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ABSTRACT

Modern data processing systems require optimization at massive
scale, and using machine learning to optimize these systems (ML-
for-systems) has shown promising results. Unfortunately, ML-for-
systems is subject to over generalizations that do not capture the
large variety of workload patterns, and tend to augment the per-
formance of certain subsets in the workload while regressing per-
formance for others. In this paper, we introduce a performance
safeguard system, called PerfGuard, that designs pre-production
experiments for deployingML-for-systems. Instead of searching the
entire space of query plans (a well-known, intractable problem), we
focus on query plan deltas (a significantly smaller space). PerfGuard
formalizes these differences, and correlates plan deltas to important
feedback signals, like execution cost. We describe the deep learning
architecture and the end-to-end pipeline in PerfGuard that could be
used with general relational databases. We show that this architec-
ture improves on baseline models, and that our pipeline identifies
key query plan components as major contributors to plan disparity.
Offline experimentation shows PerfGuard as a promising approach,
with many opportunities for future improvement.
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1 INTRODUCTION

ML-for-systems, the new breed of features that apply machine learn-
ing to improve system behavior, is fast emerging as a design prin-
ciple for modern data processing systems. These systems have
become incredibly complex [42], making learning-based methods
an attractive approach for automatic optimization over different
instances of a workload [22, 42]. ML-for-systems is further facil-
itated by the presence of large volumes of workload telemetry
that can be used for training in modern cloud deployments [17].
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Consequently, a number of learning-based features have recently
been proposed to optimize various parts of a query processing
system, including, data structures like indexes [8, 20, 23, 29] and
bloom filters [23, 40], query estimates such as cardinality [9, 10, 12–
15, 19, 31, 34, 41, 42, 45, 46, 48] and costs [1, 11, 25, 37, 39, 43], query
planners [27, 30], schedulers [26], or even the entire query optimiz-
ers [28]. These features replace portions of the query processing
system that are difficult to tune manually with models learned over
past workloads, thus helping to adapt to newer cluster conditions.

Unfortunately, deploying ML-for-systems is a major challenge.
In fact, even highly accurate ML models, when integrated with the
end-to-end query processing systems, can augment performance
for some subset of the workload, while risking severe performance
regressions in other portions of the workload. For example, on
SCOPE [4], the big data query system at Microsoft, we observed per-
formance regressions with learned cardinality models [42], learned
cost models [37], learned degree of parallelism [36], and even when
steering the query planner [30]. There are several reasons for these
regressions. First, a behavior learned from past workloads risks over-
generalizing as the cost function associated with learning seeks
to maximize average performance and may not apply to the large
variety of workload patterns in cloud environments. Second, intro-
ducing learned models leads to novel query execution plans with
unexpected performance metrics. And finally, query processing sys-
tems comprise of several disjoint moving parts, like cardinality and
cost estimation, which are ten fed into the query planner. While it is
practical to learn models for each of the components independently
and not end up with a giant "black box" solution, the individual
models often interact in unseen and unpredictable ways. A learned
cost model may behave differently when fed with learned cardinali-
ties rather than traditional cardinality estimates. Thus, successfully
deploying learning-based features to production requires solving a
meta-optimization task: minimize the overall expected performance

regressions introduced by specific optimizations.
The current practice in Cosmos is to run pre-production vali-

dation before each SCOPE optimizer release. It involves manually
sampling a subset of production workload, based on business im-
portance or workload diversity, for re-execution (flighting) in a
pre-production environment. Flighting results in performance met-
rics with both the old and new SCOPE runtime, which the SCOPE
engineers compare, paying particular attention to performance re-
gressions which must be investigated further before the final sign
off. The above approach is both resource and labor intensive: tens
of thousands of jobs need to be flighted (incurring large resource
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cost) and hundreds of performance regressions are manually in-
vestigated (eating up precious developer time). Furthermore, the
sampling process is not representative of the overall workload. The
other approach is to enable new SCOPE features in a tier-wise man-
ner. However, this requires explicit acknowledgement from key
customers in each tier, who in turn want to know the regressions
to expect and the plan to mitigate. Likewise, opting out jobs in a
post-hoc manner can pile the support load with too many customer
incident reports. Therefore, both the tier-wise and the post-hoc
approaches can only be applied when performance impact is well
understood, something which is not the case for learned models.

Recent work has studied the impact of query plan changes in the
context of automated indexing [7]. It leverages run-time statistics
from past queries that used indexes and trains a partially connected
HybridDNN to learn the performance impact. In contrast, we have
a cold start problem where the ML-based optimizations are not
enabled in the first place and sowe don’t have the run-time statistics.
Rather, we need to design the pre-production experiments to build
confidence to deploy the ML-based optimizations.

In this paper, we present a systematic approach to avoiding
performance regressions when deploying ML-based features. Such
an approach will catch and prevent performance regression for
releasing ML-based query optimizer features to specific customers
and workloads. Given that pre-production resources are limited, our
goal is to carefully select the jobs to flight and build confidence in
deploying learnedmodels, like new versions of the query processing
system. Our key intuition is that performance regressions can be
predicted using the changes in physical query execution plans that
are caused by learned models. We train such a meta-model by
leveraging past flighting data from the pre-production clusters and
use this meta-model to predict which jobs are going to regress. We
exclude all such jobs from flighting and produce a much smaller
portion of the workload to validate and deploy the learned feature
on. In summary, we make the following key contributions:

(1)We formalize the performance regression problemwith learned
features in the context of SCOPE big data processing at Microsoft,
and discuss how learning from query plan differences makes this
problem tractable by reducing the overall search space. (Section 2)

(2) We introduce PerfGuard, a system for guarding against
performance regressions with learning-based optimizations. Per-
fGuard discovers query plan differences from different versions
of a query processing system, trains a machine learning model to
predict the performance impact of these differences, and uses these
models to flight only a small subset of relevant jobs that are likely
to be benefited by the learned features. (Section 3 - 5)

(3) Finally, we present a detailed experimental evaluation over
large production workloads and using learned cardinality as a con-
crete learning-based optimization. Our results show that Perf-
Guard can predict the performance for plan differences with an
absolute error of 0.12, and help reduce the set of jobs to flight with
only ≈ 20% incorrect selection. (Section 6)

