunami achieves up to 6× faster queries than Flood and up to 11× faster queries than the fastest non-learned index.

Figure 8: Tsunami uses up to 8× less memory than Flood and 7-170× less memory than the fastest tuned non-learned index.

to allocate in each region, whereas Flood must often over-provision
partitions to deal with query skew (see §4.1). Fig. 8 shows that as a
result of having fewer cells, Tsunami uses up to 8× lessmemory than
Flood. Furthermore, Tsunami is between 7× to 170× smaller than the
fastest optimally-tuned non-learned index across the four datasets.

6.4 Adaptibility
Tsunami is able to quickly adapt to changes in the query work-
load by re-optimizing its layout for the new query workload and
re-organizing the data based on the new layout. In Fig. 9a, we simu-
late a scenario in which the query workload over the TPC-H dataset
changes at midnight: the original query workload is replaced by a
newworkload with queries drawn from five new query types. This
causes performance on the learned indexes to degrade. Tsunami
(as well as Flood) automatically detects the workload shift (see §8)
and triggers a re-optimization of the index layout for the new query
workload. Tsunami’s re-optimization and data re-organization over
300M rows finish within 4 minutes, and its high query performance
is restored. This shows that Tsunami is highly adaptive for scenarios
in which the data or workload changes infrequently (e.g., every day).
Thenon-learned indexes arenot re-tunedafter theworkload shift, be-
cause in practical settings, it is unlikely that a database administrator
will be able to manually tune the index for every workload change.

Fig. 9b shows the index creation time in detail for Tsunami and the
baselines. All indexes require time to sort the data based on the index
layout, shown as solid bars. The learned approaches additionally
require time to perform optimization based on the dataset and query
workload, shown as the hatched bars. Even for the largest datasets,
the entire index creation time for Tsunami remains below 4 minutes.

Figure 9: (a) After the query workload changes at midnight,
Tsunami re-optimizes and re-organizes within 4 minutes
to maintain high performance. (b) Comparison of index
creation times (solid bars = data sorting time, hatched bars =
optimization time).

6.5 Scalability
Throughout this subsection, Tsunami and Flood are re-optimized for
each dataset/workload configuration, while the non-learned indexes
use the same page size and dimension ordering as they were tuned
for the full TPC-H dataset/workload in §6.3.

NumberofDimensions.To showhowTsunami scaleswith dimen-
sions, and how correlation affects scalability, we create two groups
of synthetic𝑑-dimensional datasets with 100M records. Within each
group, datasets vary by number of dimensions (𝑑 ∈ {4,8,12,16,20}).
Datasets in the first group show no correlation and points are sam-
pled from i.i.d. uniform distributions. For datasets in the second
group, half of the dimensions have uniformly sampled values, and di-
mensions in theotherhalf are linearly correlated todimensions in the
first half, either strongly (±1% error) or loosely (±10% error). For each

83

Figure 10: Tsunami continues to outperform other indexes
at higher dimensions.

Figure 11: Tsunami maintains high performance across
dataset sizes and query selectivities.

dataset, we create a queryworkloadwith four query types. Earlier di-
mensions are filteredwith exponentially higher selectivity than later
dimensions, and queries are skewed over the first four dimensions.

Fig. 10 shows that in both cases, Tsunami continues to outperform
the other indexes at higher dimensions. In particular, theAugmented
Grid is able to take advantage of correlations to effectively reduce the
dimensionality of the dataset. This helps Tsunami delay the curse of
dimensionality: Tsunami has around the same performance on each
𝑑-dimensional correlateddatasetas itdoesonthe (𝑑−4)-dimensional
uncorrelated dataset.

Dataset Size. To show how Tsunami scales with dataset size, we
sample records from the TPC-H dataset to create smaller datasets.
We run the same query workload as on the full dataset. Fig. 11a
shows that across dataset sizes, Tsunami maintains its performance
advantage over Flood and non-learned indexes.

Query Selectivity. To show how Tsunami performs at different
query selectivities, we use the 8-dimensional synthetic dataset/-
workload with correlation (explained above) and scale filter ranges
equally in each dimension in order to achieve between 0.001% and
10%selectivity. Fig. 11b shows thatTsunamiperformswell at all selec-
tivities. The relative performance benefit of Tsunami is less apparent
at 10% selectivity because aggregation time becomes a bottleneck.

