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ABSTRACT
Given a graph 𝐺 where each node is associated with a set of at-

tributes, attributed network embedding (ANE) maps each node 𝑣 ∈ 𝐺
to a compact vector 𝑋𝑣 , which can be used in downstream machine

learning tasks. Ideally,𝑋𝑣 should capture node 𝑣 ’s affinity to each at-
tribute, which considers not only 𝑣 ’s own attribute associations, but

also those of its connected nodes along edges in𝐺 . It is challenging

to obtain high-utility embeddings that enable accurate predictions;

scaling effective ANE computation to massive graphs with millions

of nodes pushes the difficulty of the problem to a whole new level.

Existing solutions largely fail on such graphs, leading to prohibitive

costs, low-quality embeddings, or both.

This paper proposes PANE, an effective and scalable approach to

ANE computation for massive graphs that achieves state-of-the-art

result quality on multiple benchmark datasets, measured by the

accuracy of three common prediction tasks: attribute inference,

link prediction, and node classification. In particular, for the large

MAG data with over 59 million nodes, 0.98 billion edges, and 2000

attributes, PANE is the only known viable solution that obtains

effective embeddings on a single server, within 12 hours.

PANE obtains high scalability and effectiveness through three

main algorithmic designs. First, it formulates the learning objec-

tive based on a novel random walk model for attributed networks.

The resulting optimization task is still challenging on large graphs.

Second, PANE includes a highly efficient solver for the above opti-

mization problem, whose key module is a carefully designed initial-

ization of the embeddings, which drastically reduces the number of

iterations required to converge. Finally, PANE utilizes multi-core

CPUs through non-trivial parallelization of the above solver, which

achieves scalability while retaining the high quality of the result-

ing embeddings. Extensive experiments, comparing 10 existing

approaches on 8 real datasets, demonstrate that PANE consistently

outperforms all existing methods in terms of result quality, while

being orders of magnitude faster.
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1 INTRODUCTION
Network embedding is a fundamental task for graph analytics,

which has attracted much attention from both academia (e.g., [14,
31, 35]) and industry (e.g., [23, 52]). Given an input graph𝐺 , network

embedding converts each node 𝑣 ∈ 𝐺 to a compact, fixed-length

vector 𝑋𝑣 , which captures the topological features of the graph

around node 𝑣 . In practice, however, graph data often comes with

attributes associated to nodes. While we could treat graph topology

and attributes as separate features, doing so loses the important

information of node-attribute affinity [27], i.e., attributes that can
be reached by a node through one or more hops along the edges in

𝐺 . For instance, consider a graph containing companies and board

members. An important type of insights that can be gained from

such a network is that one company (e.g., Tesla Motors) can reach

attributes of another related company (e.g., SpaceX) connected
via a common board member (Elon Musk). To incorporate such

information, attributed network embedding maps both topological

and attribute information surrounding a node to an embedding

vector, which facilitates accurate predictions, either through the

embeddings themselves or in downstream machine learning tasks.

Effective ANE computation is a highly challenging task, espe-

cially for massive graphs, e.g., with millions of nodes and billions

of edges. In particular, each node 𝑣 ∈ 𝐺 could be associated with

a large number of attributes, which corresponds to a high dimen-

sional space; further, each attribute of 𝑣 could influence not only

𝑣 ’s own embedding, but also those of 𝑣 ’s neighbors, neighbors’

neighbors, and far-reaching connections via multiple hops along

the edges in 𝐺 . Existing ANE solutions are immensely expensive

and largely fail on massive graphs. Specifically, as reviewed in Sec-

tion 6, one class of previous methods e.g., [18, 41, 44, 48], explicitly
construct and factorize an 𝑛 × 𝑛 matrix, where 𝑛 is the number of

nodes in𝐺 . For a graph with 50 million nodes, storing such a matrix

of double-precision values would take over 20 petabytes of mem-

ory, which is clearly infeasible. Another category of methods, e.g.,
[8, 25, 30, 49], employ deep neural networks to extract higher-level

features from nodes’ connections and attributes. For a large dataset,

training such a neural network incurs vast computational costs;

further, the training process is usually done on GPUs with limited

graphics memory, e.g., 32GB on Nvidia’s flagship Tesla V100 cards.

Thus, for massive graphs, currently the only option is to compute

ANE with a large cluster, e.g., [52], which is financially costly and

out of the reach of most researchers.

In addition, to our knowledge, all existing ANE solutions are

designed for undirected graphs, and it is unclear how to incorporate

edge direction information (e.g., asymmetric transitivity [50]) into
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their resulting embeddings. In practice, many graphs are directed

(e.g., one paper citing another), and existing methods yield subopti-

mal result quality on such graphs, as shown in our experiments. Can

we compute effective ANE embeddings on a massive, attributed,

directed graph on a single server?

This paper provides a positive answer to the above question with

PANE, a novel solution that significantly advances the state of the

art in ANE computation. Specifically, as demonstrated in our exper-

iments, the embeddings obtained by PANE simultaneously achieve

the highest prediction accuracy compared to previous methods for

3 common graph analytics tasks: attribute inference, link prediction,

and node classification, on common benchmark graph datasets. On

the largest Microsoft Academic Knowledge Graph (MAG) dataset,
PANE is the only viable solution on a single server, whose result-

ing embeddings lead to 0.88 average precision (AP) for attribute

inference, 0.965 AP for link prediction, and 0.57 micro-F1 for node

classification. PANE obtains such results using 10 CPU cores, 1TB

memory, and 12 hours running time.

PANE achieves effective and scalable ANE computation through

three main contributions: a well-thought-out problem formulation

based on a novel random walk model, a highly efficient solver,

and non-trivial parallelization of the algorithm. Specifically, As

presented in Section 2.2, PANE formulates the ANE task as an

optimization problem with the objective of approximating nor-

malized multi-hop node-attribute affinity using node-attribute co-

projections [27, 28], guided by a shifted pairewise mutual informa-

tion (SPMI) metric that is inspired by natural language processing

techniques. The affinity between a given node-attribute pair is de-

fined via a random walk model specifically adapted to attributed

networks. Further, we incorporate edge direction information by

defining separate forward and backward affinity, embeddings, and

SPMI metrics. Solving this optimization problem is still immensely

expensive with off-the-shelf algorithms, as it involves the joint

factorization of two 𝑂 (𝑛 · 𝑑)-sized matrices, where 𝑛 and 𝑑 are

the numbers of nodes and attributes in the input data, respectively.

Thus, PANE includes a novel solver with a keymodule that seeds the

optimizer through a highly effective greedy algorithm, which dras-

tically reduces the number of iterations till convergence. Finally, we

devise non-trivial parallelization of the PANE algorithm, to utilize

modern multi-core CPUs without significantly compromising result

utility. Extensive experiments, using 8 real datasets and comparing

against 10 existing solutions, demonstrate that PANE consistently

obtains high-utility embeddings with superior prediction accuracy

for attribute inference, link prediction and node classification, at a

fraction of the cost compared to existing methods.

Summing up, our contributions in this paper are as follows:

• We formulate the ANE task as an optimization problem with the

objective of approximating multi-hop node-attribute affinity.

• We further consider edge direction in our objective by defining

forward and backward affinity matrices using the SPMI metric.

• We propose several techniques to efficiently solve the optimiza-

tion problem, including efficient approximation of the affinity

matrices, fast joint factorization of the affinity matrices, and a key

module to greedily seed the optimizer, which drastically reduces

the number of iterations till convergence.

• We develop non-trivial parallelization techniques of PANE to

further boost efficiency.

Table 1: Frequently used notations.

Notation Description
𝐺=(𝑉 , 𝐸𝑉 , 𝑅, 𝐸𝑅 ) A graph𝐺 with node set𝑉 , edge set𝐸𝑉 , attribute

set 𝑅, and node-attribute association set 𝐸𝑅 .

𝑛,𝑚,𝑑 The numbers of nodes, edges, and attributes in

𝐺 , respectively.

𝑘 The space budget of embedding vectors.

A,D, P,R The adjacency, out-degree, random walk and at-

tribute matrices of𝐺 .

R𝑟 ,R𝑐 The row-normalized and column-normalized at-

tribute matrices. See Equation (1).

F,B The forward and backward affinity matrices. See

Equations (2) and (3).

F′,B′ The approximate forward and backward affinity

matrices. See Equation (7).

X𝑓 ,X𝑏 ,Y The forward and backward embedding vectors,

and attribute embedding vectors.

𝛼 The random walk stopping probability.

𝑛𝑏 The number of threads.

• The superior performance of PANE, in terms of efficiency and ef-

fectiveness, is evaluated against 10 competitors on 8 real datasets.

The rest of the paper is organized as follows. In Section 2, we

formally formulate our ANE objective by defining node-attribute

affinity. We present single-thread PANE with several speedup tech-

niques in Section 3, and further develop non-trivial parallel PANE
in Section 4. The effectiveness and efficiency of our solutions are

evaluated in Section 5. Related work is reviewed in Section 6. Fi-

nally, Section 7 concludes the paper. Note that proofs of lemmas

and additional experiments are given in our technical report [47].

2 PROBLEM FORMULATION
2.1 Preliminaries
Let 𝐺 = (𝑉 , 𝐸𝑉 , 𝑅, 𝐸𝑅) be an attributed network, consisting of (i)

a node set 𝑉 with cardinality 𝑛, (ii) a set of edges 𝐸𝑉 of size 𝑚,

each connecting two nodes in 𝑉 , (iii) a set of attributes 𝑅 with

cardinality 𝑑 , and (iv) a set of node-attribute associations 𝐸𝑅 , where

each element is a tuple (𝑣𝑖 , 𝑟 𝑗 ,𝑤𝑖, 𝑗 ) signifying that node 𝑣𝑖 ∈ 𝑉 is

directly associated with attribute 𝑟 𝑗 ∈ 𝑅 with a weight 𝑤𝑖, 𝑗 (i.e.,
the attribute value). Note that for a categorical attribute such as

marital status, we first apply a pre-processing step that transforms

the attribute into a set of binary ones through one-hot encoding.

Without loss of generality, we assume that 𝐺 is a directed graph; if

𝐺 is undirected, then we treat each edge (𝑣𝑖 , 𝑣 𝑗 ) in 𝐺 as a pair of

directed edges with opposing directions: (𝑣𝑖 , 𝑣 𝑗 ) and (𝑣 𝑗 , 𝑣𝑖 ).
Given a space budget 𝑘 ≪ 𝑛, a node embedding maps a node 𝑣 ∈

𝑉 to a length-𝑘 vector. The general, hand-waving goal of attributed

network embedding (ANE) is to compute such an embedding 𝑋𝑣

for each node 𝑣 in the input graph, such that 𝑋𝑣 captures the graph

structure and attribute information surrounding node 𝑣 . In addition,

following previous work [27], we also allocate a space budget
𝑘
2

(explained later in Section 2.3) for each attribute 𝑟 ∈ 𝑅, and aim to

compute an attribute embedding vector for 𝑟 of length 𝑘
2
.

Notations. We denote matrices in bold uppercase, e.g., M. We use

M[𝑣𝑖 ] to denote the 𝑣𝑖 -th row vector ofM, andM[:, 𝑟 𝑗 ] to denote
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Figure 1: Extended graph G

Table 2: Targets for X[𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤.

