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ABSTRACT

We present Stacked Filters, a new probabilistic �lter which is fast

and robust similar to query-agnostic �lters (such as Bloom and

Cuckoo �lters), and at the same time brings low false positive rates

and sizes similar to classi�er-based �lters (such as Learned Filters).

The core idea is that Stacked Filters incorporate workload knowl-

edge about frequently queried non-existing values. Instead of learn-

ing, they structurally incorporate that knowledge using hashing

and several sequenced �lter layers, indexing both data and frequent

negatives. Stacked Filters can also gather workload knowledge on-

the-�y and adaptively build the �lter. We show experimentally that

for a given memory budget, Stacked Filters achieve end-to-end

query throughput up to 130x better than the best alternative for

a workload, either query-agnostic or classi�er-based �lters, and

depending on where data is (SSD or HDD).
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1 LEARNING FILTERS BY STRUCTURE

Filters are Everywhere. The storage and retrieval of values in a

data set is one of the most fundamental operations in computer

science. For large data sets, the raw data is usually stored over

a slow medium (e.g., on disk) or distributed across the nodes of

a network. Because of this, it is critical for performance to limit

accesses to the full data set. That is, applications should be able

to avoid accessing slow disk or remote nodes when querying for

values that are not present in the data. This is the exact utility of

approximate membership query (AMQ) structures, also referred

to as �lters. Filters have tunably small sizes, so that they �t in

memory, and provide probabilistic answers to whether a queried

value exists in the data set with no false negatives and a limited

number of false positives. For all �lters, the probability of returning

a false positive, known as the false positive rate (FPR), and the

space used are competing goals. Filters are used in a large number

of diverse applications such as web indexing [24], web caching

[21], pre�x matching [18], deduping data [17], DNA classi�cation
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[42], detecting �ooding attacks [22], cryptocurrency transaction

veri�cation [23], distributed joins [38, 40], and LSM-tree based

key-value stores [14], amongst many others [43].

Robust Query-Agnostic Designs. Query-agnostic �lters utilize

only the data set during construction. For example, a Bloom Filter

[5] starts with an array of bits set to 0 and using multiple hash

functions per value, hashes each value to various positions, setting

those bits to 1. A query for a value G probes the �lter by hashing G

using the same hash functions and returns positive if all positions

G hashes to are set to 1. When querying a value that exists in the

data set, these bits were set to 1 during construction and so there

are no false negatives; however, when querying a value not in the

data set, a false positive can occur if the value is hashed entirely to

positions which were set to 1 during construction.

Other query-agnostic �lters such as Cuckoo [20], Quotient [34],

and Xor [25] �lters work similarly to Bloom Filters. These �lters

generally work by hashing data values and storing the resulting

�ngerprints in a hash table losslessly (for instance, using cuckoo

hashing for Cuckoo Filters or linear probing for Quotient �lters).

If the hash functions are truly random, then every query-able

value not in the data set has the same false positive chance. This

makes query-agnostic �lters robust, as they have the same expected

performance across all workloads, and easy to deploy, as they re-

quire noworkload knowledge. However, at the same time, this limits

the performance of query-agnostic �lters, as they are required to

work for any query distribution. Additionally, the possibility for

further improvements in the trade-o� between space and false pos-

itive rate are limited, as current query-agnostic �lters are close to

their theoretical lower bound in size [7, 11].

Learning fromQueries forReduced Filter Size.Classi�er based

�lters such as Weighted Bloom Filters [8, 45], Ada-BF [13], and

Learned Bloom Filters [28, 39] utilize workload knowledge, making

it possible to move beyond the theoretical limits of query-agnostic

�lters. Such �lters need as input a sample of past queries and using

that they train a classi�er to model how likely every possible value

is to 1) be queried, and 2) exist in the data set. The classi�er is then

used in one of two ways.

In the �rst [28, 39], it acts as a module which accepts values that

have a high weighted probability of being in the data. It cannot

reject values as the stochasticity of the classi�er might cause false

negatives. Thus, a query-agnostic �lter is also built using the (few)

values in the data set for which the classi�er returns a false negative.

Queries are �rst evaluated by the classi�er, and if rejected, then

probe the query-agnostic �lter. In the second [8, 13, 45], the classi�er

uses the weighted probability of being in the set to control the

number of hash functions used by a Bloom �lter for each value. For

values with a high likelihood of being in the set, few hash functions

are used, setting fewer bits in the �lter but also checking fewer bits,

and therefore providing fewer chances to catch a false positive. For

values not likely to be in the set, this is reversed.
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Classi�er based �lters can reduce the requiredmemory to achieve

a given false positive rate when keys and non-keys have clear se-

mantic di�erences. URL Blacklisting is such a use case [28], wherein

browsers such as Google Chrome maintain a list of dangerous web-

sites and alert users before visiting one. Browsers store a �lter

containing the dangerous websites at the client. For each web re-

quest, the client checks the �lter; if the �lter rejects the query, the

website is safe and can be visited. If the �lter accepts the query, an

expensive full check to a remote list of dangerous websites is done.

Because there are no false negatives, every dangerous website is

caught, and that there are only a few false positives means most

safe websites do not need to perform extra work.

However, classi�er based �lters o�er a host of new problems.

First, the classi�er has to be accurate, which can be hard: for some

workloads the data value and its probability of existing in the data

set are loosely correlated. For other types of data that appear in

practice such as hashed IDs, there is no correlation. Additionally,

even when data patterns exist, often data such as textual keys

have complex decision boundaries which require complex models

such as neural networks for accurate classi�cation. As a result, the

computational expense of the classi�er is often orders of magnitude

more expensive than hashing. Finally, the classi�er is trained on a

speci�c sample workload, and thus if the workload shifts, we need

to go through the expensive process of gathering sample queries

and retraining the classi�er to maintain good performance.