6.6 Drill-down into Components
Fig. 12a shows the relative performanceof onlyusing theAugmented
Grid (i.e., one Augmented Grid over the entire data space) and of
only using Grid Tree (i.e., with an instantiation of Flood in each
leaf region). Grid Tree contributes the most to Tsunami’s perfor-
mance, but Augmented Grid also boosts performance significantly

Figure 12: (a) AugmentedGrid andGrid Tree both contribute
to Tsunami’s performance. (b) Comparison of optimization
methods. Bars show the predicted query time according to
our cost model. Error bars show the actual query time.

over Flood. Grid Tree-only performs almost as well as Tsunami be-
cause partitioning data space via the Grid Tree often already has the
unintentional but useful side effect of mitigating data correlations.

We now evaluate Augmented Grid’s optimization procedure,
which can be broken into two independent parts: the accuracy of
the cost model (§5.3.1) and the ability of Adaptive Gradient Descent
(§5.3.2) to minimize cost (i.e., average query time, predicted by the
cost model). For each of our four datasets/workloads, we run Adap-
tive Gradient Descent (AGD) to find a low-cost Augmented Grid
over the entire data space. We compare with three alternative opti-
mization methods, all using the same cost model:
(1) Gradient Descent (GD) uses the same initial (𝑆0,𝑃0) as AGD, then

performs gradient descent over 𝑃 , without ever changing the
skeleton.

(2) Black Box starts with the same initial (𝑆0,𝑃0) as AGD, then op-
timizes 𝑆 and 𝑃 according to the basin hopping algorithm, im-
plemented in SciPy [38], for 50 iterations.

(3) AGDwith naive initialization (AGD-NI) sets the initial skeleton
𝑆0 to use𝐶𝐷𝐹 (𝑋) for each dimension, then runs AGD.

Fig. 12b shows the lowest cost achieved by eachoptimizationmethod.
There are several insights. First, Black Box performs worse than the
gradient descent variants, which implies that using domain knowl-
edgeandheuristics toguide thesearchprocessprovidesanadvantage.
Second,AdaptiveGradientDescent usually achieves onlymarginally
better predicted query time than Gradient Descent, which implies
that for our tested datasets, our heuristics created a good initial
skeleton 𝑆0. Third, Adaptive Gradient Descent is able to find a low-
cost grid even when starting from a naive skeleton, which implies
that the local search over skeletons is able to effectively switch to
better skeletons. For the Taxi dataset, AGD-NI is even able to find
a lower-cost configuration than AGD.

Fig. 12b additionally shows the error between the predicted query
time using the cost model and the actual query time when running
the queries of the workload. The average error of the model for all
optimized configurations shown in Fig. 12b is only 15%.

7 RELATEDWORK

Traditional Multi-dimensional Indexes. There is a rich corpus
of work dedicated to multi-dimensional indexes, and many com-
mercial database systems have turned to multi-dimensional index-
ing schemes. For example, Amazon Redshift organizes points by

84

Z-order [29], which maps multi-dimensional points onto a single di-
mension for sorting [1, 34, 47]. With spatial dimensions, SQL Server
allows Z-ordering [28], and IBM Informix uses an R-Tree [16]. Other
multi-dimensional indexes include K-d trees, octrees, R∗ trees, UB
trees (which alsomakeuse of theZ-order), andGrid Files [31], among
many others (see [33, 40] for a survey). There has also been work
on automatic index selection [6, 26, 43]. However, these approaches
mainly focus on creating secondary indexes, whereas Tsunami co-
optimizes the index and data storage.

Learned Indexes. Recent work by Kraska et al. [23] proposed the
idea of replacing traditional database indexes with learned models
that predict the location of a key in a dataset. Their learned index,
called the Recursive Model Index (RMI), and various improvements
on the RMI [10, 13, 15, 22, 41], only handle one-dimensional keys.

