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ABSTRACT
Relational join processing is one of the core functionalities in data-
base management systems. It has been demonstrated that GPUs as
a general-purpose parallel computing platform is very promising
in processing relational joins. However, join algorithms often need
to handle very large input data, which is an issue that was not
sufficiently addressed in existing work. Besides, as more and more
desktop and workstation platforms support multi-GPU environ-
ment, the combined computing capability of multiple GPUs can
easily achieve that of a computing cluster. It is worth exploring
how join processing would benefit from the adaptation of multi-
ple GPUs. We identify the low rate and complex patterns of data
transfer among the CPU and GPUs as the main challenges in de-
signing efficient algorithms for large table joins. To overcome such
challenges, we propose three distinctive designs of multi-GPU join
algorithms, namely, the nested loop, global sort-merge and hybrid
joins for large table joins with different join conditions. Extensive
experiments running on multiple databases and two different hard-
ware configurations demonstrate high scalability of our algorithms
over data size and significant performance boost brought by the
use of multiple GPUs. Furthermore, our algorithms achieve much
better performance as compared to existing join algorithms, with a
speedup up to 25X and 2.8X over best known code developed for
multi-core CPUs and GPUs respectively.
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1 INTRODUCTION
Relational join is one of the core components in database manage-
ment systems (DBMS). It is an essential operator for many database
applications that involve multiple tables. Hence improving join pro-
cessing performance has been an active topic in database research.
The increasing database size in today’s business applications has
imposed significant challenges to efficient processing of relational
joins.

Modern hardware technologies, especially multi-core chips, pro-
vide abundant computing capabilities that could benefit database
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management. As a result, there is a large body of work on join al-
gorithms designed and optimized for such hardware. On multicore
CPUs, various strategies [1–3, 5, 12] such as workload partition and
assignment, cache optimization, and use of SIMD instructions are
proposed.

Many-core computing platforms, represented by Graphics Pro-
cessing Units (GPUs), also attracted much attention from the re-
search community. It has been demonstrated [8, 9, 11, 19, 21, 22] that
GPUs, as a general-purpose parallel computing platform, are very
promising in processing relational joins – a speedup of 5-10X has
been reported when comparing GPU join code with multi-thread
CPU code. All such work, however, is based on the assumption that
input tables and intermediate join results can be fully loaded to the
GPU memory. In a typical GPU, the size of the on-board memory is
at the 8-16GB level, this sets a tight limit on the scale of database
that can be processed. In this paper, we propose efficient algorithms
for processing joins when both input tables are too big to be GPU
resident.

Nowadays, more and more workstation and servers carry multi-
ple GPU devices. The combined computing capability of (four to
eight) GPUs in such a machine can easily dwarf those of a cluster
that consists of dozens of nodes seen a few years ago. In general,
the bottleneck in processing relational join is at data transmission
rather than in-core computation. While the high bandwidth of GPU
memory builds the foundation for efficient GPU join algorithms,
multiple GPUs, by providing higher aggregated memory size, can
further improve join processing. In this paper, we present design
and implementation of GPU algorithms that take advantage of the
combined capabilities of multiple GPUs in a single node (although
our algorithms also work under single-GPU scenarios). To the best
of our knowledge, this is the first work that relaxes the “small table"
assumption by using multiple GPUs in join processing.

There are unique challenges in using multiple GPUs for large
table join processing. First, the bandwidth of PCI-E is a major bottle-
neck even though it has steadily increased over the years. Since the
memory size of GPUs is limited, it is inevitable that data exchange
occurs between the CPU (host) and the GPUs (devices) via PCI-E
bus. The fact that multiple GPUs share the host-to-device channels
further increases data exchange overhead. Therefore, it is vital to
minimize the data transfer between them. Second, in a multi-GPU
environment, data sharing among devices is allowed and this pro-
vides extra opportunities for better performance. On other hand,
inter-GPU communication has to consider the special structure
of the PCI-E links, making algorithm design and optimization a
non-trivial task. As a result, the goal of our algorithm designs is to
overcome the aforementioned challenges and take full advantage
of multi-GPU platform for join processing.
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This paper makes the following contributions. First, by exploring
the hardware hierarchy and design space of multi-GPU join algo-
rithms, we identify the main obstacles against efficient large table
joins on multiple GPUs. Specifically, we conclude that limited band-
width and complex structure of the data communication links are
themain issues. Therefore, we focus onminimizing the data transfer
among GPUs and CPUs. Second, we propose three distinctive de-
signs of multi-GPU join algorithms: nested loop, global sort-merge,
and hybrid joins. These algorithms can handle extremely large in-
put tables, and each has its applicability to joins with different types
of conditions. The nested loop join addresses both the inter-GPU
communication and low data transfer rate by taking advantage of
PCIE P2P data transfer, while the other two algorithms tackle the
low data transfer rate by asymptotically reducing the overall data
traffic over PCIE. Last, we evaluate the performance of our algo-
rithms against various data tables with sizes up to 12 billion tuples
using two servers featuring PCI-E and NVLink interconnections,
respectively. The best of our algorithms show linear scalability on
table size, and also achieved much better performance with the
use of multiple GPUs (e.g., up to 2.8X speedup for four GPUs com-
pared with a single GPU). Our algorithms significantly outperform
multi-thread CPU join code, with a speedup up to 25X.

The paper is organized as follows. In Section 2 we discuss chal-
lenges of multi-GPU environments in join processing. In Section 3
we present three join algorithms designed for such hardware envi-
ronments in detail. In Section 4 we present experimental results and
discuss the impact of different factors on join performance. Section
5 briefly summarizes previous work; and Section 6 concludes this
paper.

2 CHALLENGES IN MULTI-GPU JOINS
Over the years, the GPUs has experienced the imbalanced growth
of GPU resources – increase of interconnection bandwidth has
lagged behind that of in-core computing capabilities of GPUs. The
slower interconnection has put more restrictions on improving
join performance on GPUs. In this section, we discuss the two
major challenges of usingmultiple GPUs for join processing: limited
PCI-E bandwidth and complex inter-GPU communication. We will
propose our algorithm designs to tackle these challenges in later
sections.

2.1 Limited PCI-E Bandwidth
The use of multiple GPUs in processing large table joins, while fur-
ther complicating the issue, still sees inter-device communication
as the major cost. The limited capacity of a main-stream GPU’s
global memory (up to 16GB) only allows it to process a portion of
the database tables at a time. Therefore, data exchange among all
the computing devices (including CPUs and GPUs) is inevitable
and more frequent than the single-GPU with small data scenario.
The actual bandwidth of the PCI-E link (at 32𝐺𝐵/𝑠 bidirectional) is
at most in par with the host memory bandwidth, further restricting
fast data transfer. Hence, the overhead of data shipment is more
significant when the amount of data becomes larger. As a result, a
key aspect of designing GPU join algorithms for larger dataset is
to minimize the overhead brought by such data transmission.

Figure 1: A typical system layout of four GPUs connecting
to one CPU socket

Each PCIE connection consists of multiple physical lanes that
provide up to 32GB/s bidirectional bandwidth in total. When multi-
ple GPUs need to copy data from/to the host simultaneously, they
must share the bandwidth of the only host-to-GPU connection.
When the number of GPUs increases from 1 to 𝑁 , the combined
computing power increases by a factor of 𝑁 , but the total host-to-
GPU bandwidth remains the same. This also means the host-to-GPU
data transfer rate for each GPU is reduced by 𝑁 . Hence, it is im-
portant to eliminate back-and-forth data transmission between the
host and the GPUs in designing join algorithms.

