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ABSTRACT

While large-scale distributed data processing platforms have be-
come an attractive target for query processing, these systems are
problematic for applications that deal with nested collections. Pro-
grammers are forced either to perform non-trivial translations of
collection programs or to employ automated flattening procedures,
both of which lead to performance problems. These challenges only
worsen for nested collections with skewed cardinalities, where
both handcrafted rewriting and automated flattening are unable to
enforce load balancing across partitions.

In this work, we propose a framework that translates a program
manipulating nested collections into a set of semantically equivalent
shredded queries that can be efficiently evaluated. The framework
employs a combination of query compilation techniques, an ef-
ficient data representation for nested collections, and automated
skew-handling. We provide an extensive experimental evaluation,
demonstrating significant improvements provided by the frame-
work in diverse scenarios for nested collection programs.
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1 INTRODUCTION

Large-scale, distributed data processing platforms such as Spark [46],
Flink [8], and Hadoop [16] have become indispensable tools for
modern data analysis. Their wide adoption stems from powerful
functional-style APIs that allow programmers to express complex
analytical tasks while abstracting distributed resources and data
parallelism. These systems use an underlying datamodel that allows
for data to be described as a collection of tuples whose values may
themselves be collections. This nested data representation arises
naturally in many domains, such as web, biomedicine, and business
intelligence. The widespread use of nested data also contributed
to the rise in NoSQL databases [3, 4, 33], where the nested data
model is central. Thus, it comes as no surprise that nested data
accounts for most large-scale, structured data processing at major
web companies [32].
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Despite natively supporting nested data, existing systems fail to
harness the full potential of processing nested collections at scale.
One implementation difficulty is the discrepancy between the tuple-
at-a-time processing of local programs and the bulk processing
used in distributed settings. Though maintaining similar APIs, local
programs that use Scala collections often require non-trivial and
error-prone translations to distributed Spark programs. Beyond
programming difficulties, nested data processing requires scaling in
the presence of large or skewed inner collections. We next elaborate
these difficulties by means of an example.

Example 1. Consider a variant of the TPC-H database containing
a flat relation Part with information about parts and a nested
relation COP with information about customers, their orders, and
the parts purchased in the orders. The relation COP stores customer
names, order dates, part IDs and purchased quantities per order.
The type of COP is:

Bag (⟨ cname : string , corders : Bag (⟨ odate : date ,

oparts : Bag (⟨ pid : int , qty : real ⟩) ⟩) ⟩).

Consider a collection program that returns for each customer
and for each of their orders, the total amount spent per part name.
This requires joining COP with Part on pid to get the name and
price of each part and then summing up the costs per name. We
can express this using nested relational calculus [10, 44] as:
for cop in COP union

{ ⟨ cname := cop .cname,
corders :=
for co in cop .corders union

{ ⟨ odate := co .odate,
Q oparts := sumBytotalpname(

for op in co .oparts union

Qcorders for p in Part union

if op .pid == p .pid then

Qoparts { ⟨ pname := p .pname,
total := op .qty ∗ p .price ⟩ })⟩ }⟩ }

The program navigates to oparts in COP, joins each bag with
Part, computes the amount spent per part, and aggregates using
sumBy which sums up the total amount spent for each distinct part
name. We next discuss the challenges associated with processing
such examples using distributed frameworks.

Challenge 1: Programmingmismatch. The translation of col-
lection programs from local to distributed settings is not always
straightforward. Distributed processing systems natively distribute
collections only at the granularity of top-level tuples and provide
no direct support for using nested loops over different distributed
collections. To address these limitations, programmers resort to
techniques that are either prohibitively expensive or error-prone. In
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our example, a common error is to try to iterate over Part, which is
a collection distributed across worker nodes, from within the map
function over COP that navigates to oparts, which are collections
local to one worker node. Since Part is distributed across worker
nodes, it cannot be referenced inside another distributed collection.
Faced with this impossibility, programmers could either replicate
Part to each worker node, which can be too expensive, or rewrite to
use an explicit join operator, which requires flattening COP to bring
pid values needed for the join to the top level. A natural way to flat-
ten COP is by pairing each cnamewith every tuple from corders and
subsequently with every tuple from oparts; however, the resulting
(cname, odate, pid, qty) tuples encode incomplete information –
e.g., omit customers with no orders – which can eventually cause
an incorrect result. Manually rewriting such a computation while
preserving its correctness is non-trivial.

Challenge 2: Data representation.Default top-level partition-
ing can lead to poor scalability with nested data, particularly with
few top-level tuples and/or large inner collections. The number of
top-level tuples limits the level of parallelism by requiring all data
on lower levels to persist on the same node, which is detrimental
regardless of the size of these inner collections. Conversely, large in-
ner collections can overloadworker nodes and increase data transfer
costs, even with larger numbers of top-level tuples. In our exam-
ple, a small number of customers in COP may lead to poor cluster
utilization because few worker nodes process the inner collections
of COP. To cope with limited parallelism, an alternative is to flatten
nested data and redistribute processing over more worker nodes.
In addition to the programming challenges, unnesting collections
leads to data duplication and consequently redundant computation.
Wide flattened tuples increase memory pressure and the amount of
data shuffled among the worker nodes. Alleviating problems such
as disk spillage and load imbalance requires rewriting of programs
on an ad hoc basis, without a principled approach.

Challenge 3: Data skew. Data skew can significantly degrade
performance of large-scale data processing, even when dealing with
flat data only. Skew can lead to load imbalance where some workers
perform significantly more work than others, prolonging run times
on platforms with synchronous execution such as Spark, Flink, and
Hadoop. The presence of nested data only exacerbates the problem
of load imbalance: inner collections may have skewed cardinalities
– e.g., very few customers can have very many orders – and the
standard top-level partitioning places each inner collection entirely
on a single worker node. Moreover, programmers must ensure that
inner collections do not grow large enough to cause disk spill or
crash worker nodes due to insufficient memory. □

Prior work has addressed some of these challenges. High-level
scripting languages such as Pig Latin [34] and Scope [12] ease
the programming of distributed data processing systems. Apache
Hive [5], F1 [36, 38], Dremel [32], and BigQuery [37] provide SQL-
like languages with extensions for querying nested structured data
at scale. Emma [2] and DIQL [22] support for-comprehensions
and respectively SQL-like syntax via DSLs deeply-embedded in
Scala, and target several distributed processing frameworks. But
alleviating the performance problems caused by skew and manually
flattening nested collections remains an open problem.

Our approach. To address these challenges we advocate an
approach that relies on three key aspects:

Query Compilation. When designing programs over nested
data, programmers often first conceptualize desired transforma-
tions using high-level languages such as nested relational calcu-
lus [10, 44], monad comprehension calculus [21], or the collection
constructs of functional programming languages (e.g., the Scala
collections API). These languages lend themselves naturally to cen-
tralized execution, thus making them the weapon of choice for
rapid prototyping and testing over small datasets.

To relieve programmers from manually rewriting program for
scalable execution (Challenge 1), we propose using a compilation
framework that automatically restructures programs to distributed
settings. In this process, the framework applies optimizations that
are often overlooked by programmers such as column pruning, se-
lection pushdown, and pushing nesting and aggregation operators
past joins. These may significantly cut communication overheads.

Query and Data Shredding. To achieve parallelism beyond
top-level records (Challenge 2), we argue for processing over shred-

ded data. In this processing model, nested collections are encoded
as flat collections and nested collection queries are translated into
relational queries [17, 44]. Prior work exploits the shredding trans-
formation to implement nested relational query languages on top
of commercial relational processors [13] and for incremental evalu-
ation [28], both in a centralized setting.