Y[𝑟1 ] Y[𝑟2 ] Y[𝑟3 ]
X𝑓 [𝑣1 ] 1.0 0.92 0.47

X𝑏 [𝑣1 ] 0.93 0.88 1.17

X𝑓 [𝑣2 ] 1.0 0.92 0.47

X𝑏 [𝑣2 ] 1.11 1.08 0.8

X𝑓 [𝑣3 ] 1.12 1.04 0.54

X𝑏 [𝑣3 ] 1.06 0.95 0.99

X𝑓 [𝑣5 ] 0.98 1.1 1.08

X𝑏 [𝑣5 ] 1.09 1.22 0.61

X𝑓 [𝑣6 ] 0.89 0.82 2.05

X𝑏 [𝑣6 ] 0.53 0.61 1.6

the 𝑟 𝑗 -th column vector ofM. In addition, we useM[𝑣𝑖 , 𝑟 𝑗 ] to denote
the element at the 𝑣𝑖 -th row and 𝑟 𝑗 -th column ofM. Given an index

set 𝑆 , we let M[𝑆] (resp. M[:, 𝑆]) be the matrix block of M that

contains the row (resp. column) vectors of the indices in 𝑆 .

LetA be the adjacencymatrix of the input graph𝐺 , i.e.,A[𝑣𝑖 , 𝑣 𝑗 ] =
1 if (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝑉 , otherwise A[𝑣𝑖 , 𝑣 𝑗 ] = 0. Let D be the diagonal

out-degree matrix of 𝐺 , i.e., D[𝑣𝑖 , 𝑣𝑖 ] =
∑︁

𝑣𝑗 ∈𝑉 A[𝑣𝑖 , 𝑣 𝑗 ]. We define

the random walk matrix of 𝐺 as P = D−1A.
Furthermore, we define an attribute matrix R ∈ R𝑛×𝑑 , such that

R[𝑣𝑖 , 𝑟 𝑗 ] = 𝑤𝑖, 𝑗 is the weight associated with the entry (𝑣𝑖 , 𝑟 𝑗 ,𝑤𝑖 𝑗 )

∈ 𝐸𝑅 . We refer to R[𝑣𝑖 ] as node 𝑣𝑖 ’s attribute vector. Based on R,
we derive a row-normalized (resp. column-normalized) attribute

matrices R𝑟 (resp. R𝑐 ) as follows:

R𝑟 [𝑣𝑖 , 𝑟 𝑗 ] =
R[𝑣𝑖 , 𝑟 𝑗 ]∑︁

𝑣𝑙 ∈𝑉 R[𝑣𝑙 , 𝑟 𝑗 ]
, R𝑐 [𝑣𝑖 , 𝑟 𝑗 ] =

R[𝑣𝑖 , 𝑟 𝑗 ]∑︁
𝑟𝑙 ∈𝑅 R[𝑣𝑖 , 𝑟𝑙 ]

. (1)

Table 1 lists the frequently used notations in our paper.

Extended graph. Our solution utilizes an extended graph G that

incorporates additional nodes and edges into𝐺 . To illustrate, Figure

1 shows an example extended graph G constructed based on an

input attributed network 𝐺 with 6 nodes 𝑣1-𝑣6 and 3 attributes

𝑟1-𝑟3. The left part of the figure (in black) shows the topology of

𝐺 , i.e., the edge set 𝐸𝑉 . The right part of the figure (in blue) shows

the attribute associations 𝐸𝑅 in 𝐺 . Specifically, for each attribute

𝑟 𝑗 ∈ 𝑅, we create an additional node in G; then, For each entry in

𝐸𝑅 , e.g., (𝑣3, 𝑟1,𝑤3,1), we include in G a pair of edges with opposing

directions connecting the node (e.g., 𝑣3) with the corresponding

attribute node (e.g., 𝑟1), with an edge weight (e.g.,𝑤3,1). Note that in

this example, nodes 𝑣1 and 𝑣2 are not associated with any attribute.

2.2 Node-Attribute Affinity via RandomWalks
As explained in Section 1, the resulting embedding of a node 𝑣 ∈ 𝑉
should capture its affinity with attributes in 𝑅, where the affinity

definition should take into account both the attributes directly

associated with 𝑣 in 𝐸𝑅 , and the attributes of the nodes that 𝑣 can

reach via edges in 𝐸𝑉 . To effectively model node-attribute affinity

via multiple hops in G, we employ an adaptation of the random
walks with restarts (RWR) [19, 36] technique to our setting with an

extended graph G. In the following, we refer to an RWR simply as

a random walk. Specifically, since G is directed, we distinguish two

types of node-attribute affinity: forward affinity, denoted as F, and
backward affinity, denoted as B.

Forward affinity. We first focus on forward affinity. Given an

attributed graph𝐺 , a node 𝑣𝑖 , and randomwalk stopping probability

𝛼 (0 < 𝛼 < 1), a forward random walk on G starts from node 𝑣𝑖 . At

each step, assume that the walk is currently at node 𝑣𝑙 . Then, the

walk can either (i) with proabability 𝛼 , terminate at 𝑣𝑙 , or (ii) with

probability 1 − 𝛼 , follow an edge in 𝐸𝑉 to a random out-neighbor

of 𝑣𝑙 . After a random walk terminates at a node 𝑣𝑙 , we randomly

follow an edge in 𝐸𝑅 to an attribute 𝑟 𝑗 , with probability R𝑟 [𝑣𝑙 , 𝑟 𝑗 ],
i.e., a normalized edge weight defined in Equation (1)

1
. The forward

random walk yields a node-to-attribute pair (𝑣𝑖 , 𝑟 𝑗 ), and we add this
pair to a collection S𝑓 .

Suppose that we sample 𝑛𝑟 node-to-attribute pairs for each node

𝑣𝑖 , the size of S𝑓 is then 𝑛𝑟 · 𝑛, where 𝑛 is the number of nodes in

𝐺 . Denote 𝑝 𝑓 (𝑣𝑖 , 𝑟 𝑗 ) as the probability that a forward random walk

starting from 𝑣𝑖 yields a node-to-attribute pair (𝑣𝑖 , 𝑟 𝑗 ). Then, the
forward affinity F[𝑣𝑖 , 𝑟 𝑗 ] between note 𝑣𝑖 and attribute 𝑟 𝑗 is defined

as follows.

F[𝑣𝑖 , 𝑟 𝑗 ] = log

(︃
𝑛 ·𝑝𝑓 (𝑣𝑖 ,𝑟 𝑗 )∑︁
𝑣ℎ∈𝑉 𝑝𝑓 (𝑣ℎ,𝑟 𝑗 ) + 1

)︃
(2)

To explain the intuition behind the above definition, note that

in collection S𝑓 , the probabilities of observing node 𝑣𝑖 , attribute

𝑟 𝑗 , and pair (𝑣𝑖 , 𝑟 𝑗 ) are P(𝑣𝑖 ) = 1

𝑛 , P(𝑟 𝑗 ) =
∑︁

𝑣ℎ∈𝑉 ·𝑝𝑓 (𝑣ℎ,𝑟 𝑗 )
𝑛 , and

P(𝑣𝑖 , 𝑟 𝑗 ) =
𝑝𝑓 (𝑣𝑖 ,𝑟 𝑗 )

𝑛 , respectively. Thus, the above definition of

forward affinity is a variant of the pointwise mutual information
(PMI) [4] between node 𝑣𝑖 and attribute 𝑟 𝑗 . In particular, given a

collection of element pairs S, the PMI of element pair (𝑥,𝑦) ∈ S,
denoted as PMI(𝑥,𝑦), is defined as PMI(𝑥,𝑦) = log

(︂
P(𝑥,𝑦)
P(𝑥) ·P(𝑦)

)︂
,

where P(𝑥) (resp. P(𝑦)) is the probability of observing 𝑥 (resp. 𝑦) in

S and P(𝑥,𝑦) is the probability of observing pair (𝑥,𝑦) in S. The
larger PMI(𝑥,𝑦) is, the more likely 𝑥 and 𝑦 co-occur in S. Note
that PMI(𝑥,𝑦) can be negative. To avoid this, we use an alternative:

shifted PMI, defined as SPMI(𝑥,𝑦) = log

(︂
P(𝑥,𝑦)
P(𝑥) ·P(𝑦) + 1

)︂
, which

is guaranteed to be positive, while retaining the original order of

values of PMI. F[𝑣𝑖 , 𝑟 𝑗 ] in Equation (2) is then SPMI(𝑣𝑖 , 𝑟 𝑗 ).
Another way to understand Equation (2) is through an analogy to

TF/IDF [32] in natural language processing. Specifically, if we view

the all forward random walks as a “document”, then 𝑛 · 𝑝 𝑓 (𝑣𝑖 , 𝑟 𝑗 ) is
akin to the term frequency of 𝑟 𝑗 , whereas the denominator in Equa-

tion (2) is similar to the inverse document frequency of 𝑟 𝑗 . Thus,

the normalization penalizes common attributes, and compensates

for rare attributes.

Backward affinity. Next we define backward affinity in a similar

fashion. Given an attributed network 𝐺 , an attribute 𝑟 𝑗 and stop-

ping probability 𝛼 , a backward random walk starting from 𝑟 𝑗 first

randomly samples a node 𝑣𝑙 according to probability R𝑐 [𝑣𝑙 , 𝑟 𝑗 ], de-
fined in Equation (1). Then, the walk starts from node 𝑣𝑙 ; at each

step, the walk either terminates at the current node with 𝛼 proba-

bility, or randomly jumps to an out-neighbor of current node with

1 − 𝛼 probability. Suppose that the walk terminates at node 𝑣𝑖 ;

then, it returns an attribute-to-node pair (𝑟 𝑗 , 𝑣𝑖 ), which is added to

a collection S𝑏 . After sampling 𝑛𝑟 attribute-to-node pairs for each

attribute, the size of S𝑏 becomes 𝑛𝑟 · 𝑑 . Let 𝑝𝑏 (𝑣𝑖 , 𝑟 𝑗 ) be the proba-
bility that a backward random walk starting from attribute 𝑟 𝑗 stops

at node 𝑣𝑖 . In collection S𝑏 , the probabilities of observing attribute

1
In the degenerate case that 𝑣𝑙 is not associated with any attribute, e.g., 𝑣1 in Figure 1,

we simply restart the random walk from the source node 𝑣𝑖 , and repeat the process.
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𝑟 𝑗 , node 𝑣𝑖 and pair (𝑟 𝑗 , 𝑣𝑖 ) are P(𝑟 𝑗 ) = 1

𝑑
, P(𝑣𝑖 ) =

∑︁
𝑟ℎ∈𝑅 𝑝𝑏 (𝑣𝑖 ,𝑟ℎ)

𝑑

and P(𝑣𝑖 , 𝑟 𝑗 ) =
𝑝𝑏 (𝑣𝑖 ,𝑟 𝑗 )

𝑑
, respectively. By the definition of SPMI, we

define backward affinity B[𝑣𝑖 , 𝑟 𝑗 ] as follows.

B[𝑣𝑖 , 𝑟 𝑗 ] = log

(︃
𝑑 ·𝑝𝑏 (𝑣𝑖 ,𝑟 𝑗 )∑︁
𝑟ℎ∈𝑅 𝑝𝑏 (𝑣𝑖 ,𝑟ℎ) + 1

)︃
. (3)

2.3 Objective Function
Next we define our objective function for ANE, based on the notions

of forward and backward node-attribute affinity defined in Equation

(2) and Equation (3), respectively. Let F[𝑣𝑖 , 𝑟 𝑗 ] (resp. B[𝑣𝑖 , 𝑟 𝑗 ]) be
the forward affinity (resp. backward affinity) between node 𝑣𝑖 and

attribute 𝑟 𝑗 . Given a space budget 𝑘 , our objective is to learn (i) two

embedding vectors for each node 𝑣𝑖 , namely a forward embedding
vector, denoted as X𝑓 [𝑣𝑖 ] ∈ R

𝑘
2 and a backward embedding vector,

denoted asX𝑏 [𝑣𝑖 ] ∈ R
𝑘
2 , as well as (ii) an attribute embedding vector

Y[𝑟 𝑗 ] ∈ R
𝑘
2 for each attribute 𝑟 𝑗 , such that the following objective

is minimized:

O = minX𝑓 ,Y,X𝑏

∑︂
𝑣𝑖 ∈𝑉

∑︂
𝑟 𝑗 ∈𝑅

(︂
F[𝑣𝑖 , 𝑟 𝑗 ] − X𝑓 [𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤

)︂
2

+
(︁
B[𝑣𝑖 , 𝑟 𝑗 ] − X𝑏 [𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤

)︁
2

(4)

Intuitively, in the above objective function, we approximate the

forward node-attribute affinity F[𝑣𝑖 , 𝑟 𝑗 ] between node 𝑣𝑖 and at-

tribute 𝑟 𝑗 using the dot product of their respective embedding vec-

tors, i.e., X𝑓 [𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤. Similarly, we also approximate the back-

ward node-attribute affinity using X𝑏 [𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤. The objective is
then to minimize the total squared error of such approximations,

over all nodes and all attributes in the input data.