2 PERFORMANCE REGRESSION

We focus on the Cosmos big data analytics platform at Microsoft
to understand the performance regression problem. Cosmos uses
SCOPE [4, 47], a SQL-like engine to run hundreds of thousands

of jobs processing petabytes of data per day. The SCOPE query
optimizer translates a SCOPE job 𝑗𝑖 , into an optimized physical
query plan 𝑝𝑖 , describing how a query is executed physically in
the cluster. The physical query plan is a Directed Acylic Graph
(DAG) of nodes, with each node corresponding to physical database
operations, such as scan, filter, join, aggregate, etc. Applying opti-
mizations, ML-based or not, to the SCOPE query engine typically
affects the physical query plans, and consequently the query perfor-
mance either improves or regresses. Anticipating the performance
impact of these plan changes is not trivial, especially for ML-based
optimizations that could consist of complex black box models. As
a result, ML-based optimizations make it harder to construct the
pre-production experiments for determining their readiness, i.e.,
it is not obvious which subset of SCOPE workloads should be re-
executed in order to build the deployment confidence. We call this
the performance regression problem and state it formally below.

2.1 Problem Statement

We refer to a set of query scripts, called 𝑗𝑜𝑏𝑠 , executed within a time
frame as workload 𝐽 , i.e., 𝐽 = { 𝑗1, 𝑗2, . . . , 𝑗𝑛}, where 𝑗𝑖 represents
one of 𝑛 jobs in the workload. Consider a ML-based optimization,
𝑚𝑙𝑜𝑝𝑡 , consisting of one ormoremodels:𝑚𝑙𝑜𝑝𝑡 = {𝑚1,𝑚2, . . . ,𝑚𝑘 }.
Example𝑚𝑙𝑜𝑝𝑡 could be fine-grained models for learned cardinali-
ties [42], learned cost models [37], learned query planner hints [30],
or learned resource allocation [36]. We assume that the models in
𝑚𝑙𝑜𝑝𝑡 have already been validated and are indeed of high quality.
However, it is not clear which jobs in 𝐽 will benefit from𝑚𝑙𝑜𝑝𝑡 ; if we
know this, we can deploy𝑚𝑙𝑜𝑝𝑡 selectively to jobs that will directly
benefit. We assume fine-grained deployment control, where we can
decide which analytical query has which ML-based optimizations
enabled, something that been made possible in the case of Cosmos
with the Peregrine workload optimization platform [17].

Our goal then is to learn a meta-model to predict whether or
not a job is going to regress with𝑚𝑙𝑜𝑝𝑡 . We isolate jobs with low
prediction confidence and flight them in a pre-production environ-
ment. The objective is to minimize the list of these low confidence
jobs, which need experimentation, within a given flighting budget
𝐵. For simplicity, we consider the unit of flighting budget 𝐵 to be
the number of jobs that could be re-executed in the pre-production
environment. Naturally, given that pre-production resources are
limited, 𝐵 is much smaller than the overall workload, i.e., 𝐵 � |𝐽 |.

A smaller set of flighted jobs not only reduces the experimenta-
tion costs, but also reduces the developer time to scrutinize flight-
ing results, making it easier to answer a question like: Which plan
changes are detrimental? At the same time, learning the above
meta-model is challenging since the space of possible physical
query plans in 𝐽 is very large. Fortunately, in practice, there is a
much smaller space of performance differences before and after
modification. This leads to a question: can we learn the performance

differences for the (smaller) domain of physical query plans changes?

2.2 Learning from Differences

We envision to learn from differences, i.e., train a predictor that can
identify the impactful changes in physical query plans, and asso-
ciate them with impactful changes in query performance. Earlier
works showed that differences are often easier to estimate based on
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Figure 1: A high level architecture of PerfGuard

a constrained model of query plans [7, 28, 34]. Given the above pre-
dictor, we can then identify query plans that require pre-production
experimentation. We rely on three key insights. First, recompiling
the physical query plan for each job with modifications is incred-
ibly cheap, relative to the actual execution costs. Therefore, we
can analyze recompiled versions of physical query plans over large
volumes of past workload. Second, while the theoretical space over
all possible query plans is prohibitively large, the practical space
of plan differences in recompiled physical query plans is far more
manageable. And third, predicting the absolute performance of any
query plan is a far more difficult task than comparing the relative
performance difference between two similar query plans.

The goal is to identify “interesting” jobs (jobs with exagger-
ated disparities or striking similarities). The remaining jobs will
go through experimentation to give us new (real) cost differences
and can be fed back into the model before selecting for more “in-
teresting” jobs. We repeat these steps, improving the model, until
our budget for pre-production experimentation is exhausted. For
the training dataset, we use all previous experiments in the pre-
production environments. We can further use recurring query plans
with differences over time in order to augment the training dataset.

3 PERFGUARD

We now describe PerfGuard, a system for guarding against per-
formance regressions due to ML-based optimizations. PerfGuard
has four components: (i) a data ingestion pipeline to preprocess
compile time features, and align them with the physical query plan
graphs, (ii) a plan featurizer that calculates a vector representation
of the physical query plan, (iii) a module to formulate the difference
between the default and modified query plans, and to predict the
magnitude of performance regression, and (iv) a module to rank
jobs on expected performance regression for flighting.

Figure 1 illustrates the high level architecture of PerfGuard
geared for a workload aware query engine that can enable ML-
based optimizations for one or more jobs. We denote the runtime
performance of the query engine with ML-based optimizations

enabled as New Runtime (only available in flighting environment)
while its compile-time behavior as New Compilation (available in
production environment). We extract an Intermediate Representa-

tion (IR) for each workload using the telemetry from the respective
optimizer (default and modified) [17]. These IR are tabular in nature
and each row in the IR corresponds to a physical operator in the
execution plan. Each job is represented using its IR and the exe-
cution plan graph, and our first task is to learn a combined vector
representation (see plan featurizer in Figure 1). We then calculate
the difference between these vector representations. We setup two
tasks for learning the plan differences: (i) regression task to predict
the magnitude of difference along with the direction of performance
shift, and (ii) classification task to simply predict the direction of
performance shift [improve(+) or regress(-)]. Finally, we rank the
jobs to produce a subset to deploy the ML-based optimization on
and a subset to flight for further validation.