2.2 Complex Inter-GPU Communication
Pattern

In addition to its limited bandwidth, the structure of the PCI-E
interconnection introduces extra complexity. If there is only one
GPU in the system, the connection is end-to-end and bi-directional
between the host memory and the GPU. When multiple GPUs are
connected to the system, it forms a tree structure that consists
of GPUs and PCI-E switches, as shown in Figure 1. Each direct
link between two points is bi-directional and has full PCI-E 16X
bandwidth. Again, any concurrent traffic passing through the same
PCI-E link have to share the bandwidth. Fortunately, the PCI-E
links are two-way duplex, meaning it provides bi-directional data
exchange capabilities. The number of GPUs supported by one socket
can be up to 8, in which case there are two levels of switches
and a root complex. Data transmission between GPUs follows the
shortest path between the devices, i.e., in Figure 1, GPU0 and GPU1
communicate via Switch0, but GPU1 and GPU2 have to follow a
path of Switch0-root-Switch1. GPU-to-host communications have
to go through the root complex.

For systems with multiple CPU sockets, each socket could con-
nect to a network shown above. As a result, the system has more
PCI-E lanes for device-device data transfer. However, data move-
ment between sockets have to go through the inter-socket connec-
tion (i.e., QPI for Intel and X Bus for IBM), which has much lower
bandwidth than in intra-socket transfer.

Moreover, the data have to hop to different regions of the host
memory before reaching the target GPU, giving rise to large data
transfer latency. Such regions are generally called non-uniform
memory access (NUMA) regions. Hence it is critical to minimize the
data exchange between NUMA regions and GPUs that are attached
to different CPU sockets.

Note that recent Nvidia cards are equipped with high-speed
NVLink interconnection with 80GB/s of bi-directional bandwidth.
From our experiments, we observe that the NVLink shares similar
characteristics with the PCI-E except the former provides higher
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Table 1: Common Symbol Definitions.

Symbol Definition
D Number of GPUs
R, S Relations to be joined
M Number of chunks in relation R
N Number of chunks in relation S
nRP Number of Radix Partitions

Figure 2: Overview of block-based nested-loop join

bandwidth. With NVLink, the data transfer is still a bottleneck in
processing joins between large tables. Details of such experiments
can be found in our technical report [20].

3 LARGE TABLE JOIN ALGORITHMS
In this section, we describe three variants of multi-GPU join algo-
rithms in detail. Since the focus of this work is to explore the design
of large joins with multiple GPUs by reducing the inter-device data
transfer overhead, we utilize single-GPU join algorithms proposed
in [21] as the basic building block of our work. We chose such
primitives because they deliver the best performance (as we have
verified via extensive experiments) in single-GPU-small-table joins.

Even though the three algorithms have different running time
complexity, all of them will find their uses in an actual GPU-based
DBMS. The nested-loop join can handle joins with arbitrarily com-
plex conditions. The GSM join is suitable for joins with equality or
range match join conditions. The hybrid join can process joins with
equality and integer type range conditions. One other advantage
of the GSM join is that the resulting table is ordered in a particular
way. This could lower the costs of downstream operators such as
“order by” or “group by” in a database query, and is a frequently
utilized mechanism in query optimization.

In the following discussions, we assume that both input tables
are too big to reside in GPU memory. However, we assume the
host main memory is large enough to host both tables. Our algo-
rithm design and implementation are based on NVidia’s CUDA
programming framework. Symbols and notations used throughout
this paper are listed in Table 1.

3.1 Block-Based Nested-Loop Join
We start by the intuitive idea of nested-loop join with blocking
strategy as the first multi-GPU join algorithm. By blocking, we
mean that the join is carried out between blocks (or chunks) of
the input tables. This algorithm is convenient for implementation
of theta join or for use with data that are already partitioned. As

shown in Figure 2, the two input tables R and S are split into equally-
sized chunks so that a pair of chunks (one from each of R and S)
along with intermediate data can fit into the global memory of a
GPU. Upon loading a chunk from the outer table R to each GPU,
all chunks of the inner table S will be loaded one by one into the
same GPU. Depending on the specific join conditions, we can use
different in-core join algorithms such as nested loop, sort-merge, or
hash joins shown in [21] and [9]. Our algorithm terminates when
all chunks of R are consumed. Algorithm 1 shows the pseudocode
of the nested-loop join. In all algorithms presented in this paper,
by “omp parallel" we mean to unroll the loop and distribute the
workload (via the loop index) to different GPUs via OpenMP.

Algorithm 1: Block-Based Nested-Loop Join with in-core
Sort-Merge Join
Input: R, S, D, M, N
Output: Join result res
1: r[] = partition(R, M);
2: s[] = partition(S, N);
3: for i = 0 to M-1 omp parallel do
4: setCudaDevice(i%D);
5: r’ = r[i];
6: for j = i; j < N; j+=D do
7: s’ = s[j]
8: res.append(gpuInCoreJoin(r’, s’)); //local join
9: for k = 1 to D-1 do
10: s’ = memCopy(s’,(i+1)%D); //copy local s[i] to next

device
11: res.append(gpuInCoreJoin(r’,s’));
12: end for
13: end for
14: end for

While the above algorithm seems straightforward, the design of
the inner loop (line 11 in Algorithm 1) calls for optimizations that
are unique in a multi-GPU environment. The easiest way would be
to directly fetch chunks of S from the host memory. However, this
requires bandwidth sharing in the PCI-E root complex among all
GPU cards (Figure 1), leading to a major bottleneck. Our strategy
is to have the GPUs exchange their chunks of S (Figure 3) before
asking for new chunks from the host memory. Recall (Figure 1)
that peer-to-peer data transmission could be done in lower levels
of the PCI-E network tree, thus reducing the load on the high-level
switches including the root complex. Given that, the inner loop of
Algorithm 1 is divided into stages, in each stage the 𝐷 GPUs will
each load a chunk of S, the 𝐷 chunks of S will be consumed by all
GPUs before the next stage starts.

An interesting problem here is: given the 𝐷 chunks, how do we
arrange the P2P transmission among 𝐷 GPUs such that time for
every GPU to see all chunks is minimized? With the PCI-E network
structure represented in Figure 1, our solution is as follows: in a PCI-
E network of 𝐷 GPUs, the 𝑖-th GPU ships its data to its immediate
neighbor, e.g., the (𝑖 + 1)%𝐷-th GPU (Figure 3). By this, it takes
𝐷 − 1 rounds to share all the data, and we will take full advantage
of the data channels in the entire PCI-E network. We can prove that
with the PCI-E network structure represented in Fig. 1, the Ring
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Figure 3: Loading of inner table chunks and GPU peer-to-
peer data transmission in the Nested-Loop Join

exchange plan requires the smallest amount of time to exchange
all data for all GPUs, though the proof is omitted here due to the
page limits.

