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ABSTRACT
Given a user-specified minimum degree threshold γ , a γ -quasi-
clique is a subgraph д = (Vд ,Eд) where each vertex v ∈ Vд con-

nects to at least γ fraction of the other vertices (i.e., ⌈γ · (|Vд | − 1)⌉
vertices) in д. Quasi-clique is one of the most natural definitions for

dense structures useful in finding communities in social networks

and discovering significant biomolecule structures and pathways.

However, mining maximal quasi-cliques is notoriously expensive.

In this paper, we design parallel algorithms for mining maximal

quasi-cliques on G-thinker, a distributed graph mining framework

that decomposes mining into compute-intensive tasks to fully uti-

lize CPU cores. We found that directly using G-thinker results in the

straggler problem due to (i) the drastic load imbalance among differ-

ent tasks and (ii) the difficulty of predicting the task running time.

We address these challenges by redesigning G-thinker’s execution

engine to prioritize long-running tasks for execution, and by utiliz-

ing a novel timeout strategy to effectively decompose long-running

tasks to improve load balancing. While this system redesign applies

to many other expensive dense subgraph mining problems, this

paper verifies the idea by adapting the state-of-the-art quasi-clique

algorithm, Quick, to our redesigned G-thinker. Extensive experi-

ments verify that our new solution scales well with the number of

CPU cores, achieving 201× runtime speedup when mining a graph

with 3.77M vertices and 16.5M edges in a 16-node cluster.
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1 INTRODUCTION
Given a degree threshold γ and an undirected graph G, a γ -quasi-
clique is a subgraph of G, denoted by д = (Vд ,Eд), where each
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vertex connects to at least ⌈γ · (|Vд | − 1)⌉ other vertices in д. Quasi-
clique is a natural generalization of clique that is useful in mining

various networks, such as finding protein complexes or biologi-

cally relevant functional groups [5, 8, 10, 21, 29, 35], and social

communities [20, 25] that can correspond to cybercriminals [37],

botnets [34, 37] and spam/phishing email sources [33, 36]. Mining

maximal quasi-cliques is notoriously expensive [32] and the state-

of-the-art algorithms [26, 31, 39] were only tested on small graphs.

For example, Quick [26], the best among existing algorithms, was

only tested on graphs with thousands of vertices [26]. This has

hampered its use in real applications involving big graphs.

In this paper, we design parallel algorithms for mining maximal

quasi-cliques that scale to big graphs. Our algorithms follow the

idea of divide and conquer which partitions the problem of mining a

big graph into tasks that mine smaller subgraphs for concurrent ex-

ecution. This has been made possible recently by the G-thinker [38]

framework for distributed graph mining which avoids the IO bottle-

neck for data movement that exists in other existing data-intensive

systems which could result in a throughput comparable or even

less than a single-threaded program [2, 13].

However, we found that porting such a divide-and-conquer al-

gorithm (hereafter called divisible algorithm for simplicity) directly

to the current G-thinker implementation still leads to the straggler

problem. This is because the state-of-the-art divisible algorithms

for mining dense subgraphs such as quasi-cliques and k-plexes [15]
are much more difficult than the applications that G-thinker al-

ready implemented, such as maximum clique finding and triangle

counting [38]. For example, [32] showed that even the problem

of detecting whether a given quasi-clique in a graph is maximal

is NP-hard. Unlike those problems considered in [38] where the

running times of individual tasks are relatively short, quasi-clique

mining generates tasks of drastically different running time, which

was not sufficiently handled by the G-thinker engine.

On the other hand, G-thinker’s graph-divisible computing para-

digm is a perfect fit for dense subgraph mining problems, and all we

need to do is to redesign G-thinker’s execution engine to address

the straggler problem. Before the advent of G-thinker, such paral-

lelization was not easy. For example, [32] makes it a future work

“Can the algorithms for quasi-cliques be parallelized effectively?”.

Addressing the load balancing issue of G-thinker would not only

benefit parallel quasi-clique mining, but also the parallelization of

many other graph-divisible algorithms [7, 11, 15–17, 27, 28].

We adopt an algorithm-system codesign approach to parallelize

quasi-clique mining, and the main contributions are as follows:
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• We redesigned G-thinker’s execution engine to prioritize the

execution of big tasks that tend to be stragglers. Specifically,

we add a global task queue to keep big tasks which is shared

by all mining threads in a machine for prioritized fetching;

task stealing is used to balance big tasks among machines.

• We improved Quick by integrating new pruning rules that

are highly effective, and fixing some missed boundary cases

in Quick that could lead tomissed results. The new algorithm,

called Quick+, is then parallelized using G-thinker API.

• We achieved effective and early decomposition of big tasks

by a novel timeout strategy, without the need to predict task

running time which is very difficult.

Our parallel solution has been extensively verified over real

graphs. For example, we are able to obtain 201× speedup when

mining 0.89-quasi-cliques on the Patent graph with 3.77M vertices

and 16.5M edges in our 16-node cluster: the total serial mining time

of 25,369 sec are computed by our parallel solution in 126 sec.

The rest of this paper is organized as follows. Section 2 reviews

related work on quasi-clique mining and graph computing time

prediction. Section 3 formally defines our notations, the general

divisible algorithmic framework for dense subgraph mining which

is adopted by Quick and which is amenable to parallelization using

G-thinker. Section 4 then demonstrates that the tasks of Quick+ can

have drastically different running time, and describes the straggler

problem that we faced. Section 5 then reviews the original execution

engine of G-thinker and describes our redesign to prioritize big

tasks for execution. Section 6 then outlines our Quick+ algorithm

and Section 7 presents its adaptation on G-thinker as well as a

version using timeout-based task decomposition. Finally, Section 8

reports our experiments and Section 9 concludes this paper.

2 RELATEDWORK
A few seminal works devised branch-and-bound subgraph search-

ing algorithms for mining quasi-cliques, such as Crochet [22, 31]

and Cocain [39] which finally led to the Quick algorithm [26] that

integrated all previous search space pruning techniques and added

new effective ones. However, we find that some pruning techniques

are not utilized or fully utilized by Quick. Even worse, Quick may

miss results. We will elaborate on these weaknesses in Section 6.

Sanei-Mehri et al. [32] noticed that if γ ′-quasi-cliques (γ ′ > γ )
are mined first using Quick which are faster to find, then it is

more efficient to expand these “kernels” to generate γ -quasi-cliques
than to mine them from the original graph. Their kernel expansion

is conducted only on those largest γ ′-quasi-cliques extracted by

postprocessing, in order to find big γ -quasi-cliques as opposed to

all of them to keep time tractable. However, this work does not

fundamentally address the scalability issue: (1) it only studies the

problem of enumerating k big maximal quasi-cliques containing

kernels rather than all valid ones, and these subgraphs can be

clustered in one region (e.g., they overlap on a smaller clique) while

missing results on other parts of the data graph, compromising

result diversity; (2) the method still needs to first find some γ ′-
quasi-cliques to grow from and this first step is still using Quick;

and (3) the method is not guaranteed to return exactly the set

of top-k maximal quasi-cliques. We remark that the kernel-based

acceleration technique is orthogonal to our parallel algorithm and

can be easily incorporated.
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Figure 1: An Illustrative Graph

Other than [32], quasi-cliques have seldom been considered in a

big graph setting. Quick [26] was only tested on two small graphs:

one with 4,932 vertices and 17,201 edges, and the other with 1,846

vertices and 5,929 edges. In fact, earlier works [22, 31, 39] formulate

quasi-clique mining as frequent pattern mining problems where

the goal is to find quasi-clique patterns that appear in a significant

portion of small graph transactions in a graph database. Someworks

consider big graphs but not the problem of finding all valid quasi-

cliques, but rather those that contain a particular vertex or a set of

query vertices [12, 14, 24] to aggressively narrow down the search

space by sacrificing result diversity, with some additional pruning

rules beyond Quick, some in the query-vertex context.

There is another definition of quasi-clique based on edge den-

sity [4, 14, 30] rather than vertex degree, but it is essentially a differ-

ent kind of dense subgraph definition. As [14] indicates, the edge-

density based quasi-cliques are less dense than our degree-based

quasi-cliques, and thus we focus on degree-based quasi-cliques in

this paper as in [14]. Brunato et al. [9] further consider both vertex

degree and edge density. There are also many other definitions of

dense subgraphs [7, 11, 15–17, 27, 28], and they all follow a similar

divisible algorithmic framework as Quick (c.f. Section 3).

A recent work proposed to use machine learning to predict the

running time of graph computation for workload partitioning [18],

but the graph algorithms considered there are iterative algorithms

that do not have unpredictable pruning rules and thus the running

time can be easily estimated. This is not the case in quasi-clique

mining (c.f. Section 4), and dense subgraph mining in general which

adopts divide-and-conquer (and often recursive) algorithms, calling

for a new solution for effective task workload partitioning.

3 PRELIMINARIES
Graph Notations. We consider an undirected graph G = (V ,E)
where V (resp. E) is the set of vertices (resp. edges). The vertex

set of a graph G can also be explicitly denoted as V (G). We use

G(S) to denote the subgraph of G induced by a vertex set S ⊆ V ,
and use |S | to denote the number of vertices in S . We also abuse

the notation and use v to mean the singleton set {v}. We denote

the set of neighbors of a vertex v in G by N (v), and denote the

degree of v in G by d(v) = |N (v)|. Given a vertex subset V ′ ⊆ V ,
we define NV ′(v) = {u | (u,v) ∈ E,u ∈ V

′}, i.e., NV ′(v) is the set of
v’s neighbors inside V ′, and we also define dV ′(v) = |NV ′(v)|.

