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ABSTRACT
In this paper, we propose and study a new problem called the

weighted randomwalk domination. Given aweighted graphG(V , E)
and a budget B of the weighted random walk, it aims to find a k-size
set S , which can minimize the total costs of the remaining nodes

to access S through the weighted random walk, which is bounded

by B. This problem is critical to a range of real-world applications,

such as advertising in social networks and telecommunication base

station selection in wireless sensor networks. We first present a

dynamic programming based greedy method (DpSel) as a baseline.

DpSel is time-consuming when |V | is huge. Thus, to overcome this

drawback, we propose a matrix-based greedy method (MatrixSel),

which can reduce the computation cost greatly. To further accelerate

MatrixSel, we propose a BoundSel approach to reduce the number

of the gain computations in each candidate selection by proactively

estimating the upper bound of the marginal gain of the candidate

node. Notably, all methods can achieve an approximation ratio

of (1 − 1/e). Experiments on real datasets have been conducted

to verify the efficiency, effectiveness, memory consumption and

scalability of our methods.
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1 INTRODUCTION
Graph data constitutes a set of entities (nodes) and interconnec-

tions (edges) between them, both of which may have attributes

associated with them. In many real-life applications, a weight

is usually associated with each edge, indicating the strength of

the interconnections. The semantic meaning of the edge weights

vary from one scenario to another. For example, in influence maxi-

mization [17, 32], weighted pagerank [37] and personalized pager-

ank [25], the edge weight indicates the probability that a node

chooses or impacts its neighbors; in road networks [36] and wire-

less sensor networks [35, 38], the edge weight represents the cost

of moving a node to its neighbor. In this paper, we propose and

study the Weighted Random Walk Domination (WRWD) problem.
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Figure 1: A motivating example.

Given an edge-weighted graph G(V , E,wt) and a budget B of the

weighted random walk, WRWD aims to find a k-size subset S ∈ V ,
which can minimize the total costs of the nodes in V to access

S through the weighted random walk. The budget B is used to

bound the cost (length) of the weighted random walk. WRWD can

benefit many downstream applications, just to name a few: (1) In

the field of information retrieval in social networks, the browsing

process of users on social networks (also called social browsing)

can be well-simulated by random walks [23, 27, 40]. With the de-

velopment of the Internet, social browsing has become the main

way for users to get information on the Internet [20, 21, 28]. Based

on the social browsing, how to select k users’ home pages in the

network so that other users can easily browse these pages has

great practical significance for social media advertising. For ex-

ample, a cosmetics company wants to promote its new lipstick. It

can choose k users for free trial and advertising on Facebook. If

other users can easily browse to the lipstick trial, the impact of the

new lipstick will increase significantly. (2) In the field of Wireless

Sensor Networks (WSNs), random walk is widely used for routing

protocols [16, 24, 33, 41], and one fundamental issue is to provide

coverage and connectivity [15]. For example, as shown in Figure 1,

five sensors and two base stations need to be placed in seven rooms

to detect the temperature. The base station can send the tempera-

ture data to computer directly. However, the sensor can only send

temperature data to its neighbors randomly, and this will consume

a certain transmission cost. To this end, it needs to choose a node

set as base stations to minimize the energy cost from the remaining

nodes to those selected.

Recall that themeaning of edge weights vary from one to another.

Consequently, without loss of generality, we introduce two models,

the probability-aware random walk model PR and the cost-aware
random walk model CR, to cater for most (if not all) scenarios

where WRWD can be applied. The efficiency of solving WRWD is critical,
because in reality, graphs are constantly evolving and the edge

weight that indicates the degree of interconnection between nodes
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will change over time [19, 22]. Thus, the seed set needs to be up-

to-date as well. Our theoretical analysis shows that the objective

function of WRWD is submodular. Due to the fact that the problem of

maximizing a submodular function is generally NP-hard [26], we

turn to develop a range of approximate algorithms with theoretical

guarantees. We first extend a Dynamic Programming (DP) based

greedy method (DpSel), which can provide an approximation ratio

of (1-1/e), to solve WRWD. However, it cannot be applied to large

graphs since DP is too slow to calculate marginal gains. To address

this issue, we use amatrix to compute themarginal gain and propose

a matrix-based greedy selection (MatrixSel), which is n (n = |V |)
times faster than DpSel. To accelerate MatrixSel further, we devise

a bound-based greedy selection (BoundSel) approach to further

reduce the number of the gain computations in each candidate

selection by proactively estimating the upper bound of the marginal

gain of the candidate node.

In summary, we make the following contributions.

• We propose the weighted random walk domination problem

WRWD and introduce two weighted random walk models, the

probability-aware model PR and the cost-aware model CR,

to cater for different scenario needs. We also prove that

the objective function of WRWD is monotone and submodular.

(Section 3).

• To solve WRWD over the probability-aware model PR, we

first present a basic greedy method (DpSel) as a baseline,

achieving an approximation ratio of (1 − 1/e) (Section 4).

Furthermore, we propose a matrix-based greedy method

(MatrixSel) and a bound-based greedy method (BoundSel),

which significantly reduce the practical cost of DpSel while

achieving the same approximation ratio (Section 5).

• By constructing the counterpart graph ofG , we adapt DpSel,
MatrixSel and BoundSel to solve WRWD over the cost-aware
random walk model CR (Section 6).

• We conduct extensive experiments on several real-world

datasets. The results validate the effectiveness, time and

space efficiency, and scalability of our methods (Section 7).

2 RELATEDWORK
One closely related work is the Random-walk Domination over

unweighted graphs [23], which studies only a specific case of our

problem. In particular, it assumes that the weight of all edges in

G equals to ‘one’, and the nodes can dominate their neighbors

by a naive random walk (Section 3.1) within a given threshold L.
However, we cannot ignore the weight information of the graph.

For example, we cannot ignore the different energy cost between

different nodes in WSNs, which can be adjusted in many different

ways [35, 38, 39]. Compared with [23], our WRWD generalizes this

problem by taking the weights between edges into consideration

where nodes can dominate their neighbors by a weighted random

walk (Section 3.1) within a given total budget B.
Influence Maximization (IM) is another problem that is related

to our study. Given a social network G, IM aims to find a k-size
subset of all nodes in a social network that could maximize the

spread of influence, where influence is propagated in the network

according to a stochastic cascade model, such as the Independent

Cascade (IC) model or the Linear Threshold (LT) model. Under both

models, IM has been proven as NP-hard. Kempe et al. [17] show

that a greedy algorithm can return an approximate result within the

factor of (1−1/e). Then the key challenge lies in how to calculate the

influence of the sets efficiently and thus, a plethora of algorithms [9,

10, 13, 30, 31, 34] have been proposed to achieve speedups. Although

IM and WRWD share a similar ultimate goal of maximizing influence,

the influence models adopted are dramatically different. In IM, the

influence models usually assume that nodes in a network can only

be passively influenced by their neighbors. In contrast, the random

walk model in our problem assumes that nodes in a network can

also contact other nodes actively by means of browsing behaviors

in social networks or routing in WSNs, etc. Moreover, the IC and

LT influence models do not consider the propagation cost from one

node to another, even though it is demonstrably important (e.g.,

the propagation costs in WSNs in Figure 1) and cannot be ignored

in our WRWD.
Our problem is also related to the dominating set problem in

graphs. Both problems aim to select a subset in the graph to domi-

nate the remaining nodes. The dominating set problem has been

well studied in [14] and various extensions of this problem [12,

18, 35] have been proposed to meet different scenarios. However,

a core difference is on the definition of domination that leads to

different computational challenges. In the dominating set problem,

the nodes deterministically dominate their immediate neighbors or

neighbors with a distance less than a threshold. Hence it can tra-

verse the graph once to get the dominating set of each node. Then

it only needs to update the dominating set of nodes that have an

intersection with the dominating set of the selected nodes in each

round. However, in WRWD the nodes can dominate their neighbors

by a weighted random walk within a given budget B, which lays a

burden of updating the probability in each round.

