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ABSTRACT

In this paper, we tackle the problem of answeringmulti-dimensional
range queries under local differential privacy. There are three key
technical challenges: capturing the correlations among attributes,
avoiding the curse of dimensionality, and dealing with the large
domains of attributes. None of the existing approaches satisfacto-
rily deals with all three challenges. Overcoming these three chal-
lenges, we first propose an approach called Two-Dimensional Grids
(TDG). Its main idea is to carefully use binning to partition the
two-dimensional (2-D) domains of all attribute pairs into 2-D grids
that can answer all 2-D range queries and then estimate the an-
swer of a higher dimensional range query from the answers of the
associated 2-D range queries. However, in order to reduce errors
due to noises, coarse granularities are needed for each attribute
in 2-D grids, losing fine-grained distribution information for in-
dividual attributes. To correct this deficiency, we further propose
Hybrid-Dimensional Grids (HDG), which also introduces 1-D grids
to capture finer-grained information on distribution of each individ-
ual attribute and combines information from 1-D and 2-D grids to
answer range queries. To make HDG consistently effective, we pro-
vide a guideline for properly choosing granularities of grids based
on an analysis of how different sources of errors are impacted by
these choices. Extensive experiments conducted on real and syn-
thetic datasets show that HDG can give a significant improvement
over the existing approaches.
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1 INTRODUCTION

Nowadays, users’ data records contain many ordinal or numerical
attributes in nature, e.g., income, age, the amount of time viewing
a certain page, the number of times performing a certain actions,
etc. The domains of these attributes consist of values that have
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a meaningful total order. A typical kind of fundamental analysis
over users’ records is multi-dimensional range query, which is a
conjunction of multiple predicates for the attributes of interest and
asks the fraction of users whose record satisfies all the predicates.
In particular, a predicate is a restriction on the range of values of an
attribute. However, users’ records regarding these ordinal attributes
are highly sensitive. Without strong privacy guarantee, answering
multi-dimensional range queries over them will put individual pri-
vacy in jeopardy. Thus, developing effective approaches to address
such privacy concerns becomes an urgent need.

In recent years, local differential privacy (LDP) has come to
be the de facto standard for individual privacy protection. Under
LDP, random noise is added on the client side before the data
is sent to the central server. Thus, users do not need to rely on
the trustworthiness of the central server. This desirable feature of
LDP has led to wide deployment by industry (e.g., by Google [16],
Apple [40], and Microsoft [11]). However, existing LDP solutions [9,
29, 46] are mostly limited to one-dimensional (1-D) range queries
on a single attribute and cannot be well extended to handle multi-
dimensional range queries.

In this paper, we tackle the problem of answering multi-dimens-
ional range queries under LDP. Given a large number of users who
have a record including multiple ordinal attributes, an untrusted
aggregator aims at answering all possible multi-dimensional range
queries over the users’ records while satisfying LDP. To address
the problem, we identify three key technical challenges: 1) how
to capture the correlations among attributes, 2) how to avoid the
curse of dimensionality, and 3) how to cope with the large domains
of attributes. Any approach failing to solve any of these three
challenges will have poor utility. As we show in Section 3, none of
the existing approaches or their extensions can deal with all three
challenges at the same time.

Overcoming these three challenges, we first propose an approach
called Two-Dimensional Grids (TDG). Its main idea is to carefully
use binning to partition the two-dimensional (2-D) domains of all
attribute pairs into 2-D grids that can answer all possible 2-D range
queries and then estimate the answer of a higher dimensional range
query from the answers of the associated 2-D range queries. How-
ever, in order to reduce errors due to noises, coarse granularities
are needed for each attribute in 2-D grids, losing fine-grained distri-
bution information for individual attributes. When computing the
answer of a 2-D range query by the cells that are partially included
in the query, it needs to assume a uniform distribution within these
cells, which may lead to large errors. To correct this deficiency, we
further propose an upgraded approach called Hybrid-Dimensional
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Grids (HDG), whose core idea is combining hybrid dimensional
(1-D and 2-D) information for better estimation. In particular, HDG
also introduces 1-D grids to capture finer-grained information on
distribution of each individual attribute and combines information
from 1-D and 2-D grids to answer range queries. In both TDG and
HDG, users are divided into groups, where each group reports in-
formation for one grid. After collecting frequencies of cells in each
grid under LDP, the aggregator uses techniques to remove negativ-
ity and inconsistency among grids, and finally employs these grids
to answer range queries.

However, it is still nontrivial to make HDG consistently effective,
since the granularities for 1-D and 2-D grids can directly affect
the performance of HDG. Consequently, it is essential to develop a
method for determining the appropriate grid granularities so that
HDG can guarantee the desirable utility. In particular in HDG, there
are two main sources of errors: those due to noises generated by
the random nature of LDP and those due to binning. When the
distribution of values is fixed, errors due to binning do not change
and can be viewed as bias because of the uniformity assumption, and
errors due to noises can be viewed as variance. Thus choosing the
granularities of grids can be viewed as a form of bias-variance trade-
off. Finer-grained grids lead to greater error due to noises, while
coarser-grained ones result in greater error due to biases. The effect
of each choice depends both on the privacy budget ε , population,
and property of the distribution. By thoroughly analyzing the two
sources of errors, we provide a guideline for properly choosing grid
granularities under different parameter settings.

By capturing the necessary pair-wise attribute correlations via
2-D grids, both approaches overcome the first two challenges. More-
over, since they properly use binning with the provided guideline
to reduce the error incurred by a large domain, the third challenge
is carefully solved. Therefore, TDG usually performs better than
the existing approaches. By also introducing 1-D grids to reduce the
error due to the uniformity assumption, HDG can give a significant
improvement over existing approaches.