To illustrate the notations, consider the graph G shown in Fig-

ure 1. Let us useva to denote Vertex a○ (the same for other vertices),

thus we have N (vd ) = {va ,vc ,ve ,vh ,vi } and d(vd ) = 5. Also, let

S = {va ,vb ,vc ,vd ,ve }, then G(S) is the subgraph of G consisting

of the vertices and edges in red and black.

Given two vertices u,v ∈ V , we define δ (u,v) as the num-

ber of edges on the shortest path between u and v . We call G
as connected if δ (u,v) < ∞ for any u,v ∈ V . We further define

Nk (v) = {u | δ (u,v) = k} and define N+k (v) = {u | δ (u,v) ≤ k}. In

a nutshell, N+k (v) are the set of vertices reachable from v within k
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Figure 2: Set-Enumeration Tree

hops, and Nk (v) are the set of vertices reachable from v in k hops

but not in (k −1) hops. Then, we have N0(v) = v and N1(v) = N (v),
and N+k (v) = N0(v) + N1(v) + . . . + Nk (v). For 2-hop neighbors,

we define B(v) = N2(v) and B(v) = N+
2
(v).

To illustrate using Figure 1, we have N (ve ) = {va ,vb ,vc ,vd },
B(ve ) = {vf ,vд ,vh ,vi }, and B(ve ) consisting of all vertices.

Problem Definition.We next formally define our problem.

Definition 1 (γ -qasi-cliqe). A graphG = (V ,E) is aγ -quasi-
clique (0 ≤ γ ≤ 1) if G is connected, and for every vertex v ∈ V , its

degree d(v) ≥ ⌈γ · (|V | − 1)⌉.
If a graph is a γ -quasi-clique, then its subgraphs usually become

uninteresting, so we only mine maximal γ -quasi-clique as follows:
Definition 2 (Maximal γ -qasi-cliqe). Given graph G =

(V ,E) and a vertex set S ⊆ V , G(S) is a maximal γ -quasi-clique of
G if G(S) is a γ -quasi-clique, and there does not exist a superset

S ′ ⊃ S such that G(S ′) is a γ -quasi-clique.
To illustrate using Figure 1, consider S1 = {va ,vb ,vc ,vd } (i.e.,

vertices in red) and S2 = S1 ∪ve . If we set γ = 0.6, then both S1 and
S2 are γ -quasi-cliques: every vertex in S1 has at least 2 neighbors
in G(S1) among the other 3 vertices (and 2/3 > 0.6), while every

vertex in S2 has at least 3 neighbors in G(S2) among the other 4

vertices (and 3/4 > 0.6). Also, since S1 ⊂ S2,G(S1) is not a maximal

γ -quasi-clique.
In the literature of dense subgraph mining, researchers usually

only strive to find big dense subgraphs, such as the largest dense

subgraph [15, 24, 27, 28], the top-k largest ones [32], and those

larger than a predefined size threshold [15, 16, 26]. There are two

reasons. (i) Small dense subgraphs are common and thus statistically

insignificant and not interesting. For example, a single vertex itself

is a quasi-clique for any γ , and so is an edge with its two end-

vertices. (ii) The number of dense subgraphs grows exponentially

with the graph size and is thus intractable unless we focus on

finding large ones. In fact, it has been shown that even the problem

of detecting if a given quasi-clique is maximal is NP-hard [32], and

clique relaxations (aka. pseudo-cliques) are known to be much more

expensive than clique mining [7, 15, 16, 32]. Following [26], we use

a minimum size threshold τsize to return only large quasi-cliques.

Definition 3 (Problem Statement). Given a graphG = (V ,E),
a minimum degree threshold γ ∈ [0, 1] and a minimum size thresh-

old τsize , we aim to find all the vertex sets S such that G(S) is a
maximal γ -quasi-cliques of G, and that |S | ≥ τsize .

For ease of presentation, when G(S) is a valid quasi-clique, we

simply say that S is a valid quasi-clique.

Framework forRecursiveMining. In general pseudo-cliquemin-

ing problems (including ours), the giant search space of a graph

G = (V ,E), i.e., V ’s power set, can be organized as a set-enumera-

tion tree [26]. Figure 2 shows the set-enumeration treeT for a graph

G with four vertices {a,b, c,d} where a < b < c < d (ordered by

ID). Each tree node represents a vertex set S , and only vertices

larger than the largest vertex in S are used to extend S . For example,

in Figure 2, node {a, c} can be extended with d but not b as b < c;
in fact, {a,b, c} is obtained by extending {a,b} with c .

Let us denote TS as the subtree of the set-enumeration tree T
rooted at a node with set S . Then, TS represents a search space for

all possible pseduo-cliques that contain all vertices in S . In other

words, let Q be a pseduo-clique found by TS , then Q ⊇ S .
We represent the task of miningTS as a pair ⟨S, ext(S)⟩, where S

is the set of vertices assumed to be already included, and ext(S) ⊆
(V −S) keeps those vertices that can extend S further into a γ -quasi-
clique. As we shall see, many vertices cannot form a γ -quasi-clique
together with S and can thus be safely pruned from ext(S); therefore,
ext(S) is usually much smaller than (V − S).

Note that the mining of TS can be recursively decomposed into

the mining of the subtrees rooted at the children of node S in TS ,
denoted by S ′ ⊃ S . Note that since ext(S ′) ⊂ ext(S), the subgraph
induced by nodes of a child task ⟨S ′, ext(S ′)⟩ is smaller.

This set-enumeration approach typically requires postprocess-

ing to remove non-maximal pseudo-cliques from the set of valid

pseudo-cliques found [26]. For example, when processing task that

mines T{b } , vertex a is not considered and thus the task has no

way to determine that {b, c,d} is not maximal, even if {b, c,d}
is invalidated by {a,b, c,d} which happens to be a valid pseudo-

clique, since {a,b, c,d} is processed by the task mining T{a } . But
this postprocessing is efficient especially when the number of valid

pseudo-cliques is not big (as we only find large pseduo-cliques).

4 CHALLENGES IN LOAD BALANCING
We explain the straggler problem using two large graphs YouTube
and Patent shown in Table 3 of Section 8. We show that (1) the run-

ning time of tasks spans a wide range, (2) even tasks with subgraphs

of similar size- and degree-related features can have drastically

different running time, and hence (3) expensive tasks cannot be

effectively predicted using regression models in machine learning.

Specifically, we ran quasi-clique mining using G-thinker where

each task is spawned from a vertex v and mines the entire set-

enumeration subtreeT{v } in serial without generating any subtasks.
As shall be clear from rules (P1) and (P2) in Section 6, vertices with

low degrees can be pruned using a k-core algorithm, and vertices

in ext(S) have to be within f (γ ) hops from v . Our reported experi-

ments has applied these pruning rules so that (i) low-degree vertices

are directly pruned without generating tasks, (ii) the subgraphs

have been pruned not to include vertices pruned by (P1) and (P2).

Also, we only report the actual time of miningT{v } for each task,
not including any system-level overheads for task scheduling and

vertex data requesting, though the latter cost is not a bottleneck

since almost all mining threads in G-thinker are busy on the actual

mining workloads when there are enough tasks to process [38].

Table 1 (resp. Table 2) shows the task-subgraph features of the

top-10 longest-running tasks on YouTube with γ = 0.9 (resp. Patent
with γ = 0.89) including the number of vertices and edges, the

maximum and average vertex degree, the k-core number (aka. de-

generacy) of the subgraph, the actual serial mining time on the

subgraph, along with the predicted time using support vector re-

gression. The tasks are listed in ascending order of running time

(c.f. Column “Task Time”), and the time unit is millisecond (ms).

575



Table 1: Features of 10 Most Expensive Tasks on YouTubeyoutube_table

|V| |E| Max Degree |E|/|V| Core # Task Time Predicted Time

2,570 72,678 1,583 28.28 43 13,033 899.67

3,588 82,727 1,417 23.06 37 13,407 1,128.13

3,228 100,177 2,127 31.04 49 13,623 1,505.75

2,646 75,747 1,646 28.63 44 13,893 969.04

2,755 78,375 1,597 28.45 45 15,011 1,028.77

5,074 162,249 2,721 31.98 50 15,015 1,924.41

3,177 101,008 1,850 31.80 49 15,267 1,521.73

2,321 55,094 1,320 23.74 38 15,584 529.61

3,723 113,828 1,849 30.58 46 16,881 1,745.78

26,235 694,686 7,105 26.48 51 3,645,905 1,015.08

1

Table 2: Features of 10 Most Expensive Tasks on Patentpatent_table

|V| |E| Max Degree |E|/|V| Core # Task Time Predicted Time

109 4,232 93 38.83 64 729,769 5.53

93 3,197 80 34.38 60 1,006,208 3.84

104 3,914 88 37.63 64 1,053,326 4.99

95 3,332 82 35.07 60 1,083,755 4.07

69 1,786 65 25.88 43 1,198,085 1.48

78 2,282 69 29.26 48 1,220,241 2.32

72 1,950 66 27.08 45 1,411,622 1.75

79 2,346 69 29.70 49 1,757,738 2.43

88 2,873 75 32.65 55 2,658,704 3.32

76 2,167 68 28.51 47 2,878,700 2.11

1

In Table 1, the last task takes more than 1 hour (3645.9 seconds)

to complete, while the entire G-thinker job only takes 61 minutes

and 33.2 seconds, clearly indicating that this task is a straggler. In

fact, even if we sum the mining time of all tasks, the total is just 5.5

times that of this straggler task, meaning that the speedup ratio is

locked at 5.5× if we do not further decompose an expensive task.