Stacked Filters: Encapsulating workload information struc-

turally. We introduce a new class of �lters, Stacked Filters, which

structurally encapsulate knowledge about frequently queried non-

existing values. The key intuition is as follows: for non-keys which

are queried often, �nd a structural way to run them through multi-

ple �lter checks. Stacked Filters achieve that through several layers

of query-agnostic �lters which alternate between representing val-

ues in the data and frequently queried non-existing values.

All frequently queried non-existing values need to pass multiple

membership checks to be false positives, and so they incur exponen-

tially smaller false positive rates. At the same time, each additional

layer is exponentially smaller in size, and thus the total size of a

Stacked Filter is comparable to the �rst �lter in its stack. A similar

pattern holds for computational costs. Both size and computational

costs rise like a geometric series with the number of layers, and

thus have values close to that of a single �lter, while an entire set of

non-existing values has their FPR decrease arbitrarily close to zero.

The overall result is that for workloads with any frequently queried

non-existing values, Stacked Filters provide a superior tradeo� be-

tween false positive rate, �lter size, and computation than either of

classi�er-based �lters or query-agnostic �lters.

While the idea of checking frequently queried non-existing val-

ues multiple times is intuitive, it comes with signi�cant challenges.

How many layers are needed for good �lter performance? How

should the memory budget be spread across the layers? How much

workload knowledge is enough for good �lter performance? Can

we build Stacked Filters without any workload knowledge?

Contributions. The contributions of this paper are as follows:

• Data Structure Formalization: We introduce a new way to de-

sign workload-aware �lters as multi-layer �lter structures which

index both positives and frequent negatives.

• Generalization: We show that Stacked Filters work for all query-

agnostic �lters including Bloom, Cuckoo, and Quotient Filters.

• Better trade-o� of FPR and size: We derive the metric equations

of Stacked Filters for size, computation, and false positive rate.

Using these equations, we provide theoretical results showing

Stacked Filters are strictly better in terms of FPR vs. size than

query-agnostic �lters on the majority of workloads, and quantify

the expected bene�t.

• Optimization: We show that the optimization problem of tuning

the number of layers and layer sizes is non-convex. Still, we

provide n-approximation algorithms, running in the order of

milliseconds, which automatically tune the number of layers

and the individual sizes of each layer so that performance is

arbitrarily close to optimal.

• Adaptivity: We show that the bene�ts of Stacked Filters can be

extended to Stacked Filters built adaptively. Here, Stacked Filters

start with a rough knowledge of how skewed a workload is, but

not which values are frequently queried, and build their structure

incrementally during normal query execution.

• Experiments: Using URL blacklisting, a networking benchmark,

and synthetic experiments we show that Stacked Filters 1) pro-

vide improvements in FPR of up to 100⇥ over the best alternative

query-agnostic or classi�er-based �lter for the same memory

budget, while retaining good robustness properties, 2) provide

a superior tradeo� between false positive rate, size, and com-

putation than all other �lters, resulting in up to 130⇥ better

end-to-end query throughput than the best alternative, and 3) for

scenarios where learning is not easy, Stacked Filters can still

utilize workload knowledge and o�er throughput up to 1000⇥

better than classi�er-based �lters.

2 NOTATION AND METRICS

We �rst introduce notation used throughout the paper and metrics

that are critical for describing the behavior of �lters. Table 1 lists

the key variables and metrics.

Notation. Let * be the universe of possible data values, such as

the domain of strings or integers. Let % be a data set, which we will

refer to as the positive set, and let # = * � % be the set of negative

values. From now on we will refer to data values as well as to

queried values as elements, which is the traditional terminology in

the �lters literature. We will denote �lter structures by � , which we

treat as a function from* ! {0, 1}, and we say that G is accepted

by � if � (G) = 1 and that G is rejected by � if � (G) = 0.

As a �lter, we have � (G) = 1 : 8G 2 % and we are interested

in minimizing the number of false positives, which are the event

� (G) = 1, G 8 % . The �lter � is itself random; di�erent instantiations

of � produce di�erent data structures, either because the hash

functions used have randomly chosen parameters or because the

machine learning model used in classi�er based �lters is stochastic.

Expected False Positive Bound (EFPB). A traditional guarantee

for a �lter � is to bound ⇢� [P(� (G) = 1|G 8 %)] for any G chosen

independently of the creation of � . We call this bound the expected

false positive bound.

Expected False Positive Rate (EFPR). Given a distribution ⇡

over * which captures the query probabilities for elements in * ,

the expected false positive rate is ⇢G⇠⇡ [⇢� |⇡ [P(� (G) = 1|G 8 %)]].
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Notation De�nition

% Set of all positive elements

# Set of all negative elements

#5 Negatives used to construct a Stacked Filter

#8 The complement of #5 , i.e. # \ #5

B Size of a �lter in bits/element

28,( Cost of inserting an element from set (

2@,( Cost of querying a �lter for an element in (

Metric De�nition

EFPR Expected false positive rate of a �lter structure given a

speci�c query distribution

EFPB Upper bound on the EFPR of a �lter structure for queries

chosen independently of the �lter

Table 1: Notation used throughout the paper

Optimization via Expected False PositiveRate.Query through-

put most directly relies on the EFPR and since the EFPR depends

on the query distribution D, the goal of workload-aware �lters is

to capture and utilize D to improve the EFPR. Namely, for G 2 #

with higher chance of being queried, workload-aware �lters should

lower the probability that G is a false positive.