Note that while we focus on performance regression in query
processing systems, PerfGuard learns the impact of compile time
metrics on performance and could be extended to other domains.

3.1 Data Ingestion

The first step in PerfGuard is to ingest the IR and query plans, align
the two representations, and impute any missing values.
IR aligning. The query engine telemetry provides query plans,

metadata, and statistics that are collected into an intermediate
representation (IR) by the Peregrine framework [17]. IRs consist
of 50 different features, including query level attributes (such as a
query unique identifier), compile-time attributes (such as estimated
cardinality), and run-time attributes (such as job runtime). We also
extract DAG representations 𝐺𝑝 and 𝐺𝑝′ of query plans 𝑝 and 𝑝 ′,
with and without the ML-based optimizations. We represent the
IR as an𝑚 × 𝑛 matrix where the𝑚 corresponds to the number of
physical operators in the IR and 𝑛 corresponds to the number of
meta-information on a particular physical operator. Likewise, we
represent the DAG of a physical query as an adjacency matrix of
size 𝑗 × 𝑗 where 𝑗 is the number of vertices in the DAG. Not that 𝑗
and𝑚 could be different, leading to a data quality problem.
Missing Data Imputation. There are a number of reasons why

an operator could lack one or more feature values, including: (1)
logical operators such as spool, sequence, and compute scalar do
not have values for run-time statistics, (2) operators such as pod
level aggregation could be added or removed dynamically during
execution, (3) statistics are not applicable to certain operators.

We can choose to discard the physical operators with missing fea-
tures from the query plan graph. But this can lead to misconstrued
query plan structure. Therefore, we impute the missing features
values by computing the cumulative moving average for each col-
umn: 𝑥𝑛 = 1

𝑛

∑𝑛
𝑖=0 𝑥𝑖 that turns out to be quite effective. We also

noticed that the JSON query plans represent multiple consumers of
a node in the query DAG via duplicated nodes. Therefore, to avoid
a bias towards frequent physical operators, we merge duplicate
nodes and update the query graph structure accordingly.
Scaling. Scale is important as individual features in the IR differ

widely in magnitude. For example, Estimated Cardinalities can be
thousand of times larger than Physical Operator Counts. Therefore,
we need to normalize accordingly. We applied scaling on the IR to
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individual plans separately to provide consistent feature scaling
among the plan pairs. This standardization of data also helps us to
ensure a faster convergence of our neural network model.

3.2 Model Training

Our primary objective is to measure the similarity between a default
query plan 𝑝 and a modified query plan 𝑝 ′ for the same job 𝑗 in
terms of execution cost. One possible approach is to train a model
to predict the costs 〈𝑐, 𝑐 ′〉 of individual query plans 〈𝑝, 𝑝 ′〉 and
use the difference in predicted cost to measure the difference in
performance: Δ = 𝑐 − 𝑐 ′. However, predicting the cost of a query
plan for big data systems is not a trivial task [37]. Therefore, we
quantify the similarity of two plans directly, whichmakes the output
relative to each input pair. For example, a data shuffle operator
(called 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 in SCOPE) is very expensive. If we observe that the
modified query plan lacks an 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 operator when compared
to the default plan, without knowing the cost of individual plan we
can reasonably state that the modified plan is likely more efficient.

To reiterate, we chose to learn the difference Δ𝑖 directly for two
reasons. First, we do not compare arbitrary pairs of graphs: 𝑝𝑖 and
𝑝 ′𝑖 will always have the same underlying job 𝑗𝑖 . Second, the actual
cost of running a query is heavily dependent on the physical envi-
ronment, so even historical data may not be the best predictor [35].
We attempt to mitigate this issue by looking at relative differences.
Still, learning only the similarity between 〈𝑝, 𝑝 ′〉 is inadequate to
understand the impact of query plan modification. The modified
plan 𝑝 ′ may differ greatly from 𝑝 in terms of query plan structure or
run-time metrics, but the difference must be linked to improvement
or regression to be useful. We do this by setting Δ as the target
variable, where Δ > 0 reflects improvement and Δ < 0 means
regression. However, if the scale of the target variable is large, the
learning process becomes unstable. As a result, we normalize cost

difference for our learning objective: Δ𝑖 =
𝑐𝑖−𝑐

′
𝑖

𝑐𝑖+𝑐′𝑖

3.3 Job Subset Selection

After calculating the plan difference among the plan pairs, our final
task is to rank the jobs. Based on its pair of plans, each job receives a
score on a scale from 1 (most improvement) to -1 (most regression).
The jobs with the predicted scores close to 1 and -1 are ones that
are predicted with high confidence to either improve or regress
performance; therefore, they are not considered for flighting. By
ranking the jobs on their absolute performance regression score,
we can control the number of jobs to flight using a budget 𝑘 , where
lower 𝑘 value will lead to higher resource savings. Since our ob-
jective in PerfGuard is to prevent performance regressions by
identifying query jobs that will regress, while keeping the gains
of the modifications made to other jobs, we only consider jobs for
which our models predicted positive performance shift. However,
we still flight them to remove any false positives1.

4 PLANDIFF MODEL

We now describe our plandiffmodel to quantify differences between
query plans. This requires devising a meaningful representation
for each of the plans first. We experimented with two different

1This ensures that we do not have to learn yet another meta-model.

approaches to plan featurization. The first is graph convolution
based where we learn the plan representations using both IR and the
execution graph. The second is manual feature engineering where
we create a flat vector representation of a query by aggregating
only the IR information of each physical operator and leverage the
query structure to provide different weights for aggregation.