In Table 2, the last 9 tasks all take more than 1000 seconds, so

unlike YouTube with one particularly expensive tasks, Patent has
a few of them, so the computing thread that gets assigned most

of those tasks will become a straggler. In fact, the job takes only

55 minutes and 25.4 seconds, but the last task alone takes 2878.7

seconds, clearly a straggler. In fact, on both graphs, there are tasks

taking less than 1 ms, so the task time spans 8 orders of magnitude!

Note that in the tables, we already have size- and degree-based

features of a task-subgraph, as well as the more advanced feature

of subgraph degeneracy that reflects graph density. We have ex-

tensively tested the various machine learning models for task-time

regression using the above input features along with the top-10

highest vertex degrees and top-10 vertex core indices, but none

of the models can effectively predict the time-consuming tasks. In

both Tables 1 and 2, the last column shows the predicted time using

support vector regression trained using all the task statistics, and

we can see that the predicted times are way off the ground truth.

We remark that this difficulty is because the set-enumeration

search is exponential in nature, and the timing when pruning rules

are applicable changes dynamically during the mining depending

on the vertex connections, and cannot be effectively predicted other

than conducting the actual divisible mining.

To visualize how each subgraph feature impacts the task running

time, we plot the impacts of average degree, and core # in the two

subplots in Figure 3 for the YouTube graph, where we excluded the

sole straggler task that takes 3645.9 seconds which would otherwise
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Figure 3: Subgraph Features v.s. Task Time on YouTube

flatten other points to near 0 on the y-axis. We can see that for

about the same feature values, the time can vary a lot along the

vertical direction, and this happens unless the subgraph is very

small (e.g., less than 1000 vertices or average degree less than 20).

No wonder that the expensive tasks cannot be predicted from these

features. The complete plots of all features on both graph data are

put in our technical report [19] due to space limitation.

Solution Overview.We address the above challenges from both

the algorithmic and the system perspectives. Algorithmically,
straggler tasks need to be divided into subtasks with controllable

running time even though the actual running time needed by a task

is difficult to predict; this will be addressed in Section 7. However,

even with effective task decomposition algorithms, the system still

needs to have a mechanism to schedule straggler tasks early so

that its workloads can be partitioned and concurrently processed

as early as possible; we address this in Section 5 below.

5 G-THINKER AND ITS REDESIGN
G-thinker API. The distributed system G-thinker [38] computes

in the unit of tasks. A task t maintains a subgraphд that it constructs
and then mines. Each initial task is spawned from an individual

vertex v and requests for the adjacency lists of its surrounding

vertices (whose IDs are in v’s adjacency list). When the one-hop

neighbors ofv are received, t can continue to grow its subgraphд by
requesting the second-hop neighbors. When д is fully constructed,

t can then mine it or decompose it to generate smaller tasks.

To avoid double-counting, a vertex v only requests those ver-

tices with ID > v . In Figure 2, each level-1 singleton node {v}
corresponds to a G-thinker task spawned from v , and it only ex-

amines those vertices with ID > v , so that a quasi-clique whose

smallest vertex is v is found exactly in the set-enumeration subtree

T{v } (recall Figure 2) by the task spawned from v .
To write a G-thinker algorithm, a user only implements 2 user-

defined functions (UDFs): (1) spawn(v) indicating how to spawn a

task from each individual vertex of the input graph; (2) compute(t ,
frontier) indicating how a task t processes an iterationwhere frontier
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Figure 4: G-thinker Architecture Overview

keeps the adjacency lists of the requested vertices in the previous

iteration. In a UDF, users may request for the adjacency list of a

vertex u to expand the subgraph д of a task t , or even to decompose

д by creating multiple new tasks with smaller subgraphs, which

corresponds to branching a node into its children in Figure 2.

UDF compute(t , frontier) is called in iterations for growing task t ’s
subgraph in a breadth-first manner. If some requested vertices are

not locally available, t will be suspended so that its mining thread

can continue to process other tasks; t will be scheduled to call

compute(.) again once all its requested data become locally available.

UDF compute(t , frontier) returns true if the task t needs to call

compute(.) for more iterations for further processing; it returns false
if t is finished so that G-thinker will delete t to release space.

In this paper, we maintain G-thinker’s programming interface as

described above while redesigning its parallel execution engine so

that big tasks can be scheduled early to partition its computations.

The Original System Architecture. Figure 4 shows the architec-
ture (components) of G-thinker on a cluster of machines (the yellow

global task queue is the new addition by our redesign).

We assume that a graph is stored as a set of vertices, where

each vertex v is stored with its adjacency list N (v) that keeps its
neighbors. G-thinker loads an input graph from HDFS. As Figure 4

shows, each machine only loads a fraction of vertices along with

their adjacency lists into its memory, kept in a local vertex table.

Vertices are assigned to machines by hashing their vertex IDs, and

the aggregate memory of all machines is used to keep a big graph.

The local vertex tables of all machines constitute a distributed key-

value store where any task can request for N (v) using v’s ID.
G-thinker spawns initial tasks from each individual vertex v

in the local vertex table. As Figure 4 shows, each machine also

maintains a remote vertex cache to keep the requested vertices (and

their adjacency lists) that are not in the local vertex table, for access

by tasks via the input argument frontier to UDF compute(t , frontier).
This allows multiple tasks to share requested vertices to minimize

redundancy. In compute(t , frontier), task t is supposed to save the

needed vertices and edges in frontier into its subgraph, as G-thinker
releases t ’s hold of those vertices in frontier right after compute(t ,
frontier) returns, and they may be evicted from the vertex cache.

Note that if the machine memory is large enough, a pulled vertex

will never be evicted, so every vertex will be pulled at most once.

If compute(t , frontier) returns true, t is added to a task queue to be
scheduled to call compute(.) for more iterations; while if it returns

false, t is finished and thus deleted to release space.

In the original G-thinker, each mining thread keeps a task queue

Qlocal of its own to stay busy and to avoid contention. Since tasks

are associated with subgraphs that may overlap, it is infeasible to

keep all tasks in memory. G-thinker only keeps a pool of active tasks

in memory at any time by controlling the pace of task spawning.

If a task is waiting for its requested vertices, it is suspended so

that the mining thread can continue to process the next task in

its queue; the suspended task will be added to a task buffer Blocal
by the data serving module once all its requested vertices become

locally available, to be fetched by the mining thread for calling

compute(.), and adding it to Qlocal if compute(.) returns true.
Note that a task queue can become full if a task generates many

subtasks into its queue, or if many tasks that are waiting for data

become ready all at once. To keep the number of in-memory tasks

bounded, if a task queue is full but a new task is to be inserted, we

spill a batch of C tasks at the end of the queue as a file to local disk

to make room. As the upper-left corner of Figure 4 shows, each

machine maintains a list Lsmall of task files spilled from the task

queues of mining threads. To minimize the task volume on disks,

when a thread finds that its task queue is about to become empty,

it will first refill tasks into the queue from a task file (if it exists),

before choosing to spawn more tasks from vertices in local vertex

table. Note that tasks are spilled to disks and loaded back in batches

to be IO-efficient. For load balancing, machines about to become

idle will steal tasks from busy ones by prefetching a batch of tasks

and adding them as a file to Lsmall . These tasks will be loaded by

a mining thread for processing when its task queue needs a refill.

Note that while we materialize subgraphs for tasks, the above

design ensures that only a pool of tasks are in memory and spilled

tasks are temporarily kept on local disks. This is important to

keep memory usage bounded as the number of tasks can grow

exponentially with graph size. Also note that G-thinker is designed

to be distributed mainly to use the CPU cores on all machines

in a cluster, and therefore the IO and locking operations are well

overlapped with and thus hidden by task computations [38].

System Redesign. Recall that a task in pseduo-clique mining can

be very time consuming. If we only let each mining thread buffer

pending tasks in its own local queue, big tasks in the queue cannot

be moved around to idle threads in time until they reach the queue

head, and they can be stuck by other time-consuming big tasks

located earlier in the queue, causing the straggler problem. We now

describe how we redesign the execution engine to allow big tasks

to be scheduled as soon as possible, always before small tasks.

Wemaintain separate task containers for big tasks and small ones,

and always prioritize the containers for big tasks for processing.

Note that for the new engine to function, we also need our new

task decomposition algorithms in Section 7 to ensure that a big task

will not be computed for a long time before being decomposed, so

that later big tasks can be timely scheduled for processing.

Specifically, we use the local task queues of the respective mining

threads and the associated task containers (i.e., file list Lsmall and
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Algorithm 1 Old Execution Procedure of a Computing Thread

1: while job end tag is not set by the main thread do
2: if memory capacity permits then
3: if Qlocal does not have enough tasks then refill Qlocal
4: pop a task t from Qlocal and provide requested vertices

5: if all vertices are ready, repeat compute(t , frontier)
6: if t is not finished, suspend t to wait for data

7: obtain a task t ′ from Blocal
8: repeat compute(t ′, frontier) till some vertex is not available

9: if t ′ is not finished, append t ′ to Qlocal

ready-task buffer Blocal ) to keep small tasks only. We similarly

maintain a global task queue Qдlobal to keep big tasks shared by

all computing threads, along with its associated task containers as

shown in Figure 4, including file list Lbiд to buffer big tasks spilled

from Qдlobal , and task buffer Bдlobal to hold those big tasks that

have their requested data ready for computation.