Running Example. Assume that in the extended graph G shown

in Figure 1, all attribute weights in 𝐸𝑅 are 1, and the random walk

stopping probability 𝛼 is set to 0.15 [19, 36]. Table 2 lists the target

values, i.e., the exact forward and backward affinity values. Accord-

ing to Equation (4), for the inner products of attribute embedding

vectors of 𝑟1-𝑟3 and that of 𝑣1-𝑣6. These values are calculated based

on Equations (2) and (3), using simulated random walks on G in

Figure 1. Observe, for example, that node 𝑣1 has high affinity values

(both forward and backward) with attribute 𝑟1, which agrees with

the intuition that 𝑣1 is connected to 𝑟1 via many different interme-

diate nodes, i.e., 𝑣3, 𝑣4, 𝑣5. For node 𝑣5, if only forward affinity is

considered, observe that 𝑣5 has higher forward affinity value with

𝑟3 than that with 𝑟1, which cannot reflect the fact that 𝑣5 owns 𝑟1
but not 𝑟3, leading to wrong attribute inference. If both forward

and backward affinity are considered, this issue is resolved.

3 THE PANE ALGORITHM
It is technically challenging to train embeddings of nodes and at-

tributes that preserve our objective function in Equation (4), espe-

cially on massive attributed networks. First, node-attribute affinity

values are defined by random walks, which are rather expensive to

be stimulated in a huge number from every node and attribute of

massive graphs, to accurately get the affinity values of all possible

node-attribute pairs. Second, our objective function preserves both

forward and backward affinity (i.e., considering edge directions),

which makes the training process hard to converge. Further, jointly

Algorithm 1: PANE (single thread)

Input: Attributed network𝐺 , space budget 𝑘 , random walk

stopping probability 𝛼 , error threshold 𝜖 .

Output: Forward and backward embedding vectors X𝑓 , X𝑏 and

attribute embedding vectors Y.
1 𝑡 ← log(𝜖 )

log(1−𝛼 ) − 1;
2 F′,B′ ← APMI(P,R, 𝛼, 𝑡 ) ;
3 X𝑓 ,Y,X𝑏 ← SVDCCD(F′,B′, 𝑘, 𝑡 ) ;
4 return X𝑓 ,Y,X𝑏 ;

Algorithm 2: APMI
Input: P, R, 𝛼, 𝑡 .
Output: F′,B′.

1 Compute R𝑟 and R𝑐 by Equation (1);

2 P(0)
𝑓
← R𝑟 , P

(0)
𝑏
← R𝑐 ;

3 for ℓ ← 1 to 𝑡 do
4 P(ℓ )

𝑓
← (1 − 𝛼) · PP(ℓ−1)

𝑓
+ 𝛼 · P(0)

𝑓
;

5 P(ℓ )
𝑏
← (1 − 𝛼) · P⊤P(ℓ−1)

𝑏
+ 𝛼 · P(0)

𝑏
;

6 Normalize P(𝑡 )
𝑓

by columns to getˆ︁P(𝑡 )
𝑓

;

7 Normalize P(𝑡 )
𝑏

by rows to getˆ︁P(𝑡 )
𝑏

;

8 F′ ← log(𝑛 ·ˆ︁P(𝑡 )
𝑓
+ 1), B′ ← log(𝑑 ·ˆ︁P(𝑡 )

𝑏
+ 1) ;

9 return F′,B′;

preserving both forward and backward affinity involves intensive

computations, severely dragging down the performance. To this end,

we propose PANE that can efficiently handle large-scale data and

produce high-quality ANE results. At a high level, PANE consists

of two phases: (i) iteratively computing approximated versions F′

and B′ of the forward and backward affinity matrices with rigorous

approximation error guarantees, without actually sampling random

walks (Section 3.1), and (ii) initializing the embedding vectors with a

greedy algorithm for fast convergence, and then jointly factorizing

F′ and B′ using cyclic coordinate descent [38] to efficiently obtain

the output embedding vectors X𝑓 ,X𝑏 , and Y (Section 3.2). Given

an attributed network 𝐺 , space budget 𝑘 , random walk stopping

probability 𝛼 and an error threshold 𝜖 as inputs, Algorithm 1 out-

lines the proposed PANE algorithm in the single-threaded setting.

For ease of presentation, this section describes the single-threaded

version of the proposed solution PANE for ANE. The full version of

PANE that runs in multiple threads is explained later in Section 4.

3.1 Forward and Backward Affinity
Approximation

In Section 2.2, node-attribute affinity values are defined using a

large number of random walks, which are expensive to simulate on

a massive graph. For the purpose of efficiency, in this section, we

transform forward and backward affinity in Equations (2) and (3)

into their matrix forms and propose APMI in Algorithm 2, which

efficiently approximates forward and backward affinity matrices

with error guarantee and in linear time complexity, without actually

sampling random walks.

Observe that in Equations (2) and (3), the key for forward and

backward affinity computation is to obtain 𝑝 𝑓 (𝑣𝑖 , 𝑟 𝑗 ) and 𝑝𝑏 (𝑣𝑖 , 𝑟 𝑗 )
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for every pair (𝑣𝑖 , 𝑟 𝑗 ) ∈ 𝑉 × 𝑅. Recall that 𝑝 𝑓 (𝑣𝑖 , 𝑟 𝑗 ) is the prob-
ability that a forward random walk starting from node 𝑣𝑖 picks

attribute 𝑟 𝑗 , while 𝑝𝑏 (𝑣𝑖 , 𝑟 𝑗 ) is the probability of a backward ran-

dom walk from attribute 𝑟 𝑗 stopping at node 𝑣𝑖 . Given nodes 𝑣𝑖
and 𝑣𝑙 , denote 𝜋 (𝑣𝑖 , 𝑣𝑙 ) as the probability that a random walk start-

ing from 𝑣𝑖 stops at 𝑣𝑙 , i.e., the random walk score of 𝑣𝑙 with re-

spect to 𝑣𝑖 . By definition, 𝑝 𝑓 (𝑣𝑖 , 𝑟 𝑗 ) =
∑︁

𝑣𝑙 ∈𝑉 𝜋 (𝑣𝑖 , 𝑣𝑙 ) · R𝑟 [𝑣𝑙 , 𝑟 𝑗 ],
where R𝑟 [𝑣𝑙 , 𝑟 𝑗 ] is the probability that node 𝑣𝑙 picks attribute 𝑟 𝑗 ,

according to Equation (1). Similarly, 𝑝𝑏 (𝑣𝑖 , 𝑟 𝑗 ) is formulated as

𝑝𝑏 (𝑣𝑖 , 𝑟 𝑗 ) =
∑︁

𝑣𝑙 ∈𝑉 R𝑐 [𝑣𝑙 , 𝑟 𝑗 ] · 𝜋 (𝑣𝑙 , 𝑣𝑖 ), where R𝑐 [𝑣𝑙 , 𝑟 𝑗 ] is the prob-
ability that attribute 𝑟 𝑗 picks node 𝑣𝑙 from all nodes having 𝑟 𝑗 based

on their attribute weights. By the definition of random walk scores

in [19, 36], we can derive the matrix form of 𝑝 𝑓 and 𝑝𝑏 as follows.

P𝑓 = 𝛼
∑︁∞
ℓ=0 (1 − 𝛼)ℓPℓ · R𝑟 ,

P𝑏 = 𝛼
∑︁∞
ℓ=0 (1 − 𝛼)ℓP⊤ℓ · R𝑐 .

(5)

We only consider 𝑡 iterations to approximate P𝑓 and P𝑏 in Equation

(6), where 𝑡 is set to
log(𝜖)

log(1−𝛼) − 1.

P(𝑡 )
𝑓

= 𝛼

𝑡∑︂
ℓ=0

(1 − 𝛼)ℓPℓ · R𝑟 , P(𝑡 )
𝑏

= 𝛼

𝑡∑︂
ℓ=0

(1 − 𝛼)ℓP⊤ℓ · R𝑐 . (6)

Then, we normalize P(𝑡 )
𝑓

by columns and P(𝑡 )
𝑏

by rows as follows.

ˆ︁P(𝑡 )
𝑓
[𝑣𝑖 , 𝑟 𝑗 ] =

P(𝑡 )
𝑓
[𝑣𝑖 ,𝑟 𝑗 ]∑︁

𝑣𝑙 ∈𝑉 P(𝑡 )
𝑓
[𝑣𝑙 ,𝑟 𝑗 ]

, ˆ︁P(𝑡 )
𝑏
[𝑣𝑖 , 𝑟 𝑗 ] =

P(𝑡 )
𝑏
[𝑣𝑖 ,𝑟 𝑗 ]∑︁

𝑟𝑙 ∈𝑅 P(𝑡 )
𝑏
[𝑣𝑖 ,𝑟𝑙 ]

After normalization, we compute F′ and B′ according to the

definitions of forward and backward affinity as follows.

F′ = log(𝑛 ·ˆ︁P(𝑡 )
𝑓
+ 1), B′ = log(𝑑 ·ˆ︁P(𝑡 )

𝑏
+ 1) (7)

Algorithm 2 shows the pseudo-code of APMI to compute F′

and B′. Specifically, APMI takes as inputs random walk matrix P,
attribute matrix R, random walk stopping probability 𝛼 and the

number of iterations 𝑡 . At Line 1, APMI begins by computing row-

normalized attribute matrix R𝑟 and column-normalized attribute

matrix R𝑐 according to Equation (1). Then, APMI computes P(𝑡 )
𝑓

and P(𝑡 )
𝑏

based on Equation (6). Note that P is sparse and has 𝑚

non-zero entries. Thus, the computations of 𝛼
∑︁𝑡
ℓ=0 (1 − 𝛼)ℓPℓ and

𝛼
∑︁𝑡
ℓ=0 (1 − 𝛼)ℓP⊤ℓ in Equation (6) need 𝑂 (𝑚𝑛𝑡) time, which is

prohibitively expensive on large graphs. We avoid such expensive

overheads and achieve a time cost of 𝑂 (𝑚𝑑𝑡) for computing P(𝑡 )
𝑓

and P(𝑡 )
𝑏

by an iterative process as follows. Initially, we set P(0)
𝑓

= R𝑟

and P(0)
𝑏

= R𝑐 (Line 2). Then, we start an iterative process from

Line 3 to 5 with 𝑡 iterations; at the ℓ-th iteration, we compute P(ℓ)
𝑓

=

(1−𝛼) ·PP(ℓ−1)
𝑓
+𝛼 ·P(0)

𝑓
and P(ℓ)

𝑏
= (1−𝛼) ·P⊤P(ℓ−1)

𝑏
+𝛼 ·P(0)

𝑏
. After 𝑡

iterations, APMI normalizes P(𝑡 )
𝑓

by column and P(𝑡 )
𝑏

by row (Lines

6-7). At Line 8, APMI obtains F′ and B′ as the approximate forward

and backward affinity matrices. The following lemma establishes

the accuracy guarantee of APMI.

