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ABSTRACT
Data streaming enables online monitoring of large and continuous

event streams in Cyber-Physical Systems (CPSs). In such scenarios,

fine-grained backward provenance tools can connect streaming

query results to the source data producing them, allowing analysts

to study the dependency/causality of CPS events. While CPS mon-

itoring commonly produces many events, backward provenance

does not help prioritize event inspection since it does not specify if

an event’s provenance could still contribute to future results.

To cover this gap, we introduce Ananke, a framework to extend

any fine-grained backward provenance tool and deliver a live bi-

partite graph of fine-grained forward provenance. With Ananke,
analysts can prioritize the analysis of provenance data based on

whether such data is still potentially being processed by the moni-

toring queries. We prove our solution is correct, discuss multiple

implementations, including one leveraging streaming APIs for par-

allel analysis, and show Ananke results in small overheads, close to

those of existing tools for fine-grained backward provenance.
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1 INTRODUCTION
Distributed, large, heterogeneous Cyber-Physical Systems (CPSs)

like Smart Grids or Vehicular Networks [22] rely on online anal-

ysis applications to monitor device data. In this context, the data

streaming paradigm [36] and the DataFlow model [2] enable the

inspection of large volumes of continuous data to identify specific

patterns [16, 28]. Streaming applications fit CPSs’ requirements due

to the high-throughput, low-latency, scalable analysis enabled by

Stream Processing Engines (SPEs) [1, 4, 5, 8, 31] and their correct-

ness guarantees, which are critical for sensitive analysis. Figure 1a
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Figure 1: a) Two sample queries to monitor car location and
mean speed (all tuples up to time 8:21 are processed), and
their b) backward and c) live forward provenance graphs.

shows two streaming applications, or queries, monitoring a vehic-

ular network to spot cars visiting a specific area (𝑄1) or speeding

(𝑄2). Vehicle reports (timestamp, id, position), or tuples, arrive every
5 minutes; 𝑡 𝑖𝑗 is the 𝑖-th tuple from car 𝑗 , 𝑎𝑖𝑗 the 𝑖-th alert from query

𝑗 . This scenario is our running use-case throughout the paper.

Motivating challenge. CPSs need continuous monitoring for emerg-

ing threats or dangerous events [32, 37], which may result in many

alerts that analysts are then left to prioritize [15, 34]. For streaming-

based analysis, provenance techniques [19, 30], which connect re-

sults to their contributing data, are a practical way to inspect

data dependencies, since breakpoint-based inspection is not fit

for live queries that run in a distributed manner and cannot be

paused [14]. Existing provenance tools for traditional databases

target backward tracing, to find which source tuples contribute

to a result [7, 11, 12, 14, 19] (Figure 1b), and forward tracing, to
find which results originate from a source tuple [7, 12]; however,

streaming-based tools only exist for backward-provenance [19, 30].

The need for live, streaming, forward provenance is multifold:

(1) while backward tracing can give assurance on the trustwor-

thiness of end-results [11], forward tracing allows to identify all

results linked to specific inputs [12], e.g. to mark all results linked

to a privacy-sensitive datapoint (e.g. a picture of a pedestrian, in

the context of Vehicular Networks) before such results are analyzed

further; (2) live maintenance of the provenance graph avoids data

duplication and allows to start the analysis of provenance data

safely (e.g., once all sensitive results that could be connected to the
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aforementioned picture have been marked); (3) a streaming-based

forward provenance tool does not require intermediate disk stor-

age (which might be forbidden for pictures taken in public areas)

and enables lean dependency and causality analysis of the mon-

itored events. Note that, as shown in our evaluation, providing

live, streaming, forward provenance with tools external to the SPE

running the monitoring queries incurs significant costs that can be

avoided by relying on intra-SPE provenance processing instead.

Contribution. Motivated by the open issues, our key question is:

“Can we enrich data streaming frameworks that deliver backward
provenance to efficiently provide live, duplicate-free, fine-grained,
forward provenance for arbitrarily complex sets of queries?”

We answer affirmatively with our contributions:

• We formulate the concrete goals and evaluation metrics of solu-

tions for live, duplicate-free, fine-grained, forward provenance.

• We implement a general framework, Ananke1, able to ingest

backward provenance and deliver an evolving bipartite graph of

live, duplicate-free, fine-grained, forward provenance (or simply

live provenance) for arbitrary sets of queries. Ananke delivers
each result and source tuple contributing to one or more results

exactly once, distinguishing source data that could still contribute

to more results from expired source data that cannot.

• Ananke’s key idea builds on our insights on forward provenance

w.r.t. the backward provenance problem and defines a simple yet

efficient approach, enabling specialized-operator-based imple-

mentations, as well as modular ones that utilize native operators

of the underlying SPE. We design and prove the correctness of

two streaming-based algorithmic implementations: one target-

ing to optimize the labeling of the expired source data as fast as

possible, and one that shows how the general SPEs’ parallel APIs

are sufficient to parallelize Ananke’s algorithm, and thus sustain

higher loads of provenance data.

• We conduct a thorough evaluation of ourAnanke implementation

on top of Apache Flink [8], with real-world use cases and data,

and also match with previous experiments and an implementa-

tion that delivers live forward provenance by relying on tools

external to the SPE, for a fair comparison of Ananke’s overheads.

The implementations used in our evaluation are open-sourced

at [18] for reproducibility. Figure 1c shows Ananke’s live prove-
nance assuming both queries have processed all tuples up to time

8:21. Each source and sink tuple appear exactly once in the bipartite

graphs. Some tuples are labeled by a green check-mark, indicating

that they are expired and will not be connected to future results.

Organization: §2 covers preliminary data streaming and prove-

nance concepts. §3 provides the definitions we use and also includes

a formal problem formulation. §4-§5 cover our contribution, later

evaluated in §6. We discuss related work in §7 and conclude in §8.

2 PRELIMINARIES
2.1 Data Streaming Basics
Like Apache Flink [8] (or simply Flink), Ananke builds on the

DataFlowmodel [2]. Streams are unbounded sequences of tuples. Tu-
ples have two attributes: the metadata 𝜇 and the payload 𝜑 , an array

1
In Greek mythology, Ananke personifies inevitability, compulsion and necessity.

Figure 2: SPEs’ native operators, Source, and Sink.

of sub-attributes. The metadata 𝜇 carries the timestamp 𝜏 and possi-

bly further sub-attributes. To refer to a sub-attribute of 𝜇 , e.g., 𝜏 ,

we use the notation 𝑡 .𝜏 . We reference 𝜑 ’s 𝑖-th sub-attribute as 𝑡 .𝜑 [𝑖]
(omitting 𝑡 when it is clear from the context). In combined notation,

a stream tuple is written as ⟨𝜇, 𝜙⟩ = ⟨𝜏, . . . , [𝜑 [1], 𝜑 [2], . . . ]⟩.
Streaming queries (or simply queries) are composed of Sources,

operators and Sinks. A Source forwards a stream of source tuples
(e.g., events measured by a sensor or reported by other applica-

tions). Each source stream can be fed to one or more operators, the

basic units manipulating tuples. Operators, connected in a Directed

Acyclic Graph (DAG), process input tuples and produce output

tuples; eventually, sink tuples are delivered to Sinks, which deliver

results to end-users or other applications. In our model, we as-

sume each tuple is immutable. Tuples are created by Sources and

operators. The latter can also forward or discard tuples.

As source tuples correspond to events, 𝜏 is set by the Source

to when that event took place, the event time. Operators set 𝜏 of
each output tuple according to their semantics, while 𝜑 is set by

user-defined functions. Event time is not continuous but progresses

in discrete increments defined by the SPE (e.g., milliseconds). We de-

note the smallest such increment of an SPE by 𝛿 . All major SPEs [3–

5, 8] support user-defined operators but also provide native ones:

Map, Filter, Aggregate and Join. Since we make use of such native

operators, we provide in the following their formal description for

self-containment. However, Ananke provides live provenance with-
out imposing any restriction on the operators of the query. Figure 2

illustrates the native operators, the Source, and the Sink. We begin

with stateless operators, which process tuples one-by-one.

A Filter (F) relies on a user-defined filtering condition𝐶 to either

forward an input tuple, when 𝐶 holds, or discard it otherwise.

A Map (M) uses a user-defined function F𝑀 (to transform an

input tuple into 𝑚 ≥ 1 output tuples) and 𝑆 , the schema of the

output tuple payloads. It copies the 𝜏 of each input into the outputs.