We define a user-specified threshold τsplit so that if a task

t = ⟨S, ext(S)⟩ has a subgraph with potentially more than τsplit
vertices to check, it is appended to Qдlobal ; otherwise, it is ap-

pended toQlocal of the current thread. Here, it is difficult to decide

the subgraph size of t as it is changing. So when t is still requesting
vertices to construct its subgraph, we consider t as a big task iff the

number of vertices to pull in the current iteration of compute(.) is at
least τsplit , which prioritizes its execution to construct the poten-

tially big subgraph early; while when t is mining its constructed

subgraph, we consider t as a big task iff |ext(S)| > τsplit , since
there are |ext(S)| vertices to check to expand S .

In the original G-thinker, each thread loops two operations:

• Algorithm 1 Lines 4-6 “pop”: to fetch a task t from Qlocal
and to feed its requested vertices; if any remote vertex is not

in the vertex cache, t will be suspended to wait for data;

• Algorithm 1 Lines 7-9 “push”: to fetch a task from the thread’s

local ready-buffer Blocal for computation, which is then

appended to Qlocal if further processing is needed.

“Pop” is only done if there is enough space left in vertex cache

and task containers, otherwise only “push” is conducted to process

partially computed tasks so that their requested vertices can be

released to make room, which is necessary to keep tasks flowing.

Task refill is conducted right before “pop” if the number of tasks

in Qlocal < task batch size C , with the priority order of getting a

task batch from Lsmall , then from Blocal , and then spawning from

vertices in the local vertex table that have not spawned tasks yet.

This order is to digest old/spilled tasks before spawning new tasks.

In our redesigned G-thinker engine, we prioritize big tasks for ex-

ecution and the procedure in Algorithm 1 has three major changes.

The first change is with “push”: a mining thread keeps flowing

those tasks that have their requested data ready to compute, by

(i) first fetching a big task from Bдlobal for computing. The task

may need to be appended back to Qдlobal , or may be decomposed

into smaller tasks to be appended either to Qдlobal or the thread’s

Qlocal . (ii) If Bдlobal is, however, found to be empty, the thread

will instead fetch a small task from its Blocal for computing.

The second change is with “pop”: a computing thread always

fetches a task from Qдlobal first. If (I) Qдlobal is locked by another

thread (i.e., a try-lock failure), or if (II)Qдlobal is found to be empty,

the thread will then pop a task from its local queue Qlocal .

In Case (I) ifQдlobal is successfully locked, if its number of tasks

is below a batch size C , the thread will try to refill a batch of tasks

from Lbiд . We do not check Bдlobal for refill since it is shared by

all mining threads which will incur frequent locking overheads.

Note that “push” already keeps flowing big tasks with data ready.

In Case (II) when there is no big task to pop, a mining thread

will check its Qlocal to pop, before which if task number therein is

below a batch, task refill happens where lies our third change.

Specifically, the thread will refill tasks from Lsmall , and then

from its Blocal in this prioritized order to minimize the number of

partially processed tasks buffered on local disk tracked by Lsmall .

If both Lsmall and Blocal are still empty, the computing thread

will then spawn a batch of new tasks from vertices in the local

vertex table for refill. However, we stop as soon as a spawned task

is big, which is then added to Qдlobal (previous tasks are added to

Qlocal ). This avoids generating many big tasks out of one refill.

Finally, since the main performance bottleneck is caused by big

tasks, task stealing is conducted only on big tasks to balance them

among machines. The number of pending big tasks (inQдlobal plus

Lbiд ) in each machine is periodically collected by a master (every 1

second), which computes the average and generates stealing plans

to make the number of big tasks on every machine close to this

average. If a machine needs to take (resp. give) less than a batch ofC
tasks, these tasks are taken from (resp. appended to) the global task

queueQдlobal ; otherwise, we allow at most one task file (containing

C tasks) to be transmitted to avoid frequent task thrashing that

overloads the network bandwidth. Note that in one load balancing

cycle (i.e., 1 second) at most C tasks are moved at each machine.

6 PROPOSED QUICK+ ALGORITHM
The key to an efficient set-enumeration search is the pruning

strategies that are applied to remove entire branches from con-

sideration [23]. Without pruning, the search space is exponential.

Quick [26] uses the most complete set of pruning rules for mining

maximal quasi-cliques. To further improve the efficiency, this sec-

tion presents our Quick+ algorithm that integrates Quick with new

pruning rules. We also fix some missed boundary cases.

Due to space limit, we only briefly overview Quick+ and present

those rules necessary for understanding our improvements, and

leave the complete details and proofs in our technical report [19].

Recall the set-enumeration tree in Figure 2, where each node

represents a mining task tS = ⟨S, ext(S)⟩ which mines the set-

enumeration subtree TS : it assumes that vertices in S are already

included in a result quasi-clique to find, and continues to expand

G(S) with vertices of ext(S) into a valid quasi-clique. Task tS can

be recursively decomposed into tasks mining the subtrees {TS ′}
where S ′ ⊃ S are child nodes of node S . Quick+ examines the

set-enumeration search tree in depth-first order, while the parallel

algorithm in the next section will utilize the concurrency among

child nodes {S ′} of node S in the set-enumeration tree.

We consider two types of pruning rules: Type I: Pruning ext(S):
in such a rule, if a vertex u ∈ ext(S) satisfies certain conditions,

u can be pruned from ext(S) since there must not exist a vertex

set S ′ such that (S ∪ u) ⊆ S ′ ⊆ (S ∪ ext(S)) and G(S ′) is a γ -quasi-
clique. Type II: Pruning S: in such a rule, if a vertexv ∈ S satisfies

certain conditions, there must not exist a vertex set S ′ such that

S ⊆ S ′ ⊆ (S∪ext(S)) andG(S ′) is a γ -quasi-clique, and thus there is
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no need to extend S further. Type-II pruning invalidates the entire

TS . A variant invalidates G(S ′), S ⊂ S ′ ⊆ (S ∪ ext(S)) from being

a valid quasi-clique, but node S is not pruned (i.e., G(S) may be a

valid quasi-clique).

We identify 7 groups of pruning rules [19] summarized as (P1)–

(P7) where each rule either belongs to Type I, or Type II, or both.

(P1) Graph-Diameter Based Pruning. Theorem 1 of [31] defines

the upper bound of the diameter of a γ -quasi-clique as a function
f (γ ), and f (γ ) = 2 if γ ≥ 0.5. W.l.o.g, we use 2 as the diameter

upper bound in our algorithm description, but it is straightforward

to generalize to the case γ < 0.5 by considering vertices f (γ ) hops
away. Since a vertex u ∈ ext(S) must be within 2 hops from any

v ∈ S , we have ext(S) ⊆
⋂
v ∈S B(v). This is a Type-I pruning

rule since if u <
⋂
v ∈S B(v), u can be pruned from ext(S).

(P2) Size-Threshold Based Pruning. A valid γ -quasi-clique Q ⊆
V should contain at least τsize vertices (i.e., |Q | ≥ τsize ), and there-
fore for anyv ∈ Q , its degree d(v) ≥ ⌈γ · (|Q | −1)⌉ ≥ ⌈γ · (τsize −1)⌉.
We thus can prune any vertexu with d(u) < ⌈γ · (τsize −1)⌉ fromG .
Let k = ⌈γ · (τsize − 1)⌉, then this rule shrinks G into its k-core,
i.e., the maximal subgraph ofG where every vertex has degree ≥ k .
The k-core of a graph G = (V ,E) can be computed in O(|E |) time

using a peeling algorithm [6]. We thus shrink a graph G into its

k-core before mining, which effectively reduces the search space.

(P3) Degree-Based Pruning. Four kinds of degrees are frequently
used by pruning rules: (1) SS-degrees: dS (v) for all v ∈ S ; (2) SE-
degrees: dS (u) for all u ∈ ext(S); (3) ES-degrees: dext (S )(v) for all
v ∈ S ; and (4) EE-degrees: dext (S )(u) for all u ∈ ext(S).

Three groups of pruning rules utilize these degrees: (i) degree-

based pruning that solely uses the degrees of a vertex itself, (ii) upper-

bound based pruning and (iii) lower-bound based pruning that look

at the degrees of multiple (or even all) vertices in S and ext(S). Each
of the three groups contains two rules: one Type-I rule and one

Type-II rule. Please see our technical report [19] for these rules.

(P4 & P5) Upper- and Lower-Bound Based Pruning. For each
task tS = (S, ext(S)), Quick [26] defined an upper boundUS (resp.

lower bound LS ) on the number of vertices in ext(S) to be added to
S to form a γ -quasi-clique, based on the above mentioned degrees.

We found that additional Type-II pruning not considered by Quick

can happen when computingUS (resp. LS ) (see [19] for details).

(P6) Critical-Vertex Based Pruning.Given the above-mentioned

lower bound LS , we call any vertex v ∈ S as a critical vertex if

dS (v) + dext (S )(v) = ⌈γ · (|S | + LS − 1)⌉. Quick [26] showed that

if v is a critical vertex, then for any vertex set S ′ such that S ⊂
S ′ ⊆ (S ∪ ext(S)), if G(S ′) is a γ -quasi-clique, then S ′ must contain

every neighbor of v in ext(S), i.e., Next (S )(v) ⊆ S ′. In other words,

if we find any v ∈ S is a critical vertex, we can directly include all

vertices in Next (S )(v) to S for further mining.