3 PROBLEM FORMULATION
In this paper, we assume that an edge-weighted connected graph

is represented by G = (V , E,wt), where V is the set of nodes, E is

the set of edges, andwt is the weighting function that maps each

edge e ∈ E to a positive numberwt(e), i.e.,wt(e) > 0. We first for-

mally define three random walk models. Then, we formally define

the WRWD problem and analyze the submodularity of the objective

function of WRWD. To facilitate our presentation, all frequently used

notation are listed in Table 1. These symbols divided by the dotted

line first appear in Section 1, 3 and 4 respectively.

3.1 RandomWalk Models
In this section, we introduce a naive random walk model and two

weighted random walk models as preliminaries, which will be used

in illustrating our problem and solutions.

Naive Random Walk Model (NR). Here, let wt(e) = 1 for all

e ∈ E, then G = (V , E,wt) is an unweighted graph. Given a node

u ∈ V , a naive random walk [29] starting fromu picks a neighbor of

u uniformly at random andmoves to this neighbor, and then follows

this way recursively. This process can be viewed as a Markov Chain,

and each element puv in the transition matrix P is given by:

puv =

{
1/du u is a neighbour of v
0 otherwise
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Figure 2: An instance of a cost graph G.

Table 1: Notations for problem formulation and solutions

Symbol Description

G(V , E,wt) An edge-weighted graph with n = |V | nodes,m =
|E | edges andwt is the weighting function

B The budget constraint of random walks

S , S S is a subset of V and S = V \S

P The transition matrix of G
CuS The expected cost for u to hit S
wuv A hitting path from u to v
wuS A random walk starting from u and first hitting a

given set S
c(wuv ) The transition cost from u to v .
G(S) The object function of our problem

φv (S) The marginal gain of v to S
Wu The set of all possible random walk start from u

Qs The non-trap matrix for G, i.e., Qs = P, if S = ϕ
Qt
s The non-trap matrix of Pt

Ns The fundamental matrix of Qs

where puv is the transition probability from u to v , and du is the

out-degree of u.
Given an arbitrary random walk wu = (n0,n1, ...), where (...)

represents a sequence of nodes, starting from n0 = u and a node

v ∈ V , we say that u hits v at step k , if wu first visits v after k
walk steps. We define wuv as a hitting path of u to v , if wuv =

(n0,n1, ...,nk ), u = n0, and v = nk , for v , n0,n1...,nk−1. Let
Wuv denote the set of all possible wuv , the possibility of wuv
being generated is computed by P(wuv ) =

∏k−1
i=0 1/di . Intuitively,

the expected number of steps Cuv for u to hit v can be written

as Cuv =
∑
wuv ∈Wuv |wuv |P(wuv ), where |wuv | is the length of

wuv . Note that we define |wuv | = 0 if u equals v and the expected

number of steps means the expected cost in the unweighted graph.

This equation can be easily generalized to a node-set version.

LetwuS be a random walk starting from u and first hitting a node

v ∈ S , such that, wuS = (u,v1, ...,vk ) for u,v1...,vk−1 < S and

vk ∈ S . CuS can be defined as:

CuS =
∑

wuS ∈WuS
|wuS |P(wuS ) (1)

Note thatWuS denotes the set of all possiblewuS , but it is not

equal to

⋃
v ∈SWuv . In Figure 2, let u = v1,v = v6, S = {v3,v6}

and wuv = (v1,v3,v6). Although wuv ∈ Wuv , wuv is not con-

tained byWuS since it has already hit S (node v3) before hitting
v6.

As mentioned in Section 1, in most (if not all) applications, the

edge weights are not equal but indicate different semantic mean-

ings. Thus, we introduce the following two weighted random walk

models.

Probability-aware Random Walk Model (PR). In this model,

the edge weight represents the probability that a node chooses or

affects its neighbors, which is useful in influence maximization [17,

32], weighted pagerank [37] and personalized pagerank [25], to

name a few. Compared to the naive random walk model, the transi-

tion probability from u to v , puv , will be rewritten as follows:

puv =

{
wt(euv )/

∑
n∈Ne(u)wt(eun ) u is a neighbor of v

0 otherwise

where Ne(u) is the neighbor set of u.
Similar toNR, we have the following definitions. The possibility

of wuv being generated is computed by P(wuv ) =
∏k−1

i=0 pnini+1 .
The expected number of steps Cuv for u to hit v can be written as

Cuv =
∑
wuv ∈Wuv |wuv |P(wuv ). The expected cost CuS for u to

hit S can be computed as:

CuS =
∑

wuS ∈WuS
|wuS |P(wuS ) (2)

Cost-aware RandomWalk Model (CR). In this model, the edge

weight indicates the cost of moving a node to its neighbor, which is

useful for road networks [36] and wireless sensor networks [35, 38].

Therefore, we have: P(wuv ) =
∏k−1

i=0 1/di . As mentioned before,

wuv is a hitting path of u to v , if wuv = (n0,n1, ...,nk ), u = n0
and v = nk , for v , n0,n1...,nk−1. Let c(wuv ) =

∑k−1
i=0 wt(enini+1 )

denote the total cost ofwuv .

Let CuS be the expected hitting cost ofwuv . Similar to Equation 1,

it can be computed as:

CuS =
∑

wuS ∈WuS
c(wuS )P(wuS ) (3)

In this paper, we use a constant budget B to bound the length

or total cost of random walk, and hence CB
uS is used to denote the

value of CuS bounded by budget B.
Example 1. Figure 2 shows a simple example. Let B = 4, u = v1,

S = {v6} and wuS = (v1,v3,v6). For PR, we have P(wuS ) = 1 ∗

(2/3) ∗ (3/6) = 1/3 and |wuS | = 3. For CR, we have P(wuS ) =

1 ∗ (1/2) ∗ (1/3) = 1/6 and c(wuS ) = 4 because wuS cannot visit S
within B = 4.

3.2 Problem Definition and Analysis
To this end, our goal is to minimize the total costs of the remaining

nodes to access S through the weighted random walk. Formally,

the problem is formulated asmin
∑
u ∈V \S C

B
uS such that |S | ≤ k . It

is easy to verify that the above optimization problem is equivalent

to the following one.

Definition 1. (WeightedRandomWalkDomination (WRWD)).
Given a weighted graph G(V , E) and a budget B > 0, WRWD aims to
find a k-size set S ⊆ V that can maximize the budget B to be saved:

G(S) =
∑

u ∈V
(B − CB

uS ) (4)

Note that we use P-WRWD and C-WRWD to denote the WRWD over PR
and CR, respectively. Next, we prove that the objective function of

WRWD is monotone and submodular.

Theorem 1. The objective function G(S) of WRWD is monotone and
submodular.