Performance Analysis: Suppose there are a total of𝑀 chunks in
table R and 𝑁 chunks in table S, the number of devices is 𝐷 and the
PCI-E uni-directional bandwidth is 𝐵. Intuitively, without P2P data
transmission, the total amount of data transferred between host
and devices is

T1 = |𝑅 | +𝑀 |𝑆 | (1)
where | · | is the size of a table. By taking advantage of the PCI-E
P2P transfer, we reduce the amount of data transferred between
the host and the devices to |𝑅 | + 𝑀

𝐷
|𝑆 |. In addition to that, we have

to add the data traffic via P2P transfer. For each step of the inner
loop, there are 𝐷 chunks of S that need to be exchanged, and each
of the chunk has to be transferred 𝐷 − 1 time. As a result, there
are 𝐷 (𝐷 − 1) P2P exchanges to be done in total. Thus, the total

amount of P2P data transfer is
𝑀

𝐷
· |𝑆 |
𝐷

𝐷 (𝐷 − 1) = 𝑀 |𝑆 |
𝐷

(𝐷 − 1).
Given those, the amount of data transfer of the whole algorithm
(with P2P) is

T2 = |𝑅 | + 𝑀

𝐷
|𝑆 | + 𝑀 |𝑆 |

𝐷
(𝐷 − 1) (2)

However, to compare the time needed to accomplish the transfer
of T1 and T2, we need to apply a 𝐷-fold discount to the 3rd item of
Eq. (2), and the bandwidth-adjusted T2 is

T ′
2 = |𝑅 | + 𝑀

𝐷
|𝑆 | + 𝑀 |𝑆 |

𝐷2 (𝐷 − 1) = |𝑅 | +𝑀 |𝑆 |
(︃
2𝐷 − 1
𝐷2

)︃
(3)

By comparing Eq. (3) with Eq. (1), we can clearly see a perfor-
mance advantage brought by the P2P data transfer. By ignoring
the low-order item |𝑅 | in both equations, the improvement is by a
factor of 𝐷2/(2𝐷 − 1).

3.2 Global Sort-Merge (GSM) Join
While the nested-loop join can handle arbitrary join conditions,
it carries a quadratic data transmission cost. For joins with more
special conditions such as equality or range matches, we introduce
our second join algorithm named global sort-merge (GSM) join. It is
based on the well-known idea of sort-merge join which brings the
data transmission cost down to subquadratic. The key challenge of
it would be to design a sorting algorithm that works with multiple
GPUs and is able to consume input larger than the total GPU mem-
ory size. First, we have to let several GPUs work independently and

GPU 0 GPU 1 GPU 2 GPU 3Devices

Chunk 0 Chunk 1 Chunk 2 Chunk 3
Sorted
Input

Merge Path
Partition

(Host Memory)

Chunk 0’         Chunk 1’
Cooperative

Merge Chunk 2’         Chunk 3’

Chunk 0’’       Chunk 1’’       Chunk 2’’       Chunk 3’’

Merge Path
Partition

(Host Memory)

[0…i-1] [i…L] [0…j-1] [j…L] [0…i-1] [i…L] [0…j-1] [j…L]

Cooperative
Merge

[0…i-1] [i…L] [0…i-1] [i…L] [0…j-1] [j…L] [0…j-1] [j…L]

Figure 4: Global sorting with two GPUs

cooperatively to sort and merge the data out-of-core while reducing
the data transfer impact. Second, we should keep all their workload
balanced throughout the process. Both tasks are not trivial.

In traditional disk-based DBMS, sorting depends on serial merge
of two sorted lists, each of which has to be accomplished by one
worker (CPU) thread. For GPUs, we can do the same, but it is less
efficient. In the in-memory setup, the random-access host memory
allows for CPUs to search through the input and partition the
workload for multiple GPUs. Therefore we developed a multi-GPU
sorting algorithm that adopts CPU-based merge path partition[6,
17] to enables multi-GPU merge.

The algorithm consists of two steps: sort and join. In sort step,
the GPUs cooperatively sort the input tables. In join step, they work
independently to join small chunks of the sorted tables. In order to
realize the out-of-core processing and multi-GPU parallelism, the
sort step is further split in to two parts: sorted-run generation and
multi-GPU merge. The join step applies the same idea of multi-GPU
merge to conduct multiple in-core joins. With the CPU-assisted
merge path partitioning, each GPU works on a pair of disjoint
partitions of the two tables and multiple GPU devices are capable
of working independently and cooperatively. We elaborate each
step in the following sections.

3.2.1 Sorted Run Generation. Since we assume the input tables can
be arbitrarily large and the GPUs’ global memory capacity is limited,
divide-and-conquer is necessary. Therefore the sorting must be split
into two parts: generating small sorted runs and merging the sorted
runs into one sorted table. The sorted run generation ensures that
the sorted runs are small enough to fit in a GPU’s global memory
along with its intermediate data structures, and each sorted run
can be processed locally by a GPU. As shown in Algorithm 2 and
Figure 4, we first split the input relations into equal-sized chunks
whose sizes fit in the global memory of a single GPU. Each of the
GPUs takes one chunk at a time from the host memory with a fixed
stride. Then it uses efficient in-core GPU radix sort algorithm [16]
to sort the chunk locally, and transfer it back to the host memory.
All GPUs work together in parallel until all the chunks are sorted.
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3.2.2 Multi-GPU Merge of Sorted Runs. When the sorted runs are
ready, they need to be merged into larger sorted lists. However,
it is impossible for a GPU to hold two small sorted runs in its
global memory. Multiple GPUs must work cooperatively when
merging the sorted runs and perform several rounds of merging if
the sublists to be merged are larger than the total size of all GPUs’
global memory. Therefore a data partition is necessary to ensure
parallelism and load balancing among the GPUs. To tackle this
challenge, we propose a multi-threaded CPU-assisted multi-GPU
merge, the core mechanism that enables out-of-core processing
with multiple GPUs, which is shown in Algorithm 3. It features
merge-path partition which is a parallel partition algorithm that
utilizes binary search on two sorted lists to partition them into
load-balanced workload for multi-threaded merging. It breaks the
merge workload of two sorted lists 𝐴 and 𝐵 into multiple equal-
sized portions by using binary search along the pairs𝐴[𝑖] and 𝐵 [ 𝑗],
where 𝑖 + 𝑗 = 𝐿 and 𝐿 is the partition size.

In each round of merge, multiple threads are launched using
OpenMP in accordance with the number of GPUs 𝐷 so that there
is one CPU thread working with a GPU. Before the merge begins,
the threads apply merge path partition on the two sublists to be
merged. Each GPU works on a pair of partitions independently.
Since the merge path partition is a binary search into both sorted
lists to ensure the merges are load-balanced, the GPUs all have the
same amount of work even though the partitions may not be of the
same size. The GPUs fetch their partitions from the host memory
and write the merged list back to the host memory afterwards.
If the size of the pair of sublists to be merged are too large, they
will be split into more partitions so that multiple GPUs can work
cooperatively on them. If there is only one GPU available, it can
process the partitions as well.

Figure 4 illustrates the workflow with an example of two GPUs
and four input chunks. After GPU 0 and 1 take turns to sort the
chunks, the data are all transferred back to the host. Each of chunks
0-3 is partitioned by CPU into two partitions using merge path in
host memory(labeled by red font). GPU0 first works on merging
elements 0 to i-1 of chunk 0 and elements 0 to j-1 of chunk 1,
and then merging the corresponding partitions of chunks 2 and
3. Meanwhile, GPU1 first works on merging elements i to L of
chunk 0 and elements j to L of chunk 1, and then merging the
other partitions of chunks 2 and 3. As a result, chunk 0’ and 1’ are
generated and form a single sorted list, while chunk 2’ and 3’ form
another one. Then the two newly generated sorted lists go through
another round of partitioning and merging by CPUs and GPUs
respectively, until the four chunks are merged into a single sorted
list.