Contributions. To summarize, this paper makes the following
contributions:

• We propose TDG and HDG for answering multi-dimensional
range queries under LDP, which include a guideline for
choosing the grid granularities based on analysis of errors
from different sources.
• We conduct extensive experiments to evaluate the perfor-
mance of different approaches using both real and synthetic
datasets. The results show that HDG outperforms existing
approaches by one order of magnitude.

Roadmap. Section 2 provides the preliminaries. Section 3 de-
scribes the problem statement and four baseline approaches. Sec-
tion 4 gives the details of our grid approaches. Section 5 shows
our experimental results. Section 6 reviews related work. Finally,
Section 7 concludes this paper.

2 PRELIMINARIES

2.1 Local Differential Privacy

Local differential privacy (LDP) [26] offers a high level of privacy
protection, since each user only reports the sanitized data. Each

user’s privacy is still protected even if the aggregator is malicious.
In particular, each user perturbs the value v using a randomized
algorithm A and reports A(v) to the aggregator. Formally, LDP is
defined in the following.

Definition 1 (Local Differential Privacy). An algorithm

A(·) satisfies ε-local differential privacy (ε-LDP), where ε ≥ 0, if and

only if for any pair of inputs (v,v ′), and any set R of possible outputs

of A, we have

Pr [A(v) ∈ R] ≤ eε Pr
[

A(v ′) ∈ R
]

.

2.2 Categorical Frequency Oracles

In LDP, most problems can be reduced to frequency estimation.
Belowwe present two state-of-the-art Categorical FrequencyOracle
(CFO) protocols for these problems.

Randomized Response. The basic protocol in LDP is random
response [49]. It was introduced for the binary case, but can be
easily generalized to the categorical setting. Here we present the
generalized version of random response (GRR), which enables the
estimation of the frequency of any given value in a fixed domain.

Here each user with value v ∈ [c] sends the true value v with
probability p, and with probability 1 − p sends a randomly chosen
v ′ ∈ [c] s.t. v ′ , v . More formally, the perturbation function is
defined as

∀y∈[c] Pr [GRR(v) = y] =

{

p = eε

eε+c−1 , if y = v
p′ = 1

eε+c−1 , if y , v
(1)

This satisfies ϵ-LDP since
p
p′ = eε . To estimate the frequency of

fv for v ∈ [c], one counts how many times v is reported, denoted

by
∑

i ∈[n] 1{yi=v } , and then computes fv =
1
n

∑

i ∈[n]
1{yi =v }

−p′

p−p′ ,

where 1{yi=v } is the indicator function that the report yi of the
i-th user equals v , and n is the total number of users.

Because each report yi is an independent random variable, by
the linearity of variance, we can show that the variance for this
estimation is

Var [fv ] =
c − 2 + eε

(eε − 1)2 · n
. (2)

Optimized Local Hash. The optimized local hash (OLH) protocol
deals with a large domain by first using a hash function to compress
the input domain [c] into a smaller domain [c ′], and then applying
randomized response to the hashed value. In this protocol, both
the hashing step and the randomization step result in information
loss. The choice of the parameter c ′ is a trade-off between loss of
information during the hashing step and loss of information during
the randomization step. It is shown in [45] that the estimation
variance as a function of c ′ is minimized when c ′ = eε + 1.

In OLH, one reports ⟨H ,GRR(H (v))⟩ where H is randomly cho-
sen from a family of hash functions that hash each value in [c] to a
new one in [c ′], and GRR(·) is the perturbation function for random
response, while operating on the domain [c ′] (thus p = eε

eε+c ′−1
in Equation (1)). Let ⟨Hi ,yi ⟩ be the report from the i-th user. For
each value v ∈ [c], to compute its frequency, one first computes
|{i | Hi (v) = yi }| =

∑

i ∈[n] 1{Hi (v)=yi } , and then transforms it to

its unbiased estimation fv =
1
n

∑

i ∈[n]

1{Hi (v )=yi }
−1/c ′

p−1/c ′
.
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In [45], it is shown that the estimation variance of OLH is

Var [fv ] =
4eε

(eε − 1)2 · n
. (3)

Compared with GRR, OLH has a variance that does not depend on
c . As a result, for a small c (such that c − 2 < 3eε ), GRR is better;
but for a large c , OLH is preferable.

2.3 Principle of Dividing Users

Dividing users is one common feature among the existing LDP
works [9, 46, 56]. That is, when multiple pieces of information
are needed, the best results are obtained by dividing users into
groups, and then gathering information from each group. This
is different from the traditional DP setting [14], where there is a
trusted aggregator having access to raw data records. In DP setting,
the privacy budget is split to measure them all. This is because the
estimation variance in LDP setting is linear in the number of users,
while in DP setting, it is a constant. As a result, dividing users into
m groups incurs am2 multiplicative factor in DP setting (because
the result is multiplied bym), while in LDP setting, this factor is
onlym (because the number of users is divided bym). As splitting
privacy budget bym increases variances for both cases bym2, one
prefers dividing users in LDP setting while splitting privacy budget
in DP setting (as there is no sampling error). We will also apply this
principle of dividing users in our proposed approaches.

3 PROBLEM STATEMENT AND BASELINE

APPROACHES

3.1 Problem Statement

Consider there are d ordinal attributes {a1,a2, · · · ,ad }. Without
loss of generality, we assume that all attributes have the same
domain [c] = {1, 2, . . . , c}, where c is a power of two (if not in
real setting, we can simply add some dummy values to achieve
it). Let n be the total number of users. The i-th user’s record is a
d-dimensional vector, denoted by vi = ⟨v

1
i ,v

2
i , . . . ,v

d
i ⟩ where v

t
i

means the value of attribute at in record vi .
We focus on the problem of answering multi-dimensional range

queries under LDP. In particular, a multi-dimensional range query is
a conjunction of multiple predicates for the attributes in its interest.
Formally, a λ-dimensional (λ-D) range query q is defined as

q = (at1 , [lt1 , rt1 ]) ∧ (at2 , [lt2 , rt2 ]) ∧ · · · ∧ (atλ , [ltλ , rtλ ]),

where 1 ≤ tϕ ≤ d , and tϕ , tψ when ϕ , ψ . We define Aq
to be {atϕ |1 ≤ ϕ ≤ λ} representing the set of attributes in q’s
interest. Intuitively, such a query q selects all records whose value
of attribute atϕ is in the interval [ltϕ , rtϕ ] for all atϕ ∈ Aq . The
answer of the query q equals the fraction of these selected records.
In particular, the real answer of q can be represented as

f̄q =
|{vi | v

t
i ∈ [lt , rt ],∀at ∈ Aq }|

n
.