Since then, there has been a corpus of work on extending the
ideas of the learned index to spatial andmulti-dimensional data. The
most relevant work is Flood [30], described in §2.2. Learning has
also been applied to the challenge of reducing I/O cost for disk-based
multi-dimensional indexes. Qd-tree [46] uses reinforcement learn-
ing to construct a partitioning strategy that minimizes the number
of disk-based blocks accessed by a query. LISA [25] is a disk-based
learned spatial index that achieves low storage consumption and
I/O cost while supporting range queries, nearest neighbor queries,
and insertions and deletions. Tsunami and these works share the
idea that a multi-dimensional index can be instance-optimized for a
particular use case by learning from the dataset and query workload.

Past work has also aimed to improve traditional indexing tech-
niquesby learning thedatadistribution.TheZM-index[44]combines
the standard Z-order space-filling curve [29] with the RMI from [23]
by mapping multi-dimensional values into a single-dimensional
space, which is then learnable using models. The ML-index [9] com-
bines the ideas of iDistance [18] and the RMI to support range and
KNN queries. Unlike Tsunami, these works only learn from the data
distribution, not from the query workload.

DataCorrelations.There is a body of work on discovering and tak-
ing advantage of column correlations. BHUNT [5], CORDS [17],
and Pyro [24] automatically discover algebraic constraints, soft
functional dependencies, and approximate dependencies between
columns, respectively. CORADD [21] recommends materialized
views and indexes based on correlations. Correlation Map [20] aims
to reduce the sizeofB+Tree secondary indexesbycreatingamapping
between correlated dimensions. Hermit [45] is a learned secondary
index that achieves low space usage by capturingmonotonic correla-
tions andoutliers betweendimensions.Although the functionalmap-
pings in the Augmented Grid are conceptually similar to Correlation
Map and Hermit, our work is more focused on how to incorporate
correlation-aware techniques into a multi-dimensional index.

Query Skew. The existence of query skew has been extensively re-
ported in settingswhere data is accessed via single-dimensional keys
(i.e., “hot keys”) [2, 7, 48]. In particular, key-value store workloads
at Facebook display strong key-space locality: hot keys are closely
located in the key space [48]. Instead of relying on caches to reduce
query time for frequently accessed keys, Tsunami automatically
partitions data space using the Grid Tree to account for query skew.

8 FUTUREWORK

Complex Correlations.Augmented Grid’s functional mappings
are not robust to outliers: one outlier can significantly increase the
error bound of the mapping. We can address this by placing outliers
in a separate buffer, similar toHermit [45]. Furthermore, Augmented
Grid might not efficiently capture more complex correlation pat-
terns, such as temporal/periodic patterns and correlations due to
functional dependencies over more than two dimensions. To handle
these correlations, we intend to introduce new correlation-aware
partitioning strategies to the Augmented Grid.

Data and Workload Shift. Tsunami can quickly adapt to work-
load changes but does not currently have a way to detect when
the workload characteristics have changed sufficiently to merit re-
optimization. To do this, Tsunami could detect when an existing
query type (§4.3.1) disappears, anewquery typeappears, orwhen the
relative frequencies of query types change.Tsunami could alsodetect
when the query skew of a particular Grid Tree region has deviated
from its skew after the initial optimization. Additionally, Tsunami is
completely re-optimized for each newworkload. However, Tsunami
could be incrementally adjusted, e.g. by only re-optimizing the Aug-
mentedGridswhose regions saw themost significantworkload shift.

Tsunami currently only supports read-only workloads. To sup-
port dynamic data, each leaf node in the Grid Tree could maintain a
sibling node that acts as a delta index [39] in which inserts, updates,
and deletes are buffered and periodically merged into the main node.

Persistence Tsunami’s techniques for reducing query skew and
handling correlations are not restricted to in-memory scenarios and
could be incorporated into an index for data resident on disk or SSD,
perhaps by combining ideas from qd-tree [46] or LISA [25].

9 CONCLUSION
Recent work has introduced the idea of learned multi-dimensional
indexes, which outperform traditional multi-dimensional indexes
by co-optimizing the index layout and data storage for a particular
dataset and query workload. We design Tsunami, a new in-memory
learned multi-dimensional index that pushes the boundaries of per-
formance by automatically adapting to data correlations and query
skew. Tsunami introduces two modular data structures—Grid Tree
and Augmented Grid—that allow it to outperform existing learned
multi-dimensional indexes by up to 6× in query throughput and 8×
in space. Our results take us one step closer towards a robust learned
multi-dimensional index that can serve as a building block in larger
in-memory database systems.