3.2.3 Multi-GPU Merge Join. As both input tables are sorted and
ready in the host memory, we can proceed to the merge join stage
(Algorithm 4). Similar to the idea of multi-GPU merge, we launch 𝐷
CPU threads by OpenMP and use merge path partition to split both
tables into 𝐷 partitioins. Each GPU acquires a pair of partitions
from 𝑅 and 𝑆 and joins its own pair independently. It is possible
that the size of each pair of partitions still exceeds a GPU’s global
memory capacity. Therefore for each GPU we apply the merge path
partition again that splits each pair of partitions in to even smaller
ones so that one GPU can join partitions within the limit of global

memory size. Each GPU joins the smaller partitions in a sequential
manner until it finishes all pairs of partitions.

3.2.4 Overlapping Computation with Data Transfer. A key chal-
lenge in GPU computing is to hide the overhead of data transfer
via the shared PCI-E channels. The overhead is especially signifi-
cant in join processing because relational joins often involve very
little in-core computation (e.g., simple data comparison instead
of heavy arithmetic operations). Normally, the running time of a
GPU task consists of the following three parts: time𝑇1 for shipping
input data from main memory to GPU global memory, time 𝑇2 for
GPU computation, and time 𝑇3 for shipping output data back to
CPU. The total time for running a task is therefore 𝑇1 + 𝑇2 + 𝑇3.
GPU programming frameworks often provide asynchronous APIs
to create a pipeline that is capable of reducing the overhead by
overlapping data transfer with in-core computation. Specifically,
we implement such a pipeline using CUDA Stream for the global
sort-merge join, and the third join algorithm in Section 3.3. We use
three CUDA streams, each performing the complete host-to-device
transfer, sorting and device-to-host transfer process as a pipeline.
Therefore the three pipelines can overlap each other so that the
compute resources and PCI-E bandwidth are kept busy most of
the time. To facilitate the execution of the pipelines, the available
global memory space on the GPU is divided into three parts. So
each stream has its own work space, there is no contention among
the streams when accessing or transferring data. Theoretically, use
of CUDA streams can lead to a total running time ofmax(𝑇1,𝑇2,𝑇3).
As shown in previous work [21], 𝑇2 is generally a non-dominant
part of total running time.

3.2.5 Performance Analysis. In the sorted run generation, we still
assume there are 𝑀 sorted runs in 𝑅 and 𝑁 in 𝑆 for simplicity.
The total data transferred between the host and GPUs including
copying sorted runs back to main memory is 2( |𝑅 | + |𝑆 |). The multi-
GPU merge stage requires 𝑙𝑜𝑔2𝑀 and 𝑙𝑜𝑔2𝑁 rounds to merge all
the sorted runs in 𝑅 and 𝑆 respectively. Therefore the total data
transferred between host and GPUs is 2( |𝑅 |𝑙𝑜𝑔2𝑀 + |𝑆 |𝑙𝑜𝑔2𝑁 ). Dur-
ing the above two steps, we take advantage of CUDA streams and
bi-directional data transfer, so the transfer bandwidth is 2𝐵. In the
final merge join, the data traffic is |𝑅 | + |𝑆 |. In summary, the total
amount of data transmitted between host and GPUs is

3( |𝑅 | + |𝑆 |) + 2( |𝑅 |𝑙𝑜𝑔2𝑀 + |𝑆 |𝑙𝑜𝑔2𝑁 ) (4)

As a result, the time spent on data transfer over PCI-E is

2( |𝑅 | + |𝑆 |)
𝐵

+ |𝑅 |𝑙𝑜𝑔2𝑀 + |𝑆 |𝑙𝑜𝑔2𝑁
𝐵

(5)

As compared to the Nested-Loop Join, the advantage of the GSM
Join lies in its low I/O cost. It was achieved by the global sorting
such that only those chunks of R and S that could generate join
results will be processed by the GPUs for the final in-core merge.

3.3 Hybrid Join
Although the GSM join is handy when dealing with equi-join and
range join, it comes with a price of transferring data back and
forth to accomplish the sorting task. To further reduce the data
transfer, we need a partitioning or partial sorting mechanism that
is more efficient in I/O. The radix paritioning widely used in hash
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Algorithm 2: Global Sort-Merge Join
Input: R, S, D, M, N
Output: Join result res
1: r[] = partition(R, M);
2: s[] = partition(S, N);
3: for i = 0 to M-1 omp parallel do
4: setCudaDevice(i%D);
5: gpuSort(r[i]);
6: end for
7: cooperativeMerge(r, M, D);
8: for i = 0 to N-1 omp parallel do
9: setCudaDevice(i%D);
10: gpuSort(s[i]);
11: end for
12: cooperativeMerge(s, N, D);
13: res = globalJoin(r, s, D);

Algorithm 3: cooperativeMerge
Input: Partitioned Relation r, M, D
Output: Sorted Relation r
1: stride = 2;
2: numPairs = M/stride;
3: for i = 0 to numPairs-1 do
4: for k = 0 to stride-1 omp parallel do
5: setCudaDevice(i%D);
6: cpuMergePath(r[2*k], r[2*k+1]);
7: gpuMerge(r[2*k], r[2*k+1]);
8: end for
9: end for

Algorithm 4: globalJoin
Input: Sorted Relation R and S, D, Max Join Size T
Output: Join Results res
1: [numPartitions, r[], s[]] = mergePathPartition(R, S, T);
2: for i = 0 to numPartitions-1 omp parallel do
3: setCudaDevice(i%D);
4: res += inCoreSMJ(r[i], s[i]);
5: end for

join algorithms [3, 9, 12] serve this purpose. On the other hand,
our previous work on GPU-based hash and sort merge joins [21]
revealed the fact that the in-core sort-merge join is more efficient
than the hash join based on radix partitioning on GPUs. That leads to
the idea of a hybrid design that enjoys the merits of both worlds -
a combination of radix partitioning and in-core sort-merge join(see
details in Algorithm 5). In this algorithm, we first group the tuples
with the same radix value in each of the input tables into small
partitions, then each GPU takes a pair of partitions from 𝑅 and
𝑆 and proceed to in-core sort-merge joins independently. Both
steps are scalable with more GPUs. We want to point out that,
due to the global radix partitioning and in-core sort merge, this
algorithm works for any type of equi-joins as well as joins with
range conditions when the join key of integer type.

Chunk 0 Chunk 1 Chunk 2 Chunk 3

GPU 0 GPU 1 GPU 2 GPU 3Devices

Input

Radix
Partition P(0,0)   P(0,1) P(1,0)   P(1,1) P(2,0)   P(2,1) P(3,0)   P(3,1)

Gather
Before

Join
P(0,0)   P(1,0)   P(2,0)   P(3,0) P(0,1)   P(1,1)   P(2,1)   P(3,1)

GPU 0, Partition 0 GPU 1, Partition 1

Figure 5: Radix partition with two GPUs

Algorithm 5: Hybrid Join
Input: R, S, M, N, nRP, D
Output: Join result res
1: r[] = partition(R, M);
2: s[] = partition(S, N);
3: presumR[M][nRP] = gpuRadixPartition(r[], M, D);
4: presumS[N][nRP] = gpuRadixPartition(s[], N, D);
5: for i = 0 to nRP omp parallel do
6: setCudaDevice(i%D);
7: r’ = gather(r[], presumR[][], M, i);
8: s’ = gather(s[], presumS[][], N, i);
9: gpuSort(r’);
10: gpuSort(s’);
11: res.append(inCoreSMJ(r’, s’));
12: end for

3.3.1 Multi-GPU Radix Partition. The first step of hybrid join is to
partition the input tables. Unlike other partitioning strategies, radix
partitioning creates disjoint partitions that are suitable for parallel
sort-merge join tasks since one partition in one table has only one
corresponding partition in the other table, hence reducing compu-
tation and memory access cost. In addition, extracting the radix
value only requires bit operations which are more efficient than the
comparison-based mechanism. The radix partition consists of three
steps: building histogram, computing prefix-sum and scattering
tuples to new positions. Building histogram is to count the number
of tuples falling in each bucket that represents a particular radix
value. A prefix scan on the histogram results in prefix-sum, an array
of numbers that can be used to determine the starting position to
scatter the tuples in each bucket. Based on the prefix-sum, we can
reorder the tuples in parallel. Previous work addressed the radix
partition on multi-core CPUs and on single GPUs [9, 12, 21]. In this
section, we focus on our design with multiple GPUs.