In our problem setting, we assume that there is an aggregator
that does not have access to the users’ raw records. Our goal is to
design an approach to enable the aggregator to get the answers of

Table 1: Notations

Notation Meaning

n The total number of users
d The number of attributes
c The domain size of an attribute
b The branching factor of a hierarchy
m The number of user groups
д The granularity for an ordinal domain
q The range query
Aq The set of attributes in q’s interest
λ The query dimension

all possible range queries from the n users while satisfying LDP.
Please see Table 1 for the list of notations.

Key Technical Challenges. To address this problem, we identify
three key technical challenges: 1) capturing the correlations among
attributes, 2) avoiding the curse of dimensionality, and 3) coping
with the large domains of attributes. Failure to solve any of these
three challenges will lead to poor utility of the results.

In the following, we will describe four baseline approaches that
may handle the problem of answering multi-dimensional range
queries under LDP and analyze how they deal with these challenges.
In particular, the first two approaches CALM and HIO are existing
approaches that can be directly applied to this problem. The third
approach Low-dimensional HIO (LHIO) is an improvement of HIO.
The last approach Multiplied Square Wave (MSW) is an extension
of the existing approach that may answer 1-D range queries.

3.2 CALM

CALM [56] is the state-of-the-art for marginal release under LDP.
In particular, a λ-D marginal means the joint distribution of λ at-
tributes. Due to the curse of dimensionality, directly computing
a high-dimensional marginal using a LDP frequency oracle will
lead to too much added noise. To solve this problem, CALM pro-
poses to collect low-dimensional marginals and reconstruct a high-
dimensional marginal from them. We notice that CALM can be
used to answer range queries. In particular, for a λ-D range query,
one can employ CALM to get its answer by directly summing up
the noisy marginals included in the query.

CALM only captures necessary pair-wise attribute correlations,
which effectively overcomes the first two challenges. However, it
fails to solve the third challenge. To answer a range query, CALM
needs to sum up all noisy marginals in the query, which may result
in a large amount of noise in the answer when c is relatively large.

3.3 HIO

HIO [46] is a hierarchy-based approach that can directly answer
multi-dimensional range queries under LDP. In HIO, given d at-
tributes with the domain [c], the aggregator first constructs a 1-D
hierarchy for each attribute. To be specific, a 1-D hierarchy is a
hierarchical collection of intervals with a branching factor b. The
root corresponds to the entire domain [c] and is recursively par-
titioned into b equally sized subintervals until the leaves whose
corresponding subintervals only contain one value are reached.
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Thus there are h = logb c + 1 levels, called one-dim levels, in a
1-D hierarchy. By defining that the root has a level 0, there are bℓ

subintervals in a level ℓ ∈ [0,h]. It is found in [46] that the optimal
b is around 5. For illustration, we define a d-dim level as a group of
d one-dim levels (ℓ1, ℓ2, . . . , ℓd ), each of which comes from one of
these d 1-D hierarchies. Similarly, we define a d-dim interval as a
group of d intervals, each of which also comes from one of these d
1-D hierarchies.

Then, the aggregator constructs a d-dimensional hierarchy with
these d 1-D hierarchies. A level in the d-dimensional hierarchy
is actually a d-dim level. Thus there are (h + 1)d d-dim levels in
the d-dimensional hierarchy. Since there are bℓ subintervals in a
one-dim level ℓ in a 1-D hierarchy, a d-dim level (ℓ1, ℓ2, . . . , ℓd )

includes
d
∏

i=1
bℓi d-dim intervals. Next, the aggregator randomly

divides users into (h + 1)d groups, where each group reports one
d-dim level. After using OLH to get the noisy frequencies of all
d-dim intervals in every d-dim level, the aggregator can answer a
multi-dimensional range query in the following manner.

To answer a λ-D range query

q = (at1 , [lt1 , rt1 ]) ∧ (at2 , [lt2 , rt2 ]) ∧ · · · ∧ (atλ , [ltλ , rtλ ]),

the aggregator first expands q to a new d-dimensional range query
q′ that is interested in all d attributes by assigning a specified in-
terval [1, c] for each attribute not in Aq . Then, for each attribute in
these d attributes, the aggregator finds the least number of subin-
tervals that can make up its specified interval in q′ from its corre-
sponding 1-D hierarchy. Finally, the aggregator sums up the noisy
frequencies of all the d-intervals consisting of them to get the an-
swer of q′, which is equivalent to that of q.

HIO solves the first challenge by capturing the correlations
among all attributes. However, HIO fails to handle the other two
challenges. In HIO, users are divided into (h + 1)d groups where
h = logb c . When d or c is relatively large, there are too few users
in each group, which will incur a high magnitude of added noise in
the frequencies of d-dim intervals and result in large errors.

3.4 LHIO: Low-dimensional HIO

We observe that CALM achieves good utility by using 2-Dmarginals
to reconstruct high-dimensional ones. Using this idea, we can mod-
ify HIO, resulting in a new approach called Low-dim HIO (LHIO).
Its main idea is to compute the answers of 2-D range queries and
then estimate the answer of a high-dimensional range query from

them. Specifically, the aggregator first generates all
(d
2

)

attribute
pairs from the given d attributes and then randomly divides users

intom =
(d
2

)

groups, where each group works on one pair of at-
tributes. Next, for each attribute pair, the aggregator invokes HIO
to construct a 2-D hierarchy by interacting with its corresponding
user group. The constructed 2-D hierarchies can be directly used
to answer all possible 2-D range queries. To estimate the answer
of a higher dimensional range query, the aggregator invokes the
estimation method which will be presented in Section 4.4.