Differently from stateless operators, stateful ones run their anal-

ysis on windows, delimited groups of tuples maintained by the

operators. Time windows are defined by their size𝑊𝑆 (the length

of the window), advance𝑊𝐴 (the time difference between the left

boundaries of consecutive windows), and offset𝑊𝑂 (the alignment

of windows relative to a reference time; in Flink, this is the Unix

epoch). For example, a window having𝑊𝑆 ,𝑊𝐴, and𝑊𝑂 set to

60, 10 and 5 minutes, respectively, will cover periods [00:05,01:05),

[00:15,01:15), etc. Consecutive periods covered by a window can

overlap when𝑊𝐴 <𝑊𝑆 . Lastly, the left and right boundaries of a

window are inclusive and exclusive, respectively. We say a tuple 𝑡

falls in a window [𝐴,𝐵) if 𝐴 ≤ 𝑡 .𝜏 < 𝐵. As windows can overlap, a

tuple can fall into one or more windows.

We now present stateful operators in more detail.

An Aggregate (A) is defined by: (1)𝑊𝑆 ,𝑊𝐴,𝑊𝑂 : the window

size, advance, and offset, (2) 𝐾𝐵: an optional key-by function to

392



maintain separate (yet aligned) windows for different key-by values,

(3) F𝐴: a function to aggregate the tuples falling in one window

into the 𝜑 attribute of the output tuple created for such window,

(4) 𝑆 : the output tuple’s payload schema.

When an output tuple is created for a window (and a key-by

value, if 𝐾𝐵 is defined), we assume its timestamp is set to such

window’s right boundary [3, 5, 8].

A Join (J) matches tuples from two input streams, 𝑟 and 𝑠 . It

keeps two windows, one for 𝑟 and one for 𝑠 tuples, which share

the same values for parameters𝑊𝑆 ,𝑊𝐴 and𝑊𝑂 . Each pair of 𝑟

and 𝑠 tuples sharing a common key are matched for every pair

of windows covering the same event-time period they fall in. The

Join operator relies on the following parameters: (1)𝑊𝑆 ,𝑊𝐴,𝑊𝑂 :

the window size, advance, and offset, (2) 𝐾𝐵: a key-by function

to maintain separate (yet aligned) pairs of windows for different

key-by values, (3) 𝑃 (𝑡𝑟 , 𝑡𝑠 ): a predicate for pairs of tuples from the

two input streams, (4) F𝐽 : a function to create the 𝜑 attribute of the

output tuple, for each pair of input tuples for which 𝑃 (𝑡𝑟 , 𝑡𝑠 ) holds,
and (5) 𝑆 : the schema of the output tuple’s payload 𝜑 . Similarly

to the Aggregate, when an output tuple is created by a Join, its

sub-attribute 𝜏 is set to the right boundary of the window.

In the remainder, we (1) differentiate between stateless and state-

ful only if necessary, we (2) assume𝑊𝑂 = 0 unless otherwise stated,

and (3) assume a stream can be multiplexed to many operators.

Figure 3 presents Figure 1’s queries. Source 𝑆 emits tuples of

schema ⟨𝜏, [𝑉𝑖𝑑 , 𝑥,𝑦]⟩ (timestamp, vehicle ID, x- and y-coordinates).

In 𝑄1, Filter 𝐹1 forwards tuples within region 𝑅, Aggregate 𝐴1

counts each car’s reports, and Filter 𝐹2 forwards to Sink 𝐾1 only

tuples with a count higher than 2 (as tuples arrive every 5 minutes,

the count can only be 1, 2 or 3). In𝑄2, Aggregate𝐴2 emits the mean

speed of each car within the last 15 minutes. Filter 𝐹3 forwards the

tuples whose mean speed
2
exceeds 110km/h to Sink 𝐾2.

2.2 Watermarks and Correctness Guarantees
Because of asynchronous, parallel, and distributed execution, state-

ful operators processing tuples from multiple streams can receive

such tuples out-of-order. Hence, receiving a tuple with a timestamp

greater than some window’s right boundary does not imply that

tuples received later could not still contribute to said window.

To ensure result correctness for out-of-order streaming process-

ing [25], Aggregate and Join rely on watermarks to make such

distinction, as suggested by pioneer as well as state-of-the-art

SPEs [8, 25]; the definition is paraphrased here:

Definition 2.1. The watermark𝑊𝜔
𝑖

of operator 𝑂𝑖 at a point in
wall-clock time3 𝜔 is the earliest event time a tuple to be processed by
𝑂𝑖 can have from time𝜔 on (i.e., 𝑡𝑖 .𝜏 ≥𝑊𝜔

𝑖
,∀𝑡𝑖 processed from 𝜔 on).

Watermarks are created periodically by Sources and propagate

as special tuples through the DAG
4
. Upon receiving a watermark,

an operator stores the watermark’s time, updates its watermark

to the minimum of the latest watermarks received from each of

2
In Figure 1, given the grid’s cell size, cars’ mean speed is 120km/h if covering four

cells in three consecutive tuples.

3
Notice that from here on, we only differentiate between wall-clock time (or simply

time) and event time if such distinction is not clear from the context.

4
Notice that this assumption about in-band watermarks is not a constraint. Different

watermarking schemes that could also be adopted are discussed in e.g., [25, 26].

Figure 3: The DAG of𝑄1, 𝑄2 from Figure 1. Source tuples con-
tain reports’ timestamp in 𝜇, and the vehicle ID 𝑉𝑖𝑑 and po-
sition 𝑥,𝑦 in 𝜑 . Source tuples are forwarded to both queries.
Tuples arriving at the Sinks correspond to alerts in Figure 1.

its input streams and forwards its watermark downstream. For an

Aggregate or Join𝑂𝑖 , every time the watermark advances from𝑊𝜔
𝑖

to𝑊𝜔′
𝑖

, an output tuple is created for each window maintained

by 𝑂𝑖 that has a right boundary less or equal to𝑊𝜔′
𝑖

. If multiple

results are created, they are emitted in event-time order.

2.3 Backward Provenance
Ananke aims at extending frameworks that provide backward prove-

nance (§1). Such frameworks [19, 20, 30] rely on instrumented op-

erators, i.e., wrappers that add extra functionality to operators.

Our contribution can extend any streaming framework providing

backward provenance, assuming each sink tuple has additional sub-

attributes in 𝜇 that can be used to retrieve the unique source tuples

contributing to it. Such sub-attributes can be pointers to source tu-

ples [30] or IDs identifying source tuples maintained in a dedicated

provenance buffer [19, 20]. In the remainder, we rely on a general

function get_provenance to retrieve backward provenance.

3 DEFINITIONS AND GOALS
This section includes the definitions we use to present and prove

our contribution’s correctness, and a formal statement of our goals.

Definition 3.1. We say a tuple 𝑡 contributes directly to another
tuple 𝑡∗ if an operator produces 𝑡∗ based on the processing of 𝑡 and
write: 𝑡 → 𝑡∗. We then say 𝑡 contributes to 𝑡∗ and use the notation
𝑡 ⇝ 𝑡∗ if 𝑡 → 𝑡 ′ → 𝑡 ′′ → . . .→ 𝑡∗. Thus, if t→ 𝑡∗, then 𝑡 ⇝ 𝑡∗.

From the above, a source tuple 𝑡𝑆 from Source 𝑆 contributes to a

sink tuple 𝑡𝐾 received by Sink𝐾 , if there is a directed, topologically-

sorted path 𝑆,𝑂1, . . . ,𝑂𝑖 , . . . ,𝑂𝑘 , 𝐾 and a sequence of tuples 𝑡𝑆 =

𝑡0, . . . , 𝑡𝑖−1, 𝑡𝑖 , . . . , 𝑡𝑘 = 𝑡𝐾 , s.t. ∀𝑖 = 1, . . . , 𝑘 , where 𝑡𝑖−1 and 𝑡𝑖 are
input and output tuples of 𝑂𝑖 , and 𝑡𝑖−1 → 𝑡𝑖 for all 𝑖 = 1, . . . , 𝑘 .

Definition 3.2. At time𝜔 , tuple 𝑡 is active if it can still contribute
directly to a tuple produced by an operator. Otherwise, 𝑡 is inactive.
At time 𝜔 , tuple 𝑡 is alive if it is active or if there is at least one active
tuple 𝑡∗ such that 𝑡 ⇝ 𝑡∗. Otherwise, 𝑡 is expired.

For instance, if a Map produces a tuple 𝑡2 upon ingesting tuple

𝑡1, the latter is inactive, but remains alive as long as 𝑡2 is being

processed downstream (or as long as 𝑡2 itself is alive). Note that all

sink tuples are expired by definition. Using the above, we define

the live provenance to be delivered by Ananke:
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Definition 3.3. At time 𝜔 in the execution of a set of queries
Q, being KQ the set of Q’s Sinks, the live, duplicate-free, bipartite
graph forward provenance F(Q, 𝜔) consists of (1) a set of vertices 𝑉 ,
containing exactly one vertex for each sink tuple forwarded to KQ,
and exactly one vertex for each source tuple contributing to any sink
tuple forwarded to KQ, (2) a set of edges 𝐸, each edge connecting a
sink tuple with its contributing source tuples, and (3) a set of “expired”
labels 𝐿, one for each vertex in 𝑉 if the tuple it refers to is expired.