To make the GPUs work simultaneously, we need to distribute
the input among them and then combine their local histograms.
Algorithm 6 describes theworkflow in detail. To build the histogram,
each input table is scanned once. Therefore each GPU simply fetch
a chunk of the input that fits in the global memory at a time. Then
the GPUs proceed to in-core histogram kernel for each chunk, and
keep an array of the partial histograms of every thread block in the
GPU’s global memory. Every time a GPU processes a new chunk, it
counts the partial histograms for that particular chunk accordingly.
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The GPUs keep fetching chunks and computing histograms until
the input is exhausted. Upon the completion of counting histogram,
each chunk have its own partial histogram on the data.

There are two options for the following prefix-sum and scatter.
The intuitive way is to combine the partial histograms from all the
chunks, consequently generating a global prefix sum and the tuples
are scattered to different contiguous spaces (or buckets). On the
contrary, the other option allows for lower overhead by letting the
GPUs build local prefix-sum within each chunk. In other words, the
radix partition is done at chunk level rather than the whole table.

Specifically, right after the histogram is built for a particular
chunk, the corresponding GPU begins to calculate its local prefix-
sum and then scatters the tuples to the buckets in GPU’s memory
space. Therefore, it is not necessary to keep the histogram of that
particular chunk afterwards, reducing the memory consumption
and extra data transfer overhead. It also helps reduce scatter over-
head since it can be done within the global memory, eliminating the
need for accessing host memory. The GPUs keep working chunk
by chunk until all of them are processed. The only minor issue
with this method is that the tuples belonging to the same bucket
spread in several different chunks although they are clustered lo-
cally within each chunk. In the in-core join stage, the separated
sub-partitions of each partition have to be fetched separately. Since
we have the prefix-sums for all the chunks that help us decide the
starting and ending positions of the sub-partitions, the problem
should be easily solved by copying them one by one.

Algorithm 6: gpuRadixPartition
Input: Partitions of Relation r[], M, nRP, D
Output: prefix of the radix partitions of all the chunks

globalHisto
1: for i = 0 to M-1 omp parallel do
2: setCudaDevice(i%D);
3: histogram[nRP] = gpuComputeHistogram(r[i], nRP);
4: presum[nRP] = gpuComputePrefix(histogram);
5: gpuReorderRelation(r[i],presum);
6: globalHisto.append(presum[]);
7: end for

Theworkflow of themulti-GPU radix partition is shown in Figure
5, where an example of four GPUs and four chunks is used. In the
example, a partition P(i,j) represents a sub-partition of partition j
processed by GPU i. For GPU 0, it takes chunk 0 of table R at first
from the main memory and perform radix partition on it(we use
two partitions P(0,0) and P(0,1) for illustration purpose), then puts
the reordered chunk back to main memory. The two GPUs partition
the chunks in stride manner untill all the chunks are partitioned.
The GPUs do the same to the chunks of table S, we omit this step for
simplicity. The GPUs gathers the data of the same partition from
different chunks before the in-core join starts.

3.3.2 In-Core Sort-Merge Join. After the radix partition, the paired
partitions with the same radix value from the two tables can be
joined on the GPUs independently. As mentioned above, the tuples
of a particular partition are scattered into many sub-partitions
across multiple chunks. Hence at the beginning of the in-core join,

the sub-partitions need to be gathered as a whole partition, as
shown in Figure 5. To do so, we iterate over all the chunks and fetch
the corresponding sub-partitions with the particular radix value
one at a time with the help of the partial prefix-sum generated
in the previous stage. The sub-partitions are copied into a buffer
in the GPUs’ global memory. GPU 0 is assigned to gather P(0,0)
through P(3,0) since they all belong to partition 0. As soon as the
input partitions are ready in the global memory, the GPUs perform
in-core sort-merge join in parallel. The join results are buffered
in another array in the global memory. When the in-core join
procedure finishes, the results are transferred to the main memory
and combined into one list.

3.3.3 Performance Analysis. In the hybrid join approach, data trans-
fers occur at radix partitioning stage and only involve a linear scan
of the input from the main memory and writing back to the main
memory. The in-core join stage only reads the reordered input once.
Therefore, the total data traffic over PCI-E is

3( |𝑅 | + |𝑆 |). (6)

Due to the fact that the scan and write in the radix partitioning
stage can be overlapped using bidirectional bandwidth of the PCI-E
channels, the data transfer time of that stage is reduced by half.1
Thus, the total data transfer time is

2( |𝑅 | + |𝑆 |)
𝐵

(7)

The above shows that the hybrid join is clearly superior to the other
algorithms introduced earlier.

4 EXPERIMENTS
To evaluate the performance and scalability of three join algorithms,
we test them on two different hardware platforms. The first one
consists of two Intel Xeon E5-2630V3 CPUs with 384GB of RAM,
where each Xeon processor socket connects four Nivida GTX Titan
X Pascal GPUs via PCI-E3.0 16X. The second one is an IBM Minsky
server with two Power8 processors, 512GB of RAM, and each pro-
cessor socket connects two Nvidia Tesla P100 GPUs via NVLink.
Both platforms have CUDA 9.0 installed on Linux operating sys-
tems. Each GTX Titan X Pascal has 12GB GDDR5X RAM, while the
Tesla P100 has 16GB HBM2 RAM.

We follow the convention found in many existing work [8, 9, 11]
on relational joins in generating synthetic data: the tuples are <

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pairs where both the key and value are 32-bit integers.
The keys are randomly generated following an uniform distribution,
and for the tests against skewed data, a Zipf distribution. Unless
specified otherwise, we set the table size |𝑅 | and |𝑆 | to be the same.

The parameters M and N (number of chunks) of all algorithms
are chosen in a way such that the largest chunks of R and S are
used, as allowed by the specific algorithms, and we keep the same
chunk sizes for both R and S. In particular, the chunk size for the
nested-loop join is 250M records, 50M records for GSM and hybrid
joins.

For benchmarking purposes, we compare our code with the state-
of-the-art parallel CPU hash join code [2] with multi-threading,
1The actual data transfer rate may be different. For example, our tests show that we
can achieve 12GB/s uni-directional and 22GB/s bi-directional. Thus, the data transfer
time will reduce by a factor of 1-12/22=0.45, which is slightly lower than 0.5.
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Figure 6: Running time of three join algorithms with PCIE and NVLink

SIMD and cache-conscious optimization techniques, and the GPU
code in [22] which addressed out-of-core join with hash join and a
single GPU.