The motivation for using shredding in distributed settings is
twofold. First, shredding can enable full parallel processing of large
nested collections and their even distribution among worker nodes.
Second, for complex programs consisting of a sequence of nested-
to-nested data transformations, shredding eliminates the need for
the reconstruction of intermediate nested results. The shredded
representation provides more opportunities for reduction of data
through aggregation, and thus delays and minimizes the costs of
the potentially expensive join and regrouping operations when
computing the output.

In our example, the shredded form of COP consists of one flat
top-level collection containing labels in place of inner collections
and two dictionaries, one for each level of nesting, associating
labels with flat collections. The top-level collection and dictionaries
are distributed among worker nodes. We transform the example
program to compute over the shredded form of COP and produce
shredded output. The first two output levels are those from the
shredded input. Computing the last output level requires joining one
dictionary of COP with Part, followed by the sum aggregate; both
operations are fully distributed. The shredded representation here
eliminates the need for flattening operations and thus minimizes
the amount of shuffled data. The shredded output can serve as input
to another constituent query in a pipeline. If required downstream,
the nested output can be restored by joining together the computed
flat collections.

Skew-ResilientQuery Processing.To handle data skew (Chal-
lenge 3), we propose using different evaluation plans for process-
ing skewed and non-skewed portions of data. We transparently
rewrite evaluation plans to avoid partitioning collections on val-
ues that appear frequently in the data, thus consequently avoid
overloading few worker nodes with significantly more data. Our
processing strategy deals with data skew appearing at the top level
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P ::= (var ⇐ e)∗

e ::= ∅
Bag (F ) | {e } | get(e )

| c | var | e.a | ⟨a1 := e, . . .,an := e ⟩

| for var in e union e | e ⊎ e

| let var := e in e | e PrimOp e

| if cond then e | dedup(e )

| groupBy
key

(e ) | sumByvalue

key
(e )

cond ::= e RelOp e | ¬cond | cond BoolOp cond

T ::= S | C

C ::= Bag (F ) – Collection Type

F ::= ⟨a1 : T , . . . ,an : T ⟩ | S – Flat Type

S ::= int | real | string | bool | date – Scalar Type

Figure 1: Syntax of NRC.

of distributed collections, but when coupled with the shredding
transformation, it can also effectively handle data skew present in
inner collections.

In summary, we make the following contributions:
• We propose a compilation framework that transforms declar-
ative programs over nested collections into plans that are
executable in distributed environments.

• We provide transformations that enable the framework to
compute over shredded relations. This includes an extension
of the symbolic shredding approach, originating in [28], to
a larger query language, along with a materialization phase

for dealing with nested outputs.
• We introduce techniques that adapt generated plans to the
presence of skew.

• We develop a micro-benchmark based on TPC-H and also a
benchmark based on a real-word biomedical dataset, suitable
for evaluating nesting collection programs. We show that
our framework can scale as nesting and skew increase, even
when alternative methods are unable to complete at all.

2 BACKGROUND

We describe here our source language, which is based on nested
relational calculus [10, 44], and our query plan language, based on
the intermediate object algebra of [21].

Nested Relational Calculus (NRC). We support a rich collec-
tion programming language NRC as our source language. Programs
are sequences of assignments of variables to expressions, where the
expression language extends the standard nested relational calculus
with primitives for aggregation and deduplication. Figure 1 gives
the syntax of NRC. We work with a standard nested data model
with typed data items. The NRC types are built up from the basic
scalar types (integer, string, etc.), tuple type ⟨a1 : T1 . . . an : Tn⟩,
and bag type Bag (T ). For ease of presentation, we restrict the bag
content T to be either a tuple type or a scalar type, as shown in
Figure 1. Set types are modeled as bags with multiplicity one. We
refer to a bag of tuples with scalar attributes as a flat bag .

RelOp is a comparison operator on scalars (e.g., ==, ≤), PrimOp
is a primitive function on scalars (e.g., +, ∗), and BoolOp is a boolean

operator (e.g., &&, | |). A simple term can be a constant, a variable,
or an expression e.a. Variables can be free, e.g. representing input
objects, or can be introduced in for or let constructs. {e } takes
the expression e and returns a singleton bag. Conversely, get(e )
takes a singleton bag and returns its only element; if e is empty or
has more than one element, get returns a default value. ∅

Bag (F )
returns an empty bag.

The if-then-else constructor for expressions of bag type can be
expressed using the if-then and union constructors.

dedup(e ) takes the bag e and returns a bag with the same el-
ements, but with all multiplicities changed to one. We impose a
restriction that will be useful in our query shredding method (Sec-
tion 4): the input to dedup must be a flat bag.

groupBykey (e ) groups the tuples of bag e by a collection of at-
tributes key (in the figurewe assume a single attribute for simplicity)
and for each distinct values of key , produces a bag named group
containing the tuples from e with the key value, projected on the
remaining attributes.

sumByvalue

key
(e ) groups the tuples of bag eby the values of their key

attributes and for each distinct value of key , sums up the attributes
value of the tuples with the key value.

In both groupBy and sumBy operators, we restrict the grouping
attributes key to be flat.

Plan Language. Our framework also makes use of a language
with algebraic operators, variants of those described in [21]. Our
language includes selection σ , projection π , join ▷◁, and left outer
join Z, as in relational algebra.

The unnest operator µa takes a nested bag with top-level bag-
valued attribute a and pairs each tuple of the outer bag with each
tuple of a, while projecting away a. The outer-unnest operator µa

is a variant of µa that in addition extends each tuple from the outer
bag with a unique ID and pairs such tuples with NULL values when
a is the empty bag.

The nest operator Γagg value
key defines a key-based reduce, param-

eterized by the aggregate function agg , which could be addition (+)
or bag union (⊎). This operator also casts NULL values introduced
by the outer operators into 0 for the + aggregate and the empty
bag for the ⊎ aggregate.

3 COMPILATION FRAMEWORK

Our framework transforms high-level programs into programs op-
timized for distributed execution. It can generate code operating
directly over nested data, as well as code operating over shredded
data. Figure 2 shows our architecture.

This section focuses on the standard compilation method, which
uses a variant of the unnesting algorithm [21] to transform an
input NRC program into an algebraic plan expressed in our plan
language. A plan serves as input to the code generator producing
executable code for a chosen target platform. For this paper, we con-
sider Apache Spark as the target platform; other platforms such as
Apache Flink, Cascading, and Apache Pig could also be supported.

The shredded compilation adds on a shredding phase that trans-
forms an NRC program into a shredded NRC program that operates
over flat collections with shredding-specific labels, dictionaries, and
dictionary lookup operations. Section 4 describes the shredded data
representation and the shredding algorithm. The shredded program
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Shredding (§5)

Unnesting (§4.2)

Code Generation 
(§4.3)

Skew Resilience 
(§6)

NRC

NRC

Plan

Spark 
Code

Standard 
Pipeline

Shredded Pipeline

Figure 2: System architecture.

then passes through the unnesting and code generation phases, as
in the standard method.

Both compilation routes can produce skew-resilient code during
the code generation phase. Our skew-resilient processing first uses
a lightweight sampling mechanism to detect skew in data. Then,
for each operator affected by data skew (e.g., joins), our framework
generates different execution strategies that process non-skewed
and skewed parts of the data. Section 5 describes our skew-resilient
processing technique.