However, directly using the obtained noisy frequencies will lead
to two inconsistency problems in our setting. The first one is within
a 2-D hierarchy. That is, different levels of the noisy hierarchy may
give inconsistent estimations due to LDP noise. The second one

is among different 2-D hierarchies. Since each attribute is related
to d − 1 pairs, the frequencies marginalized on it from these d − 1
2-D hierarchy are usually different. The accuracy of the answers
of the 2-D range queries will increase if the problem can be solved.
We identify that the key to remove inconsistency is to solve the
first inconsistency problem, since the second one can be easily
solved by the overall consistency in CALM after the first one is
handled. Therefore, we focus on the first problem and develop a
newmethod to enforce consistency within a 2-D hierarchy. Its main
idea is to adapt the constrained inference in Hay et al. [22] to a
2-D hierarchy and perform the operation twice by starting with
the first and second attribute of the attribute pair, respectively. Its
details are omitted due to space limitation.

LHIO satisfies ε-LDP because the report from each user uses OLH
and satisfies ε-LDP. We show that by avoiding directly handling
high-dimensional queries and removing inconsistency, LHIO can
perform much better than HIO. Similar to CLAM, LHIO overcomes
the first two challenges by capturing necessary pair-wise attribute
correlations. However, LHIO fails to solve the third challenge. In

LHIO, users are divided into
(d
2

)

· (h + 1)2 groups where h = logb c .
For a relatively large c , it will also bring about excessive noises.

3.5 MSW: Multiplied Square Wave

Recently, Li et al. [29] proposed an approach called Square Wave
(SW) for estimating the distribution of a single numerical attribute
under LDP. It takes advantage of the ordinal nature of the domain
and reports values that are close to the true value with higher
probabilities than values that are farther away from the true value.

For handling an attribute with the discrete domain [c], we ini-
tially normalize it to the continuous domain [0, 1]. Given a value
v ∈ [0, 1], SW perturbs it as:

∀y ∈ [−δ , 1 + δ ], Pr [SW(v) = y]=

{

p, if |v − y | ≤ δ ,
p′, otherwise ,

where δ = εeε−eε+1
2eε (eε−1−ε )

is the łclosenessž threshold. By maximizing

the difference betweenp andp′ while satisfying that the total proba-
bility adds up to 1, the values p and p′ can be derived as p = eε

2δeε+1

and p′ = 1
2δeε+1

, respectively. After receiving perturbed reports
from all users, the aggregator runs the Expectation Maximization
algorithm to find an estimated distribution that maximizes the
expectation of the observed output. It is shown in [29] that SW
outperforms other approaches for answering 1-D range queries.

Here we introduce Multiplied Square Wave (MSW), which is
extended from SW to handle multi-dimensional range queries under
LDP. In MSW, given d attributes, the aggregator randomly divides
users into d groups, where each group reports one attribute. After
utilizing SW to obtain the distribution of each individual attribute, a
multi-dimensional range query is answered by using the product of
the answers of all associated 1-D range queries. Such approximation
implicitly assumes that all attributes are independent.

In MSW, each user only reports one attribute via SW that satisfies
ε-LDP. Therefore, this process can ensure ε-LDP for each user. In
addition, the subsequent multiplication post-process steps take
those outputs that are already differentially private and does not
access any user’s raw data. Thus, MSW satisfies ε-LDP. Since MSW
only collects the information of individual attributes, it solves the
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last two challenge. However, it fails to handle the first challenge.
MSW totally loses the correlations among attributes, which will
produce high errors when handling correlated attributes.

4 GRID APPROACHES

In this section, we first elaborate our grid approaches for answering
multi-dimensional range queries under LDP in Section 4.1-4.4. Then
we give their privacy and utility analysis in Section 4.5. Finally, we
describe how to choose the proper granularities in Section 4.6.

4.1 Overview

As analysed in Section 3, none of the baseline approaches can
overcome all three key challenges. To address this problem, we first
propose an approach called Two-Dimensional Grid (TDG). Its main
idea is to carefully use binning to partition the 2-D domains of all
attribute pairs into 2-D grids that can answer all 2-D range queries
and then estimate the answer of a higher dimensional range query
from the answers of the associated 2-D range queries.

However, since values within the same cell in a grid are reported
together, the aggregator cannot tell the distribution within each cell
and only assumes a uniform distribution. When computing the an-
swer of a 2-D range query by the cells that are partially included in
the query, this may lead to large error due to the uniformity assump-
tion. To correct this deficiency, we further propose an upgraded
approach called Hybrid-Dimensional Grid (HDG), which also intro-
duces finer-grained 1-D grids and combines the information from
1-D and 2-D grids to answer range queries.

Note that the first two challenges pose a dilemma: capturing
full correlations (as HIO) will lead to the curse of dimensionality;
while only focusing on individual attributes (as MSW) will totally
lose correlation information. In CALM [56], the similar dilemma
is solved by using 2-D marginals to reconstruct high-dimensional
ones, which achieves a good trade-off when handling these two
challenges. Inspired by this idea, both TDG and HDG choose to
capture the necessary pair-wise attribute correlations via 2-D grids,
which overcomes the first two challenges. The third challenge is
also carefully solved in TDG and HDG by properly using binning
with the guideline to reduce the error incurred by a large domain.