Lemma 3.1. Given P,R𝑟 , 𝛼, 𝜖 as inputs to Algorithm 2, the returned
approximate forward and backward affinity matrices F′, B′ satisfy

that, for every pair (𝑣𝑖 , 𝑟 𝑗 ) ∈ 𝑉 × 𝑅,

2
F′ [𝑣𝑖 ,𝑟 𝑗 ]−1
2
F[𝑣𝑖 ,𝑟 𝑗 ]−1

∈
[︃
max

{︂
0, 1 − 𝜖

P𝑓 [𝑣𝑖 ,𝑟 𝑗 ]

}︂
, 1 + 𝜖∑︁

𝑣𝑙 ∈𝑉 max{0,P𝑓 [𝑣𝑙 ,𝑟 𝑗 ]−𝜖 }

]︃
,

2
B′ [𝑣𝑖 ,𝑟 𝑗 ]−1
2
B[𝑣𝑖 ,𝑟 𝑗 ]−1

∈
[︃
max

{︂
0, 1 − 𝜖

P𝑏 [𝑣𝑖 ,𝑟 𝑗 ]

}︂
, 1 + 𝜖∑︁

𝑟𝑙 ∈𝑅 max{0,P𝑏 [𝑣𝑖 ,𝑟𝑙 ]−𝜖 }

]︃
.

Proof. First, with 𝑡 =
log(𝜖)

log(1−𝛼) − 1, we have∑︁∞
ℓ=𝑡+1 𝛼 (1 − 𝛼)ℓ = 1 −∑︁𝑡

ℓ=0 𝛼 (1 − 𝛼)ℓ = (1 − 𝛼)𝑡+1 = 𝜖. (8)

By the definitions of P𝑓 , P
(𝑡 )
𝑓

and P𝑏 , P
(𝑡 )
𝑏

(i.e., Equation (5) and

Equation (6)), for every pair (𝑣𝑖 , 𝑟 𝑗 ) ∈ 𝑉 × 𝑅,

P𝑓 [𝑣𝑖 , 𝑟 𝑗 ] − P
(𝑡 )
𝑓
[𝑣𝑖 , 𝑟 𝑗 ] =

∑︁∞
ℓ=𝑡+1 𝛼 (1 − 𝛼)ℓPℓ [𝑣𝑖 ] · R𝑟⊤ [𝑟 𝑗 ]

=
(︁∑︁∞

ℓ=𝑡+1 𝛼 (1 − 𝛼)ℓPℓ
)︁
[𝑣𝑖 ] · R𝑟⊤ [𝑟 𝑗 ] ≤

∑︁∞
ℓ=𝑡+1 𝛼 (1 − 𝛼)ℓ = 𝜖,

P𝑏 [𝑣𝑖 , 𝑟 𝑗 ] − P
(𝑡 )
𝑏
[𝑣𝑖 , 𝑟 𝑗 ] =

∑︁∞
ℓ=𝑡+1 𝛼 (1 − 𝛼)ℓP⊤ℓ [𝑣𝑖 ] · R⊤𝑐 [𝑟 𝑗 ]

≤∑︁𝑣𝑙 ∈𝑉
(︁∑︁∞

ℓ=𝑡+1 𝛼 (1 − 𝛼)ℓ
)︁
· R𝑐 [𝑣𝑙 , 𝑟 𝑗 ] ≤

∑︁
𝑣𝑙 ∈𝑉 𝜖 · R𝑐 [𝑣𝑙 , 𝑟 𝑗 ] = 𝜖.

Based on the above inequalities, for every pair (𝑣𝑖 , 𝑟 𝑗 ) ∈ 𝑉 × 𝑅,

max{0, P𝑓 [𝑣𝑖 , 𝑟 𝑗 ] − 𝜖} ≤ P(𝑡 )
𝑓
[𝑣𝑖 , 𝑟 𝑗 ] ≤ P𝑓 [𝑣𝑖 , 𝑟 𝑗 ], (9)

max{0, P𝑏 [𝑣𝑖 , 𝑟 𝑗 ] − 𝜖} ≤ P(𝑡 )
𝑏
[𝑣𝑖 , 𝑟 𝑗 ] ≤ P𝑏 [𝑣𝑖 , 𝑟 𝑗 ] . (10)

According to Lines 6-9 in Algorithm 2, for every pair (𝑣𝑖 , 𝑟 𝑗 ) ∈ 𝑉 ×𝑅,

2
F′ [𝑣𝑖 ,𝑟 𝑗 ]−1
2
F[𝑣𝑖 ,𝑟 𝑗 ]−1

=
ˆ︁P(𝑡 )
𝑓
[𝑣𝑖 ,𝑟 𝑗 ]ˆ︁P𝑓 [𝑣𝑖 ,𝑟 𝑗 ] =

P(𝑡 )
𝑓
[𝑣𝑖 ,𝑟 𝑗 ]∑︁

𝑣𝑙 ∈𝑉 P(𝑡 )
𝑓
[𝑣𝑙 ,𝑟 𝑗 ]

×
∑︁

𝑣𝑙 ∈𝑉 P𝑓 [𝑣𝑙 ,𝑟 𝑗 ]
P𝑓 [𝑣𝑖 ,𝑟 𝑗 ] , (11)

2
B′ [𝑣𝑖 ,𝑟 𝑗 ]−1
2
B[𝑣𝑖 ,𝑟 𝑗 ]−1

=
ˆ︁P(𝑡 )
𝑓
[𝑣𝑖 ,𝑟 𝑗 ]ˆ︁P𝑓 [𝑣𝑖 ,𝑟 𝑗 ] =

P(𝑡 )
𝑏
[𝑣𝑖 ,𝑟 𝑗 ]∑︁

𝑟𝑙 ∈𝑅 P(𝑡 )
𝑏
[𝑣𝑖 ,𝑟𝑙 ]

×
∑︁

𝑟𝑙 ∈𝑅 P𝑏 [𝑣𝑖 ,𝑟𝑙 ]
P𝑏 [𝑣𝑖 ,𝑟 𝑗 ] . (12)

Plugging Inequalities (9) and (10) into Inequalities (11) and (12)

leads to the desired results, which completes our proof. □

3.2 Joint Factorization of Affinity Matrices
This section presents the proposed algorithm SVDCCD, outlined in
Algorithm 4, which jointly factorizes the approximate forward and

backward affinity matrices F′ and B′, in order to obtain the embed-

ding vectors of all nodes and attributes, i.e., X𝑓 ,X𝑏 , and Y. As the
name suggests, the proposed SVDCCD solver is based on the cyclic
coordinate descent (CCD) framework, which iteratively updates each

embedding value towards optimizing the objective function in Equa-

tion (4). The problem, however, is that a direct application of CCD,

starting from random initial values of the embeddings, requires

numerous iterations to converge, leading to prohibitive overheads.

Furthermore, CCD computation itself is expensive, especially on

large-scale graphs. To overcome these challenges, we firstly pro-

pose a greedy initialization method to facilitate fast convergence,

and then design techniques for efficient refinement of initial em-

beddings, including dynamic maintenance and partial updates of

intermediate results to avoid redundant computations in CCD.

Greedy initialization. In many optimization problems, all we

need for efficiency is a good initialization. Thus, a key component

in the proposed SVDCCD algorithm is such an initialization of

embedding values, based on singular value decomposition (SVD) [10].
Note that unlike other matrix factorization problems, here SVD by

itself cannot solve our problem, because the objective function in
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Equation (4) requires the joint factorization of both the forward

and backward affinity matrices at the same time, which cannot be

directly addressed with SVD.

Algorithm 3 describes theGreedyInitmodule of SVDCCD, which
initializes embeddings X𝑓 ,X𝑏 , and Y. Specifically, the algorithm
first employs an efficient randomized SVD algorithm [29] at Line

1 to decompose F′ into U ∈ R𝑛×
𝑘
2 , 𝚺 ∈ R

𝑘
2
× 𝑘

2 , V ∈ R𝑑×
𝑘
2 , and

then initializes X𝑓 = UΣ and Y = V at Line 2, which satisfies

X𝑓 · Y⊤ ≈ F′. In other words, this initialization immediately gains

a good approximation of the forward affinity matrix.

Recall that our objective function in Equation (4) also aims to find

X𝑏 such that X𝑏Y⊤ ≈ B′, i.e., to approximate the backward affinity

matrix well. Here comes the key observation of the algorithm: that

matrix V (i.e., Y) returned by exact SVD is unitary, i.e., Y⊤Y = I,
which implies that X𝑏 ≈ X𝑏Y⊤Y ≈ B′Y. Accordingly, we seed X𝑏

withB′Y at Line 2 of Algorithm 3. This initialization ofX𝑏 also leads

to a relatively good approximation of the backward affinity matrix.

Consequently, the number of iterations required by SVDCCD is

drastically reduced, as confirmed by our experiments in Section 5.

Efficient refinement of the initial embeddings. In Algorithm 4,

after initializing X𝑓 ,X𝑏 and Y at Line 1, we apply cyclic coordinate

descent to refine the embedding vectors according to our objective

function in Equation (4) from Lines 2 to 14. The basic idea of CCD is

to cyclically iterate through all entries inX𝑓 ,X𝑏 andY, one at a time,

minimizing the objective function with respect to each entry (i.e.,
coordinate direction). Specifically, in each iteration, CCD updates

each entry of X𝑓 ,X𝑏 and Y according to the following rules:

X𝑓 [𝑣𝑖 , 𝑙] ←X𝑓 [𝑣𝑖 , 𝑙] − 𝜇𝑓 (𝑣𝑖 , 𝑙), (13)

X𝑏 [𝑣𝑖 , 𝑙] ←X𝑏 [𝑣𝑖 , 𝑙] − 𝜇𝑏 (𝑣𝑖 , 𝑙), (14)

Y[𝑟 𝑗 , 𝑙] ←Y[𝑟 𝑗 , 𝑙] − 𝜇𝑦 (𝑟 𝑗 , 𝑙), (15)

with 𝜇𝑓 (𝑣𝑖 , 𝑙), 𝜇𝑏 (𝑣𝑖 , 𝑙) and 𝜇𝑦 (𝑟 𝑗 , 𝑙) computed by:

𝜇𝑓 (𝑣𝑖 , 𝑙) =
S𝑓 [𝑣𝑖 ] ·Y[:,𝑙 ]
Y⊤ [𝑙 ] ·Y[:,𝑙 ] , 𝜇𝑏 (𝑣𝑖 , 𝑙) =

S𝑏 [𝑣𝑖 ] ·Y[:,𝑙 ]
Y⊤ [𝑙 ] ·Y[:,𝑙 ] , (16)

𝜇𝑦 (𝑟 𝑗 , 𝑙) =
X⊤
𝑓
[𝑙 ] ·S𝑓 [:,𝑟 𝑗 ]+X⊤𝑏 [𝑙 ] ·S𝑏 [:,𝑟 𝑗 ]

X⊤
𝑓
[𝑙 ] ·X𝑓 [:,𝑙 ]+X⊤𝑏 [𝑙 ] ·X𝑏 [:,𝑙 ]

, (17)

where S𝑓 = X𝑓 Y⊤ − F′ and S𝑏 = X𝑏Y⊤ − B′ are obtained at Line 3

in Algorithm 3.

However, directly applying the above updating rules to learn

X𝑓 ,X𝑏 , and Y is inefficient, leading to many redundant matrix op-

erations. Lines 2-14 in Algorithm 4 show how to efficiently apply

the above updating rules by dynamically maintaining and partially

updating intermediate results. Specifically, each iteration in Lines

3-14 first fixes Y and updates each row of X𝑓 and X𝑏 (Lines 3-9),

and then updates each column of Y with X𝑓 and X𝑏 fixed (Lines

10-14). According to Equations (16) and (17), 𝜇𝑓 (𝑣𝑖 , 𝑙), 𝜇𝑏 (𝑣𝑖 , 𝑙), and
𝜇𝑦 (𝑟 𝑗 , 𝑙) are pertinent to S𝑓 [𝑣𝑖 ], S𝑏 [𝑣𝑖 ], and S𝑓 [:, 𝑟 𝑗 ], S𝑏 [:, 𝑟 𝑗 ] re-
spectively, where S𝑓 and S𝑏 further depend on embedding vectors

X𝑓 , X𝑏 and Y. Therefore, whenever X𝑓 [𝑣𝑖 , 𝑙],X𝑏 [𝑣𝑖 , 𝑙], and Y[𝑟 𝑗 , 𝑙]
are updated in the iteration (Lines 6-7 and Line 13), S𝑓 and S𝑏
need to be updated accordingly. Directly recomputing S𝑓 and S𝑏 by

S𝑓 = X𝑓 Y⊤ − F′ and S𝑏 = X𝑏Y⊤ −B′ whenever an entry in X𝑓 ,X𝑏

and, Y is updated is expensive.