We describe here our standard compilation route for producing
distributed programs from high-level queries. It relies on existing
techniques from unnesting [21] and code-generation (e.g., [11]). It
generates code that automatically inserts IDs and processes NULL
values – techniques that play a role in the manually-crafted solu-
tions discussed in the introduction – while adding optimizations
and guaranteeing correctness. Further, this forms the basis for our
shredded compilation route and skew-resilient processing module.

Unnesting. The unnesting stage translates each constituent
query in an NRC program into a query plan consisting of the opera-
tors of the plan language, following the prior work [21], to facilitate
code generation for batch processing frameworks.

The unnesting algorithm starts from the outermost level of a
query and recursively builds up a subplan subplane for each nested
expression e . The algorithm detects joins written as nested loops
with equality conditions and also translates each for loop over a
bag-typed attribute x .a to an unnest operator µa .

The algorithm enters a new nesting level when a tuple expression
contains a bag expression. When at a non-root level, the algorithm
generates the outer counterparts of joins and unnests. At each level,
the algorithm maintains a set G of attributes used as a prefix in
the key parameter of any generated nest operator at that level. The
set G is initially empty. Before entering a new nesting level, the
algorithm expands G to include the unique ID attribute and other
output attributes from the current level. The sumByvalue

key
(e ) operator

translates to Γ+ value

G,key
(subplane), while groupBy

key
(e ) translates to

Γ⊎
value

G,key
(subplane), wherevalue represents the remaining non-key

attributes in e . These Γ operators connect directly to the subplan
built up from unnesting e .

The example below details the plans produced by the unnesting
algorithm on the running example. Wewill see that while unnesting
addresses the programming mismatch, it highlights the challenges
introduced by flattening mentioned in the introduction.

(copID,cname,odate,opartsB)

(copID,coID,cname,odate,pid,qty)

(copID,coID,cname,odate,pname,total)

(copID,coID,cname,odate,opartsB)

(copID,cname,cordersB)

(copID,coID,cname,odate,pid,qty,
pid,pname,price,...)

(cname,cordersB)

πcname,corders

Γ⊎ odate,oparts
copID,cname

Γ⊎ pname,total
copID,coID,cname,odate

Γ+ qty∗pricecopID,coID,cname,odate,pname

Zpid

µoparts

µcorders

COP

Part

Figure 3: A query plan for the running example with output

types. Bag types are annotated with
B
.

Example 2. Figure 3 shows a query plan output by an unnesting
algorithm for the running example, along with the output type of
each operator. For readability, we omit renaming operators from
the query plan.

Starting at the bottom left, the plan performs an outer-unnest on
cop.corders. To facilitate the upcoming nest operation at corders,
the outer-unnest associates a unique ID to each tuple cop. The set
G of grouping attributes at this point is {copID, cname}. The plan
continues with an outer-unnest for co.oparts, extending each tuple
co with a unique ID. The set of grouping attributes is
{copID, coID, cname, odate}. Now the input is fully flattened. The
next operation is an outer join between the plan built up to this point
and the Part relation. This comprises the subplan corresponding
to the input for the sumBy expression in the source query.

The sumBy expression is translated to a sum aggregate Γ+ with
the key consisting of the grouping attributes from the first two
levels and p.pname from the key attribute of the sumBy. The second-
level subplan continues with a nest operation Γ⊎ created from
entering the second level at co.oparts with grouping attributes
{copID, coID, cname, odate}, followed by another nest operation
with grouping attributes {copID, cname} and a projection on
(cname, corders).

The unnesting algorithm may produce suboptimal query plans.
We can optimize the plan from Figure 3 by projecting away unused
attributes from the Part relation. We can push the sum aggregate
Γ+ past the join to compute partial sums of qty values over the
output of µoparts, grouped by {copID, coID, cname, odate, pid}.
However, a similar local aggregation over Part brings no benefit
since pid is the primary key of Part. □

Code Generation. Code generation works bottom-up over a
plan produced by the unnesting stage, translating an NRC program
into a parallel collection program. For this paper, we describe our
compilation in terms of the Spark API [46].

Wemodel input/output bags as SparkDatasets , which are strongly-
typed, immutable collections of objects; by default, collections are
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distributed at the granularity of top-level tuples. We translate op-
erators of the plan language into operations over Datasets, taking
into account that Γ⊎ and Γ+ also cast NULL values to the empty bag
and respectively 0; implementation details can be found in [39].

The design choice to use Datasets was based on an initial set
of experiments [39], which revealed that an alternative encoding –
using RDDs of case classes – incurs much higher memory and pro-
cessing overheads. Datasets use encoder objects to operate directly
on the compact Tungsten binary format, thus significantly reduc-
ing memory footprint and serialization cost. Datasets also allow
users to explicitly state which attributes are used in each operation,
providing valuable meta-information to the Spark optimizer.

Operators effect the partitioning guarantee (“partitioner” in
Spark) of a Dataset. All partitioners are key-based and ensure all
values associated with the same key are assigned to the same loca-
tion. Partitioning guarantees affect the amount of data movement
across partitions (shuffling), which can significantly impact the
execution cost. Inputs that have not been altered by an operator
have no partitioning guarantee. An operator inherits the partitioner
from its input and can either preserve, drop, or redefine it for the
output. Join and nest operators are the only operators that directly
alter partitioning since they require moving values associated with
keys to the same partition. These operators control all partitioning
in the standard compilation route.

Optimization. The generated plan is subject to standard data-
base optimizations; this includes pushing down selection, projec-
tion, and nest operators. Aggregations are pushed down when the
key is known to be unique, based on schema information for inputs.
Additional optimizations are applied during code generation; for ex-
ample, a join followed by a nest operation is directly translated into
a cogroup [39], a Spark primitive that leverages logical grouping to
avoid separate grouping and join operations. This is beneficial when
building up nested objects with large input bags. These optimiza-
tions collectively eliminate unnecessary data as early as possible
and thus reduce data transfer during distributed execution.

4 SHREDDED PIPELINE

On top of the standard compilation route we build a shredded vari-
ant. We provide a novel approach that begins with an extension
of symbolic query shredding from [28], applies a materialization
phase that makes the resulting queries appropriate for bulk imple-
mentation, optimizes the resulting expressions, and then applies a
custom translation into bulk operations. We refer to this variant as
shredded comilation.

Our shredded representation encodes a nested bag b whose type
T includes bag-valued attributes a1, . . . ,ak by a flat bag bF of type
T F where each ai has a special type Label and an identifier of a
lower-level bag. The representation of b also includes a dictionary

tree bD of type TD capturing the association between labels and
flat bags at each level.

The type T F, always a flat bag type, and the type TD, always
a tuple type, are defined recursively. For a tuple type T = ⟨a1 :
T1, . . . ,an : Tn⟩, T F is formed by replacing each attribute ai of
bag type with a corresponding attribute of type Label . TD includes
attributes afuni and achildi for each bag-valued ai , where afuni de-
notes the dictionary for ai of type Label → Bag (T F

i ), while a
child
i

denotes the dictionary tree of type TD
i . Similarly, for a bag type

T = Bag (T1), we haveT F = Bag (T F
1 ) andT

D = TD
1 ; for scalar types,

we have T F = T and TD = ⟨⟩.