Proof. We do not prove the monotonicity of G(S) since it is

very straightforward. It remains to show that G(S) is submodular

based on two weighted random walk models.
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Let S ⊆ T ⊂ V and v be a node in V \T . According to [26], G(S)
is submodular if it satisfies: G(S ∪v) − G(S) ≥ G(T ∪v) − G(T ). To
facilitate the proof, we define Sv = S∪v andφv (S) = G(S∪v)−G(S).
LetWu denote the set of all possible random walks start from

node u.
PR: Intuitively, CB

uS can be rewritten as a sum of the length func-

tions |.|, i.e. CB
uS =

∑
wu ∈Wu |wuS |P(wu ), where we set |wuS | = B

ifwu can not access S within B. Then, we have:

φv (S) =
∑

u ∈V
(B − CB

uSv ) −
∑

u ∈V
(B − CB

uS )

=
∑

u ∈V
CB
uS −

∑
u ∈V
CB
uSv

=
∑

u ∈V

∑
wu ∈Wu

|wuS |P(wu )

−
∑

u ∈V

∑
wu ∈Wu

|wuSv |P(wu )

=
∑

u ∈V

∑
wu ∈Wu

P(wu )(|wuS | − |wuSv )|

Hence, we have:

φv (S) − φv (T ) =
∑

u ∈V

∑
wu ∈Wu

P(wu )(|wuS | − |wuSv |)

−
∑

u ∈V

∑
wu ∈Wu

P(wu )(|wuT | − |wuTv |)

=
∑

u ∈V

∑
wu ∈Wu

(P(wu )

∗ ((|wuS | − |wuSv |) − (|wuT | − |wuTv |)))

(5)

To show the submodularity of G(S), we first prove Inequality 6.

((|wuS | − |wuSv |) − (|wuT | − |wuTv |)) ≥ 0 (6)

Since S ⊆ T , we have |wuT | ≤ |wuS |. Then, we discuss two cases

about the length function |.|: (1) suppose that wu visits v before

T , we have |wuv | < |wuT | ≤ |wuS | and |wuTv | = |wuSv | = |wuv |.

Thus, |wuSv | − |wuS | ≤ |wuTv | − |wuT | < 0; (2) the remaining case

is thatwu visits v after T . At this case, we have |wuSv | − |wuS | ≤

|wuTv | − |wuT | = 0. These discussions show the correctness of

Inequality 6.

Based on Equation 5 and Inequality 6, we haveφv (S)−φv (T ) ≥ 0

and thus G(S) is a submodular function based on PR.

CR: Similar to PR, we can rewrite CB
uS as∑

wu ∈Wu c(wuS )P(wu ), where c(wuS ) = B if wu cannot access S
within B. Then, we have:

φv (S) =
∑

u ∈V

∑
wu ∈Wu

P(wu )(c(wuS ) − c(wuSv ))

Similar to Equation 5, we have:

φv (S) − φv (T ) =
∑

u ∈V

∑
wu ∈Wu

(P(wu )

∗ ((c(wuS ) − c(wuSv )) − (c(wuT ) − c(wuTv ))))
(7)

To show the submodularity of G(S), we first prove Inequality 8.

(c(wuS ) − c(wuSv )) − (c(wuT ) − c(wuTv )) ≥ 0 (8)

Since S ⊆ T , we have c(wuT ) ≤ c(wuS ). Then, we also discuss

two cases about the cost function c(.): (1) suppose that wu visits

v before T , we have c(wuv ) < c(wuT ) ≤ c(wuS ) and c(wuTv ) =

c(wuSv ) = c(wuv ). Thus, c(wuSv )−c(wuS ) ≤ c(wuTv )−c(wuT ) < 0;

(2) the remaining case is that wu visits v after T . At this case, we
have c(wuSv ) − c(wuS ) ≤ c(wuTv ) − c(wuT ) = 0. These discussions

show the correctness of Inequality 8.

Based on Equation 7 and Inequality 8, we haveφv (S)−φv (T ) ≥ 0

and thus G(S) is a submodular function based on CR. □

Algorithm 1: DpSel (G,B,k)
1.1 Input: a graph G , a budget B and k
1.2 Output: a node set S
1.3 Initialize S ← ϕ
1.4 for i = 1 to k do
1.5 Select a node v = argmaxv∈V \S (G(S ∪ v) − G(S ))
1.6 S ← S ∪ v
1.7 return S

4 OUR FRAMEWORK
Throughout Sections 4-5, we describe our solutions for P-WRWD, i.e.
the WRWD problem over the probability-aware random walk model,

and later in Section 6 we discuss how to extend our solutions to

address C-WRWD.
In particular, we first present a basic greedy baseline, which is ex-

tended from the greedy method designed for an unweighted graph

to P-WRWD in [23]. However, the bottleneck of our problem is how to

efficiently compute the marginal gain of the node (see complexity

analysis in Section 4.1). To overcome this challenge, we present

some efficient methods to compute the marginal gain of the node

(see Section 4.2 and Section 5), which effectively solve P-WRWD. More-

over, compared to the sampling-based methods proposed in [23]

for the unweighted random walk domination problem, our matrix-

based method MatrixSel based on our proposed trapped model can

achieve a tight approximation ratio of (1 − 1/e). What’s more, as

we will see in Section 6, our approaches can work with both the

probability-aware random walk model and the cost-aware random

walk model to support different application needs in general.

4.1 A Greedy Baseline
It is not possible to compute CB

uS directly from Equation 1 because

the size ofWuS should be exponential. Fortunately, Li et al. [23]

show that CB
uS based onNR can be rewritten in a recursive manner

as follows.

Theorem 2. Given a random walk starting from u. The expected
number of steps CB

uS can be recursively computed as

CB

uS =


0 u ∈ S
1 u < S,B = 1

1 +
∑

v ∈V
puvC

B−1
vS u < S,B > 1

(9)

It is worth highlighting that the second equality in Equation 9

holds because of the bounded constraint, without which the re-

cursion would never stop even when B is smaller than zero. This

constraint is an improvement over the method used in [23]. Similar

to NR, CB
uS based on PR also can be computed by Equation 9.

Algorithm 1 shows the pseudo-code of the greedymethod (DpSel).

In each iteration, it repeatedly selects a node v ∈ V \S with the

largestmarginal gain such thatv = argmaxv ∈V \S {G(S ∪ {v}) − G(S)},

for the current set S . For P-WRWD, the computation of G(S) relies on
dynamic programming according to Equation 9. Finally, it returns

S as the solution when the cardinality of S is equal to k .

Approximation Ratio. This baseline is guaranteed to achieve

(1 − 1/e)-approximation, as proved by Nemhauser et al. [26].
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ComplexityAnalysis. The time complexity of DpSel is dominated

by the time complexity of computing the marginal gain (line 1.5).

To simplify the explanation, we define n = |V | andm = |E |. The
time complexity of DP is O(Bm) (n < m), and thus computing the

marginal gain takes O(Bnm) time. Since the greedy method has to

find the node with the marginal gain in each iteration, the time

complexity of Algorithm 1 for P-WRWD is O(kBn2m).

4.2 A Matrix-Based Solution
For DpSel, the main bottleneck is to repeatedly compute CB

uS in G
for each u ∈ V \S . To reduce the cost, we give a trapped model to

capture the process of a random walk to S , and propose a matrix-

based greedy algorithm, MatrixSel (see Algorithm 2), to solve P-

WRWD.

4.2.1 A Trapped Model.

Definition 2. A node u ∈ V is called a trap if any random walk
stays at u once it visits u.