4.1 Total Running Time
Figure 6 shows the end-to-end running time of the three GPU join
algorithms under various input sizes and hardware configurations.
The top three parts in Figure 6 show the result of Titan X pascal
with PCI-E interconnections. Clearly, the nested-loop join is the
least performant, requiring more than 2,000 seconds to join two 12-
billion-record tables with one GPU as shown in Fig. 6(a). Usingmore
GPUs improves the performance significantly, with the marginal
improvement shrinks as the number of GPUs increases.

The GSM join is about one order of magnitude faster than the
nested-loop join. As shown in Figure 6(b), the curve is less steep
than the quadratic growth of nested-loop join. When using two and
four GPUs, the improvement over one GPU is noticeable but not as
significant as in the nested-loop join. As we will see in section 4.1.2,
the reason for this is that the GSM join has a lower amount of work
relative to its amount of data transferred, hence the performance is
bottlenecked mainly by the saturated bandwidth. Due to the larger
size of host side double buffer to facilitate the sort, the GSM join
can only handle tables with a size up to 10 billion records.

Obviously, the hybrid join is the winner among the three, out-
performing the GSM join by around 2X, as shown in 6(c). The
multi-GPU speedup is more scalable than GSM join. Although it
suffers from the same issue as the latter, the performance of 8-GPU
surpasses that of 4-GPU from table size of 9 billion, taking only less
than 40 seconds to process the 12-billion-tuple tables.

For the Global Sort Merge and Hybrid joins, wee also run exper-
iments under eight GPUs for the PCI-E-based system, with each
group of four GPUs connected to one CPU. Note that each such
group of four GPUs represent a PCI-E network structure shown in
Figure 1. Data transfer across the two groups is accomplished via In-
tel’s QPI link with low bandwidth and large latency [20]. Therefore,

it is expected that the use of GPUs across the QPI link will lower
the performance. In our case, after the memory in the first node
is used up, as shown at a table size of 6 billions along the red line
in Figure 6(b), GPUs in both nodes need to access the other node’s
memory space. At this point, the QPI’s bidirectional bandwidth
can be utilized and the running time curve of 8-GPU becomes less
steep. We were not able to run the Nested-Loop Join under eight
cards because a key idea of the algorithm, the P2P data sharing,
only works for cards connected by one socket.

The bottom three plots in Figure 6 show the results of Tesla
P100 with NVLink interconnections. The curves exhibit simpler
trends than those of the Titan X pascal. The running time grows
proportionally across the three algorithms and various number
of GPUs used, with the nested-loop join being the slowest and
the hybrid join the fastest again. On average, a single Tesla P100
achieves a speedup of 1.9X, 2.9X and 2.2X over a Titan X pascal in
the nested loop, global and hybrid joins, respectively. The cases of
four GPUs in the Tesla P100 experiments are similar to those of the
eight GPUs in the Titan X - they both are connected to two CPUs.
As a result, the running time of the GSM join under four P100 is
higher than in two GPUs. However, the situation is better in the
hybrid join - the performance under four GPU is better than under
two GPU setups.

4.1.1 Scalability. The scalability of a parallel join algorithm is one
of the key factors we study. First, let us study the scalability over
data size. The running time of the nested-loop join clearly grows
in a quadratic manner. The increase of running time for the other
two algorithms follows a pattern that is closer to linear. There is
no significant difference between the growth patterns of these two
algorithms.

Second, we look at the scalability of the join algorithms over
different numbers of GPU devices. In terms of computing power, the
performance theoretically grows linear with the number of GPUs
used. However, the data transfer bandwidth and the host memory
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Hybrid Join Global SMJ Nested-Loop Join
8 GPU 4 GPU 2 GPU 8 GPU 4 GPU 2 GPU 4 GPU 2 GPU

Average 1.81 2.38 1.52 0.81 1.47 1.08 2.40 1.81
Range 1.30–2.55 1.73-2.80 1.42–1.60 0.52–1.23 1.26–1.68 1.01–1.13 2.06–2.49 1.52–1.92

Table 2: Speedup of multi-GPU runs of different algorithms over single-GPU runs on GTX Titan X pascal

Hybrid
Join

Global
SMJ

Nested-
Loop

4 GPU 2 GPU 4 GPU 2 GPU 2 GPU
Average 1.97 1.58 1.12 1.36 1.76

Range 1.50
– 2.16

1.47
– 1.64

0.88
– 1.32

1.29
– 1.43

1.73
– 1.80

Table 3: Speedup of multi-GPU runs of different algorithms
over single-GPU runs on Tesla P100

bandwidth do not change (for both PCI-E and NVLink systems).
The impacts of shared bandwidth on performance are as follows.

Tables 2 and 3 show the speedup of multiple GPUs versus a
single GPU achieved in running the three join algorithms on GTX
Titan X pascal and Tesla P100, respectively. The nested-loop join
algorithm is the least affected by the bandwidth due to two factors.
First, its in-core computation carries a heavier weight as compared
to the other two variants, minimizing the impact of data transfer
(Section 4.1.2). Second, the nested-loop join takes advantage of P2P
data transfer, effectively multiplying the available bandwidth even
though all the data ultimately comes from host memory. As a result,
the performance of two GPUs almost doubles the performance of
one GPU with x86 and PCI-E, while it shrinks slightly to 1.7X with
Power8 and NVlink. Four GPUs working together on PCI-E further
improves the performance to 2.4X.

The hybrid join suffers more from the bandwidth issue but is able
to maintain an adequate scalability. With two GPUs, the hybrid
join achieves more than 1.5x speedup on both x86 and Power8
platforms. The four Titan X on the x86 achieves 2.4X speedup, the
same as in the nested-loop join. Both platforms begin to suffer from
additional overhead incurred by the cross-die communication when
more GPUs are used, resulting in speedup under 2.0X with eight
GPUs on the x86 and four GPUs on the Power8. This is because the
in-core computation load contributes less to the total running time
compared to the nested-loop join, leading to a higher impact of the
data transfer bandwidth.

The GSM join was impacted the most by bandwidth in terms
of scalability on both testbeds. Even the GPUs attached to the
same CPU node cannot work together towards high efficiency. The
maximum speedup only reaches 1.5X with four Titan X on the
x86. In the GSM join, we need to transfer the data back and forth
between the host memory and the GPUs in order to sort and merge
the sublists of the input tables. These data transfers have to share
the same bandwidth that does not increase with the number of
GPUs. The hybrid join, on the other hand, only transfers the data a
constant number of times therefore it is less affected.

4.1.2 Running Time Breakdown. Figure 7 shows the time break-
down of the three join algorithms. The statistics are gathered from
a CUDA tool named nvprof. Note that we report time measured
for each activity (i.e., shipping input data to GPUs, in-core join
processing, shipping output data to host memory, and P2P transfer

 0

 20

 40

 60

 80

 100

NL−PCIE

NL−NVLink

GSM−PCIE

GSM−NVLink

H−PCIE

H−NVLink

%
 o

f t
ot

al
 ti

m
e

Ouput Copying
P2P Copying

Join Processing
Input Copying

Figure 7: Running time breakdown of join algorithms under
8-billion records and 4GPUs. NL: Nested Loop Join; H:Hybrid

between GPUs) of our algorithms. With the overlapping among
such activities via CUDA streams, the sum of all time values re-
ported here will be larger than the total running time reported in
4.1.1.

We first look at the difference between PCI-E and NVLink. In all
three join variants, the proportion of time spent on data transfer is
noticeably higher with PCI-E than that with NVLink. This indicates
that the high bandwidth of NVLink directly impacts the perfor-
mance given that the computing capabilities of the Tesla P100 and
GTX Titan X Pascal are roughly the same.