Example 3. Based on the type of COP (Example 1), the shredded
representation of COP consists of a top-level flat bag COPF of type
Bag (⟨ cname : string , corders : Label ⟩) and a dictionary tree COPD
of tuple type

⟨ cordersfun : Label → Bag (⟨ odate : date , oparts : Label ⟩),

corderschild : Bag (⟨ opartsfun : Label →

Bag (⟨ pid : string , qty : real ⟩), opartschild : Bag (⟨ ⟩) ⟩) ⟩

The COPD dictionary tree encodes the cordersfun dictionary for
corders labels, the opartsfun dictionary for oparts labels, and
the nesting structure via the child attributes. Since the type system
prevents nesting tuples inside tuples, each child dictionary tree is
wrapped in a singleton bag. □

We can convert nested objects to their shredded representations
and vice versa. A value shredding function takes as input a nested
object o and returns a top-level bag oF and a dictionary tree oD.
This function associates a unique label to each lower-level bag. A
value unshredding function performs the opposite conversion [28].
High-level definitions of the shredding and unshredding of a value
of type T are straightforward, defined by induction on T .

Shredded NRC. Our goal in query shredding is to convert a
source NRC program to work over shredded representations of
input and output. As an intermediate stage in shredding, we move
to a symbolic representation for output dictionaries, defined as
partial functions from labels to bags. We will use an intermediate
query language, denoted NRCLbl+λ , which extends NRC with a
new atomic type for labels and a function type for dictionaries. The
grammar of NRCLbl+λ is:

e ::= [Similar to Figure 1]

| NewLabel(var , . . .) | match e = NewLabel(var , . . .) then e

| Lookup(e, e) | MatLookup(e, e) | λvar .e

| e DictTreeUnion e

T ::= [Similar to Figure 1]

| Label – Label Type

| Label → Bag (F ) – Dictionary Type

The NewLabel(x1, . . ., xn ) construct creates a new label encapsu-
lating the values of variables x1, . . ., xn of flat types. To deconstruct
labels we have a “label matching construct”:

match l = NewLabel(x ) then F (x , y)

where F is a bag expression, and x and y are tuples of variables.
Formally, given any label l and a binding for y, we find the unique
x such that l = NewLabel(x) and evaluate F . If there is no such
x , F returns the empty bag. In this expression, x becomes bound
although it is free in F .

We have the standard λ abstraction restricted to label parameters:
if e is an expression of type T and l is a label variable, then we can
form λl .e of type Label → T . We also have the standard function
application: if e1 is an expression of type Label → T and e2 an
expression of type Label , then we can form Lookup(e1, e2) of type
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T . MatLookup(e1, e2) corresponds to a lookup of the label returned
by e2 within the bag of label-bags pairs returned by e1. Finally, we
have a variation of the binary union for expressions representing
dictionary trees, denoted as DictTreeUnion.

Query Shredding Algorithm. A query shredding algorithm
takes as input an expression e of type T and produces an expres-
sion eF of type T F and a dictionary tree eD of tuple type TD. The
algorithm transforms the evaluation problem for e to evaluation
problems for eF and eD: When the output of e on an input i is o,
then the outputs of eF and eD on the shredded representation of i
will be oF and oD, respectively.

Our shredding transformation consists of two phases. We pro-
ceed first with a symbolic query shredding phase, producing succinct
expressions manipulating intermediate and output dictionaries de-
fined via λ expressions. This phase adapts the work from [28] to
our source language. This is followed by a materialization transfor-

mation producing a sequence of expressions free of λ abstractions.
Figure 4 shows the shredding transformation via recursive func-

tions F and D; the full translation can be found in [39]. Given a
source expression e , the invocation F (e) returns the expression eF

computing the flat version of the output, while D(e) returns the
dictionary tree eD corresponding to eF.

The base cases are those of constants and variables: for a scalar c ,
we have F (c) = c and D(c) is an empty dictionary tree (line 1); for
a variable x of type T , the two functions return xF and xD whose
types T F and TD depend on T as described above (line 2).

The interesting cases are those of tuple construction and tuple
projection. For each bag-valued attribute ai in a tuple constructor
(line 3), F replaces the bag expression ei with a new label encap-
sulating the (flat) free variables of ei . The dictionary tree of the
tuple constructor includes two attributes: afuni , which represents
the mapping from such a label to the flat variant eFi of ei ; and a

child
i ,

which represents the dictionary tree for eFi . To conform with the
type system, each child dictionary tree is wrapped as a singleton
bag as in Example 3. For each scalar-valued attribute aj in a tu-
ple constructor (line 4), F recurs on the scalar expression ej to
produce eFj . Since ej is already flat, eDj is empty; thus, we omit it
from the dictionary tree of the tuple constructor. When accessing a
bag-valued attribute a in a tuple expression e (line 5), F returns a
Lookup construct computing the flat bag of e .a, based on the dictio-
nary D(e).afun and label F (e).a formed during tuple construction.
The returned child dictionary tree serves to dereference any label-
valued attributes in the corresponding flat bag. When e .a is a scalar
expression (line 6), F recursively computes eF.a, while D returns
an empty dictionary tree.

For the binary union, the same label-valued attribute may corre-
spond to labels that depend on two different sets of free variables.
To encapsulate two dictionary trees, the function D constructs
a DictTreeUnion of tuple type (line 11). For the remaining con-
structs, the functions F and D proceed recursively, maintaining
the invariant that for any source expression e , the free variables
of eF or eD in the shredded representation correspond to the free
variables of e .

Example 4. We exhibit the shredding algorithm from Figure 4
on the query Q from Example 1. The algorithm produces a query
QF computing the top-level flat bag and a query QD computing the

dictionary tree for QF. We match Q to the for construct in F (line
8) and recur to derive QF:

for copF in COPF union

{ ⟨ cname := copF .cname, corders := NewLabel(copF) ⟩ }

Recall that COPF is a flat bag, soQF indeed computes a bag of flat
tuples. We drop here the unused let binding to copD. We derive
QD after matching corders := Qcorders in the top-level tuple
constructor of Q (line 3):
let copD := COPD in

⟨cordersfun := λl . match l = NewLabel(copF) then
for coF in Lookup(copD .corders, copF .corders) union

{ ⟨ odate := coF .odate, oparts := NewLabel(coF) ⟩ },
corderschild := {QD

corders } ⟩

We omit the unused let binding to coD in the expression com-
puting the dictionary cordersfun. The query producing the lowest-
level dictionary tree QD

corders is:

let coD := get(copD .corderschild) in

⟨ opartsfun := λl . match l = NewLabel(coF) then

sumBytotalpname(

for opF in Lookup(coD .oparts, coF .oparts) union
for pF in PartF union

if (pF .pid == opF .pid) then
{ ⟨ pname := pF .pname, total := opF .qty ∗ pF .price ⟩ }),

opartschild := { ⟨⟩ } ⟩ □

Our implementation [40] refines the above shredding algorithm
to retain only the relevant attributes of free variables in a NewLabel;
for instance, the corders labels inQF need to capture only copF.corders
labels but not copF.cname values.

Materialization Algorithm. The symbolic dictionaries pro-
duced by the symbolic query shredding algorithm keep the inductively-
formed expressions succinct. The second phase of the shredding
process, which we refer to as materialization , eliminates λ terms in
favor of expressions that produce an explicit representation of the
shredded output.

The materialization phase produces a sequence of assignments,
given a shredded expression and its dictionary tree. For each sym-
bolic dictionary QD

index
in the dictionary tree, the transformation

creates one assignment MatDict
index

⇐ e , where the expression
e computes a bag of tuples representing the materialized form of
QD

index
. Each assignment can depend on the output of the prior

ones. The strategy works downward on the dictionary tree, keep-
ing track of the assigned variable for each symbolic dictionary.
Prior to producing each assignment, the transformation rewrites
the expression e to replace any symbolic dictionary by its assigned
variable and any Lookup on a symbolic dictionary by a MatLookup
on its materialized variant.