4.1 Graph Convolution

Graph Convolution Networks (GCNs) [21] have proved effective for
graph representation learning [5, 44]. Intuitively, a GCN considers
an underlying graph as a computation graph and learns individ-
ual node embeddings by diffusing and aggregating neighboring
node attributes across the graph. GCNs have the advantage of be-
ing representation invariant; even if the representation differs (e.g.
the order nodes in the adjacency matrix), the underlying graph
structure remains the same and the GCN learns the same node
embedding. The goal here is to learn a function which can provide
an efficient node representations in a graph, G = (𝑉 , 𝐸), where 𝑉
is the set of nodes and 𝐸 is the set of edges. The model takes an
𝑀 × 𝐷 dimensional feature matrix and an adjacency matrix 𝐴 as
input where𝑀 is the number of nodes in G and 𝐷 is the number
of input features for each node. It then produces an𝑀 × 𝐹 feature
matrix where 𝐹 is the number of output features per node. The
propagation rule of a GCN layer is defined as follows:

𝐻 (𝑙+1) = 𝜎 [�̂�−
1
2 𝐴�̂�−

1
2 𝐻 (𝑙)𝑊 (𝑙) ] (1)

Here, 𝐻 (𝑙) is the output of 𝑙𝑡ℎ convolution layer, 𝐴 = 𝐴 + 𝐼 , 𝐼 is an
identity matrix, �̂� is the diagonal node degree matrix of 𝐴,𝑊 (𝑙) is
the weight matrix for 𝑙𝑡ℎ layer, and 𝜎 is a non-linear activation func-

tion. The propagation rule �̂�−
1
2𝐴�̂�−

1
2 denotes the normalization of

graph structure. We multiply node properties 𝐻 (𝑙) with associated
layer weight𝑊 (𝑙) . We adopt GCNs to learn node level coherent
feature representations in our work.

GCN Plan Featurizer.Manual feature engineering would re-
quire either experimentation or domain knowledge to decide which
run-time metrics are most significant. Luckily, GCN-based deep
learning models can inherently capture which run-time metrics
characterize and influence the intrinsic properties of the plans, and
so they are well suited to learn node embeddings. We apply a pool-
ing operation to learn a vector representation of the graph. For
example, we can take the mean of node features across the node
dimension to formulate the corresponding graph embedding. How-
ever, in this process, we lose graph structural information, which
is unacceptable in our case. The structural position of a physical
operator in the query plan can have a significant impact, ultimately
changing the intrinsic properties of the plan. Researchers have
proposed different kinds of pooling operations [44] for dimension
reduction or node summarization. In our work, we propose an
attention based aggregation methodology that we describe below.

4.2 Attention Aggregation

As our primary goal is to learn the similarity between two execution
plan graphs, the learned node embedding should be conditional on
the given pair. As a result, our aggregation methodology considers
the “relatedness” of both the graphs to perform context aware
alignment for both the graph structures. To elaborate, let us take a
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Figure 2: Different execution plans 𝑝, 𝑝 ′&𝑝 ′′ of job 𝐽 gener-

ated by different optimizers Q,Q′&Q′′ from left to right.

look at Figure 2 where we show two different execution plans (𝑝 ′

and 𝑝 ′′) generated by different runtimes 𝑄 ′ and 𝑄 ′′ for job 𝐽 . We
notice that the only difference between plan pair 〈𝑝, 𝑝 ′〉 is the order
of physical operator 𝑏 and 𝑑 . Similarly 〈𝑝, 𝑝 ′′〉 the difference is the
order of 𝑐 and 𝑓 . Although the changes with respect to default
plan 𝑝 look nominal, it may impact the execution performance
significantly. In order to reflect this while calculating the differences
between a pair, the node embedding of the modified plan should
be conditional on the default plan. Our aggregation methodology
focuses on where the plan changes occur.

We denote 𝑆 ∈ R𝑀×𝐹 and 𝑆 ′ ∈ R𝑀
′×𝐹 as the representation

matrices of plan 𝑝 and 𝑝 ′, where𝑀 and𝑀 ′ denote the number of
nodes in the corresponding plans and 𝐹 is the feature dimension.
Our goal is to leverage attention mechanism to obtain 𝑝 specific
representation for each node in 𝑝 ′. We take each node embedding
in 𝑠 ′𝑖 ∈ 𝑆 ′ as a query and the node embeddings in 𝑠 𝑗 ∈ 𝑆 as the keys.
The idea is to calculate how each node pair 〈𝑠𝑖 , 𝑠 ′𝑗 〉 influences each

other. We compute this attention coefficient as follows:

𝑒𝑖 𝑗 = 𝑎 (𝑊𝑠𝑖 , 𝑊
′𝑠′𝑗 ) (2)

Here, we calculate the importance of modified plan node 𝑗 to

default plan node 𝑖 .𝑊,𝑊 ′ ∈ R𝐹×𝐹 are the weight matrices and 𝐹
is the attention feature dimension, and 𝑎 is the attention function, a
dot-product function in our model. We normalize 𝑒𝑖 𝑗 with sigmoid
function 𝜎 (𝑥) to ensure the attention weight is in the range (0, 1).

𝛼𝑖 𝑗 = 𝜎 (𝑒𝑖 𝑗 ) =
1

1 + 𝑒𝑥𝑝 (−𝑒𝑖 𝑗 )
(3)

We calculate the default plan-centric representation of the modified
plan, 𝑌 ′

𝑝′ |𝑝
= [𝑦′1, . . . , 𝑦

′
𝑛] using weighted sum 𝑆 ′: 𝑦′𝑖 =

∑

𝑗 ∈𝑀′
𝛼𝑖 𝑗𝑠

′
𝑗 .

Our next goal is to align the nodes of default plan with respect
to the new representation 𝑌 ′ of the modified plan. We calculate an
alignment vector for each node in 𝑝 . Let 𝐴 = [𝑎1, 𝑎2, . . . , 𝑎𝑀 ] be
our alignment vectors for each node embedding 𝑠𝑖 ∈ 𝑆 . Then the
aligned node embeddings of 𝑝 is calculated as follows:

𝑎𝑖 = 𝑓𝑎 (𝑦
′
𝑖 , 𝑠𝑖 ) ; 𝑓𝑎 (𝑥, 𝑦) =𝑊𝑎 [𝑥 − 𝑦;𝑥 � 𝑦 ]

Here 𝑓𝑎 () is the alignment function. It is a combination of element
wise subtraction and multiplication where � denotes an element-
wise Hadamard product. The final aligned embedding 𝑌 of 𝑝 is
calculated by doing mean pooling over the alignment vector 𝐴.
After doing attention aggregation, we are left with two context
aware plan features for each plan 𝑝 and 𝑝 ′.