Acknowledgements. This research is supported by Google, Intel,
and Microsoft as part of the MIT Data Systems and AI Lab (DSAIL)
at MIT, NSF IIS 1900933, DARPA Award 16-43-D3M-FP040, and the
MIT Air Force Artificial Intelligence Innovation Accelerator (AIIA).
Research was sponsored by the United States Air Force Research
Laboratory and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing theofficialpolicies, either expressedor implied, of the
UnitedStatesAirForceor theU.S.Government.TheU.S.Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

85

REFERENCES
[1] AmazonAWS. 2016. Amazon Redshift Engineering’s Advanced Table Design Play-

book: Compound and Interleaved Sort Keys. https://aws.amazon.com/blogs/big-
data/amazon-redshift-engineerings-advanced-table-design-playbook-
compound-and-interleaved-sort-keys/.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload Analysis of a Large-Scale Key-Value Store. In Proceedings
of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems (London, England, UK)
(SIGMETRICS ’12). Association for Computing Machinery, New York, NY, USA,
53–64. https://doi.org/10.1145/2254756.2254766

[3] Norbert Beckmann,Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. 1990.
The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles.
SIGMOD Rec. 19, 2 (May 1990), 322–331. https://doi.org/10.1145/93605.98741

[4] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used
for Associative Searching. Commun. ACM 18, 9 (Sept. 1975), 509–517.
https://doi.org/10.1145/361002.361007

[5] Paul Brown and Peter J. Haas. 2003. BHUNT: Automatic Discovery of Fuzzy
Algebraic Constraints in Relational Data. In VLDB.

[6] Surajit Chaudhuri and Vivek Narasayya. 1997. An Efficient, Cost-Driven Index
Selection Tool for Microsoft SQL Server. In Proceedings of the VLDB Endowment.
VLDB Endowment.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154.
https://doi.org/10.1145/1807128.1807152

[8] Databricks Engineering Blog. [n.d.]. Processing Petabytes of Data in Seconds with
Databricks Delta. https://databricks.com/blog/2018/07/31/processing-petabytes-
of-data-in-seconds-with-databricks-delta.html.

[9] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index:
A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor
Queries. In 2020 Conference on Extending Database Technology (EDBT.

[10] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. In Proceedings of the 2020 International Conference on Management of Data.

[11] Mike Stonebraker et al. 2005. C-Store: A Column-oriented DBMS. In Proceedings
of the 31st VLDB Conference. VLDB Endowment.

[12] Evan Hallmark. 2020. Daily Historical Stock Prices (1970 - 2018).
https://www.kaggle.com/ehallmar/daily-historical-stock-prices-1970-2018.

[13] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. PVLDB 13, 8 (2020),
1162–1175. https://doi.org/10.14778/3389133.3389135

[14] Volker Gaede and Oliver Günther. 1998. Multidimensional access methods. ACM
Computing Surveys (CSUR) 30 (1998), 170–231. Issue 2.

[15] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2019. FITing-Tree: A Data-Aware Index Structure. In Proceedings of the
2019 International Conference on Management of Data (Amsterdam, Netherlands)
(SIGMOD ’19). Association for Computing Machinery, New York, NY, USA,
1189–1206. https://doi.org/10.1145/3299869.3319860

[16] IBM. [n.d.]. The Spatial Index. https://www.ibm.com/support/knowledgecenter/
SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_024.htm.

[17] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. 2004.
CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.
In Proceedings of the 2004 ACM SIGMOD International Conference on Management
of Data (Paris, France) (SIGMOD ’04). Association for Computing Machinery, New
York, NY, USA, 647–658. https://doi.org/10.1145/1007568.1007641

[18] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.
2005. IDistance: An Adaptive B+-Tree Based Indexing Method for Nearest
Neighbor Search. ACM Trans. Database Syst. 30, 2 (June 2005), 364–397.
https://doi.org/10.1145/1071610.1071612

[19] Irfan Khan. 2012. Falling RAM prices drive in-memory database surge.
https://www.itworld.com/article/2718428/falling-ram-prices-drive-in-
memory-database-surge.html.