Instead, we dynamically maintain and partially update S𝑓 and

S𝑏 according to Equations (18), (19) and (20). Specifically, when

Algorithm 3: GreedyInit
Input: F′,B′, 𝑘, 𝑡 .
Output: X𝑓 ,X𝑏 ,Y, S𝑓 , S𝑏 .

1 U, 𝚺,V← RandSVD(F′, 𝑘
2
, 𝑡 ) ;

2 Y← V, X𝑓 ← U𝚺, X𝑏 ← B′ · Y;
3 S𝑓 ← X𝑓 Y⊤ − F′, S𝑏 ← X𝑏Y⊤ − B′;
4 return X𝑓 ,X𝑏 ,Y, S𝑓 , S𝑏 ;

Algorithm 4: SVDCCD

Input: F′,B′, 𝑘 , 𝑡 .
Output: X𝑓 ,Y,X𝑏 .

1 X𝑓 ,X𝑏 ,Y, S𝑓 , S𝑏 ← GreedyInit(F′,B′, 𝑘, 𝑡 ) ;
2 for ℓ ← 1 to 𝑡 do
3 for 𝑣𝑖 ∈ 𝑉 do
4 for 𝑙 ← 1 to 𝑘

2
do

5 Compute 𝜇𝑓 (𝑣𝑖 , 𝑙), 𝜇𝑏 (𝑣𝑖 , 𝑙) by Equation (16);

6 X𝑓 [𝑣𝑖 , 𝑙 ] ← X𝑓 [𝑣𝑖 , 𝑙 ] − 𝜇𝑓 (𝑣𝑖 , 𝑙) ;
7 X𝑏 [𝑣𝑖 , 𝑙 ] ← X𝑏 [𝑣𝑖 , 𝑙 ] − 𝜇𝑏 (𝑣𝑖 , 𝑙) ;
8 Update S𝑓 [𝑣𝑖 ] by Equation (18);

9 Update S𝑏 [𝑣𝑖 ] by Equation (19);

10 for 𝑟 𝑗 ∈ 𝑅 do
11 for 𝑙 ← 1 to 𝑘

2
do

12 Compute 𝜇𝑦 (𝑟 𝑗 , 𝑙) by Equation (17);

13 Y[𝑟 𝑗 , 𝑙 ] ← Y[𝑟 𝑗 , 𝑙 ] − 𝜇𝑦 (𝑟 𝑗 , 𝑙) ;
14 Update S𝑓 [:, 𝑟 𝑗 ], S𝑏 [:, 𝑟 𝑗 ] by Equation (20);

15 return X𝑓 ,Y,X𝑏 ;

X𝑓 [𝑣𝑖 , 𝑙] and X𝑏 [𝑣𝑖 , 𝑙] are updated (Lines 6-7), we update S𝑓 [𝑣𝑖 ]
and S𝑏 [𝑣𝑖 ] respectively with 𝑂 (𝑑) time at Lines 8-9 by

S𝑓 [𝑣𝑖 ] ← S𝑓 [𝑣𝑖 ] − 𝜇𝑓 (𝑣𝑖 , 𝑙) · Y[:, 𝑙]⊤, (18)

S𝑏 [𝑣𝑖 ] ← S𝑏 [𝑣𝑖 ] − 𝜇𝑏 (𝑣𝑖 , 𝑙) · Y[:, 𝑙]⊤, (19)

Whenever Y[𝑟 𝑗 , 𝑙] is updated at Line 13, both S𝑓 [:, 𝑟 𝑗 ] and S𝑏 [:, 𝑟 𝑗 ]
are updated in 𝑂 (𝑛) time at Line 14 by

S𝑓 [:, 𝑟 𝑗 ] ← S𝑓 [:, 𝑟 𝑗 ] − 𝜇𝑦 (𝑟 𝑗 , 𝑙) · X𝑓 [:, 𝑙],
S𝑏 [:, 𝑟 𝑗 ] ← S𝑏 [:, 𝑟 𝑗 ] − 𝜇𝑦 (𝑟 𝑗 , 𝑙) · X𝑏 [:, 𝑙],

(20)

3.3 Complexity Analysis
In the proposed algorithm PANE (Algorithm 1), the maximum

length of random walk is 𝑡 =
log(𝜖)

log(1−𝛼) −1 =
log( 1

𝜖
)

log( 1

1−𝛼 )
−1. According

to Section 3.1, Algorithm 2 runs in time𝑂 (𝑚𝑑 · 𝑡) = 𝑂

(︂
𝑚𝑑 · log 1

𝜖

)︂
.

Meanwhile, according to [29], given F′ ∈ R𝑛×𝑑 as input, RandSVD
in Algorithm 3 requires 𝑂 (𝑛𝑑𝑘𝑡) time, where 𝑛, 𝑑 , 𝑘 are the num-

ber of nodes, number of attributes, and embedding space budget,

respectively. The computation of S𝑓 , S𝑏 costs 𝑂 (𝑛𝑑𝑘) time. In ad-

dition, the 𝑡 iterations of CCD for updating X𝑓 ,X𝑏 and Y take

𝑂 (𝑛𝑑𝑘𝑡) = 𝑂 (𝑛𝑑𝑘 log 1

𝜖 ) time. Therefore, the overall time com-

plexity of Algorithm 1 is 𝑂

(︂
(𝑚𝑑 + 𝑛𝑑𝑘) · log

(︂
1

𝜖

)︂)︂
. The memory

consumption of intermediate results yielded in Algorithm 1, i.e.,
F′,B′, U, 𝚺,V,S𝑓 ,S𝑏 are at most𝑂 (𝑛𝑑). Hence, the space complexity

of Algorithm 1 is bounded by 𝑂 (𝑛𝑑 +𝑚).
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Algorithm 5: PANE

Input: Attributed network𝐺 , space budget 𝑘 , random walk

stopping probability 𝛼 , error threshold 𝜖 , the number of

threads 𝑛𝑏 .

Output: Forward and backward embedding vectors X𝑓 , X𝑏 and

attribute embedding vectors Y.
1 Partition𝑉 into 𝑛𝑏 subsets V ← {𝑉1, · · · ,𝑉𝑛𝑏 } equally;
2 Partition 𝑅 into 𝑛𝑏 subsets R ← {𝑅1, · · · , 𝑅𝑛𝑏 } equally;
3 𝑡 ← log(𝜖 )

log(1−𝛼 ) − 1;
4 F′,B′ ← PAPMI(P,R, 𝛼, 𝑡,V, R) ;
5 X𝑓 ,Y,X𝑏 ← PSVDCCD(F′,B′,V, R, 𝑘, 𝑡 ) ;
6 return X𝑓 ,Y,X𝑏 ;

4 PARALLELIZATION OF PANE
Although single-thread PANE (i.e., Algorithm 1) runs in linear time

to the size of the input attributed network, it still requires substan-

tial time to handle large-scale attributed networks in practice. For

instance, onMAG dataset that has 59.3 million nodes, PANE (single

thread) takes about five days. Note that it is challenging to develop

a parallel algorithm achieving such linear scalability to the number

of threads on a multi-core CPU. Specifically, PANE involves various

computational patterns, including intensive matrix computation,

factorization, and CCD updates. Moreover, it is also challenging

to maintain the intermediate result of each thread and combine

them as the final result. To further boost efficiency, in this section

we develop a parallel PANE (Algorithm 5), and it takes only 11.9

hours on MAG when using 10 threads (i.e., up to 10 times speedup).

In the first phase, we adopt block matrix multiplication [11] and

propose PAPMI to compute forward and backward affinity matrices

in a parallel manner (Section 4.1). In the second phase, we develop

PSVDCCD with a split-merge-based parallel SVD technique to effi-

ciently decompose affinity matrices, and further propose a parallel

CCD technique to refine the embeddings efficiently (Section 4.2).

Algorithm 5 illustrates the pseudo-code of parallel PANE. Com-

pared to the single-thread version, parallel PANE takes as input

an additional parameter, the number of threads 𝑛𝑏 , and randomly

partitions the node set 𝑉 , as well as the attribute set 𝑅, into 𝑛𝑏 sub-

sets with equal size, denoted asV and R, respectively (Lines 1-2).

PANE invokes PAPMI (Algorithm 6) at Line 4 to get F′ and B′, and
then invokes PSVDCCD (Algorithm 8) to refine the embeddings.

Note that the parallel version of PANE does not return exactly

the same outputs as the single-thread version, as somemodules (e.g.,
the parallel version of SVD) introduce additional error. Nevertheless,

as the experiments in Section 5 demonstrates, the degradation of

result utility in parallel PANE is small, but the speedup is significant.

4.1 Parallel Forward and Backward Affinity
Approximation

We propose PAPMI in Algorithm 6 to estimate F′ and B′ in par-

allel. After obtaining R𝑟 and R𝑐 based on Equation (1) at Line 1,

PAPMI divides R𝑟 and R𝑐 into matrix blocks according to two in-

put parameters, the node subsets V = {𝑉1,𝑉2, · · · ,𝑉𝑛𝑏 } and at-

tribute subsets R = {𝑅1, 𝑅2, · · · , 𝑅𝑛𝑏 }. Then, PAPMI parallelizes

the matrix multiplications for computing P(𝑡 )
𝑓

and P(𝑡 )
𝑏

from Line

2 to 6, using 𝑛𝑏 threads in 𝑡 iterations. Specifically, the 𝑖-th thread

Algorithm 6: PAPMI

Input: P,R, 𝛼, 𝑡,V, R
Output: F′,B′

1 Compute R𝑟 and R𝑐 by Equation (1);

2 parallel for 𝑅𝑖 ∈ R do
3 P𝑓

(0)
𝑖
← R𝑟 [:, 𝑅𝑖 ], P𝑏 (0)𝑖

← R𝑐 [:, 𝑅𝑖 ];
4 for ℓ ← 1 to 𝑡 do
5 P𝑓

(ℓ )
𝑖
← (1 − 𝛼) · PP𝑓 (ℓ−1)𝑖

+ 𝛼 · P𝑓 (0)𝑖
;

6 P𝑏
(ℓ )
𝑖
← (1 − 𝛼) · P⊤P𝑏 (ℓ−1)𝑖

+ 𝛼 · P𝑏 (0)𝑖
;

7 P𝑓 (𝑡 ) ← [P𝑓1 (𝑡 ) · · · P𝑓𝑛𝑏
(𝑡 ) ];

8 P𝑏 (𝑡 ) ← [P𝑏 (𝑡 )1
· · · P𝑏 (𝑡 )𝑛𝑏

];
Lines 9-10 are the same as Lines 6-7 in Algorithm 2;

11 parallel for𝑉𝑖 ∈ V do
12 F′ [𝑉𝑖 ] ← log(𝑛 ·ˆ︁P(𝑡 )

𝑓
[𝑉𝑖 ] + 1) ;

13 B′ [𝑉𝑖 ] ← log(𝑑 ·ˆ︁P(𝑡 )
𝑏
[𝑉𝑖 ] + 1) ;

14 return F′,B′

Algorithm 7: SMGreedyInit
Input: F′,B′,V, 𝑘, 𝑡 .