Given G and a k-size node set S in G, let us consider a random
walkwu that can visit S . Clearly, any walk steps after S is visited

will have no effect on CB
uS . Therefore, we can ignore these steps

and treat S as a trap set. In this case, it is worth noting that CB
uS

is actually equivalent to the expected steps of wu being trapped

at S on G. Intuitively, we can turn each node v ∈ S as a trap by

setting pvu = 0 for u ∈ V . As a result, the transition matrix P of

this process can be represented by a n × n matrix as below:����Qs R
0 0s

����
where Qs and R correspond to rows of unselected candidates in

S = V \S ; 0 and 0s are both zero matrices. Note that, Qs is equal

to P when S = ϕ. In this paper, Qs and 0s are called the non-trap
matrix and the trap matrix respectively.

Let Pt denote the t th power of the transition matrix P and Qt
s

denote the non-trap matrix of Pt . It is well known that pti j (the

(i, j)th entry of Pt ) gives the probability ofwvi visiting vj at step t .

Let X
(t )
i j (0 < t ≤ B) be a random variable which is equal to 1 ifwvi

reaches vj at the step t before it is trapped, or 0 otherwise. Then,

the expectation of X
(t )
i j can be computed as:

E[X
(t )
i j ] = q

t
i j (10)

where qti j denotes the (i, j)
th

entry of Qt
s .

Based on Qs , we introduce the concept of fundamental matrix
as follows.

Definition 3. A matrix Ns is the fundamental matrix of Qs , if
Ns = Q1

s + Q
2

s + ... + Q
B

s .

Lemma 1. Given a budget B, Ns [i][j] gives the expected number
of times (or frequency) that a random walk visits vj , if it starts at vi
(vi ,vj ∈ S).

Proof. The expected frequencies of the random walk reaching

vj in the first B steps is equal to the sum of frequencies at the t th

step, for t = 1, 2...B. Therefore, we have:

E(X
(1)

i j + X
(2)

i j + ... + X
(B)
i j ) =

∑B

t=1
q
(t )
i j

v3 v2 v3v1 v6v3 v1

1 3 2( ) ( ) ( ) 2 3 1 6length Y v Y v Y v      
S

Figure 3: A random walk from v1 trapped at S , S = {v6}.
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· · · · · · · · · · · · · · ·

pn1 pn3 · · · · · · pnn
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=

Qs©­­­­­«
p11 p12 p13 · · · p1n
p21 p22 p23 · · · p2n
p31 p32 p33 · · · p3n
· · · · · · · · · · · · · · ·

p11 pn2 pn3 · · · pnn

ª®®®®®¬
Figure 4: The relationship between Qs ′ and Qs . Here, S ′ =
S ∪ {v2}.

Since Ns = Q1

s + Q
2

s + ... + Q
B
s , we get

∑B
t=1 q

(t )
i j = Ns [i][j]. Thus,

the lemma is proved. □

4.2.2 A Matrix-based Greedy Method.

Observation 1. Given a random walk wuS , the length of wuS
equals to

∑
v ∈S Y (v), whereY (v) denotes the frequency ofwuS reach-

ing v .
This section introduces the matrix-based greedy method and the

following observation bridges Ns to our solution.

Figure 3 gives an example to explain this observation. In this

figure, the length of the given random walk is 6 which equals

the sum of the frequencies of v1,v2,v3,v4,v5,v7 in Figure 2. Here,

since Y (v4),Y (v5) and Y (v7) are equal to zero, we omit them in the

equation for brevity.

GivenG , Lemma 1 shows thatNs [i][j] is the expected frequencies
of wvi visiting vj in G. By writing this statement in matrix form,

we obtain the following lemma immediately.

Lemma 2. Given S and the fundamental matrix Ns . Let Φs be a
vector whose uth (u < S) entry equals CB

uS . Then, we have Φs = Ns I,
where I is an identity vector.

According to Equation 4, G(S) can be obtained by summing up

the rows of the fundamental matrix Ns . Based on Lemma 2, we

introduce a matrix-based method, which is shown in Algorithm

2. Initially, S = ϕ. In each iteration, let S ′ = {S ∪ vj } (line 2.7).

MatrixSel picks the node vj that can maximize G(S ′) according to

Lemma 2 (lines 2.5 to 2.13). In particular, the algorithm first calls

FastNI to compute Φs ′ (line 2.8). Then, it computes the marginal

gain by the sum of all elements in Φs ′ (line 2.9). Here,mar records
the gain of G(S ′). If vj maximizes G(S ′), we add vj into S for the

next round.

Computing Ns I. To obtain Ns I, a naive solution is to calculate

Ns = {Q1

s + Q2

s + Q3

s + ... + QB
s } directly. However, it is prohibi-

tively expensive to directly compute Qt
s for t = 1, 2, ...,B, since one

matrix multiplication needs at least O(n2.37) time [11]. Therefore,

we rewrite Ns I as (Q1

s I + Q
2

s I + Q
3

s I + ... + Q
B
s I). Note that, Q

t
s I is

a vector which can be represented by a product of a matrix and

a vector, i.e., Qs (Qt−1
s I). This implies that we can recursively cal-

culate Qt
s I and obtain Ns I without computing Ns directly. Clearly,

computing a matrix-vector product is much faster than executing a

matrix-matrix multiplication, and thus this rewriting can greatly

reduce the computation cost. Moreover, G is generally sparse in

real world. To avoid dealing with the large number of zeroes, we
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Algorithm 2:MatrixSel (G,B,k)

2.1 Input: a graph G(V , E), a budget B and k
2.2 Output: a set S
2.3 S ← ϕ ; curGain ← 0

2.4 for i = 1 to k do
2.5 opt ← 0; u ← ϕ
2.6 foreach node vj ∈ V \S do
2.7 S ′ ← S ∪ vj
2.8 ΦS ′ ← FastNI(G , B, S ′)
2.9 mar ←

∑
q∈V \S ′ (B − ΦS ′ [q]) − curGain

2.10 if opt < mar then
2.11 opt ←mar
2.12 u ← vj
2.13 S ← S ∪ u
2.14 curGain ← curGain + opt
2.15 return S

Algorithm 3: FastNI (G,B, S)
3.1 Input: a graph G , a budget B and a set S
3.2 Output: a n-dimensional vector Φ

3.3 Initialize vector Φ and γ ′ with 0.

3.4 for t = 1 to B do
3.5 if t = 1 then
3.6 foreach node vi ∈ S do
3.7 γ ′[i] = 1

3.8 else
3.9 foreach node vi ∈ S do
3.10 γ [i] ←

∑
vj ∈Ne (vi ) qi jγ

′[j]

3.11 Φ← Φ + γ
3.12 γ ′ ← γ
3.13 return Φ

store G as an adjacency list and introduce Algorithm 3 to speed up

the computation of Ns I.

In this Algorithm, γ and γ ′ are two temporary n-dimensional

vectors used to record the values of Qt
s I and Q(t−1)s I respectively.

At t = 1, Algorithm 3 initializes γ ′ (γ ′ = Q1
I). When t > 1, it

traverses the neighbors of each node in S and compute γ based on

γ ′ (lines 3.8 to 3.9). Here Ne(vi ) is the neighbor set of vi . Finally,
by summing up γ = Qt

s I for t = 1, 2, ...B, it returns Φ as the result.

Approximation Ratio. According to Lemma 2, G(S ′) =∑
q∈V \S ′ (B − ΦS ′[q]). In Algorithm 2, curGain = G(S) and mar

is the marginal gain of the node vj . In each greedy iteration, Al-

gorithm 2 chooses the node with the maximum marginal gain to

set S (lines 2.5 to 2.13). The whole process is consistent with the

greedy strategy and the objective function G(S) of WRWD is mono-

tone and submodular. Then MatrixSel is guaranteed to achieve

(1 − 1/e)-approximation.