(P7) Cover-Vertex Based Pruning. Given a vertex u ∈ ext(S),
Quick [26] defined a vertex set CS (u) ⊆ ext(S) such that for any

γ -quasi-clique Q generated by extending S with vertices in CS (u),
Q ∪ u is also a γ -quasi-clique. In other words, Q is not maximal

and can thus be pruned. We say that CS (u) is the set of vertices in
ext(S) that are covered by u, and that u is the cover vertex.

To utilize CS (u) for pruning, we put vertices of CS (u) after all
the other vertices in ext(S) when checking the next level in the

set-enumeration tree (see Figure 2), and only check until vertices

of ext(S) −CS (u) are examined (i.e., the extension of S using V ′ ⊆
CS (u) is pruned). To maximize the pruning effectiveness, we find

u ∈ ext(S) to maximize |CS (u)|. We refer readers to [19] for the

formula of computing CS (u). As a degenerate special case, initially
when S = ∅, we have CS (u) = N (u), i.e., we only need to find u as

the vertex with the maximum degree. Note that for any γ -quasi-
cliqueQ constructed out of vertices inCS (u) = N (u), adding u toQ
still produces aγ -quasi-clique.We findu as the vertex the maximum

degree after k-core pruning by (P2) to avoid high-degree vertex

without pruning power (e.g., the center of a sparse star graph).

Iterative Nature of Type-I Pruning. Recall that Type-I pruning
shrinks ext(S), which will reduce vertex degrees such as dext (S )(v)
of somev ∈ S , which will in turn update boundsUS and LS that are

defined on the degrees. This essentially means that Type-I pruning

is iterative: each pruned vertex u ∈ ext(S) may change degrees and

bounds, which affects the various pruning rules including Type-I

pruning rules themselves; these Type-I pruning rules will thus be

checked again and new vertices in ext(S) may be pruned due to

Type-I pruning, triggering another iteration.

As this process is repeated, US and LS become tighter until no

more vertex can be pruned from ext(S), which consists of 2 cases:

• C1: ext(S) becomes empty. In this case, we only need to

check if G(S) is a valid quasi-clique;

• C2: ext(S) is not empty but cannot be shrunk further by

pruning rules. Then, we need to check S and its extensions.

The Iterative Pruning Sub-procedure. Algorithm 2 shows how

to apply our pruning rules to (1) shrink ext(S) and to (2) determine

if S can be further extended to form a valid quasi-clique. This is a

pruning sub-procedure of our recursive mining algorithm Quick+.

The iterative pruning caused by Type-I rules that shrink ext(S)
is given by the loop of Lines 1–15, which ends if the condition in

Line 15 is met, which corresponds to the above 2 cases C1 and C2.

Algorithm 2 returns a boolean tag indicating whether S ’s exten-
sions (but not S itself) are pruned, and the input ext(S) is passed as
a reference and may be shrunk by Type-I pruning by the function.

Since ext(S) can be pruned to become empty, we design this

pruning sub-procedure to guarantee that it returns f alse only if

ext(S) , ∅. Therefore, if the loop of Lines 1–15 exits due to ext(S) =
∅, we have to return true (Line 19) as there is no vertex to extend

S , but we need to first examine if G(S) itself is a valid quasi-clique

in Lines 17–18. Note that G(S) is not Type-II pruned as otherwise

Line 10 would have returned true to exit pruning.

Now let us focus on the loop body in Lines 2–14 about one prun-

ing iteration, which can be divided into 3 parts: (1) Lines 2–7: critical

vertex pruning, (2) Lines 8–10: Type-II pruning, and (3) Lines 11–14:

Type-I pruning. To keep Algorithm 2 short, we omit some details

but they are described in the narrative below.

First, consider Part 1. We compute the degrees in Line 2, which

are then used to computeUS and LS in Line 3. In Line 3, recall from

(P4 & P5) that Type-II pruning may apply when computing US and

LS , in which case we return true to prune S’s extensions.
Then, Lines 4–6 apply the critical-vertex pruning of (P6). In

Quick, each iteration only finds one critical vertex and moves its

neighbors from ext(S) to S . We propose to find all critical vertices

in S and move their neighbors from ext(S) to S . Such movement

will update degrees and bounds which are then updated in Line 7 if

a critical vertex is ever found. Similar to Line 3, Line 7 may trigger
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Algorithm 2 Iterative Bound-Based Pruning

Function: iterative_bounding(S , ext (S ), γ , τsize )
Output: true iff the case of extending S (excluding S itself) is pruned;

ext (S ) is passed as a reference; elements may be pruned after return
1: repeat
2: Compute dS (v) and dext (S )(v) for all v in S and ext (S )
3: Compute upper bound US and lower bound LS
4: if ∀ v ∈ S that is a critical vertex then
5: I ← ext (S ) ∩ N (v)
6: S ← S ∪ I , ext (S ) ← ext (S ) − I
7: Update degree values, US and LS
8: for each vertex v ∈ S do
9: Check Type-II pruning conditions of (P3), (P4) and (P5)

10: return true if Type-II pruning applies

11: for each vertex u ∈ ext (S ) do
12: Check Type-I pruning conditions of (P3), (P4) and (P5)

13: if some Type-I pruning condition holds for u then
14: ext (S ) ← ext (S ) − u
15: until ext (S ) = ∅ or no vertex in ext (S ) was Type-I pruned
16: if ext (S ) = ∅ then
17: if |S | ≥ τsize and G(S ) is a γ -quasi-clique then
18: Append S to the result file

19: return true
20: return f alse

Type-II pruning so that the function returns true directly. Since the
updates may generate new critical vertices in the updated S , we
actually loop Lines 4–7 until there is no more critical vertex in S .

Recall from (P6) that S ′ in critical-vertex pruning does not in-

clude S itself, so it is possible that all extensions of S lead to no valid

quasi-cliques, making G(S) itself a maximal quasi-clique. Quick

misses this check. To consider this case, we actually first check

G(S) as in Lines 17–18 before expanding S (i.e., Line 6). While our

algorithm may output S while G(S) is not maximal, the postpro-

cessing step will remove non-maximal quasi-cliques.

Moreover, in actual implementation, if ext(S) is found to be

empty after critical vertex pruning (Line 6), we directly exit the

loop of Lines 1–15 to skip the execution of Lines 7–14.

Next, consider Part 2 on Type-II pruning as in Lines 8–10. These

lines assume that Type-II pruning rules prune the entire subtreeTS
if any vertexv ∈ S satisfies the rule conditions. There exists a Type-

II rule of (P3) where we can only prune extensions of S but not S
itself, but it is not utilized by Quick. Quick+ properly utilizes it [19]:

only when all other Type-II pruning conditions fail to pruneTS will

we consider S as a candidate for a valid quasi-clique (checked as in

Lines 17–18) and check this special rule that prunes all extensions

of S (i.e., to return true if conditions are met).

Finally, Part 3 on Type-I pruning checks every prune u ∈ ext(S)
and tries tou using a Type-I pruning condition as shown in Lines 11–

14, which may create new pruning opportunities for next iteration.

To summarize, Quick+ improves Quick in 3 aspects. (1) In Quick,

each iteration only finds one critical vertex and moves its neighbors

from ext(S) to S , while we find all critical vertices to move their

neighbors to S . (2) Type-II pruning may apply when computingUS
and LS (c.f., (P4 & P5)), and Quick+ handles these boundary cases

and returns true to prune S ’s extensions. (3) in both critical vertex

pruning and degree-based Type-II pruning, G(S) itself should not

be pruned which is properly handled by Quick+, but not Quick.

Algorithm 3 Mining Valid Quasi-Cliques Extended from S

Function: recursive_mine(S , ext (S ), γ , τsize )
Output: true iff a valid quasi-clique Q ⊃ S is found

1: TQ_f ound ← f alse
2: Find cover vertex u ∈ ext (S ) with the largest CS (u)
3: {If not found, CS (u) ← ∅}
4: Move vertices of CS (u) to the tail of the vertex list of ext (S )
5: for each vertex v in the sub-list (ext (S ) −CS (u)) do
6: if |S | + |ext (S ) | < τsize then
7: return TQ_f ound
8: if G(S ∪ ext (S )) is a γ -quasi-clique then
9: Append S ∪ ext (S ) to the result file

10: return true
11: S ′ ← S ∪ v , ext (S ) ← ext (S ) − v
12: ext (S ′) ← ext (S ) ∩ B(v)
13: if ext (S ′) = ∅ then
14: if |S ′ | ≥ τsize and G(S ′) is a γ -quasi-clique then
15: TQ_f ound ← true
16: Append S ′ to the result file

17: else
18: Tpruned ← iterative_bounding(S ′, ext (S ′), γ , τsize )
19: {here, ext (S ′) is Type-I-pruned and ext (S ′) , ∅}
20: if Tpruned = f alse and |S ′ | + |ext (S ′) | ≥ τsize then
21: Tf ound ← recursive_mine(S ′, ext (S ′), γ , τsize )
22: TQ_f ound ← TQ_f ound or Tf ound
23: if Tf ound = f alse and |S ′ | ≥ τsize and G(S ′) is a

γ -quasi-clique then
24: TQ_f ound ← true
25: Append S ′ to the result file

26: return TQ_f ound

The Recursive Main Algorithm. Algorithm 3 shows our Quick+

main algorithm for mining valid quasi-cliques extended from S
(includingG(S) itself). This algorithm is recursive (see Line 21) and

starts by calling recursive_mine(v , B>v (v), γ , τsize ) on every v ∈ V
where B>v (v) denotes those vertices in B(v) (i.e., within 2 hops

from v) whose IDs > v , as according to Figure 2, we should not

consider the other vertices in B(v) to avoid double counting.