Output: X𝑓 ,X𝑏 ,Y, S𝑓 , S𝑏 .
1 parallel for𝑉𝑖 ∈ V do
2 𝚽, 𝚺,V𝑖 ← RandSVD(F′ [𝑉𝑖 ], 𝑘

2
, 𝑡 ) ;

3 U𝑖 ← 𝚽𝚺;

4 V←
[︁
V1 · · · V𝑛𝑏

]︁⊤
;

5 𝚽, 𝚺,Y← RandSVD(V, 𝑘
2
, 𝑡 ) ;

6 W← 𝚽𝚺;

7 parallel for𝑉𝑖 ∈ V do
8 X𝑓 [𝑉𝑖 ] ← U𝑖 ·W[ (𝑖 − 1) · 𝑘

2
: 𝑖 · 𝑘

2
];

9 X𝑏 [𝑉𝑖 ] ← B′ [𝑉𝑖 ] · Y;
10 S𝑓 [𝑉𝑖 ] ← X𝑓 [𝑉𝑖 ] · Y⊤ − F′ [𝑉𝑖 ];
11 S𝑏 [𝑉𝑖 ] ← B′ [𝑉𝑖 ] − X𝑏 [𝑉𝑖 ] · Y⊤;
12 return X𝑓 ,X𝑏 ,Y, S𝑓 , S𝑏 ;

initializes P𝑓𝑖
(0)

by R𝑟 [:, 𝑅𝑖 ] and P𝑏𝑖
(0)

by R𝑐 [:, 𝑅𝑖 ] (Line 3), and
then computes P𝑓

(ℓ)
𝑖

= (1 − 𝛼) · PP𝑓
(ℓ−1)
𝑖

+ 𝛼 · P𝑓
(0)
𝑖

and P𝑏
(ℓ)
𝑖

=

(1−𝛼) ·P⊤P𝑏
(ℓ−1)
𝑖

+𝛼 ·P𝑏
(0)
𝑖

(Lines 4-6). Then, we use a main thread

to aggregate the partial results of all threads at Lines 7-8. Specifically,

𝑛𝑏 matrix blocks P𝑓𝑖
(𝑡 )

(resp. P𝑏𝑖
(𝑡 )

) are concatenated horizontally

together as P𝑓 (𝑡 ) (resp. P𝑏 (𝑡 ) ) at Line 7 (resp. Line 8). At Lines 9-10,

we normalizeˆ︁P(𝑡 )
𝑓

andˆ︁P(𝑡 )
𝑏

in the same way as Lines 6-7 in Algo-

rithm 2. From Lines 11 to 13, PAPMI starts 𝑛𝑏 threads to compute

F′ and B′ block by block in parallel, based on the definitions of for-

ward and backward affinity. Specifically, the 𝑖-th thread computes

F′[𝑉𝑖 ] = log(𝑛 · ˆ︁P(𝑡 )
𝑓
[𝑉𝑖 ] + 1) and B′[𝑉𝑖 ] = log(𝑑 · ˆ︁P(𝑡 )

𝑏
[𝑉𝑖 ] + 1).

Finally, PAPMI returns F′ and B′ as the approximate forward and

backward affinity matrices (Line 14). Lemma 4.1 indicates the accu-

racy guarantee of PAPMI.

Lemma 4.1. Given same parameters P,R, 𝛼 and 𝑡 as inputs to Al-
gorithm 2 and Algorithm 6, the two algorithms return the same ap-
proximate forward and backward affinity matrices F′, B′.
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Algorithm 8: PSVDCCD
Input: F′,B′,V, R, 𝑘, 𝑡 .
Output: X𝑓 ,Y,X𝑏 .

1 X𝑓 ,X𝑏 ,Y, S𝑓 , S𝑏 ← SMGreedyInit(F′,B′,V, 𝑘, 𝑡 ) ;
2 for ℓ ← 1 to 𝑡 do
3 parallel for𝑉ℎ ∈ V do
4 for 𝑣𝑖 ∈ 𝑉ℎ do

Lines 5-10 are the same as Lines 4-9 in Algorithm 4;

11 parallel for 𝑅ℎ ∈ R do
12 for 𝑟 𝑗 ∈ 𝑅ℎ do

Lines 13-16 are the same as Lines 11-14 in Algorithm 4;

17 return X𝑓 ,Y,X𝑏 ;

4.2 Parallel Joint Factorization of Affinity
Matrices

This section presents the parallel algorithm PSVDCCD in Algo-

rithm 8 to further improve the efficiency of the joint affinity matrix

factorization process. At Line 1 of the algorithm, we design a paral-

lel initialization algorithm SMGreedyInit with a split-and-merge-

based parallel SVD technique for embedding vector initialization.

Algorithm 7 shows the pseudo-code of SMGreedyInit, which
takes as input F′, B′,V , and 𝑘 . Based onV , SMGreedyInit splits
matrix F′ into 𝑛𝑏 blocks and launches 𝑛𝑏 threads. Then, the 𝑖-th

thread applies RandSVD to block F′[𝑉𝑖 ] generated by the rows of

F′ based on node set𝑉𝑖 ∈ V (Line 1-3). After obtaining V1, · · · ,V𝑛𝑏 ,
SMGreedyInitmerges thesematrices by concatenatingV1, · · · ,V𝑛𝑏
into V = [V1 · · · V𝑛𝑏 ]⊤ ∈ R

𝑘𝑛𝑏
2
×𝑑

, and then applies RandSVD

over it to obtain W ∈ R
𝑘𝑛𝑏
2
× 𝑘

2 and Y ∈ R𝑑×
𝑘
2 (Lines 4-6). At Line

7, SMGreedyInit creates 𝑛𝑏 threads, and uses the 𝑖-th thread to

handle node subset 𝑉𝑖 for initializing embedding vectors X𝑓 [𝑉𝑖 ]
and X𝑏 [𝑉𝑖 ] at Lines 8-9, as well as computing S𝑓 and S𝑏 at Lines

10-11. Finally, SMGreedyInit returns initialized embedding vectors

Y, X𝑓 , and X𝑏 as well as intermediate results S𝑓 , S𝑏 at Line 12.

Lemma 4.2 indicates that the initial embedding vectors produced

by SMGreedyInit and GreedyInit are close.
After obtaining X𝑓 ,X𝑏 , and Y by SMGreedyInit, Lines 2-16 in

Algorithm 8 train embedding vectors by cyclic coordinate descent in

parallel based on subsetsV and R, in 𝑡 iterations. In each iteration,

PSVDCCD first fixes Y and launches 𝑛𝑏 threads to update X𝑓 and

X𝑏 in parallel by blocks according toV , and then updates Y using

the 𝑛𝑏 threads in parallel by blocks according to R, with X𝑓 and X𝑏

fixed. Specifically, Lines 5-10 are the same as Lines 4-9 of Algorithm

4, and Lines 13-16 are the same as Lines 11-14 of Algorithm 4.

Finally, Algorithm 8 returns embedding results at Line 17.

Lemma 4.2. Given same F′,B′, 𝑘 and 𝑡 as inputs to Algorithm 3 and
Algorithm 7, the outputs X𝑓 ,Y, S𝑓 , S𝑏 returned by both algorithms
satisfy that X𝑓 · Y⊤ = F′,Y⊤Y = I and S𝑓 = S𝑏Y = 0, when 𝑡 = ∞.

4.3 Complexity Analysis
Observe that the non-parallel parts of Algorithms 6 (Lines 7-10)

and 7 (Lines 4-6) take 𝑂 (𝑛𝑑) time, as each of them performs a con-

stant number of operations on 𝑂 (𝑛𝑑) matrix entries. Meanwhile,

for the parallel parts of Algorithms 6 and 8, each thread runs in

Table 3: Datasets. (K=103, M=106)

Name |𝑉 | |𝐸𝑉 | |𝑅 | |𝐸𝑅 | |𝐿 | Refs
Cora 2.7K 5.4K 1.4K 49.2K 7 [25, 27, 30, 41, 44, 51]

Citeseer 3.3K 4.7K 3.7K 105.2K 6 [25, 27, 30, 41, 44, 51]

Facebook 4K 88.2K 1.3K 33.3K 193 [24, 27, 45, 49]

Pubmed 19.7K 44.3K 0.5K 988K 3 [27, 30, 49, 51]

Flickr 7.6K 479.5K 12.1K 182.5K 9 [27]

Google+ 107.6K 13.7M 15.9K 300.6M 468 [24, 45]

TWeibo 2.3M 50.7M 1.7K 16.8M 8 -

MAG 59.3M 978.2M 2K 434.4M 100 -

𝑂

(︂
𝑚𝑑
𝑛𝑏
· log

(︂
1

𝜖

)︂)︂
and 𝑂 ( 𝑛𝑑𝑘𝑡𝑛𝑏

) time, respectively, since we divides

the workload evenly to 𝑛𝑏 threads. Specifically, each thread in Al-

gorithm 6 runs in 𝑂

(︂
𝑚𝑑
𝑛𝑏
· log

(︂
1

𝜖

)︂)︂
time. Algorithm 8 first takes

𝑂 ( 𝑛𝑛𝑏 𝑑𝑘𝑡) time for each thread to factorize a
𝑛
𝑛𝑏
×𝑑 matrix block of

F′ (Lines 1-3 in Algorithm 7). In addition, Lines 4-6 in Algorithm 7 re-

quires 𝑂 (𝑛𝑏𝑑𝑘) time. In merge course (i.e., Lines 7-11 in Algorithm

7), the matrix multiplications take 𝑂 ( 𝑛𝑛𝑏 𝑘
2) time. In the 𝑡 itera-

tions of CCD (i.e., Lines 2-16 in Algorithm 8), each thread spends

𝑂 ( 𝑛𝑑𝑘𝑡𝑛𝑏
) time to update. Thus, the computational time complexity

per thread in Algorithm 5 is 𝑂

(︂
𝑚𝑑+𝑛𝑑𝑘

𝑛𝑏
· log

(︂
1

𝜖

)︂)︂
. Algorithm 6

and Algorithm 8 require 𝑂 (𝑚 + 𝑛𝑑) and 𝑂 (𝑛𝑑) space, respectively.
Therefore, the space complexity of PANE is 𝑂 (𝑚 + 𝑛𝑑).

5 EXPERIMENTS
We experimentally evaluate our proposed method PANE (both

single-thread and parallel versions) against 10 competitors on three

tasks: link prediction, attribute inference and node classification,

using 8 real datasets. All experiments are conducted on a Linux ma-

chine powered by an Intel Xeon(R) E7-8880 v4@2.20GHz CPUs and

1TB RAM. The codes of all algorithms are collected from their

respective authors, and all are implemented in Python, except

NRP, TADW and LQANR. For fair comparison of efficiency, we

re-implement TADW and LQANR in Python.

5.1 Experiments Setup
Datasets. Table 3 lists the statistics of the datasets used in our

experiments. All graphs are directed except Facebook and Flickr.
|𝑉 | and |𝐸𝑉 | denote the number of nodes and edges in the graph,

whereas |𝑅 | and |𝐸𝑅 | represent the number of attributes and the

number of node-attribute associations (i.e., the number of nonzero

entries in attribute matrix R). In addition, 𝐿 is the set of node labels,
which are used in the node classification task. Cora2, Citeseer2,
Pubmed2 and Flickr3 are benchmark datasets used in prior work

[15, 25, 27, 30, 41, 51]. Facebook4 and Google+4 are social networks
used in [24]. For Facebook and Google+, we treat each ego-network

as a label and extract attributes from their user profiles, which is

consistent with the experiments in prior work [27, 45]

To evaluate the scalability of the proposed solution, we also in-

troduce two new datasets TWeibo5 and MAG6
that have not been

2
http://linqs.soe.ucsc.edu/data (accessed September 18, 2020)

3
https://github.com/mengzaiqiao/CAN (accessed September 18, 2020)

4
http://snap.stanford.edu/data (accessed September 18, 2020)

5
https://www.kaggle.com/c/kddcup2012-track1 (accessed September 18, 2020)

6
http://ma-graph.org/rdf-dumps/ (accessed September 18, 2020)
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Table 4: Attribute inference performance.