Time Complexity. FastNI computes Ns I in B iterations. For each

iteration, it needs to traverse the neighbors of each node in S one

time. Based on the adjacency list, finding the neighbor sets totally

takes O(m) time and thus the time complexity of FastNI is O(Bm).

Moreover, Algorithm 2 needs to compute G(vj , S) for each candi-

date vj ∈ S in order to select a node into S . Therefore, MatrixSel

needs to invoke Algorithm 3 O(n) time in each selection. By re-

peating this process k times to obtain S , the total complexity of

Algorithm 2 for P-WRWD is O(kBnm).

Space Complexity. It costs O(n + 2m) space for MatrixSel and

FastNI to save the undirected graph G by an adjacency list. Other-

wise, several n-dimension vectors are used in MatrixSel. In total,

the space complexity of Algorithm 2 for P-WRWD is O(n + 2m).

5 AN EFFICIENT BOUND-BASED SOLUTION
As mentioned above, each iteration of MatrixSel requires to invoke

FastNI forO(n) times to select a candidate with the largest marginal

gain into S . However, we note that the candidate set contains many

insignificant nodes which will not be selected as seeds. To avoid

the unnecessary computations, this section introduces a bound-

based method BoundSel to prune the insignificant candidates. By

making use of the submodular property we have proved earlier (in

Theorem 1), we first employ a cost-effective lazy forward algorithm.

The idea behind it is that the marginal gain of a node in the current

iteration should not be more than that in previous iterations, and

thus the number of the gain computations can be greatly reduced.

However, this optimization cannot prune any candidate in the first

round of selection, which results inn times of the gain computations.

Here n denotes the number of nodes. To overcome this issue, we

introduce a bound estimation method to further reduce the number

of the gain computations in the first iteration.

Algorithm 4 presents the pseudo-code of BoundSel. Given S and

v ∈ S , G(v, S) denotes the marginal gain of v to S . To select the

optimal candidate in each iteration, we first calculate the upper

bound of G(v, S) for eachv ∈ S , denoted by Ĝ(v, S), and we use the
vector α to save them (Line 4.4). To facilitate selecting seeds, we

maintain a sorted list for each v ∈ S with the upper bound Ĝ(v, S)
in descending order (Line 4.5). Then, we select the first nodev1 and
compute G(v1, S) by invoking Algorithm 3. Intuitively, G(v1, S) can
be treated as a pruning bound Pb to prune insignificant candidates.

Next, we go through the node vj ∈ V /S . If α j ≤ Pb, we add the

current node into S and end the traversal. Otherwise, we invoke

Algorithm 3 to compute α j , and update the current node and Pb if

α j > Pb (Lines 4.11 to 4.23).

To facilitate the understanding, we show the workflow of Bound-

Sel in Figure 5. If Pb ≥ Ĝ(v2, S), then v2 can be pruned safely

since the inequation guarantees that v1 is better than v2. Other-
wise, we invoke Algorithm 3 to compute G(v2, S). If v2 is better
than v1, we update Pb by G(v2, S). By repeatedly adjusting Pb, we
should be able to skip a large number of insignificant candidates

and dramatically reduce the invocations of FastNI.

Upper Bound Estimation. Now we have a distribution Zv =
{Z 1

v ,Z
2

v , ...,Z
B
v } for v , and Z t

v as the number of nodes that first

reach v at the step t . In this phase, since S = ∅, we have
∑B
t=1 Z

t
v =

n − 1. Intuitively, G(v, S) = G(v, ∅) = nB −
∑B
t=1 tZ

t
v . Hence, we

estimate Ĝ(v, S) by establishing the lower bound of

∑B
t=1 tZ

t
v . To

estimate the lower bound of

∑B
t=1 tZ

t
v , we first introduce Lemma 3.
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Figure 5: An example for the workflow of BoundSel.

Algorithm 4: BoundSel (G,B,k)
4.1 Input: a graph G(V , E), B and k
4.2 Output: a set S
4.3 S ← ϕ ; curGain ← 0

4.4 α ←EstimateBound(G , B)
4.5 Sort V order by α Desc

4.6 for i = 1 to k do
4.7 S ′ ← S ∪ v1

4.8 ΦS ′ ← FastNI(G , B, S ′)
4.9 α1 ←

∑
q∈V \S ′ (B − ΦS ′ [q]) − curGain

4.10 current ← v1; Pb ← α1
4.11 foreach node vj ∈ V \S do
4.12 if α j ≤ Pb then
4.13 S ← S ∪ current
4.14 curGain ← curGain + Pb
4.15 Break
4.16 else
4.17 S ′ ← S ∪ vj
4.18 ΦS ′ ← FastNI(G , B, S ′)
4.19 α j ←

∑
q∈V \S ′ (B − ΦS ′ [q]) − curGain

4.20 if α j > Pb then
4.21 current ← vj ; Pb ← α j
4.22 else
4.23 continue
4.24 Resort V
4.25 return S

Lemma 3. Let F tv denote the expected number of nodes in S that
can reach v at the step t (t ≤ B). For any integer T ∈(1,B], we have:∑B

t=1
tZ t

v ≥
∑T−1

t=1
tF tv +T (n − 1 −

∑T−1

t=1
F tv ) (11)

Proof. We discuss the two cases of a random walkw reaching

v at the step t : (1) this is the first timew reaches v ; (2)w reached v
at the previous step. According to the definition, Z t

v only contains

the first case, but F tv contains the two cases. Therefore, we have

F tv ≥ Z t
v . To show the correctness of Equation 11, we have:∑B

t=1
tZ t

v − (
∑T−1

t=1
tF tv +T (n − 1 −

∑T−1

t=1
F tv ))

=
∑B

t=1
tZ t

v −T (n − 1) −
∑T−1

t=1
(t −T )F tv

(12)

Note that the next equation holds as

∑B
t=1 Z

t
v = n − 1. By applying

this equation to Equation 12, we have:∑B

t=1
tZ t

v −T (n − 1) −
∑T−1

t=1
(t −T )F tv

=
∑B

t=1
(t −T )Z t

v −
∑T−1

t=1
(t −T )F tv

=
∑B

t=T
(t −T )Z i

v −
∑T−1

t=1
(t −T )(F tv − Z

t
v )

(13)

Intuitively,

∑B
t=T (t − T )Z

t
v ≥ 0 and

∑T−1
t=1 (t − T )(F

t
v − Z t

v ) ≤ 0.

Therefore, we have:∑B

t=1
tZ t

v − (
∑T−1

t=1
tF tv +T (n − 1 −

∑T−1

t=1
F tv )) ≥ 0.

This completes the proof. □

Based on Lemma 3, Ĝ(v, S) can be estimated according to the

following lemma :

Lemma 4. Given S and a node v ∈ S , the upper bound Ĝ(v, S) can
be estimated by (B−ρ)n+ρ+

∑ρ−1
t=1 (ρ−t)F

t
v , where ρ is the minimal

integer that satisfies
∑ρ
t=1 F

t
v ≥ n − 1.

Proof.