Materialization needs to resolve the domain of a symbolic dic-
tionary. In our baseline materialization, the expression e comput-
ing MatDict

index
takes as input a label domain , the set of labels

produced in the parent assignment. The expression e then simply
iterates over the label domain and evaluates the symbolic dictionary
QD

index
for each label.

The materialization algorithm from Figure 5 produces a sequence
of assignments given a shredded expression, its dictionary tree, and
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Pattern of e F(e) D(e)

1 c c ⟨⟩

2 var var
F

var
D

3 ⟨ . . . ai := ei , . . . ei of bag type ⟨ . . . ai := NewLabel((x F)x∈FreeVars (ei )), . . .
⟨ . . . afuni := λl . match l = NewLabel( . . .) then F(ei ),

achildi := {D(ei )}, . . .
4 . . . aj := ej , . . . ej of scalar type⟩ . . . aj := F(ej ), . . . ⟩ . . . ⟩ // omit empty dictionary tree for aj

5 e .a of bag type Lookup(D(e).afun, F(e).a) get(D(e).achild)

6 e .a of scalar type F(e).a ⟨⟩

7 {e } {F(e)} D(e)

8 for var in e1 union e2
let varD := D(e1) in
for var F in F(e1) union F(e2)

let varD := D(e1) in D(e2)

9 e1 ⊎ e2 F(e1) ⊎ F(e2) D(e1) DictTreeUnion D(e2)

10 op(e) op(F(e)) D(e)

11 op(e1, e2) op(F(e1), F(e2)) ⟨⟩

Figure 4: Query shredding algorithm.

a variable to represent the top-level expression. The Materialize
procedure first replaces the (input) symbolic dictionaries in eF by
their materialized counterparts (line 1) and then assigns this rewrit-
ten expression to the provided variable (line 2). Prior to traversing
the dictionary tree, its dictionaries are simplified by inlining each
let binding produced by the shredding algorithm (line 3).

TheMaterializeDict procedure performs a depth-first traversal
of the dictionary tree. For each label-valued attribute a, we first
emit an assignment computing the set of labels produced in the
parent assignment (lines 3-4). We then rewrite the dictionary afun
to replace all references to symbolic dictionaries, each of them
guaranteed to have a matching assignment since the traversal is
top-down. We finally produce an assignment computing a bag of
label-value tuples representing the materialized form of afun (lines
6-8), before recurring to the child dictionary tree (line 9).

Example 5. We showcase the Materialize procedure on the
shredded queriesQF andQD fromExample 4. Let MatCOP, MatCOPcorders,
and MatCOPcorders_oparts denote the materializations of the top-
level input bag COPF and the two symbolic dictionaries from COPD,
respectively. The procedure replaces COPF by MatCOP in QF (line
1), followed by emitting the assignment to the variable TopBag:
TopBag ⇐ for copF in MatCOP union

{ ⟨cname := copF .cname, corders := NewLabel(copF)}

MaterializeDict produces an assignment computing the set of
corders labels from the parent TopBag (lines 3-4):
LabDomaincorders ⇐

dedup(for x in TopBag union { ⟨label := x .corders⟩ })

The function uses the labels from LabDomaincorders to material-
ize the cordersfun dictionary (lines 6-8):
MatDictcorders ⇐

for l in LabDomaincorders union

{ ⟨ label := l.label,

value := match l .label = NewLabel(copF) then

for coF in MatLookup
(
MatCOPcorders, copF .corders

)
union { ⟨odate := coF .odate, oparts := NewLabel(coF)⟩ }

The query computing value corresponds to the body of the cordersfun
dictionary, with the Lookup and its symbolic dictionary replaced
by their materialized counterparts (line 5).

The function finally recurs on the dictionary tree for oparts,
deriving the label domain for opartsfun from MatDictcorders.
LabDomaincorders_oparts ⇐

dedup
(
for x in MatDictcorders union { ⟨ label := x.oparts ⟩ }

)
MatDictcorders_oparts ⇐

for l in LabDomaincorders_oparts union

{ ⟨ label :=l.label,
value := match l .label = NewLabel(coF) then

sumBytotalpname(

for opF in MatLookup
(
MatCOPcorders_oparts, coF .oparts

)
union for pF in PartF union

if (pF .pid == opF .pid) then

{ ⟨ pname := pF .pname,
total := opF .qty ∗ pF .price ⟩ } ) ⟩ } □

The materialization algorithm in Figure 5 omits the case of
DictTreeUnion when traversing a dictionary tree to simplify pre-
sentation. The required extension is straightforward [39].

Domain Elimination. In many cases materialization produces
label domains that are redundant. We optimize our materialization
procedure using domain elimination rules.

The first rule recognizes that a child symbolic dictionary is an
expression of the form:

λl . match l = NewLabel(x ) then

for y in Lookup(D , x .a) union e
where the only used attribute of x is a of label type. We can skip
computing the domain of labels for this dictionary and compute
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Materialize(expression eF, expression eD, variable Top)

1 eF1 = ReplaceSymbolicDicts(eF) // by materialized dicts
2 Emit(Top ⇐ eF1 )

3 eD1 = Normalize(eD) // recursively inline let bindings
4 MaterializeDict(eD1 , Top)

MaterializeDict(expression eD, variable Parent
index

)

1 let eD = ⟨a1 := e1, . . . , an := en ⟩
2 foreach afun ∈ {a1, . . . , an }
3 Emit

(
LabDomain

index _a
⇐

4 dedup(for x in Parent
index

union { ⟨ label := x .a ⟩ })
)

5 f un = ReplaceSymbolicDicts(eD .afun)
6 Emit

(
MatDict

index _a
⇐

7 for l in LabDomain
index _a

union

8 { ⟨ label := l .label, value := f un(l .label) ⟩ }
)

9 MaterializeDict(get(eD .achild), MatDict
index _a

)

Figure 5: Materialization algorithms.

the label-value pairs directly from the materialized dictionary MatD
corresponding to D:

for z in MatD union

{ ⟨ label := z .label,
value := let x := ⟨a := z .label ⟩ in

for y in z .value union e ⟩ }

We benefit from this rule when the size of the label domain from
the parent assignment is comparable to the size of MatD.

Example 6. Returning to Example 5, applying this rule avoids
producing LabDomaincorders as an intermediate result. The mate-
rialization of cordersfun now corresponds to:
MatDictcorders ⇐

for z in MatCOPcorders union

{ ⟨ label := z .label,
value := for coF in z .value union

{ ⟨ odate := coF .odate, oparts := NewLabel(coF) ⟩ }
We can extend this rule to match a sumBy construct around the for
construct, which also enables computing MatDictcorders_oparts
directly from MatCOPcorders_oparts. □

The second rule for domain elimination recognizes when a label
l encodes a non-label attribute b filtering a bag:

λl . match l = NewLabel(x ) then

for y in Y union if (y .a == x .b) then e

If no other attribute of x appears in e , we can produce the label-
value pairs from Y using the value of y.a:
groupBylabel

(
for y in Y union

let x := ⟨b := y .a ⟩ in

{ ⟨ label := NewLabel(x ), value := e ⟩ }
)

This rule transforms the variable x from free to bound, allowing
computing the materialized dictionary from Y only.