Recall from (P7) that we have a degenerate cover-vertex pruning

method that finds the vertex vmax with the maximum degree, so

that any quasi-clique generated from only vmax ’s neighbors can-

not be maximal (as it can be extended with vmax ). To utilize this

pruning rule, we need to recode the vertex IDs so that vmax has ID

0, while vertices of N (vmax ) have larger IDs than all other vertices,

i.e., they are listed at the end in the first level of the set-enumeration

tree illustrated in Figure 2 (as they only extend with vertices in

N (vmax )). If we enable ID recoding, recursive_mine(v , B>v (v), γ ,
τsize ) only needs to be called on every v ∈ V − N (vmax ).

Algorithm 3 keeps a boolean tagTQ_f ound to return (see Line 26),

which indicates whether some valid quasi-clique Q extended from

S (but Q , S) is found. Line 1 initializes TQ_f ound as f alse , but it
will be set as true if any valid quasi-clique Q is later found.

Algorithm 3 examines S , and it decomposes this problem into

the sub-problems of examining S ′ = S ∪ v for all v ∈ ext(S), as
described by the loop in Line 5. Before the loop, we first apply

the cover-vertex pruning of (P7) in Lines 2–4 to compute a cover

set CS (u) so that those vertices in CS (u) can be skipped in Line 5.

Note that we move CS (u) to the tail of the vertex list of ext(S)
(Line 4), and since Line 11 excludes an already examined v from
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ext(S), the loop in Line 5 with v scanningCS (u) corresponds to the
case of extending S ′ using ext(S ′) ⊆ ext(S) ⊆ CS (u) (see Lines 11-
12) which should be pruned. If we cannot find a cover vertex (see

Line 3), then Line 5 iterates over all vertices of ext(S).
Now consider the loop body of Lines 6–25. Line 6 first checks

if S , when extended with every vertex in ext(S), can generate a

subgraph larger than τsize ; if so, the current and future iterations

(where ext(S) further shrinks) cannot generate a valid quasi-clique

and are thus pruned, and Line 7 directly returns TQ_f ound which

indicates if a valid quasi-clique is found by previous iterations.

For a vertex v ∈ ext(S), the current iteration creates S ′ = S ∪v
for examination in Line 11. Before that, Lines 8–10 first checks if S
extended with the entire current ext(S) creates a valid quasi-clique;
if so, this is a maximal one and is thus output in Line 9, and further

examination can be skipped (Line 10). This pruning is called the

look-ahead technique in Quick [26]. Note that G(S ∪ ext(S)) must

satisfy the size threshold requirement since Line 6 is passed, and

thus Line 8 does not need to check that condition again.

If the look-ahead technique does not prune the search, then

Line 11 creates S ′ = S ∪v , and excludes v from ext(S). The latter
also has a side effect of excluding v from ext(S) of all subsequent
iterations, which matches exactly how the set-enumeration tree

illustrated in Figure 2 avoids generating redundant nodes.

Then, Line 12 shrinks ext(S) into ext(S ′) by ruling out vertices

that are more than 2 hops away from v according to (P1) diameter-

based pruning, which is then used to extend S ′. If ext(S ′) = ∅ after
shrinking, then S ′ has nothing to extend, but G(S ′) itself may still

be a valid quasi-clique and is thus examined in Lines 14–16. We

remark that Quick misses this check and may miss results [26].

If ext(S ′) , ∅, Line 18 then calls Algorithm 2 to apply the pruning

rules. Recall that the function either returns Tpruned = f alse indi-
cating that we need to further extend S ′ using its shrunk ext(S ′);
or it returns Tpruned = true to indicate that the extensions of

S ′ should be pruned, which will also output G(S ′) if it is a valid
quasi-clique (see Lines 16–19 in Algorithm 2).

If Line 18 decides that S ′ can be further extended (i.e., Tpruned =

f alse) and extending S ′ with all vertices in ext(S ′) still has the hope
of generating a subgraph with τsize vertices or larger (Line 20), we

then recursively call our algorithm to examine S ′ in Line 21, which

returns Tf ound indicating if some valid maximal quasi-cliques Q ⊃
S ′ are found (and output). If Tf ound = true , Line 22 will update the
return value TQ_f ound as true , butG(S ′) is not maximal. Otherwise

(i.e., Tf ound = f alse),G(S ′) is a candidate for a valid maximal quasi-

clique and is thus examined in Lines 23–25.

Finally, as in Quick, Quick+ also requires a postprocessing step to

remove non-maximal quasi-cliques from the results of Algorithm 3.

Also, we only run Quick+ after the input graph is shrunk by the

k-core pruning of (P2). To summarize, besides Quick’s cover vertex

pruning, Quick+ also supports a top-level degenerate pruning using

vmax asmentioned in (P7), and checks ifG(S ′) is a valid quasi-clique
when ext(S ′) becomes empty after the diameter-based pruning of

(P1). Quick misses this check and may miss results.

Additionally, we find that the vertex order in ext(S) matters

(Algorithm 3 Line 7) and can significantly impact the running time.

To maximize the success probability of the lookahead technique in

Lines 8–10 of Algorithm 3 that effectively prunes the entire TS , we

propose to sort the vertices in ext(S) in ascending order ofdS (v) (tie
broken by dext (S )(v)) following [23] so that high-degree vertices

tend to appear in ext(S) of more set-enumeration tree nodes.

7 PARALLELIZATION ON G-THINKER
Divide-and-Conquer Algorithm. We next adapt Algorithm 3 to

run on our redesigned G-thinker, where a big task is divided into

smaller subtasks for concurrent processing. Recall that users write

a G-thinker program by implementing two UDFs, one for spawning

a task from each vertex v , and another, compute(t , frontier), to
pull vertices within two hops (or f (γ ) hops in general) from v to

construct v’s two-hop ego-network д from B(v), and then mines д.
Here, if a task t = ⟨S, ext(S)⟩ is spawned from a vertexv , we only

pull vertices with ID > v into д to be added to S and ext(S), which
avoids redundancy (recall Figure 2). Moreover, if we would like to

use the initial degenerate cover-vertex pruning described in (P7),

we need to recode the vertex IDs. Specifically, we load the ID and

degree (or, |N (v)|) into memory, find vmax and assign it ID 0, and

assign vertices in N (v) IDs (|V | − |N (v)|), · · · , (|V | − 2), (|V | − 1);
for the other vertices, we sort them in ascending order of degree

and assign IDs 1, 2, · · · , (|V | − |N (v)| − 1) to allow effective look-

ahead pruning. We can then use the old-to-new ID mapping table

to recode the IDs in the adjacency lists.

In UDF task_spawn(v), we only spawn a task for a vertex v if

its degree ≥ k and vmax < N (v), and pull the adjacency list of v’s
neighbors. Then UDF compute(t , f rontier ) runs 3 iterations. The
first iteration uses the pulled first-hop neighbors to construct v’s
one-hop ego-network t .д, and continues to pull the second-hop

neighbors tracked by the first-hop neighbors’ adjacency lists. Then,

the second iteration uses the pulled second-hop neighbors to expand

t .д into v’s two-hop ego-network. Since t does not need to pull

any more vertices, t will not be suspended but rather run the third

iteration immediately, which mines quasi-cliques from t .д using

Quick+. While pulling vertices, we effectively skip those vertices

whose degree cannot be at least k , and due to space limit, we refer

interested readers to our technical report [19] for the details.

Now that t .д contains the k-core of the spawning vertex’s 2-hop
ego-network, Algorithm 4 describes the computation in Iteration 3

which mines quasi-cliques from t .д. Since the task can be prohibi-

tive when t .д and ext(S) are big, we only directly process the task

using Algorithm 3 when |ext(S)| is small enough (Lines 1–2); other-

wise, we divide it into smaller subtasks to be scheduled for further

processing (Lines 3–23) (execution is similar to Algorithm 3).

Recall that Algorithm 3 is recursive where Line 21 extends S with
another vertex v ∈ ext(S) for recursive processing, and here we

will instead create a new task t ′ with t ′.S = t .S ∪v (Lines 12–13).

However, we still want to apply all our pruning rules to see if t ′ can
be pruned first; if not, we will add t ′ to the system (Line 21) with

t ′.iteration = 3 so that when t ′ is scheduled for processing, it will

directly enter iteration_3(t ′). Here, we shrink t ′’s subgraph to be

induced by t ′.S ∪ t ′.ext(S) so that the subtask is on a smaller graph,

and since t ′.ext(S) shrinks (due to pruning) at each recursion and

t ′.д also shrinks, the computation cost becomes smaller.