Notice that if, at time 𝜔 , a vertex in 𝑉 is alive, then more edges

connecting such vertex to other vertices could be found later in the

execution of Q. In Figure 1c, which shows F(Q, 8:21), new edges

could connect the vertices of tuples not marked as expired to ver-

tices referring to sink tuples that have not yet been produced.

Given the preceding definitions, we now formulate our goals and

the necessary requirements to reach these (using prefix R- for the

latter). For brevity, we refer to vertices containing a source tuple

or a sink tuple as source vertices and sink vertices, respectively, and
use the expression expired for tuples and vertices interchangeably.

Problem formulation. Being BQ a set of streams delivering KQ’s
sink tuples with backward provenance retrievable via attribute

𝜇, the goal is to continuously deliver F(Q, 𝜔)’s 𝑉 , 𝐸 and 𝐿, for

increasing values of 𝜔 , as one or multiple streams, to meet the

following requirements:

(R-V) Each vertex referring to a source or a sink tuple is delivered

exactly once, by a tuple ⟨𝜏𝑉 , [𝐼𝐷𝑆 , 𝑡𝑆 ]⟩ or ⟨𝜏𝑉 , [𝐼𝐷𝐾 , 𝑡𝐾 ]⟩, respec-
tively. 𝐼𝐷𝑖 is a unique ID for the vertex associated to 𝑡𝑖 ;

(R-E) each edge between vertices 𝐼𝐷𝑆 and 𝐼𝐷𝐾 is delivered exactly

once by a tuple ⟨𝜏𝐸 , [𝐼𝐷𝑆 , 𝐼𝐷𝐾 ]⟩, with 𝜏𝐸 greater than or equal to

the timestamp 𝜏𝑉 of the connected vertices; and

(R-L) an “expired” label is delivered once for each vertex 𝐼𝐷𝑖 by a

tuple ⟨𝜏𝐿, [𝐼𝐷𝑖 ]⟩, with 𝜏𝐿 ≥ 𝜏𝐸 , for each edge 𝐸 adjacent to 𝐼𝐷𝑖 .

For the queries in Figure 1a, Figure 4 shows F(Q, 8:16) and the

tuples delivered to update it to F(Q, 8:22).
While referring to a set of queries Q and a set of Sinks KQ for

generality, our problem formulation is justified even for a single

query with exactly one Source and Sink, because subsequent sink

tuples can have overlapping sets of source tuples (as in the example

of Figure 1), and each such source tuple still needs to be delivered

exactly once and later marked as expired.

Performance metrics. For provenance to be practical in real-world
applications, its performance overheads need to be small. The ef-

ficiency of our solution is evaluated through its overhead on the

following metrics:

• Throughput, number of tuples a query ingests per unit of time.

Figure 4: Live provenance graph for Figure 1’s queries at 8:16
and 8:22, and the streamof graph tuples received in between.

• Processing Latency, the delay in the production of a sink tuple

after all its contributing source tuples have arrived at the query.

• CPU utilization, the percentage of the total CPU time a query

utilizes, across all available processors (0-100%).

• Memory consumption, the amount of RAM a query utilizes.

We also introduce the provenance latency metric, to quantify the

event time it takes for F(Q, 𝜔)’s components to become available:

• For tuple 𝑡 ’s vertex 𝑉 , it is computed as 𝜏𝑉 − 𝑡 .𝜏 .
• For an edge 𝐸, it is computed as 𝜏𝐸 −𝑚𝑎𝑥 (𝜏𝑆𝑉 , 𝜏

𝐾
𝑉
), where 𝜏𝑆

𝑉
and

𝜏𝐾
𝑉

are the timestamps of the vertices connected by the edge.

• For the label 𝐿 of some vertex, it is computed as 𝜏𝐿 − 𝜏𝑉 .

Implementation requirements. WewantAnanke to be a streaming-

based extension (of Q) that delivers the vertices, edges, and labels

of F(Q, 𝜔) through its output stream(s). A solution can rely on

user-defined or native operators (§2). Being a streaming-based ex-

tension of Q, the latter’s watermarks are propagated to Ananke
operators, too. For generality, we assume a user-defined opera-

tor needs to support two methods (not invoked concurrently by

the SPE): on_tuple(𝑡), invoked upon reception of tuple 𝑡 , and

on_watermark(𝑊 ), invoked when the watermark𝑊 is updated.

4 DISCERNING ALIVE AND EXPIRED TUPLES
Live provenance needs to discern alive from expired tuples. Even if

sink tuples cannot contribute directly to other tuples, source tuples

can be inactive but alive. As we show, alive and expired tuples can

be separated using static query attributes and the Sink watermarks.

Figure 5 illustrates how a source tuple’s contribution “ripples”

through event time for a query composed of Aggregates 𝐴1 and 𝐴2,

Map𝑀 , and Filter 𝐹 . A source tuple, 𝑡𝑆 , falls into two windows of

𝐴1, which emit two outputs that pass through 𝑀 and contribute

to three separate windows in 𝐴2. Two of the three output tuples

of 𝐴2 get dropped by 𝐹 , and a single tuple 𝑡𝐾 arrives at 𝐾 . When

that happens, it is unknown whether 𝑡𝑆 will contribute to more

sink tuples - for example, it is uncertain if 𝐹 will drop the next

output of 𝐴2. The figure also explores 𝑡𝑆 ’s hypothetical maximal
contributions: We ignore exact window placements and examine

the extreme case, tuples always falling at the beginning or the end

of windows. We shade all event times that can contain (direct or

Figure 5: Sample query showing actual and maximal contri-
butions of a source tuple to downstream tuples.
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indirect) contributions of 𝑡𝑆 . As shown, the growth of the shaded

region only depends on the window size of stateful operators. Tuple

𝑡𝑆 can contribute to any tuple inside the shaded region. Thus, if

𝐾 ’s watermark falls after that region (𝑊2 in the example), then 𝑡𝑆
is surely expired. 𝑈𝐾 denotes the width of the shaded region. With

this intuition, we proceed with proving the following theorem:

Theorem 4.1. Given KQ (Definition 3.3), it is possible to statically
compute constants 𝑈𝐾 , one for each Sink 𝐾 ∈ KQ so that: If a source
tuple 𝑡𝑆 has contributed to a sink tuple 𝑡𝐾 that arrives at 𝐾 at time 𝜔
or later, then:

𝑡𝑆 .𝜏 ≥𝑊𝜔
𝐾
−𝑈𝐾 . (4.1)

Inversely, if 𝑡𝑆 .𝜏 < min𝐾 (𝑊𝜔
𝐾
−𝑈𝐾 ), then 𝑡𝑆 is expired and cannot

contribute to any sink tuple fed to KQ at time 𝜔 or later.

We move bottom-up towards the proof. First, we study pairs of

chained operators, each with one downstream peer in Lemma 4.1.

In Lemma 4.2, we focus on longer operator chains before examining

arbitrary paths between sets of operators in Corollary 4.1 and finally

concluding with the proof of Theorem 4.1. Here, we use the term

operator in a broad sense, also to refer to Sources and Sinks.

Lemma 4.1. For any operator 𝑂𝑖 with downstream operator 𝑂𝑖+1,
and a tuple 𝑡𝑖+1 arriving at 𝑂𝑖+1 at time 𝜔 or later, it holds that if an
input tuple 𝑡𝑖 of 𝑂𝑖 contributed to 𝑡𝑖+1, then: 𝑡𝑖 .𝜏 ≥𝑊𝜔

𝑖+1 −𝑊𝑆𝑖 .

Proof of Lemma 4.1. From the way stateful operators set their

output timestamps (§2), we obtain 𝑡𝑖 .𝜏 ≥ 𝑡𝑖+1 .𝜏−𝑊𝑆𝑖
5
. Furthermore,

from Definition 2.1 we get 𝑡𝑖+1 .𝜏 ≥𝑊𝜔
𝑖+1. Thus, Lemma 4.1 follows

immediately and it also holds for a stateless 𝑂𝑖 by setting𝑊𝑆𝑖 = 0.

□

We now expand the proof to chains of operators.

Lemma 4.2. For any chain of operators𝑂1 . . . 𝑂𝑛 , their downstream
operator𝑂𝑛+1 and a tuple 𝑡𝑛+1 that arrives at𝑂𝑛+1 at time 𝜔 or later,
it holds that if an input tuple 𝑡1 of operator 𝑂1 contributed to 𝑡𝑛+1,
then 𝑡1 .𝜏 ≥𝑊𝜔

𝑛+1 −
∑𝑛
𝑗=1𝑊𝑆 𝑗 .