∑T−1
t=1 tF tv +T (n − 1−

∑T−1
t=1 F tv ) increases asT increases

until

∑T
t=1 F

t
v > n − 1. Therefore, the right side of Equation 11

reaches the maximum at T = ρ. By applying this to Equation 11

and G(v, S) = nB −
∑C
t=1 tZ

t
v , we have:

G(v, S) ≤ nB − (
∑ρ−1

t=1
tF tv + ρ(n − 1 −

∑ρ−1

t=1
F tv ))

= (B − ρ)n + ρ +
∑ρ−1

t=1
(ρ − t)F tv

(14)

This completes the proof. □

By Lemma 4, the key to estimate Ĝ(v, S) is how to compute the

vector F t effectively. According to the definition of Qt
s , we have

F t = IQt
s . Hence, we can compute IQt

s in a similar way to compute

Qt
s I . In particular, we replace line 3.10 in Algorithm 3 with F ti ←∑
vj ∈Ne(vi ) qjiF

t−1
j to compute IQt

s . Here Ne(vi ) is the neighbor

set of vi . The pseudo-code for estimating Ĝ(v, S) is presented in

Algorithm 5. It computes IQt
s as mentioned above (Lines 5.5 to 5.9).

Next, it checks every node. For node v , if
∑t
i=1 F

i
v ≥ n − 1 and

αv = 0, it sets αv = (B − t)n + t +
∑t−1
i=1 (t − i)F

i
v (Lines 5.10 to

5.13). Here, it checks αv = 0 to make sure it only computes αv once.

Finally, it returns α as the result.

Approximation Ratio. BoundSel estimates the upper bound of

the marginal gains of the candidate nodes. It prunes the remaining

nodes safely when the marginal gain of the current node is not less

than the maximum value of the upper bound of the remaining can-

didate nodes. Then, BoundSel can choose the node with the largest

marginal gain in each iteration. Therefore, this pruning strategy

does not affect the effectiveness of the method and BoundSel still

achieves a (1 − 1/e) approximation ratio.

Time Complexity. The time complexity of BoundSel is the same

as that of MatrixSel at the worst case (as evidenced in Section

4.2.2), but the pruning strategy reduces the running time greatly

(as evidenced in Section 7.3).

Space Complexity. BoundSel, EstimateBound and FastNI cost

O(n + 2m) space to save the undirected graph G by an adjacency

list and use several n-dimension vectors to record other temporary
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Algorithm 5: EstimateBound(G, B)

5.1 Input: a graph G and B
5.2 Output: a vector α
5.3 Initialize vector α
5.4 for t = 1 to B do
5.5 if t = 1 then
5.6 F 1 ← {1, 1, ..., 1}

5.7 else
5.8 foreach node vi ∈ V do
5.9 F ti ←

∑
vj ∈Ne (vi ) qji F

t−1
j

5.10 foreach node v ∈ V do
5.11 if

∑t
i=1 F

i
v ≥ n − 1 then

5.12 if αv = 0 then
5.13 αv = (B − t )n + t +

∑t−1
i=1 (t − i)F

i
v

5.14 return α

v1

v2

v3

v4 v5

v6

v7

v'1

v'2

v'3 v'4

v'5 v'6

Figure 6: G ′ of G (Figure 2). v ′
1
to v ′

6
are redundant nodes

which are added by step 2.

results. Therefore, the total space complexity of Algorithm 4 for

solving the P-WRWD is O(n + 2m).

6 OUR SOLUTIONS TO C-WRWD
In C-WRWD, we cannot rewrite CB

uS in a recursive manner directly as

Equation 9. Then, we show the relationship of CB
uS based on NR

and CB
uS based on CR. Toward this end, we introduce a new concept,

counterpart graph, to illustrate the connection easily. In particular,

a counterpart graph G ′ can be transformed from G according to

Definition 4.

Definition 4. Given a graph G , we denote the counterpart graph
of G as G ′, and it is constructed in two steps:
1. initialize G ′ as an empty graph by deleting all edges in G;
2. if there is an edge ei j in G, we connect vi and vj by two oppo-
site directed simple paths, and each path consists of (wt(ei j ) − 1)

supplemental nodes.

Figure 6 gives an example of G ′, which is transformed from

G in Figure 2. In this example, we use v ′
1
,v ′

2
, ...,v ′

6
to denote the

supplemental nodes. From this example, we have the following

observation.

Observation 2. The expected hitting step from u to S (CB

uS based
onNR) inG ′ is equal to the expected hitting cost (CB

uS based on CR)
in G.

This observation indicates that we can obtain CB
uS based on CR

in G by computing CB
uS based on NR in G ′.

6.1 DpSel for C-WRWD
Algorithm 1 shows the pseudo-code of the greedy method for P-

WRWD. In each iteration, it repeatedly selects a node v ∈ V \S with

the largest marginal gain, such that

v = argmaxv ∈V \S {G(S ∪ {v}) − G(S)}, to the current set S . When

we apply DpSel to C-WRWD, G(S) can be computed by dynamic

programming according to Observation 2 and Equation 9.

Approximation Ratio. This analysis is similar to the analysis of

approximation ratio in Section 4.1. We omit it here for brevity.

Complexity Analysis. To simplify the explanation, we define n =
|V |,m = |E | and δ = 1/m

∑
e ∈E wt(e). For CR, observation 2 shows

that we can utilize Equation 9 to compute CB
uS by constructing

G ′. According to Definition 4, G ′ has n + (δ − 1)m nodes and δm
edges. Similar to PR, the time complexity of DP is O(δBm) and
computing the marginal gain takesO(δBnm) time, because we only

need to compute CB
uS for u ∈ V . Therefore, the time complexity of

Algorithm 1 for C-WRWD is O(δkBn2m).

6.2 MatrixSel for C-WRWD
Given G ′, Lemma 1 shows that Ns [i][j] is the expected frequen-

cies of wvi visiting vj in G ′. By using Observation 1, we see that

CB
uS in G ′ equals the sum of the ith row of Ns , which actually is

CB
uS in G. Similar to the way of computing CB

uS over PR, we can

call FastNI to compute CB
uS over NR in G ′. Therefore, we can ap-

ply MatrixSel to C-WRWD by replacing Φs ′ ← FastNI(G,B, S ′) with
Φs ′ ← FastNI(G ′,B, S ′) (MatrixSel line 2.8).

Approximation Ratio. This analysis is similar to the analysis of

approximation ratio in Section 4.2.2. We omit it here for brevity.

Time Complexity. Similar to the analysis of time complexity in

Section 4.2.2, FastNI takes O(δBm) time to CB
uS in G ′. In addition,

MatrixSel needs to invoke FastNI O(n) times in each selection and

repeats k round selections. Therefore, the total complexity of Ma-

trixSel for C-WRWD is O(δkBnm).

Space Complexity. Since we transfer the input graph G to G ′

and G ′ has O(n + 2(δ − 1)m) nodes and O(2δm) edges, MatrixSel

and FastNI cost O(n + 4δm) space to save the graph G ′. Thus, in
total, the space complexity of Algorithm 2 for solving the C-WRWD
is O(n + 4δm).

6.3 BoundSel for C-WRWD
Similarly, we can use the above method to estimate the lower bound

of

∑B
t=1 tZ

t
v inG ′, which equals the lower bound of

∑B
t=1 tZ

t
v inG .

Therefore, we can get the upper bound of the marginal gain of node

v . In particular, we replace line 4.4 by α ← EstimateBound(G ′,
B), and line 4.9 and 4.19 by ΦS ′ ← FastNI(G,B, S ′). By doing so, we
can apply BoundSel to C-WRWD.

Approximation Ratio. This analysis is similar to the analysis of

approximation ratio in Section 5. We omit it here for brevity.