[20] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B.
Zdonik. 2009. Correlation Maps: A Compressed Access Method for Exploiting
Soft Functional Dependencies. Proc. VLDB Endow. 2, 1 (Aug. 2009), 1222–1233.
https://doi.org/10.14778/1687627.1687765

[21] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B.
Zdonik. 2010. CORADD: Correlation Aware Database Designer for Materi-
alized Views and Indexes. Proc. VLDB Endow. 3, 1–2 (Sept. 2010), 1103–1113.
https://doi.org/10.14778/1920841.1920979

[22] Andreas Kipf, Ryan Marcus, Alexander Renen, Mihail Stoian, Alfons Kemper, Tim
Kraska, and Thomas Neumann. 2020. RadixSpline: A Single-Pass Learned Index.
In aiDM 2020.

[23] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018. ACM, 489–504. https://doi.org/10.1145/3183713.3196909

[24] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Ap-
proximate Dependencies. Proc. VLDB Endow. 11, 7 (March 2018), 759–772.
https://doi.org/10.14778/3192965.3192968

[25] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A Learned
Index Structure for Spatial Data. In Proceedings of the 2020 International Conference
on Management of Data.

[26] Lin Ma, Dana Van Aken, Amed Hefny, GustavoMezerhane, Andrew Pavlo, and
Geoffrey J. Gordon. 2018. Query-based Workload Forecasting for Self-Driving
Database Management Systems. In SIGMOD. ACM.

[27] Donald Meagher. 1980. Octree Encoding: A New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer. Technical Report.

[28] Microsoft SQL Server. 2016. Spatial Indexes Overview. https:
//docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-indexes-
overview?view=sql-server-2017.

[29] G. M. Morton. 1966. A computer Oriented Geodetic Data Base; and a New Technique
in File Sequencing (PDF). Technical Report. IBM.

[30] VikramNathan, JialinDing,MohammadAlizadeh, andTimKraska. 2020. Learning
Multi-dimensional Indexes. In Proceedings of the 2020 International Conference
on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Com-
puting Machinery, New York, NY, USA. https://doi.org/10.1145/3318464.3380579

[31] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. 1984. The Grid File: An
Adaptable, Symmetric Multikey File Structure. ACM Trans. Database Syst. 9, 1
(March 1984), 38–71. https://doi.org/10.1145/348.318586

[32] NYC Taxi & Limousine Commission. 2020. TLC Trip Record Data.
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[33] Beng Chin Ooi, Ron Sacks-davis, and Jiawei Han. 2019. Indexing in Spatial
Databases.

[34] Oracle Database Data Warehousing Guide. 2017. Attribute Clustering.
https://docs.oracle.com/database/121/DWHSG/attcluster.htm.

[35] Oracle, Inc. [n.d.]. Oracle Database In-Memory. https://www.oracle.com/
database/technologies/in-memory.html.

[36] Frank Ramsak1, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and
Rudolf Bayer. 2000. Integrating the UB-Tree into a Database System Kernel . In
Proceedings of the 26th International Conference on Very Large Databases. VLDB
Endowment.

[37] RocksDB. 2020. RocksDB. https://rocksdb.org/.
[38] Scipy.org. [n.d.]. scipy.optimize.basinhopping. https://docs.scipy.org/doc/scipy-

0.18.1/reference/generated/scipy.optimize.basinhopping.html.
[39] Dennis G. Severance and Guy M. Lohman. 1976. Differential Files: Their

Application to the Maintenance of Large Databases. ACM Trans. Database Syst.
1, 3 (Sept. 1976), 256–267. https://doi.org/10.1145/320473.320484

[40] Hari Singh and Seema Bawa. 2017. A Survey of Traditional and MapReduceBased
Spatial Query Processing Approaches. SIGMOD Rec. 46, 2 (Sept. 2017), 18–29.
https://doi.org/10.1145/3137586.3137590

[41] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang,
Minjie Wang, and Haibo Chen. 2020. XIndex: A Scalable Learned Index for
Multicore Data Storage. In Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Diego, California) (PPoPP
’20). Association for Computing Machinery, New York, NY, USA, 308–320.
https://doi.org/10.1145/3332466.3374547

[42] TPC. 2019. TPC-H. http://www.tpc.org/tpch/.
[43] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy Lohman, and Alan Skelley.