Proof of Lemma 4.2. We begin by showing that:

∀𝑡1, 𝑡𝑛+1, 𝑡1 ⇝ 𝑡𝑛+1 ⇒ 𝑡1 .𝜏 ≥ 𝑡𝑛+1 .𝜏 −
𝑛∑
𝑗=1

𝑊𝑆 𝑗 . (4.2)

Let us denote as 𝑡𝑖 tuples arriving at operator 𝑂𝑖 , with 𝑡𝑖 → 𝑡𝑖+1
for 𝑖 ∈ [1, 𝑛 + 1]. From the proof of Lemma 4.1, we know that

𝑡1 .𝜏 ≥ 𝑡2 .𝜏 −𝑊𝑆1. Plugging in this relation again into the first

term on the right-hand side of the inequality, we obtain 𝑡1 .𝜏 ≥
𝑡2 .𝜏 −𝑊𝑆1 ≥ 𝑡3 .𝜏 −𝑊𝑆2 −𝑊𝑆1. Performing this step 𝑛 times yields

Equation 4.2. Given Definition 2.1, 𝑡𝑛+1 .𝜏 ≥𝑊𝜔
𝑛+1; hence:

∀𝑡1, 𝑡𝑛+1, 𝑡1 ⇝ 𝑡𝑛+1 ⇒ 𝑡1 .𝜏 ≥ 𝑡𝑛+1 .𝜏 −
𝑛∑
𝑖=1

𝑊𝑆𝑖 ≥𝑊𝜔
𝑛+1 −

𝑛∑
𝑖=1

𝑊𝑆𝑖 .

□
5
Although the assumption about how timestamps are set covers commonly used SPEs,

the analysis holds also for any output timestamp within the window boundaries. If

the output tuples of stateful operator𝑂𝑖 have timestamps that are Δ𝑖 from the left

boundary 𝐿𝑖 of the window, it holds that 𝑡𝑖+1 .𝜏 ≤ 𝐿𝑖 + Δ𝑖 . By definition of the left

boundary, for any tuple 𝑡𝑖 in the window it is true that 𝑡𝑖 .𝜏 ≥ 𝐿𝑖 and the relation

becomes 𝑡𝑖 .𝜏 ≥ 𝑡𝑖+1 .𝜏 − Δ𝑖 . Since𝑊𝑆𝑖 is the maximum value of Δ𝑖 , using𝑊𝑆𝑖 will

always give correct results (possibly with a higher delay).

Corollary 4.1. Given a set of operators O = {𝑂𝑖 } connected to
operator 𝑂𝑋 through a set of paths P, for any tuple 𝑡𝑋 fed to 𝑂𝑋 at
time 𝜔 or later, it holds that if an input tuple 𝑡𝑖 of 𝑂𝑖 contributed to
𝑡𝑋 , then 𝑡𝑖 .𝜏 ≥𝑊𝜔

𝑜𝑢𝑡 −max𝑝∈P 𝑆𝑝 where 𝑆𝑝 =
∑
𝑗 ∈𝑝𝑊𝑆 𝑗 .

The above corollary follows directly from Lemma 4.2 and allows

us to compute the maximum “delay” between tuples traversing the

longest path in a query, enabling us to prove Theorem 4.1.

Proof of Theorem 4.1. To prove Equation 4.1, we apply Corol-

lary 4.1 to any sink tuple 𝑡𝐾 arriving at Sink 𝐾 at time 𝜔 or later,

and any source tuple 𝑡𝑆 , which gives 𝑡𝑆 .𝜏 ≥ 𝑊𝜔
𝐾
− 𝑈𝐾 . The con-

stants𝑈𝐾 = max𝑝∈P 𝑆𝑝 , with P the set of all paths to sink 𝐾 , can be

computed statically based on the attributes of the query graph. □

The following remark, stemming directly from Theorem 4.1,

introduces a per-application safety-margin for expired tuples.

Remark 4.1. If we define 𝑈 = max𝐾 𝑈𝐾 , then any source tuple 𝑡𝑆
with 𝑡𝑆 .𝜏 < min𝐾𝑊

𝜔
𝐾
−𝑈 is expired.

5 ALGORITHMIC IMPLEMENTATION
As mentioned in §2, SPEs provide native operators and support

user-defined ones. Here we show how Ananke’s goals can be met

by a user-defined operator (ANK-1, §5.1) or by composing native

operators (ANK-N, §5.2). While ANK-1 targets the prompt final la-

beling of F(Q, 𝜔)’s vertices, ANK-N shows how the APIs for parallel

execution commonly provided by SPEs are sufficient to parallelize

Ananke’s algorithm. We study their trade-offs in §6.

Both in ANK-1 and ANK-N, the ID of 𝑡𝑆 ’s source vertex is based

on 𝑡𝑆 ’s attributes. Hence, source tuples with equal attributes refer

to the same source vertex. As each sink tuple represents a unique

event, it results in a sink vertex with a unique ID. Since each sink

tuple can carry each source tuple at most once in its provenance,

edges are also unique. We discuss in §5.3 how to extend Ananke
to other ID policies. In the following, we make use of Remark 4.1

for distinguishing alive from expired tuples. As mentioned in §3,

the set of streams BQ, delivering backward provenance to Ananke,
forwards the required watermarks. For both implementations, we

show how they meet the requirements for vertices (R-V), edges

(R-E), and labels (R-L) from §3.

5.1 ANK-1: Single User-defined Operator
As introduced in §3, user-defined operators must support two meth-

ods: on_tuple and on_watermark. Algorithm 1 covers such meth-

ods for ANK-1; methods unique_id() and get_id(𝑡) respectively

generate a unique ID and compute the ID of 𝑡 based on its attributes.

Claim 5.1. A user-defined operator fed BQ can correctly deliver
F(Q, 𝜔) with Algorithm 1’s on_tuple and on_watermark methods.

Proof. Upon reception of sink tuple 𝑡𝐾 from BQ, ANK-1 emits

exactly once the corresponding (1) sink and (2) source vertex, only

if its ID was not stored in the timestamp-sorted set𝑇 (i.e., if the cor-

responding source vertex was not forwarded before), thus meeting

requirement (R-V); (3) edges, and (4) sink vertex label (L1-11). Set

𝑇 represents ANK-1’s “memory” about forwarded source vertices.

The emitted tuples carry as timestamp the current watermark value,
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Algorithm 1: ANK-1 algorithmic implementation

Data: Set𝑇 of pairs (𝜏, 𝐼𝐷) , ordered on 𝜏 , and watermark𝑊

1 Method on_tuple(𝑡𝐾 )
2 𝐼𝐷𝐾 = unique_id();

3 emit(⟨𝑊, [𝐼𝐷𝐾 , 𝑡𝐾 ] ⟩) ; // Emit sink vertex

4 sourceTuples← get_provenance(𝑡𝐾 );

5 for t : sourceTuples do
6 𝐼𝐷𝑆 = get_id(𝑡𝑆);

7 if (𝑡 .𝜏, 𝐼𝐷𝑆 ) ∉ 𝑇 then
8 emit(⟨𝑊, [𝐼𝐷𝑆 , 𝑡𝑆 ] ⟩) ; // Emit source vertex

9 𝑇 ← 𝑇 ∪ {(𝑡 .𝜏, 𝐼𝐷𝑆 ) } ;
10 emit(⟨𝑊, [𝐼𝐷𝑆 , 𝐼𝐷𝐾 ] ⟩) ; // Emit edge

11 emit(⟨𝑊, [𝐼𝐷𝐾 ] ⟩) ; // Emit sink vertex label

12 Method on_watermark(𝑊 )
13 for (𝜏, 𝐼𝐷𝑆 ) ∈ 𝑇 do
14 if 𝜏 >=𝑊 −𝑈 then
15 return
16 emit(⟨𝑊, [𝐼𝐷𝑆 ] ⟩) ; // Emit source vertex label

17 𝑇 ← 𝑇 \ (𝜏, 𝐼𝐷𝑆 ) ;

thus meeting requirements (R-E), as the edge does not precede the

vertices, and (R-L) for the sink vertices.

Each source vertex 𝐼𝐷𝑆 in 𝑇 is purged once the corresponding

source tuple is expired, i.e. when𝑊 −𝑈 is greater than its 𝜏𝑉 (L12-

17). Upon purging of 𝐼𝐷𝑆 , exactly one “expired” label is generated

for the corresponding source vertex, with the current watermark

as the timestamp. Since watermarks are strictly increasing, it is

guaranteed that each label has a timestamp higher than or equal to

that of its source vertex, meeting (R-L) for the source vertex. □

5.2 ANK-N: Native Operator Composition
We now present ANK-N, based on native operators. First, we study

the case of𝑈 > 0. For ease of exposition, we initially rely on two

auxiliary stateful operators, Delay (D) and Forward Once (FO), that
help meet the requirements, and later show how D’s and FO’s

semantics can be satisfied by native operators. Finally, we cover

the case𝑈 = 0, where all Q’s operators are stateless.
A Delay (D) operator produces, for each input tuple 𝑡 with a

unique payload 𝜑 , an output tuple 𝑡 ′ as a copy of 𝑡 with 𝑡 ′.𝜏 =

delay(𝑡 .𝜏) :=
(
⌊ 𝑡 .𝜏
𝑈
⌋ + 2

)
·𝑈 , 𝑡 ′.𝜑 = 𝑡 .𝜑 and𝑈 < 𝑡 ′.𝜏 − 𝑡 .𝜏 ≤ 2𝑈 .