Robustness via Bounding False Positive Probability. Optimiz-

ing the EFPR helps system throughput but brings concerns about

workload shift. Query-agnostic �lters can act as a safeguard against

such a shift. To see this, note that � and ⇡ are independent by

assumption and so for a query-agnostic �lter with FPR n ,

⇢G⇠⇡ [⇢� |⇡ [P(� (G) = 1|G 8 %)]]  ⇢G⇠⇡ [⇢� |⇡ [n]] = n

regardless of what ⇡ is. Thus, �lters which provide an expected

false positive bound provide an upper bound on the expected false

positive rate for any workload ⇡ chosen independently of the �lter.

Memory - False Positive Tradeo�. For all �lter structures, their

EFPR and EFPB can be made arbitrarily close to 0 with enoughmem-

ory, and there exists a tradeo� between the memory required and

the false positive rate provided. Thus for purposes of comparison,

we always report EFPR and EFPB with respect to a space budget.

Space budgets in practice tend to be between 6 and 14 bits per ele-

ment, and are signi�cantly smaller than the elements they represent

(which can be anywhere from 4 bytes to several megabytes).

For query-agnostic �lters, the EFPR and the EFPB are equal,

and is just called the false positive rate. Additionally, for all query-

agnostic �lters, the false positive rate U and size in bits per element

B are 1-1 functions of each other. When going from one to the other,

we denote the quantities by B (U) and U (B), which denote the size

for a given FPR and the FPR for a given size respectively.

Computational Performance. Filter structures desire computa-

tional performance much faster than the cost to access the data

they protect. We denote the cost to insert into a �lter an element

of set ( by 28,( . We also denote the cost to query for an element of

set ( by 2@,( . If no set is denoted, then ( = * .

3 STACKED FILTERS

The traditional view of �lters is that they are built on a set ( , and

return no false negatives for ( . An alternative view of a �lter is that

it returns that an element is certainly in ( (the complement of (), or

that an element’s set membership is unknown. In Stacked Filters,

we use this way of thinking about �lters, with ( for di�erent layers

of the stack alternating between subsets of % and subsets of # , to

iteratively prune the set of elements in* whose set membership is

undecided.

Stacked Filters by Example.We start with an example of a 3 layer

Stacked Filter using Figure 1. The �lter is given the data set % and a

set of frequently queried negatives #5 . The �rst �lter in the stack,

!1, is constructed using % similarly to a traditional �lter except

with fewer bits per element so as to reserve space for subsequent

layers. Conceptually, !1 partitions the universe * . Items that !1
rejects are known to be in # and can be rejected by the Stacked

Filter. Items accepted by !1 can have set membership of % or #

and thus their status is unknown. If the Stacked Filter ended here

after a single �lter, as is the case for all query-agnostic �lters, all

undecided elements would be accepted by the Stacked Filter.

Instead, Stacked Filters construction continues by probing !1 for

each element in #5 . Using all elements of #5 accepted by !1, and

which therefore normally would become false positives, Stacked Fil-

ters build a second layer with another query-agnostic �lter. During

a query, values which are still undecided after !1 are passed to !2.

If !2 rejects the value, the value is de�nitely in #5 , which includes

both % and # \#5 , which we denote by #8 and call the infrequently

queried negative set. Since % [ #8 contains both positives and neg-

atives, the overall Stacked Filter accepts all the rejected elements of

!2 in order to maintain a zero false negative rate. If the element is

instead accepted by !2, then its set membership is still undecided

and so it continues down the stack.

Construction then continues by querying !2 for all elements in

% and building a third layer with a query-agnostic �lter. This layer

uses as input all elements of % whose set membership is undecided

after querying !2. At query time, !3 performs the same operations

as !1; elements rejected by !3 are certainly in % = # and so are

rejected by the Stacked Filter.

Workload-aware Design. !2 and !3 are how Stacked Filters struc-

turally incorporate workload knowledge. They collaborate to �lter

out frequent negatives to minimize FPR. All frequent negatives that

are false positives on !1 reach !3 since they are in the construction

set for !2, and so such frequent negatives need to pass an extra

membership check to be false positives for the full Stacked Filter.

To make deeper Stacked Filters, and thus perform more checks on

frequently queried negatives, we recursively perform this process,

adding more paired sets of layers.

An intuitive understanding of the e�ectiveness of Stacked Filters

comes from the interplay between the extra size of additional layers

vs. their bene�t for FPR. Compare the simple 3 layer example above,

assuming each layer has an FPR of 0.01, with a single traditional

�lter using FPR 0.01. If |#5 | = |% |, then !2 and !3 are on average

1/100 the size of !1, and the Stacked Filter has 2% higher space

costs than a traditional �lter. But for every element in #5 , the

extra membership check makes their �%' a full 100⇥ lower; thus if

#5 contains any signi�cant portion of the query distribution, the

Stacked Filter has a much lower EFPR.

General Stacked Filters Construction. Algorithm 1 shows the

full construction algorithm. Like both query-agnostic and classi�er

based �lters, Stacked Filters need two inputs 1) the data set, and 2)

a constraint (memory budget or a desired maximum EFPR).
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readability. To distinguish them from the metrics for the base �lter,

metrics for Stacked Filters are denoted with a prime at the end,

so for instance, the size and EFPR of a Stacked Filter are B 0(UÆ)

and ⇢�%'0(UÆ). The metrics are variations on either an exponential

function or geometric series. To make this clear by immediate

inspection, we will often consider that all U8 values have the same

value U (this also makes U and )! easier to optimize in Section 5).

4.1 Stacked Filters EFPR

To calculate the total EFPR for a Stacked Filter, we introduce a new

variablek which captures the probability that a negative element

from query distribution ⇡ is in #5 , i.e.k = P(G 2 #5 |G 2 # ).