Time Complexity. Similar to the analysis of the time complexity

in Section 5, the complexity of BoundSel for C-WRWD is the same

as that of MatrixSel for C-WRWD at the worst case, but the pruning
strategy reduces the running time greatly (as evidenced in Section

7.3).

Space Complexity. Since G ′ has O(n + 2(δ − 1)m) nodes and

O(2δm) edges, BoundSel, EstimateBound and FastNI costO(n+4δm)
space to save the graphG ′. Therefore, the total space complexity

of Algorithm 4 for solving the C-WRWD is O(n + 4δm).
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Table 2: Summary of the datasets

Dataset n m maxD avgD weighted
WSN 54 2458 54 46 Yes

CELE 297 2345 134 14.5 Yes

Adolescent 2.5k 13k 27 5.2 Yes

CaGrQc 5.2K 28.9K 81 5.5 No

Advogato 6.5K 51k 804 7.8 Yes

CaHepPh 12k 237k 491 19.7 No

CondMat 16k 48k 107 5.9 Yes

Slashdot 77k 937k 2537 12.1 No

YouTube 1135k 2988k 28754 5.3 No

Table 3: Parameter setting

Parameters Value
k 20, 40, 60, 80, 100
B 2, 4, 6, 8, 10

7 EXPERIMENTS
In this section, we present experimental results on effectiveness,

efficiency, memory consumption and scalability of our proposed

methods.

7.1 Experimental Settings
Datasets. We use nine real-world datasets: WSN [1], CELE [2],

Adolescent [3], CaGrQc [4], Advogato [5]
1
, CaHepPh [6], Cond-

Mat [2], Slashdot [7] and YouTube [8]. Their statistics are shown in

Table 2. WSN is a wireless sensor network. For PR, we use the prob-

ability of a message from a sender successfully reaching a receiver

as the weight; for CR, we use the Euclidean distance between two

sensors as the transfer cost. CELE is a directed, weighted network

representing the neural network of C. Elegans. Data. Adolescent

is a friendship network. Advogato is the trust network of a social

network site named advogato. CaGrQc and CaHepPh are paper

collaboration networks. CondMat is a weighted network of coau-

thorships between scientists posting preprints on the Condensed

Matter E-Print Archive. Slashdot is a technology-related news web-

site known for its specific user community. YouTube is a social

network of the video-sharing web site YouTube. In our datasets,

WSN, CELE, Adolescent, Advogato and CondMat are edge-weighted

graph. It is worth noting that the edge weight of Advogato is not

an integer. We map it to an integer by enlarging the weight by 5

times. For the remaining non-integer weights, we round it up to an

integer. The remaining published graph data sets are unweighted,

but since our method is not dependent on the semantics of the

weights or their magnitude, we assign randomly generated weights

(real numbers in the range 1 to 10) to the edges of the remaining

datasets.

Parameters. Table 3 shows the settings of all parameters, and the

default one is highlighted in bold. Here we follow the parameter

settings in [23]. In all experiments, we vary one parameter while

the rest are kept default, unless specified otherwise.

Performance Measurement. For each method we evaluate the

runtime and the average gain of nodes (Gain = G(S)/n). Each ex-

periment is repeated ten times, and the average result is reported.

1
The original URLs of Adolescent and Advogato do not work. Then, we host the

datasets on GitHub.

Methods for Comparison.We compare five methods as below.

TopK: It selects the top-k nodes in term of degree as the seeds.

DpSel: It is a dynamic programming based greedy method which

is shown in Algorithm 1. MatrixSel: It is a matrix-based greedy

method shown in Algorithm 2. BoundSel: It is a bound-based greedy

method shown in Algorithm 4. SamSel: It is a sampling-based

method proposed in [23]. We extend this method to answer P-WRWD
and C-WRWD. Here, node u chooses its neighbor v with probability

puv when we generate the PR sampling set. For CR, we generate

sampling set in G ′ to compute G(S). To generate the sampling set

for SamSel, we adopt the exact same setting from [23], i.e., 500

Monte Carlo simulations (random walks) are repeatedly run for

each node in G. Note that this value is not sufficient to guarantee

the approximation ratio according to the theoretical analysis in [23].

PageRankSel: We use the weighted pagerank [37] to rank the node

in G and choose the top-k nodes in terms of the pagerank value.

Since the weighted pagerank considers the weight as probability,

we only compare this algorithm with the algorithm used for the

case of PR (Probability-aware Random Walk Model).

It is worth noting that DpSel is too slow to converge in 20 hours

even for a very small dataset (Adolescent) when k = 100 and B = 6,

we thereby have to omit it in most of the efficiency and effectiveness

tests. Meanwhile, if the running time of one method is more than

10
5
seconds (i.e. more than one day), we also have to omit it.

Setup. All codes are implemented in Java, and experiments are

conducted on a server with 2.3 GHz Intel Xeon 24 Core CPU and

256GB memory running Debian/4.0 OS.

7.2 Effectiveness Test
Varying the Seed Set Size k . The effectiveness of all algorithms

over PR and CR on four datasets by varying k is shown in Figure 7

and Figure 8, respectively. Note that for WSN, we vary k from

2 to 10 because it has only 54 nodes (see Table 2). We have the

following observations: (1) TopK has the worst performance. DpSel,

BoundSel and MatrixSel achieve the same gain. When k = 20, the

improvement of BoundSel and MatrixSel over TopK exceeds 220%

on the Advogato dataset over CR. (2) With the growth of k , the
advantage of BoundSel and MatrixSel over TopK increases from 19%

to 24% when k varies from 20 to 100 on the Adolescent dataset over

PR. This is because TopK ignores the overlaps of gain between the

selected seeds, which degrades its effectiveness. However, BoundSel

and MatrixSel select nodes based on marginal gain, which largely

avoids the overlap of gain. (3) The performance of TopK is very

different on different datasets. It implies that the network structure

is an important variable for TopK. On the contrary, BoundSel and

MatrixSel consistently perform better on all datasets. (4) As shown

in Figure 7a and Figure 8a, we find DpSel, BoundSel and MatrixSel

consistently beat all baselines in the real wireless dataset WSN.

Varying the Budget B. Figure 9 and Figure 10 show the result of

varying B from 2 to 10 over PR and CR, respectively. We find that:

(1) Similar to Figure 7 and Figure 8, BoundSel and MatrixSel are

consistently better than all baselines. (2) By carefully looking at

the figures, it is surprising to see that the performance of TopK

grows faster than that of the other methods. It is because when B
is small, TopK ignores the overlaps of gain. With the growth of B,
the overlaps of gain become unavoidable.
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Figure 7: Effectiveness of varying the seed set size k over PR
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Figure 8: Effectiveness of varying the seed set size k over CR
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Figure 9: Effectiveness of varying the budget B over PR
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Figure 10: Effectiveness of varying the budget B over CR

7.3 Efficiency Test
Varying the Seed Set Size k . Figure 11 and Figure 12 present the

efficiency results over PR and CR, respectively, when k varies

from 2 to 10 for WSN and k varies from 20 to 100 for the remaining

datasets. We have the following observations: (1) The runtime of

BoundSel and MatrixSel increase linearly with respect to k , which
is consistent with the complexity analysis in Section 4.2.2 and 6.2.

(2) BoundSel consistently beats MatrixSel and SamSel on all datasets.