A Forward Once (FO) guarantees that, whether one or more

tuples are fed to it sharing the same ID sub-attribute, only the

earliest such tuple is output, with its payload unchanged but its

timestamp delayed by delay() as in D. After such tuple is output,

FO produces nothing for the subsequent input tuples with that ID

until a period of 𝑈 has passed in the input stream. As identical

source tuples that appear at different times in BQ are not spaced

apart further than 𝑈 (Remark 4.1) and have the same ID, FO will

output unique source tuples exactly once.

ANK-N overview: Using D, FO and native operators, we construct

the DAG of Figure 6 to meet the requirements from §3, with BQ as

input. First, we outline the main idea. Let us consider sink tuple 𝑡𝐾
from BQ, and follow its path through the DAG.

Upon processing 𝑡𝐾 ,𝑀𝑢 produces a sink vertex that carries a copy

of 𝑡𝐾 , a unique 𝐼𝐷𝐾 and the character "K" as sub-attributes of its

payload.𝑀𝑢 also produces, for all source tuples in 𝑡𝐾 ’s provenance,

a source vertex with character "S" (carrying an ID based on the

source tuple attributes) as well as an edge. Each edge carries the

Figure 6: Overview of ANK-N. Algorithm 2 shows F𝑀𝑢 .

character "E" and the IDs of the source and sink tuples that it

connects. In the proof of the following claim, we continue tracing

the paths of "K", "E" and "S" tuples and show that all requirements

for delivering a live provenance graph are met.

Claim 5.2. The DAG in Figure 6, using the D and FO operator,
as well as native ones with the mapping function 𝑀𝑢 defined in
Algorithm 2, once fed BQ, correctly delivers F(Q, 𝜔).

Proof. We first prove that for each source tuple 𝑡𝑆 , its vertex,

edges, and label are delivered correctly:

(1) Ensuring 𝑡𝑆 ’s vertex is created once. 𝑡𝑆 can appear multiple times,

as provenance of multiple sink tuples. Based on Theorem 4.1, after

contributing to sink tuple 𝑡𝐾 (timestamped 𝜏𝐾 ), 𝑡𝑆 cannot contribute

to later sink tuples timestamped ≥ 𝜏𝐾 +𝑈 . Thus, no pair of source

tuples with the same ID can be farther away than 𝑈 .

As source vertices (marked with "S") are forwarded to 𝐹𝑂 , which

is defined to output each source vertex with a given ID exactly once

with 𝜏𝑆 = delay(𝜏𝐾 ), (R-V) is met for source vertices.

(2) Ordering 𝑡𝑆 ’s edges behind the vertex. For every 𝑡𝑆 in the prove-

nance of 𝑡𝐾 ,𝑀𝑢 produces the connecting edge "E". For these edges

to come after 𝑡𝑆 ’s vertex, they are forwarded by 𝐹1 to 𝐷1, which

outputs copies of each edge, with 𝜏𝐸 = delay(𝜏𝐾 ), meeting (R-E).

(3) Producing 𝑡𝑆 ’s label correctly. The latest edge 𝐸 ′ involving 𝑡𝑆
could be produced by 𝑀𝑢 at event time 𝜏𝐾 + 𝑈 − 𝜖 (for 𝜖 > 0),

according to Remark 4.1. As 𝐸 ′ will be delayed to 𝜏 ′
𝐸
= delay(𝜏𝐾 +

𝑈 − 𝜖) the source label tuple must be delayed beyond 𝜏 ′
𝐸
to meet

(R-L). From 𝐹𝑂 , the source vertex (which has been delayed already)

is multiplexed to 𝐷2, delayed again, and mapped by𝑀𝐿 to a label

tuple with timestamp 𝜏𝑆,𝐿 = delay(delay(𝜏𝐾 )) = delay(𝜏𝐾 ) + 2𝑈
- which is strictly greater than 𝜏 ′

𝐸
, meeting (R-L) for source tuples.

Thus, the components involving 𝑡𝑆 are meeting the requirements.

We now focus on sink tuple 𝑡𝐾 ’s vertices, edges, and labels:

(1) Ensuring 𝑡𝐾 ’s vertex is created once. 𝐹2 forwards the single in-
stance of 𝑡𝐾 ’s vertex (timestamp 𝜏𝐾 ), meeting (R-V) for sink tuples.

(2) Ordering 𝑡𝐾 ’s edges behind the vertex. As explained in (2) above,

edges involving 𝑡𝐾 are delayed to 𝜏𝐸 = delay(𝜏𝐾 ) and (R-E) is met.

(3) Producing 𝑡𝐾 ’s label correctly. The label for 𝑡𝐾 ’s vertex must not

Algorithm 2: Map function F𝑀𝑢 of𝑀𝑢

1 def out=F𝑀𝑢 (𝑡𝐾 ) :
2 𝐼𝐷𝐾 = unique_id() ;

3 out.add(["K", 𝑡𝐾 , 𝐼𝐷𝐾 ]) ; // Add sink vertex

4 for 𝑡𝑆 in get_provenance(𝑡𝐾 ) do
5 𝐼𝐷𝑆 = get_id(𝑡𝑆) ;

6 out.add(["S", 𝑡𝑆 , 𝐼𝐷𝑆 ]) ; // Add source vertex

7 out.add(["E", (𝐼𝐷𝐾 , 𝐼𝐷𝑆 ) ]) ; // Add edge

8 return out ; // Produce tuples
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Figure 7: Composition of the D operator.

have a lower timestamp than any edge connected to 𝑡𝐾 ’s vertex,

and these edges are delayed. As the sink vertex "K" is multiplexed

from 𝐹2 to 𝐷2 and mapped to a label by 𝑀𝐿 , the resulting label has

timestamp 𝜏𝐾,𝐿 = delay(𝜏𝐾 ) = 𝜏𝐸 , meeting (R-L) for sink tuples.

Thus, the components involving 𝑡𝐾 also meet the requirements.

Lastly, we now show how Aggregate𝐴 emits vertices, edges, and

labels in order. Each tuple, timestamped 𝜏 , falls in onewindow [𝜏, 𝜏+
𝛿) of 𝐴, and a copy of each tuple is produced by 𝐴 when 𝐴 receives

a watermark > 𝜏 + 𝛿 . As Aggregates emit results in timestamp-

order (§2), this effectively sorts𝐴’s outputs. Thus, ANK-N correctly

delivers live provenance, meeting the requirements in §3. □

We now construct 𝐷 and 𝐹𝑂 using native operators:

Delay. An Aggregate 𝐴, Filter 𝐹 and Map𝑀 (as in Figure 7) can

enforce this operator’s semantics.𝐴 and 𝐹 create the delay, while𝑀

restores the input tuple’s payload, creating a delayed copy of it. As

𝐴’s window size is twice as big as its window advance and 𝐾𝐵 : 𝜑 ,

any input tuple with a unique payload falls into two windows and

contributes directly to two output tuples of 𝐴, with timestamps

spaced𝑈 apart. As each output tuple 𝑡𝑜 of 𝐴 carries the timestamp

of its corresponding input tuple (𝜏𝑜𝑟𝑖𝑔), the delay induced on the

input tuples can be computed as 𝑡𝑜 .𝜑 [1] − 𝑡𝑜 .𝜏 . 𝐹 ensures that this

delay is greater than 𝑈 , which is always the case for exactly one

of the two tuples produced by 𝐴 for each input tuple - the other is

delayed at most𝑈 and thus discarded. In the extreme case, an input

tuple 𝑡 can be delayed by 𝐴 by 2𝑈 (the window size), namely if

𝑡 .𝜏 coincides with a window’s left boundary. The window advance

dictates that output tuples produced from 𝑡 have timestamps spaced

𝑈 apart. Thus, there will also be a tuple delayed by 𝑈 produced by

𝐴 - however, this tuple will be discarded by 𝐹 . This earlier output

tuple, in all other cases where 𝑡 does not coincide with a window’s

left boundary, will be delayed even less, and thus also discarded.

From this discussion, it is also apparent that the delay for two input

tuples 𝑡1, 𝑡2 |𝑡1 .𝜏 = 𝑡2 .𝜏 is identical (as both 𝑡1 and 𝑡2 are equally

distanced from the left boundaries of the windows they fall in).