Then we look at the difference among the three join variants.
The nested-loop join spends 30% and 40% of the total execution
time on join processing with PCI-E and NVLink respectively, while
the other two variants have lower percentage. This is due to the
increased amount of work for nested-loop join. Although it has
the lowest percentage on data transfer, the absolute data transfer
time is still much longer than the other two algorithms. The GSM
join spends more than 90% of the time on data transfer as a result
of sorting the whole input arrays, since sorting consumes more
bandwidth than computing resources. The hybrid join has a higher
percentage on join processing than the GSM join because it has
linear data transfer time.

Figure 8 shows the data transfer time measured by disabling
the in-core join processing code. The experimental results validate
our cost analysis for the three algorithms when comparing them
side-by-side. The data transmission time of nested-loop join grows
quadratically as data size increases since the number of chunks M
also depends on data size, while that of GSM join has a flatter curve
due to the data transfer reduction by global sorting algorithm. The
running time of hybrid join grows much slower, thanks to the one
pass radix-partition.
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Figure 8: Data transfer time of the three join algorithms

4.1.3 The Effects of CUDA Stream Pipeline. Figures 9 shows how
the 3-stream pipeline affect the performance of the join perfor-
mance. In (b) and (d), the bars show the speedup of using three
CUDA streams over using one stream in the GSM join under dif-
ferent number of GPUs on both systems. When only one GPU is
used for the GSM join, more streams bring a decent 1.5X speedup in
both test platforms. With more GPU used, the two platforms both
benefit less from more streams with one exception where two Tesla
P100 rise to more than 2X from 2 billion to 6 billion of data size,
where the GPUs access local host memory region rather than other
NUMA regions. In Figures (a) and (c), the hybrid join shares the
same overall trend with the GSM join but with much lower speedup
and more fluctuations. Using more GPUs does not always benefit
from multiple streams. In (rare) cases, streams even deteriorate the
performance on the Power8 platform.

By running the code with CUDA profiler, we found that the max-
imum data transfer speed achieved by asynchronous data transfer
is about 10% lower than synchronous data transfer, indicating that
asynchronous operations incurs considerable overhead. It turns out
that some of the CUDA API calls (e.g., memory allocation/release)
are serialized by the system even though the host code is multi-
threaded. Besides, the inevitable memory allocations and deallo-
cations also incur more synchronizations, since we cannot reuse
the buffers due to the variation in input and output sizes among
iterations.

4.2 Effects of Other Factors
Relative Table Size: To investigate how |𝑅 | : |𝑆 | ratio affects the
join performance, we conduct experiments where |𝑅 | + |𝑆 | is fixed
to 16 billion and four GPUs are used wherever possible (except
for nested-loop join with NVLink). Figure 10 shows the relative
running time fluctuation when |𝑅 | varies from one billion to seven
billion. The nested-loop join and hybrid join take longer to run as
|𝑅 | increases. However, the sort-merge join have different behaviors
on NVLink and PCIE platforms. With PCIE, the running time are
higher on both ends as a result of combined effects of input data
transfer cost and output cost. With NVLink, the four GPUs reside in
two separate CPU nodes which causes fluctuation in running time.
According to the data transfer model in Section 3, it affects the three
algorithms in different ways. Given that |𝑅 | + |𝑆 | is fixed, we can
assume there are 𝑍 total pages in R and S. For nested-loop join and
GSM join, the input data transfer costs are only related to (𝑍 −𝑀)𝑀
and 𝑀𝑙𝑜𝑔2𝑀 + (𝑍 −𝑀)𝑙𝑜𝑔2 (𝑍 −𝑀), respectively. Therefore, the
nested-loop join reaches maximum cost when |𝑅 | = |𝑆 |. The GSM
and the hybrid join are not affected by this variation.

Selectivity: Selectivity determines howmany tuples are selected
relative to the input size, thus affecting the output size of the join.
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Figure 11: Running time under various selectivity

We test the effect of selectivity by varying the output ratio from 1X
to 16X, and the results are shown in Figure 11. It is clear that the
number of output significantly affect the running time of all the
join algorithms. However, the nested-loop join is the most affected
by percentage due to its running time surging quadratically. The
GSM join and hybrid join have similar trends.
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Data Skewness:We run our out-of-core GPU join algorithms
against skewed data generated following the well-known Zipf distri-
bution. Specifically, we generate join key for one of the tables with
a Zipf factor ranging from 0 to 0.75. The test uses four GPUs and
tables of eight billion rows. The result is shown in Figure 12, where
we can see that none of the algorithms are significantly affected
by the skewness of the data. The nested-loop join takes same-sized
chunks in each iteration, while the global-sort-merge join utilizes
merge-path partitions. Therefore these two algorithms are naturally
load-balanced. The only possible issue would be in the hybrid join,
where some of the radix-based partitions are considerably larger
than others, potentially resulting in imbalanced loads. However,
it turns out that the way that the GPUs handling the partitions
actually helps deal with data skew. First, the radix partition uses
the least significant bits, and creates fewer large coarse-grained
partitions rather than many small fine-grained partitions for the
GPUs to work on. As a result, the partitions are less different in
size. Second, the GPUs take input partitions in a round-robin man-
ner, hence each GPU works on both larger and smaller partitions,
reducing the workload gap among the GPUs. Therefore the overall
performance is less affected. By examining the runtime statistics,
we notice that the workload difference among the GPUs is only
about 10% at most in multiple runs.

4.3 Speedup Over The State-of-The-Art CPU
and GPU Algorithms

We first compare the performance of the GSM join and hybrid join
algorithms we proposed with the CPU-based parallel join code
presented in [2]. This code is arguably the most efficient CPU-
based join code, and is used to benchmark GPU-based solutions
in recent studies [21, 22]. For both the CPU and GPU running
time, we choose the best results among different setup (number of

threads/GPUs) and report the speedup as shown in Figure 13. To
ensure fair comparisons, we again use the end-to-end running time
for GPU algorithms. Specifically, the CPU join algorithm uses 40
threads running on a separate system that consists of two 10-core
20-threads Xeon 2640V4 and 512GB memory. This is the best result
we can obtain from available hardware. For the GPU algorithms,
four Titan X Pascal are used on the x86 platform, while two Tesla
P100 are used on the Power8 platform except for the hybrid join
algorithm where four Tesla P100 perform the best.

From Figure 13, we can see that in most cases the GPU algorithms
outperform the CPU hash join algorithm. The GSM join observes a
speedup of 0.7-4.1X and 1.9-10X over the CPU on x86 and Power8,
respectively. The hybrid join is of the best performance among all
the GPU and CPU join algorithms tested, resulting in 2.0-15.7X
and 3.0-25.4X speedup with PCI-E and NVLink over the CPU re-
spectively. We also compared the nested-loop join with its CPU
counterpart. However, the CPU code takes days to run even with
the smallest test case. At table size less than 3 billion, the advantage
of GPUs is smaller. As the data size increases, the multi-core CPU’s
performance doesn’t scale as well as the GPUs. We noticed that
when we run the CPU code with only one socket (i.e., 20 threads),
the running time curve tends to be flatter, meaning it is faster when
data size is smaller and slower when data size is larger compared
to the results of using two nodes. This observation is in accordance
with what we found with GPU algorithms. It indicates that the
inter-CPU connection is a bottleneck that is only alleviated when
the data is large enough to moderately occupy both nodes’ memory.
Previous work has shown that one mid-range GPU is more capable
in join processing than a workstation level multi-core CPU. For
example, the best GPU-to-CPU speedup for small table joins was
reported in [21], with a range of 5.5-10.5X. Our work apparently
enlarges the performance gap by using multiple GPUs.