2000. DB2 Advisor: An Optimizer Smart Enough to Recommend its own Indexes.
In Proceedings of the 16th International Conference on Data Engineering. IEEE.

[44] H.Wang, X. Fu, J. Xu, and H. Lu. 2019. Learned Index for Spatial Queries. In 2019
20th IEEE International Conference on Mobile Data Management (MDM). 569–574.

[45] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber. 2019.
Designing Succinct Secondary Indexing Mechanism by Exploiting Column Corre-
lations. In Proceedings of the 2019 International Conference on Management of Data
(Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Machinery,
New York, NY, USA, 1223–1240. https://doi.org/10.1145/3299869.3319861

[46] Zongheng Yang, Badrish Chandramouli, ChiWang, Johannes Gehrke, Yinan Li,
Umar F. Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya. 2020.
Qd-tree: Learning Data Layouts for Big Data Analytics. In Proceedings of the 2020
International Conference on Management of Data.

[47] Zack Slayton. 2017. Z-Order Indexing for Multifaceted Queries in Amazon
DynamoDB. https://aws.amazon.com/blogs/database/z-order-indexing-for-
multifaceted-queries-in-amazon-dynamodb-part-1/.

[48] zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Char-
acterizing, Modeling, and Benchmarking RocksDB Key-Value Work-
loads at Facebook. In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20). USENIX Association, Santa Clara, CA, 209–223.
https://www.usenix.org/conference/fast20/presentation/cao-zhichao

86

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/93605.98741
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/1807128.1807152
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
 https://www.kaggle.com/ehallmar/daily-historical-stock-prices-1970-2018
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/3299869.3319860
https://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_024.htm
https://www.ibm.com/support/knowledgecenter/SSGU8G_12.1.0/com.ibm.spatial.doc/ids_spat_024.htm
https://doi.org/10.1145/1007568.1007641
https://doi.org/10.1145/1071610.1071612
https://www.itworld.com/article/2718428/falling-ram-prices-drive-in-memory-database-surge.html
https://www.itworld.com/article/2718428/falling-ram-prices-drive-in-memory-database-surge.html
https://doi.org/10.14778/1687627.1687765
https://doi.org/10.14778/1920841.1920979
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.14778/3192965.3192968
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-indexes-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-indexes-overview?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/spatial/spatial-indexes-overview?view=sql-server-2017
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/348.318586
 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://docs.oracle.com/database/121/DWHSG/attcluster.htm
https://www.oracle.com/database/technologies/in-memory.html
https://www.oracle.com/database/technologies/in-memory.html
 https://rocksdb.org/
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.basinhopping.html
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.basinhopping.html
https://doi.org/10.1145/320473.320484
https://doi.org/10.1145/3137586.3137590
https://doi.org/10.1145/3332466.3374547
http://www.tpc.org/tpch/
https://doi.org/10.1145/3299869.3319861
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://www.usenix.org/conference/fast20/presentation/cao-zhichao

	Abstract
	1 Introduction
	2 Background
	2.1 K-d Tree: A Traditional Non-Learned Index
	2.2 Flood: A Learned Index

	3 Tsunami Design Overview
	4 Grid Tree
	4.1 Challenges of Query Skew
	4.2 Reducing Query Skew with a Grid Tree
	4.3 Optimizing the Grid Tree

	5 Augmented Grid
	5.1 Challenges of Data Correlation
	5.2 A Correlation-Aware Grid
	5.3 Optimizing the Augmented Grid

	6 Evaluation
	6.1 Implementation and Setup
	6.2 Datasets and Workloads
	6.3 Overall Results
	6.4 Adaptibility
	6.5 Scalability
	6.6 Drill-down into Components

	7 Related Work
	8 Future Work
	9 Conclusion
	References