Method
Cora Citeseer Facebook Pubmed Flickr Google+ TWeibo MAG

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

BLA 0.559 0.563 0.540 0.541 0.653 0.648 0.520 0.524 0.660 0.653 - - - - - -

CAN 0.865 0.855 0.875 0.859 0.765 0.745 0.734 0.72 0.772 0.774 - - - - - -

PANE (single thread) 0.913 0.925 0.903 0.916 0.828 0.84 0.871 0.874 0.825 0.832 0.972 0.973 0.774 0.837 0.876 0.888

PANE (parallel) 0.909 0.92 0.899 0.913 0.825 0.837 0.867 0.869 0.822 0.831 0.969 0.97 0.773 0.836 0.874 0.887

Table 5: Link prediction performance.

Method
Cora Citeseer Pubmed Facebook Flickr Google+ TWeibo MAG

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

NRP 0.796 0.777 0.86 0.808 0.87 0.861 0.969 0.973 0.909 0.902 0.989 0.992 0.967 0.979 0.915 0.92

GATNE 0.791 0.822 0.687 0.767 0.745 0.796 0.961 0.954 0.805 0.785 - - - - - -

TADW 0.829 0.805 0.895 0.868 0.904 0.863 0.752 0.793 0.573 0.58 - - - - - -

ARGA 0.64 0.485 0.637 0.484 0.623 0.474 0.71 0.636 0.676 0.656 - - - - - -

BANE 0.875 0.823 0.899 0.873 0.919 0.847 0.796 0.795 0.64 0.605 0.56 0.533 - - - -

PRRE 0.879 0.836 0.895 0.855 0.887 0.813 0.899 0.884 0.789 0.806 - - - - - -

STNE 0.808 0.829 0.71 0.781 0.789 0.774 0.962 0.957 0.638 0.659 - - - - - -

CAN 0.663 0.559 0.734 0.652 0.734 0.559 0.714 0.639 0.5 0.5 - - - - - -

DGI 0.51 0.4 0.5 0.4 0.73 0.554 0.711 0.637 0.769 0.824 0.792 0.795 0.721 0.64 - -

LQANR 0.886 0.863 0.916 0.916 0.904 0.8 0.951 0.917 0.824 0.805 - - - - - -

PANE (single thread) 0.933 0.918 0.932 0.919 0.985 0.977 0.982 0.982 0.929 0.927 0.987 0.982 0.976 0.986 0.96 0.965

PANE (parallel) 0.929 0.914 0.929 0.916 0.985 0.976 0.98 0.979 0.927 0.924 0.984 0.98 0.975 0.985 0.958 0.962

used in previous ANE papers due to their massive sizes. TWeibo
[21] is a social network, in which each node represents a user, and

each directed edge represents a following relationship. We extract

the 1657 most popular tags and keywords from its user profile data

as the node attributes. The labels are generated and categorized

into eight types according to the ages of users. MAG dataset is ex-

tracted from the well-known Microsoft Academic Knowledge Graph
[34], where each node represents a paper and each directed edge

represents a citation. We extract 2000 most frequently used distinct

words from the abstract of all papers as the attribute set and regard

the fields of study of each paper as its labels. We will make TWeibo
and MAG datasets publicly available upon acceptance.

Baselines and Parameter Settings. We compare our methods

PANE (single thread) and PANE (parallel) against 10 state-of-the-

art competitors: eight recent ANE methods including BANE [44],

CAN [27], STNE [25], PRRE [51], TADW [41], ARGA [30], DGI
[37] and LQANR [43], one state-of-the-art homogeneous network

embedding method NRP [46], and one latest attributed heteroge-

neous network embedding algorithm GATNE [3]. All methods ex-

cept PANE (parallel) run on a single CPU core. Note that although

GATNE itself is a parallel algorithm, its parallel version requires

the proprietary AliGraph platform which is not available to us.

The parameters of all competitors are set as suggested in their

respective papers. For PANE (single thread) and PANE (parallel), by

default we set error threshold 𝜖 = 0.015 and random walk stopping

probability 𝛼 = 0.5, and we use 𝑛𝑏 = 10 threads for PANE (parallel).

Unless otherwise specified, we set space budget 𝑘 = 128.

The evaluation results of our proposed methods against the

competitors for attribute inference, link prediction and node classi-

fication, are reported in Sections 5.2, 5.3 and 5.4 respectively. The

efficiency and scalability evaluation is reported in Section 5.5. A

method will be excluded if it cannot finish training within one

week. Due to space limitations, we omit the results of evaluating

the impact of GreedyInit and varying the parameters of PANE here,

and please see our technical report [47] if interested.

5.2 Attribute Inference
Attribute inference aims to predict the values of attributes of nodes.

Note that, except for CAN [27], none of the the other competitors is

capable of performing attribute inference, since they only generate

embedding vectors for nodes, not attributes. Hence, we compare our

solutions against CAN for attribute inference. Further, we compare

against BLA, the state-of-the-art attribute inference algorithm [42].

Note that BLA is not an ANE solution.

We split the nonzero entries in the attribute matrix R, and regard
20% as the test set R𝑡𝑒𝑠𝑡 and the remaining 80% part as the train-

ing set R𝑡𝑟𝑎𝑖𝑛 . CAN runs over R𝑡𝑟𝑎𝑖𝑛 to generate node embedding

vector X[𝑣𝑖 ] for each node 𝑣𝑖 ∈ 𝑉 and attribute embedding vector

Y[𝑟 𝑗 ] for each attribute 𝑟 𝑗 ∈ 𝑅. Following [27], we use the inner

product of X[𝑣𝑖 ] and Y[𝑟 𝑗 ] as the predicted score of attribute 𝑟 𝑗
with respect to node 𝑣𝑖 . Note that PANE generates a forward em-

bedding vector X𝑓 [𝑣𝑖 ] and a backward embedding vector X𝑏 [𝑣𝑖 ]
for each node 𝑣𝑖 ∈ 𝑉 , and also an attribute embedding vector Y[𝑟 𝑗 ]
for each attribute 𝑟 𝑗 ∈ 𝑅. Based on objective function in Equation

(4), X𝑓 [𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤ is expected to preserve forward affinity value

F[𝑣𝑖 , 𝑟 𝑗 ], and X𝑏 [𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤ is expected to preserve backward
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Figure 2: Node classification results (best viewed in color).

affinity value B[𝑣𝑖 , 𝑟 𝑗 ]. Thus, we predict the score between 𝑣𝑖 and

𝑟 𝑗 through the affinity between node 𝑣𝑖 and attribute 𝑟 𝑗 , including

both forward affinity and backward affinity, denoted as 𝑝 (𝑣𝑖 , 𝑟 𝑗 ),
by utilizing their embedding vectors as follows.

𝑝 (𝑣𝑖 , 𝑟 𝑗 ) = X𝑓 [𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤ + X𝑏 [𝑣𝑖 ] · Y[𝑟 𝑗 ]⊤ (21)

≈ F[𝑣𝑖 , 𝑟 𝑗 ] + B[𝑣𝑖 , 𝑟 𝑗 ] .

Following prior work [27], we adopt the Area Under Curve (AUC)
and Average Precision (AP) metrics to measure the performance.

Table 4 presents the attribute inference performance of PANE
(single thread), PANE (parallel), CAN and BLA. Observe that PANE
(single thread) consistently achieves the best performance on all

datasets and significantly outperforms existing solutions by a large

margin, demonstrating the power of forward affinity and backward

affinity that are preserved in embedding vectors X𝑓 ,X𝑏 and Y, to
capture the affinity between nodes and attributes in attributed net-

works. For instance, on Pubmed, PANE (single thread) has high

accuracy 0.871 AUC and 0.874 AP, while that of CAN are only 0.734

and 0.72 respectively. Further, CAN and BLA fail to process large at-

tributed networks Google+, TWeibo andMAG in one week, and, thus

are not reported. Observe that parallel PANE has close performance

(i.e., AUC and AP) to that of PANE (single thread). For instance, on

Pubmed, the difference of AUC between PANE (single thread) and

PANE (parallel) is just 0.004. This negligible difference is introduced

by the split-merge-based parallel SVD technique SMGreedyInit for
matrix decomposition. As shown in Section 5.5, parallel PANE is

considerably faster than PANE (single thread) by up to 9 times,

while obtaining almost the same accuracy performance.

5.3 Link Prediction
Link prediction aims to predict the edges that aremost likely to form

between nodes. We first randomly remove 30% edges in input graph

𝐺 , obtaining a residual graph𝐺 ′ and a set of the removed edges. We

then randomly sample the same amount of non-existing edges as

negative edges. The test set 𝐸 ′ contains both the removed edges and

the negative edges.We run PANE and all competitors on the residual

graph𝐺 ′ to produce embedding vectors, and then evaluate the link

prediction performance with 𝐸 ′ as follows. PANE produces the

a forward embedding X𝑓 [𝑣𝑖 ] and a backward embedding X𝑏 [𝑣𝑖 ]
for each node 𝑣𝑖 ∈ 𝑉 , as well as an attribute embedding Y[𝑟𝑙 ]
for each attribute 𝑟𝑙 ∈ 𝑅. As explained, X𝑓 [𝑣𝑖 ] · Y[𝑟𝑙 ]⊤ preserves

F[𝑣𝑖 , 𝑟𝑙 ], andX𝑏 [𝑣 𝑗 ] ·Y[𝑟𝑙 ]⊤ preserves B[𝑣 𝑗 , 𝑟𝑙 ]. Recall that F[𝑣𝑖 , 𝑟𝑙 ]
measures the affinity from 𝑣𝑖 to 𝑟𝑙 over the attributed network;

similarly given node 𝑣 𝑗 and attribute 𝑟𝑙 , B[𝑣 𝑗 , 𝑟𝑙 ] measures the

affinity from 𝑟𝑙 to 𝑣 𝑗 over the network. Intuitively, F[𝑣𝑖 , 𝑟𝑙 ] ·B[𝑣 𝑗 , 𝑟𝑙 ]
represents the affinity from node 𝑣𝑖 to node 𝑣 𝑗 based on attribute 𝑟𝑙 .

The affinity between nodes 𝑣𝑖 and 𝑣 𝑗 , denoted as 𝑝 (𝑣𝑖 , 𝑣 𝑗 ), can be

evaluated by summing up the affinity between the two nodes over

all attributes in 𝑅, which can be computed as follows and indicates

the possibility of forming an edge from 𝑣𝑖 to 𝑣 𝑗 .

𝑝 (𝑣𝑖 , 𝑣 𝑗 ) =
∑︁
𝑟𝑙 ∈𝑅 (X𝑓 [𝑣𝑖 ] · Y[𝑟𝑙 ]⊤) · (X𝑏 [𝑣 𝑗 ] · Y[𝑟𝑙 ]⊤) (22)

≈ ∑︁
𝑟𝑙 ∈𝑅 F[𝑣𝑖 , 𝑟𝑙 ] · B[𝑣 𝑗 , 𝑟𝑙 ] .