Extensions for ShreddedCompilation.Given that the output
of materialization is an NRC program with expressions containing
only a subset of NRCLbl+λ , there are only a few extensions required
to support compilation for shredded data. Dictionaries are simply
considered to be a special instance of a bag, keyed with values of
a label type and supporting lookup operations. A MatLookup is
translated directly into an outer join in the plan language, provid-
ing opportunities for pushed aggregation and merging with nest
operators to form cogroups.

The shredded representation allows nested operations in the
input query to be translated to operations working only on the
dictionaries relevant to that level; we refer to such operations as
localized operations. For example, the sumBy in the running example
will operate directly over the oparts dictionary. This produces a
plan, similar to a subset of the plan in Figure 3, that has isolated the
join and aggregate operation to the lowest level dictionary. This
avoids flattening the input via the series of unnest operators and
avoids the programming mismatch described in Section 1.

The label-bag representation of dictionaries can lead to over-
heads when we want to join with a bag value; thus, a relational
dictionary representation of label-value pairs can be useful for
implementation. We introduce an operator BagToDict to provide
flexibility in dictionary representation, which casts a bag to a dic-
tionary while delaying explicit representation until the relevant
stage of compilation.

For our current code generation, dictionaries are represented
the same as bags, Dataset[T] where T contains a label column
(label) as key. Top-level bags that have not been altered by an
operator have no partitioning guarantee and are distributed by the
same default strategy as bags in the standard compilation route.
Dictionaries have a label-based partitioning guarantee; the key-
based partitioning guarantee described above, where all values
associated to the same label reside on the same partition.

5 SKEW-RESILIENT PROCESSING

We provide a novel approach to skew handling, which adapts a
generated plan based on statistics of the data at runtime and sup-
ports shredding. The framework up to this point has not addressed
skew-related bottlenecks. Skew is a consequence of key-based par-
titioning where all values with the same key are sent to the same
partition. If the collected values of a key (key1) are much larger
than the collected values of another key (key2), then the partition
housing key1 values will take longer to compute than others. We
refer to such keys as heavy , and all others as light . In the worst case,
the partition is completely saturated and the evaluation is heavily
burdened by reading and writing to disk. We mitigate the effects of
skew by implementing skew-aware plan operators that automate
the skew-handling process.

The identification of heavy keys is central to automating the
skew-handling process. We use a sampling procedure to determine
heavy keys in a distributed bag, considering a key heavy when at
least a certain threshold of the sampled tuples (10%) in a partition are
associated with that key; in our experiments, we use the threshold
of 2.5%. Based on the heavy keys, the input bag is split into a
light component and a heavy component. We refer to these three
components (light bag, heavy bag, and heavy keys) as a skew-triple .
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A skew-aware operator is a plan operator that accepts and re-
turns a skew-triple. If the set of heavy keys is not known, then the
light and heavy components are unioned and a heavy key set is
generated. This set of heavy keys remains associated to that skew-
triple until the operator does something to alter the key, such as a
join operation.

In essence, the skew-aware plan consists of two plans, one that
works on the light component (light plan ), and one that works
on the heavy component (heavy plan ). The light plan follows the
standard implementation for all operators. The light plan ensures
that values corresponding to light keys reside in the same partition.
The heavy plan works on the heavy input following an alternative
implementation. The heavy plan ensures the distribution of values
associated to heavy keys. This ability to preserve the partitioning
guarantee of light keys and ensure the distribution of large collec-
tions associated to heavy keys enables skew-resilient processing.

Figure 6 provides the implementation of the main skew-aware
operations. The skew-aware operators assume that the set of heavy
keys is small. The threshold used to compute heavy keys puts
an upper bound on their number; for example, the threshold of
2.5% means there can be at most 100

2.5 = 40 distinct heavy keys
in the sampled tuples per partition. This small domain allows for
lightweight broadcasting of heavy keys and, in the case of the skew-
aware join operations, the heavy values of the smaller relation.
Broadcast operations maintain skew-resilience by ensuring the
heavy key values in the larger relation remain at their current
location and are not consolidated to the same node.

All nest operations merge the light and heavy components and
follow the standard implementation, returning a skew-triple with
an empty heavy component and a null set of heavy keys. Aggrega-
tion Γ+ mitigates skew-effects by default by reducing the values of
all keys. A grouping operation Γ⊎ cannot avoid skew-related bot-
tlenecks. More importantly, skew-handling for nested output types
would be detrimental to our design – attempting to solve a problem
that the shredded representation already handles gracefully.

The encoding of dictionaries as flat bags means that their dis-
tribution is skew-resilient by default. In the shredded compilation
route, input dictionaries come as skew triples, with known sets of
heavy labels. The skew-aware evaluation of a dictionary involves
casting of a bag with the skew-aware BagToDict operation. This
maintains the skew-resilience of dictionaries by repartitioning only
light labels, and leaving the heavy labels in their current location,
as shown in Figure 6.

6 EXPERIMENTS

We evaluate the performance of our standard and shredded com-
pilation routes and compare against existing systems that support
nested data processing for both generated and real-world datasets.
One goal of the experiments is to evaluate how the succinct dic-
tionary representation of shredding compares to the flattening
methods. We look at how the strategies scale with increased levels
of nesting, number of top-level tuples, and the size of inner collec-
tions. We explore how aggregations can reduce dictionaries and
downstream dictionary operations for nested and flat output types.
Finally, to highlight skew-handling, we evaluate the performance
of our framework for increasing amounts of skew.

Plan Operator Definition

X ▷◁f (x )=д(y) Y

val (X_L, X_H, hk) = X.heavyKeys(f)

val Y_L = Y.filter(y => !hk(g(y)))

val Y_H = Y.filter(y => hk(g(y)))

val light = X_L.join(Y_L, f === g)

val heavy = X_H.join(

Y_H.hint("broadcast"), f === g)

(light, heavy, hk)

Γaдд value
key X

val unioned = X_L.union(X_H)

// proceed with light plan

val light = ...

(light, sc.emptyDataset, null)

BagToDict X

val (X_L, X_H, hk) =

X.heavyKeys(x => x.label)

val light = X_L.repartition(x => x.label)

val heavy = X_H

(light, heavy, hk)

Figure 6: Skew-aware implementation for the plan language

operators using Spark Datasets.

Our experimental results can be summarized as follows:
• For flat-to-nested queries, shredded compilation adds no
overhead when producing nested results and shows up to
25x gain when producing shredded results.

• For nested input, the shredded compilation has a 16x im-
provement for shallow nesting and scales to deeper levels
which flattening methods cannot handle.

• The shredded representation provides more opportunities
for optimizations in nested-to-flat queries with aggregation,
providing a 6x improvement over the flattening methods.

• Skew-aware shredded compilation outperforms flattening
methods with 33x reduction in shuffling for moderate skew,
as well as graceful handling of increasing amounts of skew
while the flattening methods, skew-aware and skew-unaware,

are unable to complete at all .
Full details of experimental evaluation can be found in [39].

Experimental environment. Experimentswere run on a Spark
2.4.2 cluster (Scala 2.12, Hadoop 2.7) with five workers, each with
20 cores and 320G memory. Each experiment was run as a Spark
applicationwith 25 executors, 4 cores and 64Gmemory per executor,
32G memory allocated to the driver, and 1000 partitions used for
shuffling data. Broadcast operations are deferred to Spark, which
broadcasts anything under 10MB. Total reported runtime starts after
caching all inputs. We provide summary information on shuffling
cost, with full details provided in [39]. All missing values correspond
to a run that crashed due to memory saturation of a node.