Forward Once. 𝐹𝑂 ensures that from a group of tuples 𝑡1, . . . , 𝑡𝑛
with increasing timestamps, common key 𝐾 and 𝑡𝑛 .𝜏 − 𝑡1 .𝜏 < 𝑈 ,

exactly one tuple 𝑡𝐹𝑂 with payload 𝑡𝑛 .𝜑 is produced. This tuple is

delayed from 𝑡1 by at least 𝑈 and at most 2𝑈 . Figure 8 shows how

𝐹𝑂 can be constructed using two Aggregates 𝐴1 and 𝐴2 and a Join

𝐽 , to satisfy the required semantics. 𝐽 ’s predicate is defined as:

FOpredicate(r,s) = ((𝑟 .𝜏 ≤ 𝑠 .𝜏) ∧ (𝑟 .𝜑 [2] ≤ 𝑠 .𝜑 [2])) ∨ (5.1)

((𝑠 .𝜏 ≤ 𝑟 .𝜏) ∧ (𝑠 .𝜑 [2] ≤ 𝑟 .𝜑 [2])) ,
where 𝜑 [2] is the count emitted by the Aggregate operators.

The group of input tuples to 𝐹𝑂 are multiplexed to both 𝐴1 and

𝐴2. Since 𝑡𝑛 .𝜏 − 𝑡1 .𝜏 < 𝑈 , and the windows of 𝐴2 are offset by 𝑈 ,

𝑡1, . . . , 𝑡𝑛 will land in either (1) two windows of one Aggregate and

Figure 8: Composition of the FO operator.

Figure 9: Illustration of how two different groups of input
tuples (non-primed and primed) are processed by 𝐹𝑂 ’s oper-
ators. Each group leads to the emission of one tuple.

one window of the other, or (2) in exactly one window in both

Aggregates. Figure 9 exemplifies how FO achieves the required

exactly-once forwarding for both cases
6
.𝐴1 and𝐴2 produce output

tuples that carry the common payload of the input tuples and

the count 𝑐 of input tuples per window. Their window alignment

guarantees that a tuple produced by 𝐴1 or 𝐴2 lands in exactly two

of 𝐽 ’s windows. Let us now explain the two different cases in detail:

• if 𝑡1, . . . , 𝑡𝑛 fall in one𝐴1 and𝐴2 window, output tuples 𝑟 and 𝑠 are

then fed to 𝐽 . Since 𝑟 .𝜏 < 𝑠 .𝜏 and 𝑟 .𝜑 [2] = 𝑠 .𝜑 [2], predicate 5.1
holds.When 𝐽 emits 𝑡𝐹𝑂 , it holds that 𝑡1 .𝜏+𝑈 < 𝑡𝐹𝑂 .𝜏 ≤ 𝑡1 .𝜏+2𝑈 .

• if 𝑡 ′
1
, . . . , 𝑡 ′𝑛 fall in two 𝐴1 windows and one 𝐴2 window, output

tuples 𝑟 ′
1
, 𝑟 ′
2
, 𝑠 ′ are fed to 𝐽 . Then, two windows of 𝐽 have one

tuple each from 𝐴1 and 𝐴2; however, predicate 5.1 holds only for

the earlier of the two windows, in which 𝑟 has lower timestamp

and lower count 𝑐 . Also in this case, 𝑡 ′
1
.𝜏 +𝑈 < 𝑡 ′

𝐹𝑂
.𝜏 ≤ 𝑡 ′

1
.𝜏 + 2𝑈 .

Thus, in both cases, the input is deduplicated and delayed, and the

timestamp of the output tuple 𝑡𝐹𝑂/𝑡 ′𝐹𝑂 is given by delay(𝑡1/𝑡 ′
1
).

Corner case. If all operators in Q are stateless, then 𝑈 = 0. This

corner case is not covered by the above implementation of ANK-

N, as 𝐷 and 𝐹𝑂 cannot have𝑊𝑆 = 0. If 𝑈 = 0, each sink tuple

and its single provenance source tuple have the same timestamp;

thus, source tuples are immediately expired once event time passes

beyond their timestamp. Each sink tuple will be contributed to by a

single source tuple; however, the latter could contribute to several

sink tuples. One approach for 𝑈 = 0 is to replace 𝐷 and 𝐹𝑂 with

identity Maps. The final Aggregate 𝐴 will then deduplicate source

vertices (and source labels, which could now be duplicated as well),

as they share the same payload and fall into the same window.

6
The case in which 𝑡1, . . . , 𝑡𝑛 fall in one window for both𝐴1 and𝐴2 but𝐴1’s window

ends later than𝐴2’s one, and the case in which 𝑡 ′
1
, . . . , 𝑡 ′𝑛 fall in two𝐴2 windows and

one𝐴1 window are given by “swapping”𝐴1 and𝐴2 .
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Listing 1: Transparently instrumenting a query

1 // Provenance decorators highlighted in blue

2 ANK.source(sourceStream)

3 .filter(ANK.filter(t -> t.type ()==0 && t.speed ()==0))

4 .keyBy(ANK.key(t -> t.getKey ()))

5 .window(SlidingEventTimeWindows.of(WS, WA))

6 .aggregate(ANK.aggregate(new AverageAggregate ()))

5.3 Extensions
Ananke associates each sink tuple with a dedicated sink vertex.

Hence, our implementations do not need to deduplicate sink ver-

tices, edges, or sink vertex labels. Modifying Ananke to allow dis-

tinct sink tuples to refer to the same sink vertex and perform that

deduplication is nonetheless trivial, as it simply requires to store

the sink vertex IDs which have already been forwarded (ANK-1) or

to replace the D operators of Figure 6 with FO operators (ANK-N).

6 EVALUATION
We study Ananke’s performance relative to the state-of-the-art

framework GeneaLog [30]. In §6.1, we compare the performance

of queries (1) without provenance, (2) with GeneaLog’s backward

provenance, and (3) with Ananke’s live, forward provenance (ANK-

1 and ANK-N, cf. §5). In §6.2, we evaluate the provenance latency

for the same use-cases. In §6.3, we compare ANK-1 and ANK-N

in-depth, studying their performance for various configurations.

Finally, in §6.4 we highlight Ananke’s strengths in comparison to

ad-hoc implementations relying on tools external to the SPE.

Ananke Implementation. Ananke is implemented in Java in Flink [8].

It instruments the queries without altering the SPE and uses Genea-

Log for backward provenance. We extended GeneaLog to handle

tuples arriving at windows of stateful operators out of timestamp

order (e.g., when there is parallelism). Moreover, GeneaLog requires

operator and tuple objects to inherit provenance-specific code. This
non-transparent (or optimized) implementation can introduce a

non-negligible development and maintenance overhead, as imple-

mentations need to be altered tying the query implementation to

the provenance framework. Here we introduce an alternative trans-
parent implementation (denoted by suffix /T), which is based on

encapsulation: The query is decoupled from the provenance capture,

which can be enabled through an automated process. As illustrated

in Listing 1, the developer simply encapsulates each Flink operator

function with the appropriate framework decorators. Those decora-

tors encapsulate the tuples inside special meta-tuples that contain

the provenance metadata populated according to the semantics

of the underlying operator function, constructing the provenance

graph without user intervention. While more flexible, the extra ab-

straction layers of this technique can increase the data serialization

Table 1: Query configurations explored in the evaluation.

NP GL ANK-1 ANK-1/T ANK-N ANK-N/T

Provenance - Backward Live Live Live Live

Native Ops - No No No Yes Yes

Transparent - No No Yes No Yes
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Figure 10: Performance - Linear Road queries.

overhead and lower performance. We study both techniques and

let the user choose between flexibility and performance.

Evaluation Setup. To account for the broad range of modern CPSs’

devices, we use (1) Odroid-XU4 [21] devices (or simply Odroid),
mounting Samsung Exynos5422 Cortex-A15 2Ghz and Cortex-A7

Octa core CPUs, 2 GB RAM, running Ubuntu 18.04.2, OpenJDK

1.8.0_252, and Flink 1.10.0 (pinned to the four big cores); and (2) a

single-socket Intel Xeon-Phi server with 72 1.5GHz cores with 4-

way hyper-threading, 32KB L1 and 1MB L2 caches, 102 GB RAM,

running CentOS 7.4, OpenJDK 1.8.0_161, and Flink 1.10.0. The exe-

cution environment is made explicit in each experiment.

We study the average throughput, latency, CPU and memory
utilization (§3). For real-world use-cases (§6.1), we also study the

provenance latency. These experiments are repeated at least ten

times and are at least ten minutes long. Results are presented as

averages with 95% confidence intervals between repetitions. Unless

otherwise stated, the parallelism of all operators is set to one. We

evaluate the scalability of ANK-N separately in §6.3.