Frequently Queried Negatives. For G 2 #5 , a Stacked Filter

returns 1 if and only if it makes it to the end of the stack. This

occurs only if it is a false positive on each positive layer and so the

probability of this happening is

P(� (G) = 1|G 2 #5 ) =

()!�1)/2
÷

8=0

U28+1

Infrequently Queried Negatives. For G 2 #8 , its total false posi-

tive probability is the sum of the probability that it is rejected by

each negative layer, plus the probability it makes it through the

entire stack. For negative layer 28 , the probability of rejecting this

element is
Œ28�1

9=1 U 9 · (1�U28 ), where the �rst factor is the probabil-

ity of making it to layer 28 and the second factor is the probability

that this layer rejects G . Summing up these terms and adding in the

probability of making it through the full stack, we have

P(� (G) = 1|G 2 #8 ) =

)!
÷

8=1

U8 +

()!�1)/2
’

8=1

(

28�1
÷

9=1

U 9 ) (1 � U28 )

Expected False Positive Rate. Since #8 and #5 partition # , the

EFPR of a Stacked Filter is

k

()!�1)/2
÷

8=0

U28+1 + (1 �k )
�

)!
÷

8=1

U8 +

()!�1)/2
’

8=1

(

28�1
÷

9=1

U 9 ) (1 � U28 )
�

If all U values are equal, then this is equal to

⇢�%' = kU
)!+1

2 + (1 �k )
U + U)!+1

1 + U
(1)

Thus, the FPR for frequently queried negatives is exponential in

the number of layers and goes quickly to 0, whereas infrequently

queried negatives have EFPR close to the FPR of the �rst layer.

4.2 Stacked Filter Sizes

Size of a Stacked Filter Given the FPR at Each Layer. For every

positive layer after the �rst, an element from % is added to the layer

if it appears as a false positive in every previous negative layer.

Thus, the size of all positive layers in bits per positive element is

()!�1)/2
’

8=0

B (U28+1) · (

8
÷

9=0

U29 )

Similarly, negatives appear in a negative layer if they are false

positives for every prior positive layer and so the size of all negative

layers (using the traditional metric bits per positive element) is

()!�1)/2
’

8=1

B (U28 ) ·
|#5 |

|% |
· (

8
÷

9=1

U29�1)

The total space for a Stacked Filter is the sum of these two equations.

Because U8 values are small, the products in parenthesis go to 0

quickly in both equations and so the total size of a Stacked Filter is

dominated by its �rst layer.

Size When Each Layer has Equal FPR. In the case that all U

values are the same, we can use a geometric series bound on both

arguments above, giving

B 0(UÆ)  B (U) · (
1

1 � U
+
|#5 |

|% |

U

1 � U
) (2)

where B 0(U) represents the size in bits per (positive) element.

Stochasticity of Size or Filter Behavior. When constructing

Stacked Filters, there are two choices when it comes to space. First,

all �lters can have their memory allocated up front. Using this

method, size is �xed but if a higher proportion of elements makes

it through the initial layers of the stack, bad behavior can happen

at the subsequent �lters in the stack. This happens in the form of

increased FPR (Bloom �lters), failed construction (Cuckoo �lters),

or long probe times (Quotient �lters). Instead, our default is to allo-

cate size proportional to the number of items which make it to a

layer in the stack (see lines 6 and 14 of Algorithm 1). This makes the

size of a Stacked Filter random, however, for large sets the size of a

Stacked Filter concentrates sharply around its mean. In particular,

P( |B 0 � ⇢ [B 0] | � :⇢ [B 0]) 

1

|% |
·
U<0G

:2
· (

B (U<8=) (1 � U<8=)

B (U<0G ) (1 � U<0G )
)2 ·

(1 +
|#5 |

|% |
)

(1 +
|#5 |

|% |
U<8=)2

where U<8= , U<0G are the lowest, highest FPRs of any layer in the

Stacked Filter. The proof can be found in Technical Report Section

11.3.1 [16]. The leading 1
|% |

term ensures that for large sets the

chance of deviating away from the expected set size is negligible.

4.3 Stacked Filter Robustness

The First Layer Provides Robustness. Any element in # is ei-

ther in #8 or #5 , and so its probability of being a false positive is

either P(� (G) = 1|G 2 #8 ) or P(� (G) = 1|G 2 #5 ). Since elements

of #8 have a higher chance of being a false positive, the EFPB of a

Stacked Filter is P(� (G) = 1|G 2 #8 ). For a Stacked Filter, an easy

bound on this is the FPR of the �rst layer. Since the majority of the

size of a Stacked Filter is in its �rst layer, worst case performance

is similar to a query-agnostic �lter (of the same size).

Performance Change Under Workload Shift.While EFPB pro-

vides worst case bounds, the EFPR equation shows what happens

under the common case of more mild workload drifts. For an initial

query distribution ⇡ with correspondingk , which changes to ⇡ 0

and correspondingk 0, the change in EFPR from ⇡ to ⇡ 0 depends

only on the change ink tok 0. In particular, the change in EFPR is

(k 0
�k ) ·

�

P(� (G) = 1|G 2 #5 ) � P(� (G) = 1|G 2 #8 )
�

Thus, the performance in terms of EFPR for a Stacked Filter de-

creases linearly with the change in the proportion of queries aimed

at frequently queried negatives.

4.4 Stacked Filter Computational Costs

Like the previous derivations, the resulting equations for query

computation time and construction time are modi�ed geometric

series. We give here bounds on the resulting equations speci�cally
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for allU8 equal toU . The derivations for exact equationswith general

U8 and an arbitrary number of layers are in Technical Report Section

11.2 [16]. All equations are in terms of average computational cost

and given as the number of base �lter operations required.

Construction. The construction cost of Stacked Filters is

|% | (28 + 2@)
1

1 � U
+ |#5 |2@ + |#5 | (28 + 2@)

U

1 � U
Like in the previous subsections, �lters after the �rst add only

negligible costs to construction to Stacked Filters when U is small.