Specifically, both TDG and HDG consist of three phases:

Phase 1. Constructing Grids. In TDG, from the given d at-

tributes, the aggregator first generates all
(d
2

)

attribute pairs. Then

the aggregator randomly divides users intom =
(d
2

)

groups, each of
which corresponds to one pair. Next, for each attribute pair (aj ,ak )
where 1 ≤ j < k ≤ d , the aggregator assigns the same granularity
д2 to construct a 2-D grid G(j ,k ) by partitioning the 2-D domain
[c] × [c] into д2 × д2 2-D cells of equal size. In particular, each 2-D
cell specifies a 2-D subdomain consisting of c

д2
× c
д2

2-D values.

Finally, to obtain noisy frequencies of cells in each grid, the aggre-
gator instructs each user in the group corresponding to the grid to
report which cell his/her private value is in using OLH.

In HDG, the aggregator also constructs d 1-D grids for the d

attributes, respectively. Thus there will be d +
(d
2

)

grids in HDG

and users are divided into m = d +
(d
2

)

groups, each of which

corresponds to one of these grids. In addition to constructing
(d
2

)

2-
D grids with granularity д2 as TDG, in HDG, the aggregator assigns

the identical granularity д1 to construct a 1-D grid G(j) containing
д1 1-D cells of equal size for each single attribute aj (1 ≤ j ≤ d). In
particular, each 1-D cell specifies a 1-D subdomain consisting of c

д1
1-D values. Finally, as in TDG, the aggregator uses OLH to obtain
noisy frequencies of cells in each grid.

Phase 2. Removing Negativity and Inconsistency. Due to
using OLH to ensure privacy, the noisy frequency of a cell may be
negative, which violates the prior knowledge that the true one is
non-negative. Moreover, since an attribute is related to multiple
grids, the noisy frequencies integrated on the attribute in different
grids may be different, leading to inconsistency among grids. In
this phase, to improve the utility, the aggregator post-processes the
constructed grids to remove the negativity and inconsistency. The
difference between TDG and HDG is that TDG only requires the
aggregator to handle 2-D grids while 1-D and 2-D grids needs to be
handled together in HDG.We describe the detail for post-processing
grids in Section 4.2.

Phase 3. Answering Range Queries. In this phase, the aggre-
gator can answer all multi-dimensional range queries. We first
describe how to answer a 2-D range query. For ease of illustration,
we take a 2-D range query q0 interested in Aq0 = {a1,a2} as an
example. In TDG, to get the answer fq0 of q0, the aggregator first

finds the 2-D gridG(1,2) corresponding to Aq0 and then checks all

2-D cells in G(1,2) in the following manner. If a cell is completely
included in q0, the aggregator includes its noisy frequency in fq0 ;
if a cell is partially included, the aggregator estimates the sum of
frequencies of common 2-D values between the cell and q0 by uni-
form guess, i.e., assuming that the frequencies of 2-D values within
the cell are uniformly distributed and then adds the sum to fq0 .

In HDG, the aggregator treats those cells partially included in
q0 using a response matrix rather than uniform guess, which can
significantly improve the accuracy of results. To be specific, for
each attribute pair (aj ,ak ), the aggregator first employs the three

grids {G(j),G(k ),G(j ,k)} to build a response matrix M(j ,k ) before
answering 2-D range queries. In particular, the matrixM(j ,k ) con-
sists of c × c elements that are in one-to-one correspondence with
the estimated frequencies of 2-D values in the 2-D domain [c] × [c]
of (aj ,ak ). The details of response matrix generation are given in
Section 4.3. When calculating the answer fq0 of the 2-D query q0
in HDG, the aggregator also checks all 2-D cells in the grid G(1,2)

corresponding to Aq0 . For a cell completely included in q0, the ag-
gregator includes its noisy frequency in fq0 as in TDG; for a cell
partially included in the query q0, the aggregator identifies the
common 2-D values between this cell and q0, and then adds the
sum of their corresponding elements inM(1,2) to fq0 .

For a λ-D range query where λ > 2, its answer cannot be directly
obtained from the constructed 2-D grids or response matrices. To

answer this λ-D query, we propose to split it into
(λ
2

)

associated
2-D range queries and then estimate its answer from all answers of

these
(λ
2

)

2-D queries. We discuss it in detail in Section 4.4.

4.2 Post-Process for Grids

The post-process for grids contains two basic steps including non-
negativity step and consistency step, which are used to remove
negativity and inconsistency, respectively.
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Non-Negativity Step. In this step, the aggregator handles the
estimated frequencies of cells in each grid by Norm-Sub [48], which
can make all estimates non-negative and sum up to 1. In Norm-Sub,
firstly, all negative estimates are converted to 0. Then the total
difference between 1 and the sum of positive estimates is calculated.
Next, the average difference is obtained through dividing the total
difference by the number of positive estimates. Finally, every posi-
tive estimate is updated by subtracting the average difference. The
process is repeated until all estimates become non-negative.

Consistency Step.We first describe how to achieve consistency
on an attribute among grids. For an attribute a, it is related to d

grids in total, which includes one 1-D grid and d − 1 2-D grids.
Assume these d grids are {G1,G2, · · ·Gd }. For an integer j ∈ [1,д2],
we define PGi

(a, j) to be the sum of frequencies ofGi ’s cells whose
specified subdomain corresponds to a is in [(j−1)× c

д2
+1, j× c

д2
]. To

make all PGi
(a, j) consistent, we compute their weighted average

as P(a, j) =
d
∑

i=1
θi · PGi

(a, j), where θi is the weight of PGi
(a, j).