6.1 Comparison With the State-of-the-art
To compare with GeneaLog, we study four queries from the do-

main of CPSs [30], targeting smart highways and smart grids, and

four from smart vehicular systems. The latter are real-world ex-

amples from the automotive industry, with broader provenance

characteristics, more operators, and larger data volumes. To show

Ananke’s support for multiple Sinks, we run queries from the same
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Figure 11: Performance - Smart Grid queries.
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Figure 12: Real-world example queries: a) Vehicle Tracking queries. 𝜏, lat, lon give the timestamp, GPS latitude and GPS longi-
tude of the car with ID car𝐼𝐷 . b) Object Annotation queries. 𝑣𝐿, 𝑣𝑅 are the camera images from the left- and right-facing camera
modules; 𝑙 is the LiDAR point cloud. obj is a concretely-bounded object within an image or a point cloud.

domain together and present the aggregated performance results.

Each experiment explores all configurations in Table 1.

Linear Road. We run two queries from the Linear Road Bench-

mark [6] on an Odroid. The first query detects broken-down vehi-

cles through consecutive reports of zero speed and constant position.

The second detects accidents from cars stopped at the same posi-

tion. Both queries receive reports from vehicles every 30 seconds,

and contain Aggregates and Filters (we refer the reader to [30] for

more details). Each sink tuple depends on 4 source tuples in the

first query and 8 in the second. Figure 10 shows the query perfor-

mance without provenance (NP), with GeneaLog (GL), and Ananke
with the user-defined operator (ANK-1, ANK-1/T) or the native

operators (ANK-N, ANK-N/T). The text in Ananke’s bars shows the
percentage difference from GL. The performance impact of both GL

and Ananke is small. GL results in about a 3% performance drop for

rate and latency and Ananke causes a further drop of 2% for ANK-1

and ANK-N and up to 5.6% for the transparent variants (/T).

Smart Grid. Figure 11 shows the performance of two queries

from the smart grid domain, run on an Odroid. The first reports

long-term blackouts by identifying meters with zero consumption
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Figure 13: Performance - Vehicular Tracking queries.

for 24 hours. The second detects anomalies, through meters that

report abnormal consumption at midnight as compensation for the

previous day. Both queries receive hourly power measurements and

use Aggregates and Filters; the second also has a Join (we refer the

reader to [30] for more details). On average, a sink tuple depends

on 192 source tuples in the first query and 24 in the second. The

provenance overhead is higher here since the queries have larger

aggregation windows and higher volumes of provenance data. GL

results in a 9% rate drop and 3% latency increase, while ANK-1 (/T)

causes a further 2.7% (14.1%) drop in the rate and a jump of 2.6%

(5.2%) in the CPU. For ANK-N (/T), the rate drops by 7.2% (16.8%)

compared to GL and the latency rises by at most 2.5%, ANK-N’s

higher number of operators causes a jump in the CPU, around 14%.

Vehicle Tracking queries. This use-case is based on Figure 1. It

uses the GeoLife dataset, composed of 18670 GPS traces of various

vehicles over 4 years around Beijing [41]. We employ 10046 traces

of cars driving a full day each to simulate a large fleet driving

simultaneously. Figure 12a shows the queries, fed tuples carrying

the car ID, timestamp, and latitude/longitude. 𝑄1 calculates the

immediate and average speed of the last two minutes per car, and

forwards to 𝐾1 tuples with average speed 𝑣 > 70km/h.𝑄2 forwards
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Figure 14: Performance - Object Annotation queries.
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Figure 15: Provenance Latency in multiples of 𝑈 .

events with more than 9 coordinates within area 𝐵, a region around

Yuyuantan Park in Beijing, to 𝐾2. This experiment is performed on

an Odroid receiving the input data via 100MBit/s Ethernet. Sink

tuples of 𝑄1 depend on around 30-160 tuples and sink tuples of 𝑄2

depend on 25-250 tuples. As shown in Figure 13, the performance

of Ananke follows the same trend as before. The impact on rate and

latency is small for ANK-1 (/T), at 2-4.5% more than GL and higher

for ANK-N (/T), up to 18.3%. The larger provenance graphs of 𝑄1

and 𝑄2 cause Ananke to have higher resource requirements, with

the memory utilization almost doubling in some cases and the CPU

utilization jumping by up to 57% in the worst case (ANK-N).

Object Annotation queries. These queries enrich an in-vehicle

computer vision system based on LiDAR and two cameras. We

use the Argoverse Tracking dataset [10], with 113 segments of

15-30s continuous sensor recordings of urban driving, plus 3D

annotations of surrounding objects. The two queries, shown in

Figure 12b, receive a stream of tuples carrying sets of annotations

O𝐿𝑖𝐷𝐴𝑅,O𝑐𝑎𝑚,𝐿,O𝑐𝑎𝑚,𝑅 , of objects found by the vehicle’s LiDAR

and a left- and right-facing camera. These sets contain objects

labeled with the type (e.g., "pedestrian"), 2D position, and a unique

object ID.𝑀1 reproduces all objects found by the LiDAR, while 𝐹1
forwards only bicycles found in front of the vehicle. 𝐴 and 𝐹2 then

forward a tuple to𝐾1 if a specific bike was in front of the vehicle for

more than 11 frames during a 6swindow. In𝑄2, only tuples referring

to pedestrians are forwarded as two streams to a Join. If, during

2s, a certain pedestrian is found by both cameras, the pedestrian

has crossed, and a tuple is forwarded to 𝐾2. To simulate powerful,

specialized vehicular hardware, this experiment was performed

on the Xeon-Phi server. On average, 𝑄1’s sink tuples depend on

15-50 source tuples whereas 𝑄2’s ones depend on 2. The tuples of

these queries are much bigger than all previous use-cases, in the

order of kilobytes instead of bytes. As evident by the performance

of NP in Figure 14, these queries are much more demanding. For

example, GL drops 21% in rate, mostly due to the large volume of

provenance data transferred between the SPE tasks. Ananke has a
small effect on the rate, causing a further drop of 3.9-6.6%. Latency

is affected more, increasing by about 25% for ANK-1(/T) and 48%

for ANK-N(/T), while remaining at small absolute values. Memory

consumption does not change significantly compared to GL. The

CPU grows for ANK-N(/T), similar to previous use-cases.

6.2 Provenance Latency
We now study the provenance latency (§3) for ANK-1 and ANK-

N for the Linear Road (LR), Smart Grid (SG), Vehicular Tracking

(VT), and Object Annotation (OA) queries. The results are shown

in Figure 15 in multiples of𝑈 (see §5), for vertices (SINK/SOURCE),

edges (EDGE), and labels (SINK-L/SOURCE-L) of vertices. As shown,

ANK-1 generally has a lower provenance latency than ANK-N. The

main difference is that, while ANK-1 can output SOURCE almost

immediately (and then store its ID to not output it again), ANK-N

delays the production of SOURCE by at least 𝑈 to avoid duplicates.

This delay propagates to SINK-L (see §5.2). Also, ANK-1 can imme-

diately emit EDGE and SINK-L without any delay (see Algorithm 1).

Both variants have low SINK latency as those are safe to emit imme-

diately upon arrival of a sink tuple. The variance is close to zero, as

the frequency of watermark updates, the only execution-dependent

feature of provenance latency, does not change between repetitions.

6.3 ANK-1 vs. ANK-N Trade-offs
Here, we compare ANK-1 and ANK-N for different data character-

istics and query configurations. The experiments, run on the Xeon-

Phi server, use synthetic queries in which Sources feed Ananke
(non-transparent) with pre-populated provenance graphs.

Figure 16 shows the performance for different provenance sizes

(x-axis) and overlaps (bar colors). The former is the number of

source tuples each sink tuple depends on, the latter is the percentage

of shared provenance between subsequent sink tuples. ANK-1 has

better performance and lower resource requirements than ANK-N,

due to the simpler algorithm and single-task deployment. Both

ANK-1’s and ANK-N’s performance drops as the provenance size

increases, as more data is maintained and transferred between tasks.

Larger provenance overlaps result in slightly better performance

since fewer source vertices and labels are emitted.

Figure 17 studies ANK-N’s ability to take advantage of the scal-

ability features of the SPE. The x-axis is the number of queries

feeding data to Ananke, and the bars refer to different parallelism

values of Ananke. The provenance size is 50, and the overlap 25%.

As shown (in log scale), ANK-N outperforms ANK-1 for parallelism

4 or higher since ANK-1 does not support parallel execution. ANK-

N’s resource consumption increases with parallelism, making it

better suited for use-cases with more available resources. For both
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ANK-1 and ANK-N, a higher number of queries results in a drop in

performance, caused by the increased data flow.