4.3 Model Architecture

Our approach to quantify plan differences is inspired from SimGNN
[3], a neural network approach to graph similarity calculations
which does not require manual intervention for learning repre-
sentation. We refer to our modified graph neural network model

architecture for plan differences as PlanDiff. The fundamental dif-
ference between SimGNN and PlanDiff is the node embedding ag-
gregation methodology discussed in Section 4.2. First, we produce
context aware representations (embeddings) for the corresponding
plans by aggregating node embedding matrices using the atten-
tion mechanism. Then, by measuring the interaction between the
two embeddings using a Neural Tensor Network (NTN) [38], we
calculate additional relationships between the plan embeddings,
and produce a vector of interaction scores that represent pairs of
plans. Finally, to produce a similarity score, the vectors are passed
through several fully connected neural network layers.

Our PlanDiff model adopts a similar architecture as proposed
by [3]. It involves 3 graph convolution layers, with filter sizes of
128, 64 and 32 respectively, followed by a batch normalization
function. Then, we apply our attention aggregator and calculate
each individual plan embedding. The plan embedding pairs are then
passed through the neural tensor network, which combines the
embeddings and generates a “diff” embedding (a vector of size 16).
The diff embedding is then passed through 2 fully connected layers.
As mentioned previously, query graphs are accurately depicted as
DAGs. Despite this fact, we ran our GCNmodel using bi-directional
edges; in using bi-directional edges, we are able to propagate more
information about the “neighborhood” of a node in the model.

4.4 Learning Objectives

We employ several loss functions across our various predictive
strategies, and enumerate them here while offering brief justifica-
tions. We consider two prediction tasks: (i) regression, where we
predict the similarity score in a continuous range of [-1,1], and
(ii) classification, where we predict a binary value on whether or
not there is a performance regression. Overall, rigorously under-
standing the underlying distribution in the plan difference problem
is intractable, and so our choices address this constraint.

(1) For regression, we used contrastive divergence (CD) [16],
which leverages Kullback-Leibler (KL) divergence to approximate
an algorithm’s learning gradient. Given a distribution over some
vector x, and some weight parameters W, CD is defined as follow-
ing the gradient of multiple KL divergences: 𝐶𝐷𝑛 = 𝐾𝐿(𝑝0 | |𝑝∞) −
𝐾𝐿(𝑝𝑛 | |𝑝∞). CD is an effective way to learn the weights of a net-
work for embedding tasks when we can’t evaluate the probability
distribution directly, as is the case for our problem.

(2) In the classification framing of our problem,we use traditional
cross entropy loss function for a classification target.

(3) Furthermore, to assess the uncertainty of the model we use
quantile regression loss (QRL). Given a prediction𝑦

𝑝
𝑖 and ground

truth 𝑦𝑖 : 𝑄𝑅𝐿 = max {𝑞(𝑦
𝑝
𝑖 − 𝑦𝑖 ), (𝑞 − 1) (𝑦

𝑝
𝑖 − 𝑦𝑖 )} This allows us

to parameterize penalizing over-predictions or under-predictions
with a specification 𝜏 quantile i.e. we can ask our model to avoid
over-predictions or underpredictions by nudging it towards a quan-
tile in the unseen distribution.

5 ALTERNATIVE DESIGNS

In the previous section, we discussed featurizing query execution
plan and learning difference using graph neural network. In this sec-
tion we discuss several other approaches to quantify the difference
between a pair of plans using the devised plan features.
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Figure 3: An overview of the algorithmic components of PerfGuard. Solid lines denote the data flow of both query plan graph

and associated IR. Dotted lines denote the flow of only IR matrices of the query plans. For classifier and graph kernels the

output range is [0, 1] and [−1, 1] for regressor where < 0 denotes performance degradation and > 0 indicates improvement.

5.1 Graph Kernels

A plethora of graph kernels have been proposed over the years [24]
for various tasks like node classification, similarity measurement
and missing node predictions attributes, each focusing on distinct
structural graph properties. A simple graph kernel compares the
local structures between graphs: two vertices in different graphs are
similar if they have identical labels and similar neighboring nodes.
This simplistic attempt to isolate local structures is not suitable
in our case. Physical operators in different query plans may have
similar neighbors, but the level, or depth, of their location in the
graph might differ, and this may lead to significant impact on the
query performance. For example, the physical operator Exchange
incurs a higher cost if it is closer to the root. To address this issue,
we consider the global graph structure along with the local sub-
structures when comparing query plans. Our graph kernel must
introduce a positional encoding of individual nodes in the kernel
method. Therefore, we tested two graph kernels to measure the
structural similarity between query plans.

Pyramid Match Kernel [33] compares pairs of graphs 〈𝑝, 𝑝 ′〉
based on global properties. We focus on the structural similarity be-
tween the node labels or operator types, and ignore the IR features
first. To achieve this, the kernel first generates an embedding 𝑉 of
vertices by calculating the eigenvectors of the 𝑑 largest magnitude
eigenvalues in the adjacency matrix. The signs of the eigenvectors
are arbitrary, so the kernel takes the absolute values of them. The
embedding process distills global positional information into in-
dividual node embeddings. With the embeddings, the kernel can
now partition the feature space into increasingly large regions, and
finally project each vertex onto multi-resolution histograms.