Another difference is with Line 23 of Algorithm 3, where we

only check ifG(S ′) is a valid quasi-clique when Tf ound = f alse , i.e.,
the recursive call in Line 21 verifies that S ′ fails to be extended to

produce a valid quasi-clique. In Algorithm 4, however, the recursive

581



Algorithm 4 iteration_3(t)

1: if |t .ext (S ) | ≤ τspl it then
2: recursive_mine(t .S , t .ext (S ), γ , τsize )
3: else
4: Find cover vertex u ∈ t .ext (S ) with the largest CS (u)
5: {If not found, CS (u) ← ∅}
6: Move vertices of CS (u) to the tail of vertex list t .ext (S )
7: for each vertex v in the sub-list (t .ext (S ) −CS (u)) do
8: if |t .S | + |t .ext (S ) | < τsize then return f alse
9: if G(t .S ∪ t .ext (S )) is a γ -quasi-clique then
10: Append t .S ∪ t .ext (S ) to the result file

11: return f alse
12: Create a task t ′

13: t ′.S ← t .S ∪ v , t .ext (S ) ← t .ext (S ) − v
14: t ′.ext (S ) ← t .ext (S ) ∩ B(v)
15: if |t ′.S | ≥ τsize and G(t ′.S ) is a γ -quasi-clique then
16: Append t ′.S to the result file

17: Tpruned ← iterative_bounding(t ′.S , t ′.ext (S ), γ , τsize )
18: if Tpruned = f alse and |t ′.S | + |t ′.ext (S ) | ≥ τsize then
19: t ′.д ← subgraph of t .д induced by t ′.S ∪ t ′.ext (S )
20: t ′.iteration ← 3

21: add_task(t ′)
22: else
23: Delete t ′

24: return f alse {task is done}

{}

{a} {b} {c} {d}

{a, b} {a, c} {a, d}

{a, b, c} {a, b, d}

{a, b, c, d}

t0 = 0

t1

t2

t3

t4 > τtime

t5 > τtime

t6 > τtime t7 > τtime

t8 > τtime t9 > τtime

t10 > τtime

Figure 5: Timeout-Based Divide and Conquer

call now becomes an independent task t ′ in Line 12, and the current

task t has no clue of its results. Therefore, we check if G(t ′.S) is
a valid quasi-clique right away in Line 15 in order to not miss

it. A subtask may later find a larger quasi-clique containing t ′.S ,
renderingG(t ′.S) not maximal, and we resort to the postprocessing

phase to remove non-maximal quasi-cliques.

Due to cover-vertex pruning, a task t can generate at most

|t .ext(S) −CS (u)| subtasks (see Line 7) where u is the cover vertex.

Timeout-Based Task Decomposition. So far, we decompose a

task ⟨S, ext(S)⟩ as long as |ext(S)| > τsplit but due to the large time

variance caused by the many pruning rules, some of those tasks

might not be worth splitting as they are fast to compute, while oth-

ers might not be sufficiently decomposed and need an even smaller

τsplit . We, therefore, improve our UDF compute(t , frontier) further
by a timeout strategy where we guarantee that each task spends

at least a duration of τt ime on the actual mining of its subgraph

by backtracking (which does not materialize subgraphs) before

dividing the remaining workloads into subtasks (which needs to

materialize their subgraphs). Figure 5 illustrates how our algorithm

works. The algorithm recursively expands the set-enumeration tree

in depth-first order, processing 3 tasks until entering {a,b, c,d} for
which we find the entry time t4 times out; we then wrap {a,b, c,d}

Algorithm 5 iteration_3(t) with the Timeout Strategy

1: time_delayed (t .S , t .ext (S ), initial_time)
2: return f alse {task is done}

Algorithm 6 time_delayed(S , ext(S), initial_time)

1: TQ_f ound ← f alse
2: Find cover vertex u ∈ ext (S ) with the largest CS (u)
3: {If not found, CS (u) ← ∅}
4: Move vertices of CS (u) to the tail of the vertex list of ext (S )
5: for each vertex v in the sub-list (ext (S ) −CS (u)) do
6: if |S | + |ext (S ) | < τsize then: return f alse
7: if G(S ∪ ext (S )) is a γ -quasi-clique then
8: Append S ∪ ext (S ) to the result file; return f alse
9: S ′ ← S ∪ v , ext (S ) ← ext (S ) − v
10: ext (S ′) ← ext (S ) ∩ B(v)
11: if ext (S ′) = ∅ then
12: if |S ′ | ≥ τsize and G(S ′) is a γ -quasi-clique then
13: TQ_f ound ← true
14: Append S ′ to the result file

15: else
16: Tpruned ← iterative_bounding(S ′, ext (S ′), γ , τsize )
17: {here, ext (S ′) is Type-I-pruned and ext (S ′) , ∅}
18: if current_time − initial_time > τt ime then
19: if Tpruned = f alse and |S ′ | + |ext (S ′) | ≥ τsize then
20: Create a task t ′; t ′.S ← S ′

21: t ′.ext (S ) ← ext (S ′); t ′.iteration ← 3

22: add_task(t ′)
23: if |t ′.S | ≥ τsize and G(t ′.S ) is a γ -quasi-clique then
24: Append t ′.S to the result file

25: else if Tpruned = f alse and |S ′ | + |ext (S ′) | ≥ τsize then
26: Tf ound ← time_delayed(S ′, ext (S ′), initial_time)
27: TQ_f ound ← TQ_f ound or Tf ound
28: if Tf ound = f alse and |S ′ | ≥ τsize and G(S ′) is a γ -quasi-

clique then
29: TQ_f ound ← true
30: Append S ′ to the result file

31: return TQ_f ound

as a subtask to be added to our system, and backtrack the upper-

level nodes to also add them as subtasks (due to timeout). Note that

subtasks are at different granularity and not over-decomposed.

With the timeout strategy, the third iteration of our UDF compute(t ,
frontier) is given by Algorithm 5. Line 1 calls our recursive back-

tracking function time_delayed(S , ext(S), inital_time) detailed in

Algorithm 6, where inital_time is the time when Iteration 3 begins.

Line 2 then returns f alse to terminate this task.

Algorithm 6 now considers 2 cases. (1) Lines 18–24: if timeout

happens, we wrap ⟨S ′, ext(S ′)⟩ into a task t ′ to be added for pro-

cessing just like in Algorithm 4, and since the current task cannot

track whether t ′ will find a valid quasi-clique that extends S ′, we
have to check if G(S ′) itself is a valid quasi-clique (Lines 23–24) in

order not to miss it if it is maximal. (2) Lines 25–30: we perform

regular backtracking just like in Algorithm 3, where we recursively

call time_delayed(.) to process ⟨S ′, ext(S ′)⟩ in Line 26.

8 EXPERIMENTS
This section reports our experiments. We have released the code of

our redesignedG-thinker and quasi-clique algorithms onGitHub [3].
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Table 3: Graph Datasetsdataset

Data |V| |E| |E|/|V| Max Degree URL

CX_GSE1730 998 5,096 5.11 197 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1730

CX_GSE10158 1,621 7,079 4.37 110 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10158

Ca-GrQc 5,242 14,496 2.77 81 https://snap.stanford.edu/data/ca-GrQc.html

Enron 36,692 183,831 5.01 1,383 https://snap.stanford.edu/data/email-Enron.html

Amazon 334,863 925,872 2.76 549 https://snap.stanford.edu/data/com-Amazon.html

Hyves 1,402,673 2,777,419 1.98 31,883 http://konect.cc/networks/hyves/

YouTube 1,134,890 2,987,624 2.63 28,754 https://snap.stanford.edu/data/com-Youtube.html

Patent 3,774,768 16,518,947 4.38 793 https://snap.stanford.edu/data/cit-Patents.html

kmer 67,716,231 69,389,281 1.02 35 https://graphchallenge.s3.amazonaws.com/synthetic/gc6/U1a.tsv

USA Road 23,947,347 28,854,312 1.20 9 http://users.diag.uniroma1.it/challenge9/download.shtml

dataset_pruned

Data τsize γ k |V| |E| |E|/|V| Max Degree

CX_GSE1730 30 0.9 27 55 1,168 21.24 54

CX_GSE10158 29 0.8 23 45 784 17.42 44

Ca-GrQc 10 0.8 8 405 4,674 11.54 64

Enron 23 0.9 20 2,276 68,430 30.06 623

Amazon 12 0.5 6 173 667 3.86 13

Hyves 22 0.9 19 2,700 72,242 26.75 586

YouTube 18 0.9 16 26,901 707,751 26.31 7,109

Patent 20 0.9 18 19,078 359,840 18.86 471

kmer 10 0.5 5 55 177 3.22 12

USA Road 7 0.5 3 1,937 3,107 1.60 8

(a) Statistics of graph datasets (b) Default parameters and graph statistics after k-core pruning

1

Table 4: Illustration of the Effect of (γ ,τsize )patent_r

τsize γ Time (sec) #{Results} #{Maximal}

20

0.91 41.48 0 0

0.9 911.06 256 256

0.89 3,386.37 44,083,840 44,080,758

patent_s

τsize γ Time (sec) #{Results} #{Maximal}

23

0.9

7.43 161 114

22 7.45 2,349 1,480

21 8.30 20,662 11,087

(a) Effect of γ on Patent (b) Effect of τmin on Hyves 

1

Datasets.We used 10 real graph datasets as Table 3(a) shows: bi-

ological networks CX_GSE1730 and CX_GSE10158, arXiv collab-

oration network Ca-GrQc, email communication network Enron,
product co-purchasing network Amazon, social networks Hyves
and YouTube, patent citation network Patent, protein k-mer graph

kmer and USA road network USA Road. These graphs are selected
to cover different graph type, size and degree characteristics.

Algorithms & Parameters.We test our 3 algorithms: (1) Abase :

one where a task spawned from a vertex mines its set-enumeration

subtree in serial without decomposition; (2) Asplit : one that splits

tasks by comparing |ext(S)| with size threshold τsplit (c.f. Algo-
rithm 4); (3)At ime : one that splits tasks based on timeout threshold

τt ime (c.f. Algorithm 5). Note that even At ime and Abase need

τsplit which is used by add_task(t ) to decide whether a task t is
be put to the global queue or a local queue. We have repeated G-

thinker paper [38]’s experiments using our new engine, and observe

improvements compared with the old engine (see [19] for details).