The majority of the cost above comes from 1) 28 · |% | for constructing

the �rst layer and 2) 2@ · ( |#5 | + |% |) for querying the �rst layer.

Query Costs. The costs for querying a Stacked Filter for a positive,

frequently queried negative, and infrequently queried negative are:

2 0@,% 
2

1 � U
2@, 2@,#5


1 + 2U

1 � U
2@, 2 0@,#8


1

1 � U
2@ (3)

For small U , the cost of querying negative elements is essentially

identical to querying a single �lter. The cost of querying positive

elements is about 2⇥ the cost of a single �lter as they make it

through the �rst layer with certainty before being rejected at layer

2 with high probability.

5 OPTIMIZING STACKED FILTERS

Sections 3 and 4 introduced Stacked Filters given their parameters:

the set of frequent negatives, the FPRs of each layer, and the number

of layers. We now complete the picture of how Stacked Filters are

constructed. This is done in two stages: �rst we go from a sample

of past queries to a workload model, and then we go from a model

of the workload to the choice of Stacked Filters parameters.

5.1 Modeling the Workload

Like classi�er-based �lters, Stacked Filters require workload knowl-

edge in the form of a sample of past queries. This set of past queries

can have multiple sources depending on the application. For in-

stance, it can be: 1) publicly available, as in the case of URL blacklist-

ing [28] with popular non-spam websites and their query frequen-

cies collected by OpenPageRank [2], 2) collected by the application

by default, as is the case for web indexing and document search

[24], where query term frequencies are collected and stored, or 3)

can be collected by the system by choice, as is the case for most

data systems including key-value stores [41].

After collecting the set of sample queries, Stacked Filters create

a model to identify frequently queried elements. They do this by

creating a smoothed histogram of the empirical query frequencies.

More speci�cally, each element observed in the set of sample queries

is put into a set #B0<? . Then, the proportion of queries at elements

outside #B0<? is estimated by looping over all possible subsets

of & � 1 queries from the set of & sample queries, and seeing for

what proportion of subsets the Qth query value is not present in

the set of & � 1 queries. If we denote this value by ✓ , then for each

G8 2 #B0<? , its query frequency is estimated as
(1�✓)
& ·

Õ&
9=1 1@ 9=G8 .

Our optimization algorithms below then choose some of the values

in #B0<? to be in #5 , creating the frequent negatives set.

5.2 Optimization Algorithms

The �nal step in constructing Stacked Filters is to use the workload

model to choose #5 ,)! , and {U8 }
)!
8=1. The optimization algorithms

which do so depend on the base �lter being used and fall into

two categories. In the �rst, the query-agnostic �lter can take on

any value of U , which is a good approximation for �lters such as

Bloom Filters. In the second, the possible U values are of the form

2�: for : 2 N, which is true or a very close approximation for

�ngerprint based �lters such as Cuckoo and Quotient Filters. For

both methods, we assume that the base �lter has a size equation

of the form B (U) =
� log2 (U)+2

5
with 2 � 0, 5 � 1. This holds true

or is a very close approximation for all major �lters in practice

including Bloom, Cuckoo, and Quotient �lters, and additionally

covers the equation for the theoretical lower bound on size for

query-agnostic �lters. Throughout the section, optimization is given

in terms of minimizing EFPR with respect to a constraint on size.

Optimization of size with respect to a bound on EFPR is similar.

Additional constraints on the EFPB or expected number of �lter

checks may be added by only minor modi�cations.

5.2.1 Outer Loop: Sweeping over #5 . For both continuous and

discrete FPR �lters, there is an outer loop which chooses sets of #5

to optimize and an inner optimization which optimizes the Stacked

Filter given #5 . The best performing value of #5 is then used.

To choose #5 , we make use of the workload model and choose

#5 to be a subset of #B0<? . The k (#5 ) value is the sum of the

estimated query frequencies of each value chosen to be in #5 .

Because EFPR is a monotonically decreasing function of k , for a

�xed size #5 it is optimal to greedily choose the negative elements

queried most. Thus we can order #B0<? by the element’s query

frequencies and then sweep over various sizes for #5 , always using

the most frequently queried elements of #B0<? to be in #5 . The

following theorem shows we can choose the size of #5 e�ciently.

Its proof, and the proof of all other theorems in this paper, is given

in the Technical Report [16].

T������ 1. Given an oracle returning the optimal EFPR for a

given set #5 , �nding the optimal EFPR across all values of |#5 | to

within n requires $ ( 1n ) calls to the oracle.

The core idea of the theorem is that values of |#5 | that are

close together have solutions with optimal EFPR close to each other.

Using the theorem, our algorithm starts with a “current"#5 of size 0.

It then increases |#5 | to a strategically chosen larger value, making

sure the skipped values of |#5 | could have EFPR no more than n

lower than the checked values, and runs the optimization with the

new �xed k and |#5 |. It continues to do so until |#5 | = |#B0<? |,

and returns the setup giving the best observed EFPR.

5.2.2 Inner Optimization: Continuous FPR Filters. The inner opti-

mization loop for continuous �lters has #5 andk given and works

in two steps. First, we assume that all layers have the same FPR and

optimize the �lter as if it had in�nitely many layers. Second, we

truncate the in�nite layer Stacked Filter to a small �nite layered one

that is close in performance to the in�nite layer one. An optional

third step modi�es the procedure to search �lters with varying U

values across layers, but we note that this procedure is optional as

it generally does not improve the EFPR.

Step 1: Fixed#5 , In�nite Equal FPR Layers. Take the equations

of Section 4 with FPR equal across layers and let )! ! 1. The

equations for EFPR, size, and EFPB converge to B 0(U) = B (U) ·
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( 1
1�U +

|#5 |

|% |
U

1�U ), ⇢�%'(U) = (1 �k ) U
1+U , and ⇢�%⌫ =

U
1�U , and

the equations for computation converge to Equation (3).