Propagationkernel [32] propagates information between nodes
based on structure, and the information propagation is often mod-
eled using “Markov Random Walks”. We focus on both node labels
and IR features in unison to measure the similarity. A propaga-
tion based kernel models the graph as a probability distribution
𝑃 ∈ R𝑛×𝑑 where 𝑛 is the number of nodes and 𝑑 is the feature
dimension of the node attributes. Matrix 𝑃𝑡 is the prior distribution
of the node attributes, and is initialized with a uniform distribution.
We begin our random walk with a random starting node, and the
kernel updates the prior 𝑃𝑡 with the randomly encountered node
attribute values from our walk’s path. If 𝑇 denotes the transition
probability matrix during a random walk, then the propagation
scheme can be represented with: 𝑃𝑡+1 ←− 𝑇𝑃𝑡 . At each iteration 𝑡 ,

we propagate the node information, producing a sequence of graphs.
We compare all pairs of nodes from the two query plans 〈𝑝, 𝑝 ′〉
after each iteration. We aggregate the comparison scores from each
iteration after the 𝑡𝑚𝑎𝑥 iterations to get the final similarity score.

5.2 Manual feature Engineering

Graph kernels are powerful and provide explicit expressions of
the graph, however we find their quality of features in node rep-
resentation noisy. Therefore, we also consider a manual feature
engineering approach using existing compile-time features, simi-
lar to [1, 7]. The idea is to calculate different feature channels of
a plan for each of these physical operator attributes and then to
combine all the feature channels into a vector representation. To
encode the structural information, we leverage the query execu-
tion plan graph and calculate the maximum depth of the graph
and height of each node. We then calculate the weight of a node:
𝑤𝑒𝑖𝑔ℎ𝑡 = max(𝐷𝑒𝑝𝑡ℎ) − ℎ𝑒𝑖𝑔ℎ𝑡 (𝑛𝑜𝑑𝑒) + 1. The intuition here is
that the nodes closer to the root have a higher impact on plan
performance. As each row of the IR matrix corresponds to an oper-
ator, we multiply each row in IR with the corresponding physical
operator weight. We have 32 available compile time features and
we only focused on numerical features. It is important to note that
feature engineering is done physical operator wise for each plan.
This is cruicial since the properties/features of physical operators
are affecting the query performance. To select the subset of appro-
priate features we calculated the correlation coefficient of each of
the available numerical features. As suggested in [7], we mainly
focus on the channels that encompass the important performance
related properties with high correlation with the target variable.
We consider the feature channels: 1) AvgRowLength: Length of
each tuple 2) Phy opcount: Count of physical operators 3) In-
putCardinality: Total input cardinality from children operators 4)
EstCost: Estimated cost of the sub query and 5) EstCardinality:

Estimated output cardinality from children operator.
The SCOPE engine uses 35 physical operators to forge an execu-

tion plan; for each feature channel we initialize a vector of length
35. We concatenate each feature channel and formulate a vector
representation of length 35𝑥5 = 175. We then calculate the joint rep-
resentation of a pair 〈𝑝, 𝑝 ′〉 by computing normalized attribute-wise
difference per channel. According to Eqn. 3.2 our normalization
denominator is the summation of attributes in 𝑝 & 𝑝 ′.
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(a) (b) (c) (d)

Figure 4: (a) Histogram of graph size in node counts (number of phy-ops). (b) Distribution of our target variable. (c) Perfor-

mance improvement counts of the plan pairs. (d) Missing operator (%) statistics.

5.3 Recurrent Neural Network

Recurrent Neural Networks (RNN) learn representations for se-
quential data. One major advantage of an RNN is it’s power to
preserve past information to which the model has been exposed,
a crucial requirement in our case. As demonstrated in Figure 2, a
small change in the order of how the physical operators appear
can have significant impact on query performance. Therefore, we
convert the DAG representation of query plans into a sequence of
physical operators via pre-order traversal [18]. For example, the left
DAG in Figure 2 is transformed into the sequence: {𝑎, 𝑏, 𝑑, 𝑐, 𝑒, 𝑓 }.
Traversing in pre-order fashion ensures that the root node infor-
mation comes first in the sequence. The RNN then transforms this
sequence of node embeddings, and represents the graph by averag-
ing node features across node dimensions. To formulate the plan
difference, we simply concatenate the two vector representations
of the plans after performing a mean pooling step.

Our RNN model adopts the LSTM (Long Short Term Memory)
architecture, due to the strength of its ability to capture both short
term and long term appearances of operator sequences. It consists of
3 layers: the LSTM layer with an output size of 32, a fully connected
linear layer with an output size of 32 and a final output linear layer.
We apply batch normalization after the LSTM layer, and produce a
plan embedding after passing the IR sequences through the LSTM.
After retrieving the plan embedding for both plans, we concatenate
them to formulate the “diff” embedding.

Aswe are experimentingwithmultiple differentmodels, wewant
to see whether we can leverage the strengths of each model by com-
bining their predictions and have better outcome. We applied two
ensemble approaches to combine the predictions: majority voting

and weighted linear aggregation. Our majority voting scheme is as
follows: if 80% of the total number of models agree on the direction
of performance shift, we accept this as a consensus and take the
average of the model predictions as the final output - otherwise,
the prediction from the PlanDiff model is the final output. Our
weighted linear aggregation weights individual models and calcu-
lates a weighted linear sum of their corresponding predictions; the
weight calculations come from minimizing the difference between
target variable and weighted sum using gradient descent.

In summary, Figure 3 illustrates the model specific components
of PerfGuard. The figure outlines different sub steps (featuriza-
tion and measuring difference) in the modeling process and also
exposes how different data structures are being leveraged by dif-
ferent models. Both feature engineering and RNN models operate
on IR matrices only. However, the IR rows must appear in a mean-
ingful sequence derived from the execution graph for RNN. On the

other hand for feature engineering approach, the order of IR rows
does not matter because we are aggregating feature columns. GCN
based PlanDiff model and the graph kernels require both physical
execution plan graph and the IR matrices.

6 EXPERIMENTS

In this section, we describe the experimental setup for evaluating
our PerfGuard framework with real world datasets generated from
two successive versions of SCOPE query optimizer. We focus on
answering the following questions through experimentation:

• Are traditional graph kernels applicable for our problem?
• How does each individual approach perform at measuring
differences among query plans across a variety of evalua-
tion metrics (precision, recall and F1), both for predicting
improvements and regressions?

• How does feature imputation affect overall performance?
• What underlying features and important physical operators
does the algorithm focus on when making decisions?

• Are the learned, plan-difference embeddings robust to dif-
ferentiating among various performance regressions?