Benchmarks. We create two NRC query benchmarks; a micro-
benchmark based on the standard TPC-H schema and the second
based on biomedical datasets from the International Cancer Genome
Consortium (ICGC) [26]. Our TPC-H benchmark contains a suite
of flat-to-nested, nested-to-nested, and nested-to-flat queries – all
with 0 to 4 levels of nesting and organized such that the number
of top-level tuples decrease as the level of nesting increases. All
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Figure 7: Performance comparison of the narrow and wide benchmarked TPC-H queries with varying levels of nesting (0-4).

queries start with the Lineitem table at level 0, then group across
Orders, Customer, Nation, then Region, as the level increases. Each
query has a wide variant where we keep all the attributes, and a
narrow variant which follows the grouping with a projection at
each level. For scale factor 100, this organization gives query results
with 600 million, 150 million, 15 million, 25, and 5 top-level tuples.
Flat-to-nested queries perform the iterative grouping above to the
relational inputs, returning a nested output. At the lowest level we
keep the partkey and quantity of a Lineitem. At the higher levels
the narrow variant keeps only a single attribute, e.g., order_date
for Orders, customer_name for Customer, etc. The nested-to-nested

queries take the materialized result of the flat-to-nested queries as
input and perform a join with Part at the lowest level, followed by
sumByqty∗pricepname , as in Example 1. The nested-to-nested queries thus
produce the same hierarchy as the flat-to-nested queries. Finally, the
nested-to-flat queries follow the same construction as the nested-
to-nested queries, but apply sumByqty∗pricename at top-level, where
name is one of the top-level attributes; this returns a flat collection
persisting only attributes from the outermost level. We use the
skewed TPC-H data generator [43] to generate 100GB datasets
with a Zipfian distribution. Skew factor 4 gives the greatest skew,
with a few heavy keys occurring at a high frequency. Non-skewed
data is generated with skew factor 0, generating keys at a normal
distribution as in the standard generator.

The biomedical benchmark includes an end-to-end pipeline E2E,
based on [47], consisting of 5 steps. The inputs include a two-level
nested relation BN2 (280GB) [26, 30], a one-level nested relation
BN1 (4GB) [42], and five relational inputs – the most notable of
which are BF1 (23G), BF2 (34GB), and BF3 (5KB) [18, 26]. The first
two steps of E2E are the most expensive. Step1 flattens the whole
of BN2, while performing a nested join on each level (BF2 at level
1 and BF3 at level 2), aggregating the result, and finally grouping
to produce nested output. Step2 joins and aggregates BN1 on the
first-level of the output of Step1.

Evaluation strategies and competitors.We compare the stan-
dard compilation (Section 3) to the shredded one (Section 4). On
each of our benchmarks, we have also compared to a wide array
of external competitors: an implementation via encoding in Spark-
SQL [6]; Citus, a distributed version of Postgres [14]; MongoDB
[33], and the recently-developed nested relational engine DIQL [20].
Since SparkSQL outperformed the other competitors, this section

continues with a comparison to only SparkSQL. Full discussion of
additional competitors can be found in [39]. SparkSQL does not
support explode (i.e., UNNEST) operations in the SELECT clause,
requiring the operator to be kept with the source relation which
forces flattening for queries that take nested input. The SparkSQL
queries were manually written based on this restriction. Stan-
dard denotes the standard compilation and produces results that
match the type of the input query. Standard also serves as a means
to explore the general functionality of flattening methods. Shred
denotes the shredded variant of our system with domain elimina-
tion, leaving its output in shredded form. Unshred represents the
time required to unshred the materialized dictionaries, returning
results that match the type of the input query. Unshred is often
considered in combination with Shred to denote total runtime
of shredded compilation when the output type is nested. Shred
assumes a downstream operation can consume materialized dic-
tionaries. The above strategies do not implement skew-handling;
we use Standardskew, Shredskew, and Shred+Uskew to denote the
skew-handling variations. We execute the optimal plan associated
to a given query, which at a minimum includes pushing projec-
tions and domain-elimination (Section 4); further optimizations
described within the context of each experiment.

Flat-to-nested queries for non-skewed data.The TPC-H flat-
to-nested queries are used to explore building nested structures
from flat inputs when the data is not skewed. Figure 7 shows the
running times of SparkSQL, Standard, Shred, and Unshred for
increasing levels of nesting.

Shred runs to completion for all levels, remaining constant after
the first level and exhibiting nearly identical runtimes and max
data shuffle for narrow and wide. Unshred and Standard have
comparable runtimes overall and max data shuffle that is 20x that of
Shred. For deeper levels of nesting, these methods fail to store the
local nested collections when tuples are wide. SparkSQL does not
perform the cogroup optimization (Section 3) and is unable to scale
for the small number of top-level tuples that occur with deeper
levels of nesting even when tuples are narrow. Shred shows 6x
improvement for narrow queries and 26x for wide queries. The flat-
to-nested case introduces a worst case for shredding, regrouping
everything up in the unshredding phase without reduction. Even
in this case, shredded compilation adds no overhead in comparison
to flattening.
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Nested-to-nested queries for non-skewed data. The TPC-H
nested-to-nested queries are used to explore the effects of aggre-
gation on non-skewed data. We use the wide version of the flat-
to-nested queries as input to evaluate the impact of projections on
nested input. Figure 7 shows the runtimes of SparkSQL, Standard,
Shred, and Unshred for increasing levels of nesting. SparkSQL
exhibits consistently worse performance while maintaining the
same total amount of shuffled memory as Standard. This behavior
starts for 0 levels of nesting, suggesting overheads related to push-
ing projections that may be compounded when combined with the
explode operator at deeper levels of nesting. SparkSQL does not
survive even for one-level of nesting for wide tuples. The rest of
the methods diverge at one level of nesting, with Shred exhibiting
the best performance overall.

For wide queries Standard is burdened by the top-level at-
tributes that must be included in sumByqty∗pricepname , and only finishes
for one level of nesting. In the narrow case, Standard survives
the aggregation but fails for the small number of top-level tuples
in the deeper levels of nesting. Unshred shows a linear drop in
performance as the number of top-level tuples decrease from 150
million to 25 tuples, but at a much lower rate compared to the
flattening methods. With 5 top-level tuples, Unshred suffers from
a poor distribution strategy that must maintain the wide tuples
in nested local collections, and crashes due to memory saturation.
Overall, Shred and Unshred show up to a 8x performance advan-
tage for shallow levels of nesting and exhibit 3x less total shuffle.
Further, in comparison to the previous results without aggregation,
the localized aggregation produces up to a 3x performance gain in
unshredding. This experiment highlights how the succinct repre-
sentation of dictionaries is a key factor in achieving scalability. The
use of this succinct representation enables localized aggregation
(Section 4) which avoids data duplication, reduces the size of dic-
tionaries, and lowers unshredding costs to support processing at
deeper levels of nesting even when the returning nested output.

Nested-to-flat with non-skewed inputs. We use nested-to-
flat queries to explore effects of aggregation for queries that navi-
gate over multiple levels of the input; such queries are challenging
for shredding-based approaches due to an increase in the number
of joins in the query plan. Figure 7 shows the runtimes for Spark-
SQL, Standard, and Shred, where the unshredding cost for flat
outputs is zero. Similar to the nested-to-nested results, Standard is
unable to run for the small number of top-level tuples associated
with deeper levels of nesting for both the narrow and wide case.
SparkSQL has the worst performance overall, and cannot complete
for even one level of nesting when tuples are wide.