By inspection, the equations for EFPR, EFPB, and computation

monotonically increase with U . Thus attempts to minimize the EFPR

or satisfy EFPB or computation constraints should all lower U . For

the size equation, the following theorem holds.

T������ 2. The function B 0(U) =
� log2 (U)+2

5
· ( 1

1�U +
|#5 |

|% |
U

1�U )

is quasiconvex on (0,1) when 2 � 0, 5 > 0.

Quasi-convex functions have unique global minima, and as a

result, the size equation can be minimized via gradient descent.

Speci�cally, we use gradient descent with backtracking line-search

to choose the step size. To minimize EFPR using size as a constraint,

at a given time step if we are below the size constraint we decreaseU .

Otherwise, we use the gradient of size with respect to U to decrease

the size. If for the given#5 one or more constraints is not satis�able,

we return an exception.

Step 2: Truncating to a Finite Stack. When performing trun-

cation, we measure the di�erence in each metric equation using

in�nite )! and an increasing �nite value of )! and stop when the

di�erence is below n for all metric equations. Because each metric

equation is either an exponentially decreasing function of )! or a

geometric series in )! , the convergence to the in�nite layer values

is on the order of $ (U)!/2), and so usually 5 or 7 layers su�ce.

Algorithm Analysis. By using n
3 in both the outer loop over #5

and both steps 1 and 2, the overall algorithm is an n approximation

to the best possible EFPR for a Stacked Filter with U �xed across

layers. Its runtime is$ (n�1+|#B0<? |) and its empirical optimization

times for Stacked Bloom Filters at 10 bits per element are listed in

Table 2 under “Bloom, �xed U". The workload, described in detail in

Section 8.2, is the synthetic integer dataset with a Zipf distribution

with [ = 1, and |#B0<? | = 5 · 107.

For both this algorithm as well as the subsequent two, we note

the runtime has two regions. When n is small, the runtime is ap-

proximately linear in |#B0<? |. As n grows, it becomes the primary

cost of algorithmic runtime and the runtime is linear in n�1.

Varying FPRs Across Layers. When allowing the U8 values to

change across layers, we are faced with a non-convex optimization

objective and constraint, even when �xing )! (this can be seen

by taking second derivatives). To perform optimization, at each

checked value of #5 we �rst run the optimization using equal

FPR across layers. We then polish the resulting �lter by using the

gradient-free algorithm COBYLA [36] to modify the FPRs of each

layer. While this method very occasionally achieves improvements

over the �xed FPR per layer method, it generally does not, as seen

in Table 2. Additionally, an alternative strategy of discretizing the

search space for the FPRs at each layer and using the optimization

routines described in Section 5.2.3 also did not in general improve

upon the equal FPR per layer solution. Thus we view this �nal

polishing as optional in the optimization of continuous FPR �lters.

5.2.3 Inner Optimization: Fingerprint Based Filters. For �ngerprint

based �lters, the discrete number of �ngerprint bits makes search

easier. The main idea of our approach is to use breadth �rst search

expanding the number of �ngerprint bits used at each layer, work-

ing two layers at a time: one positive and one negative. At each

pair of layers, derived bounds on which possible �ngerprint lengths

Bloom, �xed U Bloom, varied U Cuckoo
n EFPR Time EFPR Time EFPR Time

10�2 0.00175 775`B 0.00175 47 ms 0.00203 12 ms
10�3 0.00173 781`B 0.00173 328 ms 0.00190 13 ms
10�4 0.00172 1.01 ms 0.00172 2.9 s 0.00184 44 ms
10�5 0.00172 3.7 ms 0.00172 26.7 s 0.00184 367 ms

Table 2: Optimization is e�cient and tunably optimal

can lead to an optimal solution of each layer are used, constraining

the number of options expanded. Eventually, each search path ter-

minates, either because its choices already created too many false

positives, it used all the available space budget, or the number of

queries which would reach the current layer of the chosen stack

is less than n . The full algorithm, its explanation, and proofs of its

theoretical properties are given in the Technical Report [16].

Theoretically, the algorithm is guaranteed to return a �lter with

⇢�%'  ⇢�%'⇤ + n , where ⇢�%'⇤ is the EFPR of the best possible

�lter satisfying all constraints. We can bound the runtime of the

algorithm theoretically by$ ( |#B0<? |+n
�3). Additionally, the proof

of the runtime bound does not rely on several key optimizations

of the algorithm, and the experimental run time of the algorithm

behaves more like $ (n�1). Thus, the algorithmic run time is both

tunable and e�cient, as can be seen in Table 2 for Cuckoo Filters.

6 INCREMENTAL CONSTRUCTION
AND ADAPTIVITY

So far we assumed that workload knowledge can be collected and

that workloads are static or drift slowly. While this holds for many

�lter use cases such as URL Blacklisting [28] and Web Indexing

[24], there are many other applications where workloads change

quickly, in which case continuously gathering workload knowledge

is expensive. To address these use cases, we introduce Adaptive

Stacked Filters (ASFs) which require knowledge about workload

shape (such as how skewed they are), but do not require the gath-

ering of a set of negative queries. Crucial to the design of ASFs is

the idea of incremental construction, which allows ASFs to process

queries immediately, learn frequent negatives during query evalua-

tion, and gain bene�ts from stacking before �nishing construction.

Mirroring how we described Stacked Filters, we explain �rst the

structure of ASFs given their parameters, then how to collect work-

load knowledge, and �nally how to optimize their parameters.

Incremental Construction.ASFs start by constructing !1 and use

this to answer incoming queries until more layers are constructed.