• How uncertain are the predictions? (i.e. how far are our
predictions from the upper and lower bounds?)

• Reality check: how much time and resources does Perf-
Guard save when deploying a concrete ML-based optimiza-
tion, namely learned cardinality [42], on SCOPE?

6.1 Setup

6.1.1 Dataset. We consider a large workload of 4000 SCOPE jobs
from the pre-production environment (referred to as flighting in
Cosmos), where each job ran using two different versions of the
query optimizer. For each pair of jobs, we get the physical query
plans as JSON objects and the intermediate representation (IR) as
tabular files. The difference between the two versions of the query
optimizer could be due to a bug fix, new learned features, or any
query optimizer enhancement that affects the physical query plans.
In our case, differences are caused by enabling learned models for
improved cardinality estimations [42]. Figure 4a shows the distribu-
tion of the query sizes in terms of the number of physical operators,
illustrating the broad range of queries sizes that are considered in
our work. Our IR feature matrix includes numerical compile-time
attributes, as well as one-hot encoded physical operator names. We
normalize the job runtime difference to create the label for each
query plan pair. We plot the distribution of our target variable in
Figure 4b; it roughly follows a normal distribution, with long tails
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Table 1: Metrics for regressions evaluation

Metric Description

Mean Absolute Error (MAE) Mean of absolute values of prediction errors
Mean Squared Error (MSE) Mean of squared prediction errors

R-Squared (𝑅2)
Percentage of the variance in the
dependent variable that the
independent variables explain

Spearman coefficient (𝜌)
and Kendall coefficient (𝜏 )

Measures the correlation between
the rankings of two variables

Symmetric Mean Absolute
Percentage Error (smape)

100%
𝑛

∑𝑖=𝑛
𝑖=0

|𝑦𝑖−�̂�𝑖 |
( |𝑦𝑖 |+|�̂�𝑖 |)

Table 2: EstCost classification result

Precision Recall F1 score

Improve 0.94 0.49 0.64

Regress 0.06 0.53 0.11

on both sides (with substantial outlier at around the−0.8 value). Fur-
thermore, the distribution is moderately skewed (skewness value of
−0.75). Negative target value indicates regression, i.e., the modified
query optimizer leads to higher query costs compared to the default
query optimizer. Positive target value implies a cost reduction. Data
skew is a problem in training regression model and we further
confirmed this by looking at the distribution of the residuals which
was not a normal distribution. We attempted to address this by
re-scaling the target variable using different transformation tech-
niques (log transformation, power transformation etc.), but it did
not help. Figure 4c shows the distribution of queries with different
performance change (t). Finally, Figure 4d shows the distribution
of physical operators with missing runtime statistics.

6.1.2 Evaluation Metrics. We evaluated our model based on the
metrics in Table 1. For a regression task, the Spearman coefficient

(𝜌) and Kendall coefficient (𝜏) measure the similarity between the
prediction and ground truth. We adopt the scale invariant Sym-

metric Mean Absolute Percentage error (smape) to measure the size
of the error in percentage terms. We use the quantile loss func-
tion to estimate the lower and upper bounds of our prediction. To
summarize, we assess the uncertainty in our predictions by calcu-
lating the following three errors: (1) 𝑙𝑒 = |𝑙𝑜𝑤𝑒𝑟 − 𝑎𝑐𝑡𝑢𝑎𝑙 | (2) 𝑢𝑒 =
|𝑢𝑝𝑝𝑒𝑟 − 𝑎𝑐𝑡𝑢𝑎𝑙 |, and (3) 𝑖𝑒 = (𝑙𝑒 + 𝑢𝑒 )/2. Here, 𝑙𝑒 , 𝑢𝑒 and 𝑖𝑒 corre-
spond to lower bound, upper bound and interval errors. We use
these measures to understand whether our prediction is closer to
lower bound or upper bound.

When framing our problem as a classification task, we evaluate
the precision, recall and F1 score of each class. Precision is the
proportion of positive accurate predictions, recall is the proportion
of actual positives that are correctly identified, and F1 is the har-
monic mean of precision and recall. Recall of the regression class
is particularly important, as our goal is to safeguard our system
against performance regressions. In deployment, we cannot afford
to miss jobs that will experience performance decline. Aside from
these metrics, we calculate the total number of hours saved by not
flighting selected jobs to evaluate the job subset selection process.
6.1.3 Model Architecture & Parameter Settings. The tree basedmod-
els used in experimentation were: Random Forest (RF), Gradient

Boosting (GBR), XgBoost (XGB) & LightGBM (LGBM)). After the
extraction process outlined above, we were left with feature vectors
of 𝑙𝑒𝑛𝑔𝑡ℎ = 175. The majority of our models are based on boosted

Table 3: Baseline Regression results

Model MAE MSE 𝑅2 𝜌 𝜏 smape(%)

EstCost 0.86 0.86 -12.8 0.0 0.0 92

Pyramid 0.87 0.79 -25.3 -0.1 -0.1 82

PropAttr 0.36 0.15 -4.24 0.0 0.0 70

Figure 5: Target variable vs

Pyramid kernel score

Figure 6: Target variable vs

Propagation kernel score

trees with the following hyperparameters: a forest of 100 trees with
a maximum depth of 3. For the neural network based models, (RNN
& PlanDiff ), we fed the raw IR features directly. We have 61 nu-
merical features in our IR, so the input size for both is 61. We use a
siamese architecture, which means both the default and modified
plan features are passed through the same layers 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑙𝑦.
We used Azure Standard NC6 VM [2] for running our experiments.

6.2 Using Only Optimizer Estimated Costs

Recall that we use the standard query optimizer at compile time
to estimate the cost of a query plan. Using this metric, we can
calculate our first baseline prediction: the normalized estimated cost
difference (𝐸𝑠𝑡𝐶𝑜𝑠𝑡 ) between the default and the modified query
plan. Table 2 shows the classification results with 𝐸𝑠𝑡𝐶𝑜𝑠𝑡 . We
simply compare the sign of normalized estimated cost difference
and our target variable here. A negative sign implies regression
and positive sign implies improvement. Most of the estimated cost
differences indicate performance improvement, which results in
relatively high precision for the improvement class compared to
the regression class. This finding suggests that an over-reliance on
estimated cost difference would be detrimental for a production
environment, as it fails to capture regressions in performance.