To get a better estimation, we need to carefully set the value of
θi . Our goal is to minimize the variance of P(a, j), i.e. Var [P(a, j)] =
d
∑

i=1
θi

2 · Var
[

PGi
(a, j)

]

=

d
∑

i=1
θi

2 · |Si | · Var0, where Si is the set

of cells whose frequencies contribute to PGi
(a, j) and Var0 is the

basic variance for estimating a single cell (we assume each user
group has the same population). Apparently, if Gi is 1-D, Si =

д1
д2
;

if Gi is 2-D, Si = д2. Based on the analysis in [56], we have

θi =
1
|Si |
/
d
∑

i=1

1
|Si |

and the optimal weighted average is P(a, j) =
(

d
∑

i=1

1
|Si |
· PGi
(a, j)

)

/
d
∑

i=1

1
|Si |

. Once the P(a, j) is obtained, we need

to make each PGi
(a, j) equal it, which can be achieved in the follow-

ing manner. For each cell in Si , we update its frequency by adding
the amount of change

(

P(a, j) − PGi
(a, j)

)

/|Si |.
To achieve consistency among all attributes, we can use the above

method one by one for each single attribute. It is shown in [34] that
following any order of these attributes, a later consistency step will
not invalidate consistency established in previous steps.

Note that applying the consistency step may incur negativity,
and vise versa. Thus in the post-process, we interchangeably in-
voke these two steps multiple times. Since we need to ensure non-
negativity for the response matrix generation in Phase 3, we end
the post-process with the non-negativity step. While the last step
may again introduce inconsistency, it tends to be very small.

4.3 Response Matrix Generation

For an attribute pair (aj ,ak ), it corresponds to the response matrix

M(j ,k ) of size c ×c , where the elementM(j ,k )[βj , βk ] represents the
estimated frequency of 2-D value (βj , βk ) in the [c] × [c] 2-D do-

main of (aj ,ak ). To buildM
(j ,k ), we propose to invoke the efficient

estimation method Weighted Update [2, 20] with the three grids
{G(j),G(k ),G(j ,k )} corresponding to {aj ,ak , (aj ,ak )}, respectively.
Its main idea is to keep using the information on each cell in these
three grids to update the matrix until each cell’s frequency equals
the sum of its corresponding elements in the matrix.

Algorithm 1 Building Response Matrix

Input: Grids {G(j),G(k ),G(j ,k )}, domain size c
Output: Response matrixM(j ,k )

1: initialize all c × c elements in the matrixM(j ,k ) as 1
c2
;

2: repeat

3: for each grid G in {G(j),G(k ),G(j ,k )} do
4: for each cell s in G do

5: Find the set of 2-D values Φ(s) corresponding to s;
6: Calculate Y =

∑

(βj ,βk )∈Φ(s)
M(j ,k )[βj , βk ];

7: if Y , 0 then

8: for each 2-D value (βj , βk ) in Φ(s) do

9: M(j ,k)[βj , βk ] ←
M (j ,k )[βj ,βk ]

Y · fs ;

10: until convergence
11: returnM(j ,k )

Algorithm 1 provides the details of building response matrix
M(j ,k ) for attribute pair (aj ,ak ). It takes grids {G

(j),G(k ),G(j ,k )}

and domain size c as inputs and outputs the response matrixM(j ,k).
In Algorithm 1, for each gridG in {G(j),G(k ),G(j ,k )}, the aggregator
performs the following update process onM(j ,k ). For each cell s in
G , the aggregator first finds the set of 2-D valuesΦ(s) corresponding
to s , which means that Φ(s) consists of all those 2-D values whose
frequency can contribute to the frequency fs of cell s . To illustrate
the definition of Φ(s), we take a 2-D cell s in G(j ,k ) as an example.

Assume the 2-D cell s specifies a 2-D subdomain [l js , r
j
s ] × [l

k
s , r

k
s ],

where [l js , r
j
s ] and [l

k
s , r

k
s ] correspond to aj and ak , respectively.

Then, Φ(s) can be represented as

Φ(s) = {(βj , βk )|βj ∈ [l
j
s , r

j
s ], βk ∈ [l

k
s , r

k
s ]}.

Note that this representation is also applicable to a 1-D cell s in
G(j) (orG(k )), since we can equivalently transform its specified 1-D

subdomain [l js , r
j
s ] (or [l

k
s , r

k
s ]) into 2-D subdomain [l js , r

j
s ]×[1, c] (or

[1, c] × [lks , r
k
s ].). With Φ(s), the aggregator updates the elements in

M(j ,k ) as Lines 6-9 in Algorithm 1. This update process is repeated
until convergence.

In Algorithm 1, the convergence criteria is that the sum of the
changes of all elements in the response matrix after each update
process is lower than a given threshold. By comparing the results
of setting different thresholds, we found that the results are almost
the same so long as threshold is smaller than 1

n .

4.4 Estimation for λ-D Range Query

To estimate the answer fq of a λ-D range query

q = (at1 , [lt1 , rt1 ]) ∧ (at2 , [lt2 , rt2 ]) ∧ · · · ∧ (atλ , [ltλ , rtλ ])

where Aq = {atϕ |1 ≤ ϕ ≤ λ}, the aggregator first splits q into
(λ
2

)

associated 2-D range queries
{

q(j ,k ) = (aj , [lj , r j ]) ∧ (ak , [lk , rk ])|aj ,ak ∈ Aq

}

,

and then gets their
(λ
2

)

answers
{

fq(j ,k ) | aj ,ak ∈ Aq

}

as described

in Section 4.1. Finally, the aggregator uses these
(λ
2

)

2-D queries’
answers to estimate fq .
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In general, such an estimation problem can be solved by Maxi-
mum Entropy Optimization [34, 56]. Due to space limitation, we
refer the readers to our full version [52] for its description. However,
in experiments, we observe that Maximum Entropy Optimization
cannot converge quickly in some cases. Therefore, we propose to
useWeighted Update [2, 20] to solve this estimation problem, which
can achieve almost the same accuracy while with higher efficiency.