They also allocate an empty !2. During query processing, when a

false positive occurs, it is added to !2. Then, when !2 is full (in that

it either hits its load factor for Cuckoo and Quotient �lters or has

half its bits set for Bloom �lters), the ASF brings in the positive set,

queries it against !2 and adds the false positives on !2 to a new !3.

Processing then continues using the layers up until !3, gaining the

bene�ts in terms of EFPR that come with extra layers. Additionally,

construction on layers !4 and !5 can begin (if they exist), and uses

the same procedure. Since #5 is captured during query processing,

it does not need to be gathered before the construction of the ASF.

This is the primary bene�t of ASFs over Stacked Filters: they require

only the workload shape (to �gure out how big each layer should

be) but not which values are important.
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Rank-Frequency Workload Knowledge. To create ASFs, we

need a rank-frequency distribution of the negative query work-

load. This is akin to the workload knowledge of Section 5.1, but

instead of describing the query frequencies of actual values, the

distribution describes the query frequencies of the value at each

rank, where rank is itself de�ned by ordering elements’ query fre-

quencies. A classic example of this type of distribution is the Zipf

distribution, which models how often the �rst and second most

popular values occur without reference to the actual values.

The rank-frequency distribution can be calculated in many di�er-

ent ways. We do so using a set of past queries to make a smoothed

histogram as described in Section 5.1. ASFs assume that the work-

load shape is relatively static even if the values are not, and under

this case, ASFs rebuild themselves without performing a new analy-

sis of the workload. For instance, YouTube video queries and other

periodic workloads are a good example of a case where this holds:

queries for popular videos on a given week follow consistent pat-

terns even if which videos are popular changes each week [12]. In

this case, an ASF being rebuilt and adapting to new frequent values

knows what shape to take before it knows the new frequent values.

Optimizing Collection vs Exploitation. We optimize ASFs in

two di�erent ways, depending on the nature of the workload. The

�rst uses the optimization procedures of base Stacked Filters assum-

ing we pick the most frequently queried negatives and allocates

the exact same �lter. It then creates the �lter incrementally during

query processing instead of all at once.

The above process builds the best eventual ASF but can face

many queries before achieving a fully built ASF. For this reason,

we additionally create a second approach which assumes that ASFs

are 3 layers and focuses on building a fully built ASF very quickly.

This form of optimization takes as input an estimate of how long

the �lter will last and then chooses a number of queries to observe

when building the second layer, denoted by #> . The value of #>

determines the expected values ofk and |#5 |:

⇢ [k ] =
’

G 2#B0<?

5 (G) (1 � (1 � 5 (G))#> )

⇢ [#5 ] = (✓ · #> ) +
’

G 2#B0<?

(1 � (1 � 5 (G))#> )

where here we recall that ✓ is the estimate of what portion of queries

fall on values outside our sample. The optimization then weights

the EFPR using just !1 for #> queries vs. the EFPR of the ASF

using all 3 layers on the rest of the queries. To choose the best

con�guration, we perform grid search on #> . At each value of

#> , we either calculate or estimatek and |#5 |, depending on the

size of #B0<? , and perform optimization of the three layers using

discrete search for both continuous FPR �lters and integer-length

�ngerprint �lters (see Technical Report Sec. 11.5 for details [16]).

Monitoring and Adapting. To maintain robust performance, if

the elements in #5 become less frequently queried over time, this

needs to be recti�ed. To address this, the ASF monitors its perfor-

mance and initiates a rebuild whenever the FPR di�ers by more

than 50% from its expected FPR. The ASF initially tries a rebuild

assuming that the popularity of particular values has changed but

not the rank-frequency distribution; the layers after the �rst of the

ASF are dropped and the procedure for construction starts from

!1. If this does not �x performance, a remodeling of the workload

happens, and the �lter is re-optimized and rebuilt from scratch.

Positive SetAdaptivity.ASFs address the common use casewhere

the positive set is static but the frequent negatives are changing.

This is common for read-only datasets such as the levels of an LSM

tree, and it is common in general for �lters because �lters are not

easily adaptive to changes in data size. However, in cases where

new items are frequently seen, �lters need to be able to adapt. We

explore several preliminary strategies for this in Technical Report

Section 11.6 [16].

7 BETTER SIZE-FPR TRADEOFFS

With Stacked Filters and their adaptive counterparts described fully,

we ask the following critical question: when are Stacked Filters

better than query-agnostic �lters and by how much? In terms of

their trade-o� between EFPR and size, the following theorems an-

swer this question using only summary properties of the workload:

namely a choice of |#5 | andk (#5 ). Along with each theorem, we

present a visualization of its results, which can be used by systems

designers to estimate the bene�ts of Stacked Filters on their work-

load a priori to spending the time to gather workload knowledge.

Each theorem holds exactly in the case that U is a continuous

parameter for the base query-agnostic �lter, and we discuss how

the theorems apply to integer length �ngerprint �lters at the end

of this section. The �rst theorem shows when a Stacked Filter is

strictly better than a query-agnostic �lter, as opposed to when a

1-layer �lter is best.

T������ 3. Let the positive set have size |% |, let the distribution

of our negative queries be ⇡ , and let U be a desired expected false

positive rate. If there exists any set #5 ,k = P⇡ (G 2 #5 |G 2 # ), and

0  :  k such that

|#5 |

|% |


ln 1
1�:

ln 1�:
U + 2

·
1 � : � U

U
� 1

then a Stacked Filter (optimized using Section 5 and given access to

any #5 satisfying the constraint) achieves the EFPR U using fewer

bits than a query-agnostic �lter.