Shred outperforms Standard with a 6x runtime advantage,
over a 2x total shuffle advantage for wide queries, and runs to
completion even when Standard fails to perform at all. At two
levels of nesting, the execution of Shred begins with a localized
join between the lowest-level Lineitem dictionary and Part, then
aggregates the result. Unlike the flattening procedures, these oper-
ations avoid carrying redundant information from top-level tuples,
thereby reducing the lowest-level dictionary as much as possible.
The evaluation continues by dropping all non-label attributes from
the first-level Order dictionary, which reduces the first-level dictio-
nary and results in a cheap join operation to reassociate the next
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Figure 8: Nested-to-nested narrow TPC-H query with two

levels of nesting on increasingly skewed datasets.

two levels. This benefit persists even as the number of intermediate
lookups increase for deeper levels of nesting, exhibiting resilience
to the number of top-level tuples.

Due to the nature of the non-skewed TPC-H data, Standard does
not benefit from local aggregation (before unnesting) and also does
not benefit from pushing the aggregation past the nested join since
the top-level information must be included in the aggregation key.
These results show how the shredded representation can introduce
more opportunities for optimization in comparison to traditional
flattening methods, supporting more cases where pushed and local-
ized operations can be beneficial.

Skew-handling. We use the narrow variant of the nested-to-
nested queries with two levels of nesting to evaluate our skew-
handling procedure. We use the materialized flat-to-nested narrow
query (COP) as input.

The TPC-H data generator produces skew by duplicating values;
thus, pushing aggregations reduces the duplicated values associated
to a heavy key and diminishes skew. We found that skew-unaware
methods benefit from aggregation pushing, whereas skew-aware
methods benefit more from maintaining the distribution of heavy
keys (skew-resilience, Section 5). We also found [39] benefits to
skew-aware methods when aggregations are not pushed.

Figure 8 shows runtimes for each method for increasing amount
of skew, pushing aggregation for only skew-unaware methods.
Shredskew has up to a 15x performance gain over other methods
for moderate amounts of skew. The skew join of Shredskew shuffles
up to 33x less for moderate skew and up to 74x less for high skew
than the skew-unaware join of Shred, which has first performed
aggregation pushing. At greater amounts of skew, SparkSQL, Std,
and Standardskew crash due to memory saturation from flattening
skewed inner collections.

The performance gain of skew-aware shredded compilation is
attributed to the succinctness of dictionaries, which provides better
support for the skew-aware operators. The shredded compilation
route, regardless of skew-handling, runs to completion for all skew
factors. Beyond supporting the distribution of the large-skewed
inner collections, the localized aggregation reduces the size of the
lower-level dictionary thereby decreasing the skew. This highlights
how the shredded representation is able to handle skew even before
the skew-handling procedure is applied. Overall, we see that the
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Figure 9: End-to-end pipeline of the biomedical benchmark.

skew-aware components ads additional benefits by maintaining
skew-resilience and reducing the amount of data shuffle required
to handle heavy keys.

Biomedical Benchmark. Figure 9 shows the runtimes for Spark-
SQL, Standard, and Shred for the E2E pipeline of the biomedical
benchmark. The final output of E2E is flat, so no unshredding is
needed. Since Standard and SparkSQL fail during Step2, we also
provide results with a smaller dataset using only 6GB BN2, 2GB
BF1, and 4GB BF2. Shred exhibits many advantages, overall sur-
viving the whole pipeline. The results for Step1 using the small
and full dataset exhibit similar behavior to the nested-to-flat results
for TPC-H. Since the whole BN2 input is flattned and there are
many projections during Step1, Standard and SparkSQL are not
too burdened by the nested joins that occur while flattening.

The methods diverge at Step2, where a nested join between BN1
and the output of Step1 leads to an explosion in the amount of data
being shuffled. Shred displays up to a 16x performance gain for
Step2 with the small dataset. Despite the small number of output at-
tributes, the result of the join between flattened output of Step1 and
BN1 produces over 16 billion tuples and shuffles up to 2.1TB before
crashing. The results for Shred highlight that this is an expensive
join, the longest running time for the whole pipeline; however, the
succinct dictionary representation allows for a localized join at the
first level of the output of Step1, reducing the join to 10 billion
tuples and the shuffling to only 470GB. Thus we avoid carrying
around redundant information from the top-level and avoid the
outer-join required to properly reconstruct the top-level tuples.

The E2E queries thus exhibit how a succinct representation of
dictionaries is vital for executing the whole of the pipeline, with a
7x advantage for Shred on the small dataset and scaling to larger
datasets when the flattening methods are unable to perform. The
queries also highlight how an aggregation pipeline that eventu-
ally returns flat output can leverage the succinct representation of
dictionaries without the need for reassociating the dictionaries.

7 RELATEDWORK

Declarative querying against complex objects has been investigated
for decades in different contexts, from stand-alone implementa-
tions on top of a functional language, as in Kleisli [45], language-
integrated querying approaches such as Links [15] and LINQ [31].

Alternative approaches [2] give more fine-grained programming
abstractions, integrating into a host language like Scala.

The use of flat representations dates to early foundational studies
of the nested relational model [17, 44]. Implementation of this idea
in the form of query shredding has been less investigated, but it
has been utilized by Cheney et al. [13] in the Links system and
Grust et al. [24, 25] in the Ferry system. Both these systems focus
on the generation of SQL queries. Koch et al. [28] provide a shred-
ding algorithm in order to reduce incremental evaluation of nested
queries to incremental evaluation of flat queries. They do not deal
with scalable evaluation or target any concrete processing platform.
However, our symbolic shredding transformation is closely related
to the one provided by [28], differing primarily in that [28] supports
only queries returning bag type without aggregation.

Query unnesting [21, 27], on the other hand, deals with the pro-
gramming model mismatch, both for flat queries and nested ones.
Fegaras and Maier’s unnesting algorithm [21] de-correlates stan-
dard NRC queries to support a more efficient bulk implementation,
exploiting the richness of the object data model. In the process they
introduce an attractive calculus for manipulating and optimizing
nested queries. A number of recent applications of nested data
models build on this calculus. For example, CleanM [23] uses it as
the frontend language for data cleaning and generates Spark code.
Similarly, DIQL [20] and MRQL [19] provide embedded DSLs in
Scala generating efficient Spark and Flink programs with query
unnesting and normalization. These works do not deal with lim-
itations of standard nested representations, nor do they provide
support for skew handling.

Google’s analytics systems such as Spanner [7], F1 [36, 38], and
Dremel [32] support querying against complex objects. Dremel
performs evaluation over a “semi-flattened” [1] format in order to
avoid the space inefficiencies caused by fully flattening data. Skew-
resilience and query processing performance are not discussed in
[1], which focuses on the impact on storage, while details of the
query-processing techniques applied in the commercial systems
are proprietary. Skew-resilience in parallel processing [9, 29], and
methods for efficient identification of heavy keys [35] have been
investigated for relational data. But for nested data the only related
work we know of targets parallel processing on a low-level parallel
language [41], rather than current frameworks like Spark.

8 CONCLUSION

Our work takes a step in exploring how components like shredded
representations, query unnesting, and skew-resilient processing
fit together to support scalable processing of nested collections.
Our results show that the platform has promise in automating
the challenges that arise for large-scale, distributed processing of
nested collections; showing scalable performance for deeper levels
of nesting and skewed collections even when state-of-the-art flat-
tening methods are unable to perform at all. In the process we have
developed both a micro-benchmark and a benchmark based on a
real-world, biomedical use case. A number of components of a full
solution still remain to be explored. A crucial issue, and a target of
our ongoing work, is cost estimation for these programs, and the
application of such estimates to optimization decisions within the
compilation framework.
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