Algorithm 2 gives the procedure of estimating the answer of

a λ-D range query q. It takes the answers of
(λ
2

)

associated 2-D
queries as inputs and outputs a estimated answer vector z. In par-
ticular, the vector z consists of 2λ elements that are in one-to-one
correspondence with the answers of 2λ λ-D queries in

Q(q) = {∧t (at , [lt , rt ] or [lt , rt ]
′) | at ∈ Aq },

where the interval [lt , rt ]′ is the complement of [lt , rt ] on the do-

main of at . In Algorithm 2, for each fq(j ,k ) in
{

fq(j ,k ) | aj ,ak ∈ Aq

}

,

the aggregator performs the following update process on z. The
aggregator first finds the set of λ-D queriesQ(q)(j ,k ) corresponding
to the 2-D query q(j ,k ), which means that Q(q)(j ,k ) consists of all
those λ-D queries whose answer can contribute to fq(j ,k ) . In partic-

ular,Q(q)(j ,k) contains 2λ−2 λ-D queries fromQ(q) and is defined as
{

∧t (at , [lt , rt ] or [lt , rt ]′) ∧ q(j ,k ) | at ∈ Aq/{aj ,ak }
}

. Then, the ag-

gregator calculates the sum Y of z[q′] for all q′ ∈ Q(q)(j ,k), where
z[q′] is the element corresponding to the answer of q′. Next, the
aggregator uses fq(j ,k ) to update the elements in z as Lines 6-8. This
process is repeated until convergence. The estimated answer fq of
the λ-D query q equals its corresponding element in z, i.e., z[q].

In Algorithm 2, the convergence criteria is that the sum of the
changes of all elements in the estimated vector after each update
process is lower than a given threshold. We also found that the
results are almost the same so long as threshold is smaller than 1

n .

4.5 Privacy and Utility Analysis

Privacy Guarantee. We claim that both TDG and HDG satisfy
ε-LDP because all the information from each user to the aggre-
gator goes through OLH with ε as privacy budget, and no other
information is leaked.

Error Analysis. Below we analyze the expected squared error
between the true query answer and the estimated answer. There
are four kinds of errors: noise error, sampling error, non-uniformity
error, and estimation error.

Noise and Sampling Error. The noise error is due to the use of
LDP frequency oracles. To satisfy LDP, one adds, to each cell, an
independently generated noise, and these noises have the same
standard deviation. When summing up the noisy frequencies of
cells to answer a query, the noise error is the sum of the correspond-
ing noises. As these noises are independently generated zero-mean
random variables, they cancel each other out to a certain degree.
In fact, because these noises are independently generated, the vari-
ance of their sum equals the sum of their variances. Therefore, the
finer granularity one partitions the domain into, the more cells are
included in a query, and the larger the noise error is. The sampling
error is incurred by using cells’ frequencies obtained from a user

Algorithm 2 Estimating Answer of λ-D Range Query

Input: Associated 2-D queries’ answers
{

fq(j ,k ) | aj ,ak ∈ Aq

}

Output: Estimated answer vector z
1: initialize all 2λ elements in the vector z as 1

2λ
;

2: repeat

3: for each fq(j ,k ) in
{

fq(j ,k ) | aj ,ak ∈ Aq

}

do

4: Find the set of queriesQ(q)(j ,k ) corresponding to q(j ,k );
5: Calculate Y =

∑

q′∈Q (q)(j ,k )
z[q′];

6: if Y , 0 then

7: for each query q′ in Q(q)(j ,k ) do

8: z[q′] ←
z[q′]
Y · fq(j ,k ) ;

9: until convergence
10: return z

group to represent those obtained from the entire population, since
the user group may have different distribution from the global one.

The noise and sampling errors can be quantified together. Sup-
pose the estimation is run on a sample Dη of the dataset D. We
use fv (X ) and f̄v (X ) to denote the estimated and true frequencies
of v in X , respectively. For simplicity, the frequency on the origi-
nal dataset f̄v (D) is written as f̄v . The expected squared error for
estimating one value is

E

[

(

fv (Dη ) − f̄v
)2
]

=E

[

(

fv (Dη ) − f̄v (Dη )
)2
]

+ E

[

(

f̄v (Dη ) − f̄v
)2
]

+

2E
[

(fv (Dη ) − f̄v (Dη )) · (f̄v (Dη ) − f̄v )
]

. (4)

Specifically, Equation (4) consists of three parts. The first part is
the variance of frequency oracle, i.e.,

E

[

(

fv (Dη ) − f̄v (Dη )
)2
]

=m ·
p′(1 − p′)

n(p − p′)2
+m ·

f̄v (p − p
′)(1 − p − p′)

n(p − p′)2
.

In the case of OLH, we have p = 1/2, p′ = 1/(eε + 1), and the
quantity equals 4meε

n(eε−1)2
+

m
n · f̄v .

The second part is E
[

(

f̄v (Dη ) − f̄v
)2
]

=
m−1
n−1 f̄v (1 − f̄v ). And

the third part is 2E
[

(fv (Dη ) − f̄v (Dη )) · ( f̄v (Dη ) − f̄v )
]

= 0. We
observe that the second part is a constant which is much smaller
than the first part. Ignoring the small factor m

n · f̄v in the first part,
the expected squared noise and sampling error can be dominated
by 4meε

n(eε−1)2
. Due to space limitation, we refer the readers to our

full version [52] for the detailed derivation of the above equations.
Non-Uniformity Error. Non-uniformity error is caused by cells

that intersect with the query rectangle, but are not contained in it.
For these cells, we need to estimate how many data points are in
the intersected cells assuming that the data points are uniformly
distributed, which will lead to non-uniformity error when the data
points are not uniformly distributed. The magnitude of this error
in any intersected cell, in general, depends on the number of data
points in that cell, and is bounded by it. Therefore, the finer the par-
tition granularity, the lower the non-uniformity error. Calculating
precise non-uniformity error requires the availability of the true
data distribution, which is not the case in our setting. Thus we opt
to compute the approximate non-uniformity error.