Figures 2a and 2b use this theorem to create visualizations of

which workloads Stacked Filters are certainly better than query-

agnostic �lters. Figure 2a shows this for a desired EFPR of U = 0.03;

any workload with a set #5 such that |#5 |,k (#5 ) is above the line

has a Stacked Filter which is strictly better than a Bloom �lter. Figure

2b shows this trend for more alpha values. Even at a high desired

U of 0.05, Stacked Filters cover a sizeable number of workloads;

many workloads contain a negative set half the size of their positive

set, and which contain 25% of all negative queries. As the desired

EFPR decreases, Stacked Filters cover almost all real workloads; for

instance at a desired EFPR of U = 0.01, if |#5 | = |% |, then only 7% of

negative queries need to be at values in #5 for the Stacked Filter to

be more space e�cient. At even lower values, the amount needed

becomes negligible and almost any workload sees improvements.

Estimating Space Savings from Stacked Filters. Using the op-

timization routines of the prior sections and given values for |#5 |

and k (#5 ), it becomes possible to estimate the space savings of

using a Stacked Filter as compared to a query-agnostic �lter for

any desired EFPR. Namely, we can optimize the size of a Stacked
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Figure 2: Analytical equations can predict both when Stacked Filters are better, and by how much.

Filter with equal FPRs across layers while requiring that its EFPR

is less than a query-agnostic �lter:

B (U) �min
U!

B (U!) (
1

1 � U!
+
|#5 |

|% |

U!

1 � U!
)

B .C . U! 2 (0,
U

1 �k
]

Figure 2c uses this to graph how a combination of
|#5 |

|% |
and k

produces a reduction in �lter size using Stacked Bloom Filters at a

desired EFPR of U = 0.01. For each �xed value of
|#5 |

% , the graph

contains three parts: in the �rst part, it is not advantageous to build

Stacked Filters and a query-agnostic �lter is built. For all values of
|#5 |

|% |
, this is a small area and covers workloads with no frequently

queried negative elements. In the second part, Stacked Filters have

superlinear improvement ink , with improvement starting at 0 bits

per element saved and going up to 7 bits per element saved. At the

tail end of the graphs, the improvement stops even ask increases.

This is the point where U
1�k

crosses the minimal U! value for size.

After, the Stacked Filter can choose larger false positive rates at

each layer while having the same EFPR as the query-agnostic �lter,

but this larger U! value increases size. Instead, the Stacked Filter

keeps the minimal U! value for size and the Stacked Filter produces

both a space bene�t and has lower EFPR than the input U .

Integer Length Fingerprint Filters. The above equations and

theory assumed that all FPRs were possible at each layer. For in-

teger length �ngerprint �lters, this is not the case and the theory

does not hold exactly; however, the general trajectory remains the

same. Additionally, experimentally the results for integer length

�ngerprint �lters are often better than the continuous FPR approx-

imations suggest. This is because query-agnostic �lters also su�er

from limitations on the FPRs they can choose; often given more

size as a budget there isn’t enough space to add a full bit for every

positive element. In these cases, Stacked Filters can often make use

of this space to build layers deeper in the stack, and the added �ex-

iblity of being able to use space on any layer in the stack provides

additional improvements over the theory above.

8 EXPERIMENTAL ANALYSIS

Wenow experimentally demonstrate that Stacked Filters o�er better

false positive rates compared to query-agnostic Filters for the same

size, or they o�er the same false positive rate at a smaller size. We

also show that Stacked Filters are more computationally e�cient,

robust, and are more generally applicable than classi�er-based

�lters while o�ering similar false positive rates and sizes.

Filter Implementations.All �lters use CityHash as the hash func-

tion [35]. The Counting Quotient Filter (CQF) and Cuckoo Filter

(CF) implementations are taken from the original papers [20, 34]. In

the original implementation, CQF is constrained to have the �lter

size be a power of two to allow for operations such as resizing

and merging. This is not relevant to our testing, so we removed

this restriction. For CF, the implementation provided only sup-

ports certain signature lengths, so we implemented a �x to allow

all integer signature lengths. For classi�er-based �lters, we use

Learned Bloom Filters [28] with text data using a 16 dimensional

character-level GRU as in the original paper, and integer data using

a shallow feed-forward neural network. Additionally, we compare

with Sandwiched Learned Filters (SLF) [32], which uses the same

model as the Learned Filter but has a query-agnostic pre-�lter as

well as a backup �lter (Bloom �lters). For Stacked Filter layers we

use the same implementations as in the query agnostic �lters. For

most experiments we use Bloom Filters and we refer to the �lter as

Stacked Bloom Filter but we also show results with other �lters.

Experimental Infrastructure. All experiments are run on a ma-

chine with an Intel Core-i7 i7-9750H (2.60GHz with 6 cores), 32 GB

of RAM, and a Nvidia GeForce GTX 1660 Ti graphics card. Each

experimental number reported is the average of 25 runs.

Datasets. We use three diverse datasets:

(1) URL Blacklisting: The URL Blacklisting application was used

to introduce Learned Filters [28]. As the dataset in [28] is not

publicly available, we instead use two open-source databases,

Shalla’s Blacklists [1] as a positive set of dangerous URLs, and the

top 10 million websites from the Open Page Rank Initiative[2] as

a negative set of safe URLs, with the probability of querying a

safe URL proportional to its PageRank.

(2) Packet Filtering: Packet �ltering is a common application for

�lters and was used to evaluate Counting Quotient Filters [34].

Following their lead, we use the benchmark Firehose [3] which

simulates an environment where some subset of packets are

labeled suspicious and need to be �ltered. The benchmark is run

under its default settings.

(3) Synethetic Integers: To more �nely control experimental settings,

we also use synthetic data. The data set consists of 1 million pos-

itive elements using randomly generated integer keys. Negative

queries on the dataset come from a set of 100 million negative

elements, also with randomly generated keys, and follow a Zip-

�an distribution. The skew of the negative query distribution is

a controlled parameter [ taking values between 0.5 and 1.25. For

all experiments and graphs where [ is not listed, [ = 0.75.
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