We remark that (τsplit ,τt ime ) are algorithm parameters for par-

allelization. We also have the quasi-clique definition parameters

(γ ,τsize ) (recall Definition 3) at the first place. Interestingly, small

value perturbations of (γ ,τsize ) can have significant impact on the

result number: if the parameters are too large, there will be 0 re-

sults; while if the parameter is too small, there can be millions of

or more results and run for a long time. Table 4(a) (resp. Table 4(b))

shows the number of results (#{Results}) found by Abase and the

maximal ones after postprocessing (#{Maximal}) along with the

job time spent when we vary γ (resp. τsize ) slightly, where we can
see that the result number is quite sensitive to the parameters. For

example, when changing (γ ,τsize ) from (20, 0.9) to (20, 0.89) on
Patent, the result number increases from 256 to over 44 million.

More experiments on the effect of (γ ,τsize ) can be found in [19].

Also, the post-processing to remove non-maximal results is fast.

For example, post-processing the 256 (resp. 44 million) results of

Patent when γ = 0.9 (resp. 0.89) takes 0.002 sec (resp. 282.38 sec).

Table 3(b) shows the default values of (γ ,τsize ) for each dataset

that we find to return a reasonable number of result subgraphs

for human examination. Note that this immediately allows k-core

pruning of the input graphs where k = ⌈γ · (τsize − 1)⌉. We addi-

tionally prunes any vertex whose two-hop neighbor set has size

< τsize , and statistics of the resulting dense graphs after pruning

are shown in Table 3(b) where YouTube and Patent are still large.

Experimental Setup. All our experiments were conducted on a

cluster of 16 machines each with 64 GB RAM, AMD EPYC 7281

CPU (16 cores and 32 threads) and 22TB disk. All reported results

were averaged over 3 repeated runs. G-thinker requires only a tiny

portion of the available disk and RAM space in our experiments.

Comparison of Abase , Asplit and At ime . Table 5 shows the

performance of our three G-thinker algorithm variants on all the

datasets using the default (γ ,τsize ) values in Table 3(b), and (τsplit ,
τt ime ) tuned to achieve the best performance. There, we report

the job running time, and the peak memory and disk usage on

a machine. We can see that for graphs that are time-consuming

to mine with Abase , i.e., YouTube and Patent, Asplit significantly

speeds it up, which is in turn further accelerated by At ime . For

example, on Patent,Abase ,Asplit andAt ime takes 911, 98.68 and

36.66 sec, respectively. This shows the need to task decomposition

to handle the straggler problem, and the advantage of our timeout

strategy. In fact, if there is no straggler,Asplit can be much slower

than Abase as on USA Road due to excessive task decomposition,

but At ime does not suffer from this issue. We also tested other

parameters and the results are similar; for example, when mining

Patent with (γ ,τsize ) = (0.89, 20), Abase , Asplit and At ime take

3,386.37, 194.54, and 126.19 sec, respectively.

Also, the RAM usage is small, in fact less than 1GB except for

on YouTube. There is also almost no task spilling on disk, with the

exception of Patentwhere a machine may keep up to 1.28GB spilled

tasks, potentially due to a lot of decomposed tasks generated at

some point of time. Overall, space is not an issue.

Effect of (τsplit,τtime).We have tested many value pairs for (τsplit ,
τt ime ) and find that (50, 5 sec) consistently delivers either the best

or almost the best performance for At ime on all datasets, and

the complete results can be found in [19]. However, other settings

may lead to significant increase in time. For example, on Patent,
when fixing τsplit = 1, 000 and varying τt ime = 20, 10, 5, 1, 0.1 sec,

respectively, the job running time is 743.94, 561.82, 419.77, 179.59,

71.61 sec, respectively; while if we fix τt ime = 5 sec and vary

τsplit = 1000, 500, 200, 100, 50 sec, respectively, the job running

time is 419.77, 448.78, 426.75, 490.81, 36.66 sec, respectively.
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Table 5: Performance of Abase , Asplit and At ime on All Datasetstable2

Abase Asplit Atime

τsplit τtime Time (sec) RAM (GB) Disk (GB) Time (sec) RAM (GB) Disk (GB) Time (sec) RAM (GB) Disk (GB) #{Maximal} Postprocessing Time

CX_GSE1730 500 20 3.14 0.235 0 3.28 0.25 0 3.24 0.15 0 1,602 0.026 sec

CX_GSE10158 100 5 3.30 0.237 0 3.23 0.24 0 3.24 0.24 0 312 0.010 sec

Ca-GrQc 1,000 0.1 3.32 0.238 0 3.32 0.15 0 3.23 0.25 0 43,399 1.198 sec

Enron 1,000 20 5.38 0.313 0 8.49 0.46 0 7.40 0.3 0 200 0.002 sec

Amazon 100 10 3.31 0.24 0 3.26 0.24 0 3.24 0.24 0 13 0.001 sec

Hyves 50 20 7.45 0.409 0 8.40 0.60 0 7.31 0.45 0 1,480 0.015 sec

YouTube 500 0.01 3,690.13 9.44 0 552.36 6.05 0 506.48 16.02 0.27 274 0.010 sec

Patent 50 5 911.06 0.371 0 98.68 0.42 1.26 36.66 0.34 0.02 256 0.002 sec

kmer 100 1 17.09 0.927 0 16.46 0.91 0 16.37 0.91 0 63 0.001 sec

USA Road 1,000 10 16.21 0.87 0 26.21 0.74 0 17.30 0.74 0 16 0.001 sec

1

12 4 8 16 32
Number of Threads

100

200

300

400

500

Jo
b 

Ru
nn

in
g 

Ti
m

e 
(U

ni
t: 

Se
co

nd
) 472.84

240.64

125.55
71.59

46.53 36.66

Figure 6: Vertical Scalability on Patent
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Figure 7: Horizontal Scalability on Patent

Comparison with [32]. Recall from Section 2 that [32] first mines

quasi-cliques with γ ′ > γ , then finds the top-k ′ largest result sub-
graphs as “kernels” which are then expanded to generate γ -quasi-
cliques and return top-k maximal ones from the results. Thus, a

job of [32] takes a parameter quadruple (γ ′,k ′,γ ,k). We use their

code [1] for comparison, and set k ′ = 3k following [32]’s setting.

We observe that they cannot find the exact top-k quasi-cliques, and

their program is also slower than our solution. See [19] for details.

We can speed up the approach of [32] by parallelization in G-

thinker with minor system revision as detailed in [19]. However, we

find that the performance is not improved much and even degrades

when k ′ increases beyond 1, because of the need of redundant

computation. Note that we can no longer only pull vertices with ID

larger than those in S , or we will miss maximal results that can be

obtained by expanding a “kernel” with vertices with smaller IDs.

Scalability. Figure 6 shows the vertical scalability of At ime on

Patent where we use all 16 machines but change the number of

threads on eachmachine, and Figure 7 shows the horizontal scalabil-

ity ofAt ime on Patentwhere we run all 32 threads on each machine

but change the number of machines. We can see that At ime scales

well along both directions, which verifies that our solution is able

to utilize the computing power of all machines in a cluster. Results

on other datasets can be found in our technical report [19].

Table 6: Mining v.s. Subgraph Materialization on Patent
table6

τtime  Job Time  Total Task 
Mining Time 

Total Subgraph 
Materialization Time 

Mining-vs.-Materialization 
Time Ratio 

50 128.65 7,831.56 0.30 26,417.73

20 65.56 8,303.44 0.62 13,403.82

10 43.53 9,005.62 1.23 7,310.96

1 34.63 9,260.19 9.04 1,024.39

0.5 39.70 9,245.71 18.31 504.85

0.1 53.57 9,661.53 78.84 122.55

0.01 57.58 10,721.14 334.36 32.06

1

Cost of Task Decomposition. Recall from Algorithm 6 that if a

timeout happens, we need to generate subtasks with smaller over-

lapping subgraphs (see Lines 18-22), the subgraph materialization

cost of which is not part of the original mining workloads. The

smaller τt ime is, the more often task decomposition is triggered

and hence more subgraph materialization overheads are generated.

Our tests show that the additional time spent on task materializa-

tion is not significant compared with the actual mining workloads.

For example, Table 6 shows the profiling results on Patent, including
the job running time, the sum of mining time spent by all tasks, the

sum of subgraph materialization time spent by all tasks, and a ratio

of the latter two. We can see that decreasing τt ime does increase

the fraction of cumulative time spent on subgraph materialization

due to more occurrences of task decompositions, but even with

τt ime = 0.01 sec, the materialization overhead is still only 1/32 of

that for mining, so only a small cost is paid for better load balancing.

Results on more graphs are in our technical report [19].

Quick+ v.s. Quick.We have compared our Quick+ with the orig-

inal Quick algorithm on all the datasets in the single-threaded

setting, and observe speedup that can be up to over 4×, the table

of which can be found in our technical report [19]. Also, Quick

did miss results although rare. For example, on CX_GSE1730 (resp.
Ca-GrQc), Quick finds 1,601 of the 1,602 valid quasi-cliques (resp.

43,398 of the 43,499 valid quasi-cliques), i.e., misses 1 result.

9 CONCLUSION
This paper proposed an algorithm-system codesign solution to fully

utilize CPU cores in a cluster for mining maximal quasi-cliques. We

provided effective load-balancing techniques such as timeout-based

task decomposition and big task prioritization.
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