6.4 Comparison with On-demand Techniques
ANK-1 and ANK-N are not the only ways to achieve the goals of

§3. Here, we compare Ananke with ad-hoc alternatives relying on

existing systems (external to the SPE) to produce the provenance

graph on-demand. These alternatives can seem appealing due to

their additional features, e.g. persistent storage of backward prove-

nance. Thus, a comparison with them is crucial to understand the

properties of the fully-streaming approach provided by Ananke.
We study alternatives based on database systems with varying

performance and safety guarantees. The first, SQL-P, relies on an

established relational database (PostgreSQL [33]), the second, SQL-

I, on a fast, self-contained relational database running in-memory
(SQLite [35]), and the third, NoSQL, on a non-relational database

(MongoDB [27])
7
. The SQL implementations adhere strictly to the

goals of §3, whereas NoSQL follows a best-effort principle, without

strict ordering guarantees (due to the concurrent accesses by sev-

eral threads). In contrast with Ananke, the alternatives produce the
(streaming) provenance graph on-demand. A thread polls the data-

base periodically and performs the data transforms. We evaluate

an aggressive (suffix /A) polling strategy (as frequently as possible),

and a relaxed (suffix /R) one (polling every second).

We compare ANK-1 with the above alternatives for two real-

world experiments (Smart Grid and Vehicle Annotation queries),

as well as for a synthetic one. In addition to previous performance

metrics, we also study the delivery latency of the provenance graph,

to assess the benefits and drawbacks of different polling strategies.

This metric expresses the delay (in wall-clock time) between a

graph component (vertex, edge, "expired" label) being ready to be

delivered and actually being delivered. We do not study memory

7
A graph database (Neo4J [29]) seems like an obvious choice for provenance data

[38], but our preliminary experiments indicated it performed much worse than the

alternatives in our streaming applications and is thus not presented here.
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Figure 18: Smart Grid: Performance comparison between
Ananke and on-demand implementations.
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Figure 19: Object Annotation: Performance comparison be-
tween Ananke and on-demand implementations.

consumption, as the usage of external systemswith different storage

mechanisms creates a non-uniform measurement environment.

Figures 18 and 19 present the performance of the Smart Grid

and Object Annotation queries, respectively. The text inside the

bars indicates the relative difference from ANK-1. The performance

of the on-demand implementations ranges widely, with relaxed

polling (/R) having better rate, latency, and CPU but more than one

order of magnitude higher delivery latency. Aggressive polling (/A)

lowers the delivery latency but severely degrades the other metrics,

in most cases. SQL-I/A achieves the lowest delivery latency (up to

6.2x higher than ANK-1), whereas SQL-I/R has the least impact on

the original queries (slightly better rate and latency than ANK-1,

at the price of 28x the delivery latency and 4.4x the CPU). SQL-I’s

implementation closely resembles ANK-1, temporarily maintaining

in-memory only unsent graph components, instead of persisting all

backward provenance data like SQL-P and NoSQL. This similarity

in SQL-I’s and ANK-1’s implementations explains their similarity

in performance. NoSQL’s best-effort strategy results in a relatively

low impact on the original queries but multiple orders of magnitude

higher delivery latency than ANK-1, in most cases. SQL-P performs

between SQL-I and NoSQL, with lower delivery latency than NoSQL

but a much higher impact on the other metrics. This is expected,

as SQL-P persists the backward provenance (unlike SQL-I), while

also strictly adhering to the goals of §3, in contrast with NoSQL.

Both experiments indicate that ANK-1 significantly outperforms

all studied alternatives in most or all metrics.
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Table 2: Performance comparison between Ananke and
on-demand implementations in the synthetic query.

ANK-1 SQL-P SQL-I
*

NoSQL
*

/R /A /R /A /R /A

Rate (t/s) 131.3 54.43 54.80 211.4 209.72 19.81 19.75

Latency (s) 1.03 2.86 2.82 0.62 0.70 16.19 16.61

Deliv. Latency (s) 0.07 2.97 0.78 25.10 15.24 27.63 27.29

CPU (%) 1.18 0.97 1.30 1.75 1.97 0.92 0.89

*
The values for SQL-I and NoSQL do not reflect the steady-state performance,

which is significantly lower. Refer to the text for more details.

Table 2 presents the aggregated results of the synthetic experi-

ment, having a setup
8
similar to Figure 16, with a provenance over-

lap of 0% and provenance sizes 10-100. The relative performance

is comparable to the real-world experiments, with ANK-1 outper-

forming the alternatives overall. SQL-I seems to outperform ANK-1

in rate and latency but a detailed examination of the experimental

data indicates that SQL-I can only sustain 40% of the measured

rate without exhausting the memory of the system. As, in contrast

to ANK-1, the on-demand alternatives lack a back-pressure mech-

anism, they can fetch backward provenance from the SPE faster

than they can process it. This leads to a continuously-increasing

provenance backlog (illustrated by the high delivery latencies). For

an in-memory database like SQL-I, this is unsustainable
9
. While

backpressure could be added manually to the studied alternatives,

this would be “reinventing the wheel” as such mechanisms are

available out-of-the-box in Ananke, running inside the SPE.

Among the studied on-demand alternatives to Ananke, SQL-I
performs best but is still disadvantaged by not being streaming-

oriented. In contrast, ANK-1 has a much better sustained perfor-

mance and does not have to maintain "raw" provenance. This en-

ables the immediate forwarding of the forward provenance graph

stream to a secondary ingesting system without keeping unneces-

sary state, saving space and computational resources.

Evaluation summary. Ananke has similar overheads to the state-of-

the-art in backward streaming provenance while offering live, for-

ward rather than simply backward provenance. Compared to [30],

the best-performing implementations of Ananke incur less than
5% drop in the rate in all use-cases and less than 3% increase in

latency in all but one use-case. The evaluation shows that Ananke
is suitable in deployments of real-world applications requiring both

efficient processing and live provenance capture. Alternative ex-

isting systems fall short in providing the graph timely and in a

sustainable fashion suited to the data streaming paradigm.

7 RELATEDWORK
Data provenance, extensively studied in databases [11, 13, 23],

only recently started being in focus in data streaming. Early such

work [39] focuses on coarse-grained data stream dependencies. A

finer-grained approach, in [40], produces time intervals which may
contain provenance tuples. [24] focuses on minimizing the storage

8
For a fair comparison with the on-demand implementations, in this experiment ANK-1

is writing the graph to disk, and thus has a lower performance than in Figure 16.

9
NoSQL suffers from the same issue; however, in this case, it is less critical since

NoSQL does not need to maintain its state in-memory.

requirements of streaming provenance but produces approximate

results and lacks support for some native operators (e.g., Join).

To the best of our knowledge, Ananke is the first to deliver live

forward provenance. [14] presents a system for debugging stream-

ing queries with integrated provenance capture and visualization.

However, it focuses on one SPE [17] and slices of the execution

(with the option to lazily create the complete query provenance). It

requires users to declare relationships between input and output

tuples and does not distinguish expired tuples. Likewise, Stream-

Trace [7], targeting the Trill SPE [9], assists the development and

debugging of queries with data visualization, relying on prove-

nance through instrumented operators and ad-hoc query rewriting.

Ananke’s provenance graph allows creating similar visualizations

for the end-to-end system provenance. GeneaLog is the state-of-

the-art technique and framework for fine-grained provenance in

streaming applications. It records and traces the provenance meta-

data while incurring a small, constant per-tuple overhead. In this

work, we extend GeneaLog to support out-of-order data and use it

as the provider of backward provenance for Ananke. Ariadne [19]
is a similar framework for fine-grained streaming data provenance

using instrumentation. However, it requires variable-length an-

notations and needs to temporarily store all alive source tuples

(including those that do not contribute to any sink tuples) until

they become expired. The authors hypothesize the use of static

query analysis to discern alive and expired tuples, but without fur-

ther details. As discussed in §3, Ananke can be adjusted for use with

Ariadne or any streaming backward provenance framework.

8 CONCLUSIONS
We presented Ananke, a framework to extend streaming tools for

backward-provenance and to deliver a live bipartite graph of fine-

grained forward provenance. Ananke provides users with richer

provenance information, not only specifying which source tuples

contribute to which query results, but also whether each source

tuple can potentially contribute to future results or not. This dis-

tinction can help analysts prioritize the inspection of the large

volumes of events commonly observed when monitoring CPSs. We

formally prove Ananke’s correctness and implement two variations

(available in [18]) in Flink. Through our thorough evaluation, we

show that Ananke incurs small overheads while being able to out-

perform alternatives relying on tools external to the SPE. Future

work can address (1) finer-grained debugging and exploration by

expanding Ananke’s live provenance to include intermediate tuples

produced by query operators, also indicating whether such tuples

could contribute to future results, and (2) exploring how Ananke’s
theoretical foundations about alive/expired tuples can be used in

fault-tolerant stream processing.
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