Therefore, for PANE, we can calculate 𝑝 (𝑣𝑖 , 𝑣 𝑗 ) as the prediction
score of the directed edge (𝑣𝑖 , 𝑣 𝑗 ). NRP generates a forward embed-

ding X𝑓 [𝑣𝑖 ] and a backward embedding X𝑏 [𝑣𝑖 ] for each node 𝑣𝑖

and uses 𝑝 (𝑣𝑖 , 𝑣 𝑗 ) = X𝑓 [𝑣𝑖 ] · X𝑏 [𝑣𝑖 ]⊤ as the prediction score for

the directed edge (𝑣𝑖 , 𝑣 𝑗 ) [46]. For undirected graphs, PANE (single

thread), PANE (parallel) and NRP utilize 𝑝 (𝑣𝑖 , 𝑣 𝑗 ) + 𝑝 (𝑣 𝑗 , 𝑣𝑖 ) as the
prediction score for the undirected edge between 𝑣𝑖 and 𝑣 𝑗 . In terms

of the remaining competitors that only work for undirected graphs,

they learn one embeddingX[𝑣𝑖 ] for each node 𝑣𝑖 . In literature, there
are four ways to calculate the link prediction score 𝑝 (𝑣𝑖 , 𝑣 𝑗 ), includ-
ing inner productmethod used in CAN and ARGA, cosine similarity
method used in PRRE and ANRL, Hamming distance method used

in BANE, as well as edge feature method used in [14, 26]. We adopt

all these four prediction methods over each competitor and report
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Figure 3: Running time (best viewed in color).

the competitor’s best performance on each dataset. Following pre-

vious work [27, 30], we use Area Under Curve (AUC) and Average
Precision (AP) to evaluate link prediction accuracy.

Table 5 reports the AUC and AP scores of each method on each

dataset. PANE (single thread) consistently outperforms all com-

petitors over all datasets except NRP on Google+, by a substantial

margin of up to 6.6% for AUC and up to 13% for AP. For large

attributed networks including Google+, TWeibo and MAG, most

existing solutions fail to finish processing within a week and thus

are not reported. The superiority of PANE (single thread) over com-

petitors is achieved by (i) learning a forward embedding vector

and a backward embedding vector for each node to capture the

asymmetric transitivity (i.e., edge direction) in directed graphs, and

(ii) combining both node embedding vectors and attribute embed-

ding vectors together for link prediction in Equation (22), with

the consideration of both topological and attribute features. On

Google+, NRP is slightly better than PANE (single thread), since

Google+ has more than 15 thousand attributes (see Table 3), lead-

ing to some accuracy loss when factorizing forward and backward

affinity matrices into low dimensionality 𝑘 = 128 by PANE (single

thread). As shown in Table 5, our parallel PANE also outperforms

all competitors significantly except NRP on Google+, and parallel

PANE has comparable performance with PANE (single thread) over

all datasets. As reported later in Section 5.5, parallel PANE is sig-

nificantly faster than PANE (single thread) by up to 9 times, with

almost the same accuracy performance for link prediction.

5.4 Node Classification
Node classification predicts the node labels. Note that Facebook,
Google+ and MAG are multi-labelled, meaning that each node can

have multiple labels. We first run PANE (single thread), PANE and

the competitors on the input attributed network 𝐺 to obtain their

embeddings. Then we randomly sample a certain number of nodes

(ranging from 10% to 90%) to train a linear support-vector machine

(SVM) classifier [6] and use the rest for testing. NRP, PANE (single

thread), and PANE generate a forward embedding vector X𝑓 [𝑣𝑖 ]
and a backward embedding vector X𝑏 [𝑣𝑖 ] for each node 𝑣𝑖 ∈ 𝑉 . So

we normalize the forward and backward embeddings of each node

𝑣𝑖 , and then concatenate them as the feature representation of 𝑣𝑖
to be fed into the classifier. Akin to prior work [17, 27, 43], we use

Micro-F1 and Macro-F1 to measure node classification performance.

We repeat for 5 times and report the average performance.
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Figure 4: Efficiency with varying parameters.

Figure 2 shows the Micro-F1 results when varying the percent-

age of nodes used for training from 10% to 90% (i.e., 0.1 to 0.9). The

results of Macro-F1 are similar and thus omitted for brevity. Both

versions of PANE consistently outperform all competitors on all

datasets, which demonstrates that our proposed solutions effec-

tively capture the topology and attribute information of the input

attributed networks. Specifically, compared with the competitors,

PANE (single thread) achieves a remarkable improvement, up to

3.7% on Cora, Citeseer, Pubmed and Flickr, and up to 11.6% on Face-
book. On the large graphs Google+, TWeibo andMAG, most existing

solutions fail to finish within a week and thus their results are

omitted. Furthermore, PANE (single thread) outperforms NRP by

at least 3.4% and 6% on Google+ and TWeibo as displayed in Figures

2f and 2g, respectively. In addition, PANE (single thread) and PANE
(parallel) are superior to NRP with a significant gain up to 17.2% on

MAG. Over all datasets, PANE (parallel) has similar performance to

that of PANE (single thread), while as shown in Section 5.5, PANE
(parallel) is significantly faster than PANE (single thread).

5.5 Efficiency and Scalability
Figure 3a and Figure 3b together report the running time required

by each method on all datasets. The 𝑦-axis is the running time

(seconds) in log-scale. The reported running time does not include

the time for loading datasets and outputting embedding vectors.

We omit any methods with processing time exceeding one week.

Both versions of PANE are significantly faster than all ANE com-

petitors, often by orders of magnitude. For instance, on Pubmed in
Figure 3a, PANE takes 1.1 seconds and PANE (single thread) requires
8.2 seconds, while the fastest ANE competitor TADW consumes

405.3 seconds, meaning that PANE (single thread) (resp. PANE) is
49× (resp. 368×) faster. On large attributed networks including

Google+, TWeibo, and MAG, most existing ANE solutions cannot

finish within a week, while our proposed solutions PANE (single

thread) and PANE are able to handle such large-scale networks

efficiently. PANE is up to 9 times faster than PANE (single thread)

over all datasets. For instance, on MAG dataset that has 59.3 mil-

lion nodes, when using 10 threads, PANE requires 11.9 hours while

PANE (single thread) costs about five days, which indicates the

power of our parallel techniques in Section 4.

Figure 4a displays the speedups of parallel PANE over single-

thread version on Google+ and TWeibowhen varying the number of

threads 𝑛𝑏 from 1 to 20. When 𝑛𝑏 increases, parallel PANE becomes

much faster than single-thread PANE, demonstrating the parallel

scalability of PANE with respect to the 𝑛𝑏 . Figure 4b and Figure 4c

illustrate the running time of PANE when varying space budget 𝑘

from 16 to 256 and error threshold 𝜖 from 0.001 to 0.25, respectively.

In Figure 4b, when 𝑘 is increased from 16 to 256, the running time is

quite stable and goes up slowly, showing the efficiency robustness

47



of our solution. In Figure 4c, the running time of PANE decreases

considerably when increasing 𝜖 in {0.001, 0.005, 0.015, 0.05, 0.25}.
When 𝜖 increases from 0.001 to 0.25, the running time on Google+
and TWeibo reduces by about 10 times, which is consistent with

our analysis that PANE runs in linear to log (1/𝜖) in Section 4.

6 RELATED WORK
Factorization-based methods. Given an attributed network 𝐺

with 𝑛 nodes, existing factorization-based methods mainly involve

two stages: (i) build a proximity matrix M ∈ R𝑛×𝑛 that models the

proximity between nodes based on graph topology or attribute in-

formation; (ii) factorize M via techniques such as SGD [2], ALS [5],

and coordinate descent [38]. Specifically, TADW [41] constructs a

second-order proximity matrixM based on the adjacency matrix

of 𝐺 , and aims to reconstruct M by the product of the learned em-

bedding matrix and the attribute matrix. HSCA [48] ensures that

the learned embeddings of connected nodes are close in the embed-

ding space. AANE [18] constructs a proximity matrixM using the

cosine similarities between the attribute vectors of nodes. BANE
[44] learns a binary embedding vector per node, i.e., {−1, 1}𝑘 , by
minimizing the reconstruction loss of a unified matrix that incorpo-

rates both graph topology and attribute information. BANE reduces

space overheads at the cost of accuracy. To further balance the trade-

off between space cost and representation accuracy, LQANR [43]

learns embeddings ∈ {−2𝑏 , · · · ,−1, 0, 1, · · · , 2𝑏 }𝑘 , where 𝑏 is the

bit-width. All these factorization-based methods incur immense

overheads in building and factorizing the 𝑛 × 𝑛 proximity matrix.

Further, these methods are designed for undirected graphs only.

Auto-encoder-based methods. An auto-encoder [12] is a neural

network model consisting of an encoder that compresses the input

data to obtain embeddings and a decoder that reconstructs the input

data from the embeddings, with the goal to minimize the recon-

struction loss. Existing methods either use different proximity ma-

trices as inputs or design various neural network structures for the

auto-encoder. Specifically, ANRL [49] combines auto-encoder with

SkipGram model to learn embeddings. DANE [8] designs two auto-

encoders to reconstruct the high-order proximity matrix and the

attribute matrix respectively. ARGA [30] integrates auto-encoder

with graph convolutional networks [22] and generative adversar-

ial networks [13] together. STNE [25] samples nodes via random

walks and feeds the attribute vectors of the sampled nodes into a

LSTM-based auto-encoder [16]. NetVAE [20] compresses the graph

structures and node attributes with a shared encoder for trans-

fer learning and information integration. CAN [27] embeds both

nodes and attributes into two Gaussian distributions using a graph

convolutional network and a dense encoder. None of these auto-

encoder-based methods considers edge directions. Further, they

suffer from severe efficiency issues due to the expensive training

process of auto-encoders. SAGE2VEC [33] proposes an enhanced

auto-encodermodel that preserves global graph structure andmean-

while handles the non-linearity and sparsity of both graph struc-

tures and attributes. AdONE [1] designs an auto-encoder model for

detecting and minimizing the effect of community outliers while

generating embeddings.

Other methods. PRRE [51] categorizes node relationships into

positive, ambiguous and negative types, according to the graph and

attribute proximities between nodes, and then employs Expectation

Maximization (EM) [7] to learn embeddings. SAGE [15] samples and

aggregates features from a node’s local neighborhood and learns

embeddings by LSTM and pooling. NetHash [40] builds a rooted

tree for each node by expanding along the neighborhood of the node,

and then recursively sketches the rooted tree to get a summarized

attribute list as the embedding vector of the node. PGE [17] groups

nodes into clusters based on their attributes, and then trains neural

networks with biased neighborhood samples in clusters to generate

embeddings. ProGAN [9] adopts generative adversarial networks

to generate node proximities, followed by neural networks to learn

node embeddings from the generated node proximities. DGI [37]
derives embeddings via graph convolutional networks, such that

the mutual information between the embeddings for nodes and

the embedding vector for the whole graph is maximized. MARINE
[39] preserves the long-range spatial dependencies between nodes

into embeddings by minimizing the information discrepancy in a

Reproducing Kernel Hilbert Space.

Recently, there are embedding studies on attributed heteroge-

neous networks that consist of not only graph topology and node

attributes, but also node types and edge types. When there are

only one type of node and one type of edge, these methods effec-

tively work on attributed networks. For instance, Alibaba proposed

GATNE [3], to process attributed heterogeneous network embed-

ding. For each node on every edge type, it learns an embedding

vector, by using SkipGram model and random walks over the attrib-

uted heterogeneous network. Then it obtains the overall embedding

vector for each node by concatenating the embeddings of the node

over all edge types. GATNE incurs expensive training overheads

and highly relies on the power of distributed systems. In addi-

tion, there are many studies on homogeneous network embedding,

which purely focuses on graph topology without considering at-

tributes, as reviewed in our technical report [47].

7 CONCLUSION
This paper presents PANE, an effective solution for ANE computa-

tion that scales to massive graphs with tens of millions of nodes,

while obtaining state-of-the art result utility. The high scalability

and effectiveness of PANE are mainly due to a novel problem for-

mulation based on a random walk model, a highly efficient and

sophisticated solver, and non-trivial parallelization. Extensive ex-

periments show that PANE achieves substantial performance en-

hancements over state-of-the-arts in terms of both efficiency and

result utility. Regarding future work, we plan to further develop

GPU / multi-GPU versions of PANE, and adapt PANE to heteoge-

neous graphs, as well as time-varying graphs where attributes and

node connections change over time.
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