(3) The gap between BoundSel and MatrixSel decreases as k grows,

because with the growth of k , the gap between the marginal gain

of the remaining nodes becomes smaller and the pruning strategy

actually performs worse. (4) From Figure 11b, we can see that the

runtime of BoundSel and MatrixSel is almost identical. Meanwhile,

they are about three orders of magnitude faster than DpSel, which

is consistent with our time complexity analysis. (5) TopK and Pager-

ankSel have high efficiency simply because they adopt a very simple

strategy in finding a seed set, as described in our experiment setup.

Varying the Budget B. Figure 13 and Figure 14 show the runtime

of all algorithms on four datasets by varying B over PR and CR,

respectively. We can see that the advantage of BoundSel over Ma-

trixSel is decreases as B increases from 2 to 10 on all datasets. This

is because the upper bound gets looser as B increases.

Varying the Average Edge Weight δ over CR. In this experi-

ment, we evaluate the efficiency of our methods over CR by vary-

ing the average edge weight δ on the CaGrQc and CaHepPh dataset.

Here we assign randomly generated edge weights of the CaGrQc

and CaHepPh dataset in different ranges to vary δ from 5 to 25.

From Figure 15, we find that the runtime of BoundSel and MatrixSel

increase linearly with respect to δ , which is consistent with the

complexity analysis in Section 6.

Varying the Number of Edgesm. In this experiment, to evaluate

the running time of the proposed methods when the number of

edgesm is varying, we start from a small weighted graph, CELE, and

randomly connect two nodes if there is no edge between them, until

the number of edges reaches a given total number of edgesm. Note

that we assign randomly generated weights (real numbers within

the range of [1,10]) to the new edges. Figure 16a and Figure 16b

present the efficiency results over the Probability-aware Random

Walk Model (PR) and the Cost-aware Random Walk Model (CR),

respectively, whenm varies from 5,000 to 25,000. We have the fol-

lowing observations: (1) The running time of BoundSel, MatrixSel

and DpSel increase linearly with respect to m, which is consis-

tent with the time complexity analysis. (2) The running time of

SamSel remains almost constant whenm grows, because the time

complexity of SamSel is independent ofm.
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Figure 11: Efficiency of varying the seed set size k over PR
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Figure 12: Efficiency of varying the seed set size k over CR
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Figure 13: Efficiency of varying the budget B over PR

1
0

-4
1
0

-2
1
0

0
1
0

2

 2  4  6  8  10

T
im

e
 (

s
)

B

(a) WSN

1
0

-3
1
0

-2
1
0

-1
1
0

0
1
0

1
1
0

2
1
0

3

 2  4  6  8  10

T
im

e
 (

s
)

B

(b) Adolescent

1
0

-2
1
0

-1
1
0

0
1
0

1
1
0

2
1
0

3
1
0

4

 2  4  6  8  10

T
im

e
 (

s
)

B

(c) Advogato

1
0

-3
1
0

-2
1
0

-1
1
0

0
1
0

1
1
0

2
1
0

3
1
0

4

 2  4  6  8  10

T
im

e
 (

s
)

B

(d) CondMat

1
0

-1
1
0

0
1
0

1
1
0

2
1
0

3
1
0

4
1
0

5

 2  4  6  8  10

T
im

e
 (

s
)

B

(e) Slashdot

Figure 14: Efficiency of varying the budget B over CR
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Figure 15: Efficiency of varying the average edge weight δ
over CR
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Figure 16: Efficiency of varying the number of edgesm

7.4 Our Methods vs. SamSel on Unweighted
Graph

In this section, we try to compare ourworkwith the relatedwork [23]

on the CaGrQc and CaHepPh dataset without edge weight. Specifi-

cally, we test the effectiveness, runtime and memory consumption

of each algorithm when B is varying and evaluate the scalability of

SamSel and BoundSel by varying the number of nodes from 50,000

to 250,000 on the Youtube dataset

Effectiveness Test. The effectiveness of our methods and SamSel

on unweighted graphs is shown in Figure 17 and Figure 18. From

these two figures, we find that BoundSel and MatrixSel achieve the

same gain, and they are both better than SamSel.

Efficiency Test. Figure 19 and Figure 20 show the runtime of three

algorithms on the CaGrQc and CaHepPh datasets by varying k
and B, respectively. We have the following observations: (1) Bound-

Sel consistently beats SamSel on all datasets. (2) The gap between

BoundSel and SamSel decreases as k increases. This is because the

bottleneck of SamSel is the indexing of theMonte Carlo sampling re-

sults. It only needs to perform efficient heap tuning during the node

selection phase. Therefore, the runtime of SamSel is independent of

k . On the contrary, the runtime of BoundSel increases linearly with

respect to k . (3) The advantage of BoundSel over SamSel decreases
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Figure 17: Effectiveness of varying the seed set size k
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Figure 19: Efficiency of varying the seed set size k
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Figure 20: Efficiency of varying the Budget B

as B increases from 2 to 10 on all datasets. This is because the upper

bound gets looser as B increases.

Memory Consumption. Figure 21 reports the average memory

consumption of each algorithm when varying B. As shown in Fig-

ure 21, we find: (1) BoundSel and MatrixSel have similar memory

consumption. (2) The memory consumption of SamSel is an order

of magnitude larger than that of BoundSel and MatrixSel.

Scalability Test. In this experiment we evaluate the scalability of

SamSel and BoundSel by varying the number of nodes from 50,000

to 250,000 on the Youtube dataset. When we load the graph, we first

randomly choose one node and then start a breadth-first search

from it to select other nodes until we reach the number of nodes

we specified. Since DpSel and MatrixSel are extremely slow, we

omit them. The memory consumptions and runtime are reported

in Figure 22. In Figure 22a, we can see that BoundSel scales very

well and only consumes less than 1GB when |V |=250,000; while
the space of SamSel grows fast with the increase of |V |, and it
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Figure 21: Memory consumption
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Figure 22: Scalability test (on YouTube dataset)
exhausts the machine memory (30GB) when |V |=200,000. From
Figure 22b, we find that BoundSel is more scalable than SamSel in

execution time. When |V |=250,000, BoundSel can return the results

in a reasonable time (40 minutes), but SamSel takes almost four

hours to return the results. Note that as SamSel is out of memory

when the size exceeds 150,000, we thereby have to omit it. Due

to limited memory size in reality, it is difficulty for SamSel to be

applied to very large networks, i.e., |V | ≥ 1, 000, 000.

8 CONCLUSION
In this paper, we proposed and studied the problem of weighted

random walk domination in a weighted graph. Given a weighted

graphG(V , E) and the maximal budget B of random walk, it aims to

find a k-size set S , which can minimize the total costs of the other

nodes to access S through a weighted random walk. To solve the

WRWD problem, we proposed DpSel andMatrixSel approach based on

DP and matrix respectively. They both achieve an approximation

ratio of (1 − 1/e). DpSel incurs a time complexity ofO(kBn2m) and
O(δkBn2m) for P-WRWD and C-WRWD, respectively, while MatrixSel

incurs a time complexity of O(kBnm) and O(δkBnm) for P-WRWD
and C-WRWD, respectively. In order to further accelerate MatrixSel,

we proposed a BoundSel approach to further reduce the number

of the gain computations in each candidate selection with an ap-

proach of proactively estimating the upper bound of the marginal

gain of the candidate node. Meanwhile, BoundSel achieves the

same approximation ratio guarantee as that of MatrixSel. Lastly,

we conducted extensive experiments on real datasets to verify the

efficiency, effectiveness, memory consumption and scalability of

our methods.
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