We also compare our code with the state-of-art GPU join that
works on big tables [19]. Their design features CPU-based multi-
threaded radix partitioning and a in-core GPU hash join. A major
constraint in their algorithm is that it relies on CPUs to partition
the workload. It also depends on a hardcoded number of partitions
which results in partitions that are larger than the global memory
- this greatly limits the sizes of input tables. Our experiments by
running the code show that it is only able to handle tables with 3B
tuples before the GPU runs out of memory. In the cases that their
algorithm does run, our hybrid join algorithm is 11% faster with one
GPU at 3 billion and 190% faster with four GPUs respectively. We
believe with the multi-GPU radix partitioning and efficient in-core
sort-merge join, our code would scale better in larger data size.

4.4 Discussions
There have been long debates over which join algorithm is the best.
The sort-merge join and hash join are both commonly used while
the hash join is asymptotically faster. In terms of parallel join pro-
cessing, the answer for the aforementioned question is more com-
plicated since it depends on the specific hardware architecture and
the parallel algorithm design and optimization. In general, the al-
gorithm that utilizes the most stringent hardware resources more
effectively would perform better. Based on our experiments, the
winner is the hybrid join with significantly shorter running time
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than the other two algorithms. Such results confirm the theoretical
bandwidth consumption analysis in Section 3, which shows that
the hybrid join is superior. However, this by no means makes the
nested-loop join and GSM join obsolete, as each of them is suitable
for certain types of join conditions.

5 RELATEDWORK
Parallel Join Algorithms: Parallel in-memory join processing
has been studied thoroughly. The focus on the CPU-based algo-
rithms are to exploit data level and task level parallelism. SIMD
instructions such as SSE and AVX on Intel processors are often used
for data level parallelism. Kim et al. proposed sort-merge join and
hash join algorithms with SIMD optimizations on a Core i7 system
[12]. By comparing the two algorithms, the authors concluded that
the hash join is faster and a wider SIMD instruction could benefit
sort-merge join. In [5], by studying various hash join implementa-
tions, the authors found that a simple non-partition hash join with
shared hash table outperformed other more complex and hardware-
conscious implementations. However, this result was based on a
particular dataset. In [3], Balkesen et al. drew an opposite conclu-
sion. They claimed that hardware-conscious optimization is still
required to achieve optimal performance in hash join. Their radix
hash join implementation with the bucket chain method proposed
by Manegold et al. [15] is the fastest. In [2], Balkesen et al. revisited
the classic sort-merge join vs. hash join topic with comprehensive
experiments and analysis. They provided the fastest implementa-
tion of both algorithms, and claimed that in most cases the hash
join outperforms sort-merge join. The sort-merge join was only
able to narrow the gap when the data is very large. To resolve the
high memory consumption of hash join, Barber et al. proposed a
memory-efficient hash join by using a concise hash table while
not sacrificing performance [4]. Albutiu et al. proposed a parallel
sort-merge join in which each thread works on its local sorted runs
in a NUMA environment to avoid expensive cross-region commu-
nication [1].

In-Core GPU Joins: Early work on GPU-based join focuses
on in-core processing of GPU-resident tables. He et al. designed
several GPU-based database operators and join algorithms [9] that
take advantage of early generations of CUDA-enabled GPUs. Rui et
al. further improved join performance on GPUs by designing novel
algorithms that take advantage of hardware and software features
in newer generations of GPUs [21]. Yuan et al. studied the poten-
tiality of GPUs for data warehouse use cases and provided insights
on reducing the overhead caused by slow data transfer speed of the
GPU [25]. Wu et al. proposed a compiler implementation as well as
other operators for GPU-based query processing [24]. Similarly, the
authors of [23] developed a pushed-based scientific data manage-
ment system that features GPU data processing. Some other articles
also explored the possibility of CPUs’ working cooperatively with
GPUs to process data [8, 10]. A number of studies also compared
the performance of CPUs and GPUs in terms of join processing
[9, 12, 14, 19, 21] and showed the superiority of GPUs. GPU joins
were also implemented in commercial GPU-based DBMSs such as
OmniSci [18] and Kinetica [13].

Out-of-Core GPU Joins: Current studies rarely address the is-
sue of joining large-table on GPUs. The earliest study can be traced

back to [11], which utilizes Unified Virtual Addressing (UVA) for
controlling data transfer in early generations of GPUs. The UVA
has since been enhanced with hardware page-fault and software
prefetching support, and renamed as Unified Memory (UM). More
recent work studied the performance of using UM in out-of-core
join processing on GPUs [22]. Both studies found that the through-
put achieved by UM is many times lower than a carefully designed
data movement strategy.

The onlywork explicitly addressing large-table GPU join is found
in [22] and [7]. Both work target a single-GPU setup, thus the data
transmission becomes simple – only a chunk-by-chunk host-to-
device transferring schedule is needed. As a result, they do not enjoy
the speedup brought by multiple GPU as shown in our algorithm.
Specifically, [22] overhauls the classic idea of radix hash join, and
used CPU-based radix partitioning to create smaller datasets for
in-core join processing. A fundamental issue is that the algorithm
cannot handle data of arbitrary size (i.e., less than 2B records as
seen in Section 4.3). The size of each partition exceeds the global
memory size of the GPU due to a hardcoded number of partitions.
In [7], sort-merge-based and hash-based in-core algorithms were
used along with out-of-core radix partitioning. Unlike in [22], radix
partition is conducted on the device for workload creation, but it
also limits the performance of SMJ since it cannot preserve the
order of the tuples. The partitions are scattered in main memory
so that the data of the same partition from different chunks reside
in contiguous memory space. This step carries significant CPU
overhead, and is eliminated in our hybrid join via local prefix-sum
and scattered read (Section 3.3). As a result, a speedup less than 2X
was reported for this design, as compared to the same CPU code
[2] we used as baseline in Section 4.3.

6 CONCLUSIONS
In this paper, we discussed the issues of designing multi-GPU join
algorithms to exploit the computing power and minimize the over-
head of multi-GPU environments. In particular, we argue that the
major bottleneck in a multi-GPU environment in order to fully uti-
lize the capability of all the GPUs is to reduce the time spent on data
transfer since the GPUs nowadays have tremendous computing
power but the bandwidth is limited. To that end, we designed three
join algorithms with different out-of-core data transfer patterns
and the same in-core join processing. By a series of experiments,
we demonstrated that the inter-GPU communication and data ex-
change drastically affect the running time of the join algorithms.
The peer-to-peer access of PCI-E devices does not help improve the
performance although it enables utilization bidirectional bandwidth.
Using multiple GPUs also increased join processing performance.
The multi-GPU join algorithms achieved up to 2.8X speedup when
using up to eight GPUs versus using just one GPU, and up to 25X
speedup versus multi-core CPUs. The scalability is mainly limited
by the relatively low bandwidth of PCI-E. Therefore the hybrid
join with the lowest data traffic among the three algorithms we
proposed achieved the best performance. Moreover, we investigate
several factors that affect the performance of the join algorithms, in-
cluding global memory capacity, PCI-E peer-to-peer access, CUDA
streams and NUMA regions.
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