Estimation Error. When estimating the answer of a λ-D range
query where λ > 2 from the associated answers of 2-D range
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queries, estimation error will occur. Since the estimation error is
dataset dependent, there is no formula for estimating it. In general,
more accurate answers of 2-D range queries can result in a smaller
estimation error. However, its feature that the magnitude is depen-
dent on the dataset will introduce uncertainty, which means that
an opposite result may appear in a few cases.

4.6 Choosing Granularities

Since the granularities д1,д2 can directly affect the utility of our
gird approaches, we propose the following guideline for properly
choosing them.

Guideline: To minimize the sum of squared noise and sampling
error and squared non-uniformity error, the granularity д1 for 1-D

grids should be д1 =
3

√

n1 ·(eε−1)
2 ·α12

2m1eε
; the granularity д2 for 2-D

grids should be computed as д2 =

√

2α2 · (eε − 1) ·
√

n2
m2eε

, where

ε is the total privacy budget, ni (i = 1, 2) is the number of users used
for i-D grids,mi (i = 1, 2) is the number of user groups for i-D grids,
and {α1,α2} are some small constants depending on the dataset.
For simplicity, we make each user group have the same population,
i.e. n2

m2
=

n

(d2)
for TDG and n1

m1
=

n2
m2
=

n

d+(d2)
for HDG. To ensure

that д1 and д2 are divisible by domain size c at the same time, for
each of them, we take the power of two closest to its derived value
as the final value. If the obtained granularity is larger than c , we
set it to c by default. Our experimental results suggest that setting
α1 = 0.7 and α2 = 0.03 can typically achieve good performance
across different datasets.

Analysis on д1. A range query on a 1-D grid specifies a query
interval on the attribute corresponding to the grid. For an average
case, we consider that the ratio of this interval to the attribute’s
domain size is 1

2 . When answering the query from a 1-D grid with

granularity д1, there are roughly
д1
2 cells included in this query.

The squared noise and sampling error is
д1
2 ·

4m1e
ε

n1(eε−1)
2 =

2д1m1e
ε

n1(eε−1)
2 .

The non-uniformity error is proportional to the sum of frequen-
cies of values in the cells that intersect with the two sides of the
query interval. Assuming that the non-uniformity error is α1

д1
for

some constant α1, then it has a squared error of
(

α1
д1

)2
.

The minimize the sum of the two squared errors
2д1m1e

ε

n1(eε−1)
2 +

(

α1
д1

)2
, we should set д1 to

3

√

n1 ·(eε−1)
2 ·α12

2m1eε
.

Analysis on д2. Here we extend the above analysis to the 2-D grid
setting. For a 2-D query, we assume that the ratio of each query
interval to its corresponding attribute’s domain size is 1

2 . Then the

squared noise and sampling error is (
д2
2 )

2 ·
4m2e

ε

n2(eε−1)
2 =

(д2)
2 ·m2e

ε

n2(eε−1)
2 .

The non-uniformity error is proportional to the sum of the fre-
quencies of values in the cells that fall on the four edges of the
query rectangle. The query rectangle’s edges contain 4 ·

д2
2 = 2д2

cells; and the expected sum of frequencies of values included in
these cells is 2д2 ·

1
д2×д2

=
2
д2
. Similar to the 1-D grid setting, we

assume that the non-uniformity error on average is some portion of

it. Then the squared error from non-uniformity is
(

2α2
д2

)2
for some

constant α2. Our goal is to select д2 to minimize the sum of the two

squared errors
(д2)

2 ·m2e
ε

n2(eε−1)
2 +

(

2α2
д2

)2
. To achieve this goal, д2 should

be

√

2α2 · (eε − 1) ·
√

n2
m2eε

.

Discussion. In the analysis of non-uniformity error, for a cell
that contributes to this error, we calculate the expected sum of
frequencies of values in this cell based on the uniformity assump-
tion. Although this assumption may lead to the deviation between
the calculated error and the true one, it helps the analysis become
more general for diverse datasets. Moreover, since 1-D grids are
finer-grained, this deviation’s influence on the performance of HDG
tends to be negligible. Thus, such an assumption still makes our
guideline consistently effective for HDG when handling diverse
datasets. Note that the recommended values of {α1,α2} are ob-
tained by tuning them on synthetic datasets under different setting
of n, c,d , which does not leak any real users’ private information.
Besides, all other necessary parameters for choosing granularities
are derived from public background knowledge and do not require
the aggregator to access raw data. Therefore, configuring TDG and
HDG with our guideline will not lead to any privacy leakage.

5 EXPERIMENTAL EVALUATION

In this section, we aim to answer the following questions: (1) how
does our proposed HDG perform, (2) how can different parameters
affect the results, and 3) how effective is the guidance for choosing
granularities given by our guideline.

5.1 Setup

Datasets. We make use of two real datasets and two synthetic
datasets in our experiments.

• Ipums [38]: It is from the Integrated Public Use Microdata
Series and has around 1 million records of the United States
census in 2018.
• Bfive [25]: It is collected through an interactive on-line per-
sonality test and contains around 1 million records. Each
record describes the time spent on each question in millisec-
onds.
• Normal: This dataset is synthesized from multivariate nor-
mal distribution with mean 0, standard deviation 1. The
covariance between every two attributes is 0.8.
• Laplace: This dataset is synthesized frommultivariate laplace
distribution with mean 0, standard deviation 1. The covari-
ance between every two attributes is 0.8.

For the first two real datasets, we sample 1 million user records.
To experiment with different numbers of users, we generate multi-
ple test datasets from the two synthetic datasets with the number
of users ranging from 100k to 10M. For evaluation varying different
numbers of attributes and domain sizes, we generate multiple ver-
sions of these four datasets with the number of attributes ranging
from 3 to 10 and their domain sizes ranging from 24 to 210.

Competitors. We compare HDG against TDG and all the baseline
approaches including HIO, CALM, MSW and LHIO. In addition, we
add a benchmark approach Uni which always outputs a uniform
guess. In particular, we set the branch factorb = 4 for HIO and LHIO.
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