6.3 Graph Kernel Results

We consider two graph kernel baselines: Pyramid kernel that uses
only the query graph structure, and Propagation (PropAttr) kernel

that uses both the query graph structure and IR feature as node at-
tributes. Figure 5 shows the relationship between our target variable
and the structural similarity we calculate using the Pyramid kernel.
The evidence suggests that a large number of jobs are actually very
similar in query graph structure, as most of the similarity values lie
between 0.8 to 1 (1 being identical, 0 completely different). In fact,
with respect to our target variable, a large number of jobs have very
marginal change in performance, and the structural similarity does
not appear to play a role in quantifying this performance change.
Figure 6 shows the correlation between our target variable and
propagation kernel score. We observe that most of the jobs have a
propagation score of approximately 0.3 to 0.5. This suggests that
even similarly structured plan pairs can have significant differences
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Table 4: Performance metrics of regression task for different models with Imputed (I) and Zero Imputed (Z) features.

Algorithm mae MSE 𝑅2 𝜌 p@𝜌 (10−3) 𝜏 p@𝜏 (10−3) smape(%)
Z I Z I Z I Z I Z I Z I Z I Z I

Random Forest 0.11 0.11 0.05 0.04 0.26 0.26 0.13 0.16 0.09 0.11 0.09 0.10 0.08 0.6 82 88
XgBoost 0.12 0.11 0.04 0.04 0.25 0.29 0.11 0.18 0.07 0.13 0.07 0.08 0.07 0.3 81 78
Gradient Boosting 0.12 0.11 0.05 0.04 0.22 0.27 0.09 0.15 0.65 0.10 0.06 0.08 0.70 0.2 82 82
LightGBM 0.13 0.13 0.05 0.04 0.23 0.26 0.08 0.18 1.46 0.13 0.08 0.08 1.46 0.4 75 71
RNN 0.14 0.11 0.04 0.03 0.20 0.50 0.13 0.36 0.00 0.00 0.08 0.25 0.00 0.0 73 68
PlanDiff 0.13 0.11 0.05 0.03 0.33 0.49 0.27 0.32 0.00 0.00 0.20 0.22 0.00 0.0 69 68

(a) (b) (c) (d)

Figure 7: Top 8 important features of (a) XGBoost (b) Random forest (c) Gradient Boosting and (d) LightGBM

in the IR feature attributes, i.e., the compile time settings can differ
wildly, regardless of structure. The propagation scores for plans
with marginal performance change have large variance, implying
that differences in IR feature attributes directly contribute to per-
formance shifts. All of this evidence indicates that identifying and
predicting performance shifts in query plans is non-trivial.

We summarized the performances of the baseline models in Ta-
ble 3. The graph kernels provide positive predictions (0 to 1), so
we compared the kernel predictions with the absolute value of our
target variable (which can be from -1 to 1) to measure performance.
Comparing in absolute values means we cannot confirm the di-
rection (regression or improvement) of performance change when
using the graph kernels. Of the three baselines, we observed bet-
ter performance in terms of MAE and MSE from the propagation
kernel. However, the 𝑅2 scores for all of the algorithms were poor,
and the predictions were off by a significant amount, measured by
percentage error (smape).

We experimented with graph kernel approaches as part of due
diligence, but concluded that they are not the best approach for
differentiating query plans based on potential performance regres-
sions. They struggle to factor in adequate meta information about
the IR statistics, and produce a seemingly unrelated similarity score
to the target variable. In the remaining results from evaluation, we
use a standard train-test ratio of 80:20 for experimentation (80% of
the data for training the models and 20% for evaluation).

6.4 Regression Task Results

Model accuracy. Table 4 presents performances of individual mod-

els for the regression task. Evidently the tree based models, trained
with engineered features, exhibit similar performance. Predictions
are weakly correlated with the target variable according to 𝑅2, 𝜌
and 𝜏 , and the p-values for these coefficients, 𝑝@𝜌 and 𝑝@𝜏 , fur-
ther confirm that weakness. Part of the performance evaluation
involves determining the effect of imputing missing values. We
do not experience a noticeable performance shift with respect to
MAE for the tree based models when we impute missing values
with a historical moving average as opposed to 0. However, the

imputation does change the percentage error smape significantly.
Surprisingly, the percentage error increases for the Random Forest
with imputation. We measure high MAE for the LightGBM model,
but the lowest smape of all the candidates.

To better understand these results, we take a closer look at the
predictions from these models. Looking at MAE of different models
it seems the accuracy of them are very similar. But a difference of
0.01 in MAE is very critical in our case as our decision boundary
is very narrow. The target values of ≈ 15% of our testing data is in
between -0.01 and 0.01. As a consequence a difference of 0.01 can
place a plan in opposite region than the ground truth. We observe
that most of the predictions for the Random Forest are ≈ −1× 10−3,
whereas the median value of our target variable is 6× 10−4. We find
that 50% of the target values are less than −1 × 10−3. This suggests
that the predictions for the Random Forest experience high smape

error. In the case of the LightGBM, a lower smape hints that many
predictions are closer to ground truth than other tree models. The
predictions from Gradient Boosting display a very narrow range,
producing similar results to the Random Forest, though imputation
seemed to improve the 𝑅2 score (unlike the other models). Out of
the four tree based models, XGBoost performs best overall.

Both PlanDiff and RNN based model perform better than the
tree based models. Although these two models have higher mae

than XgBoost model, but they exhibit higher 𝑅2, 𝜌,&𝜏 scores, and
show considerable improvement when missing values are imputed.
This suggests that even with higher mae the predictions from both
PlanDiff and RNN are closer to the ground truth than other models.
Feature importance. In Figure 7 we graph the tree based models’

feature importance for the 8 most important features. We calcu-
late feature importance for a single decision tree as the amount
that each attribute split point improves performance, weighted by
the number of node-wise observations. The feature importance is
averaged across all trees, and we find that most top features are as-
sociated with expensive physical operators. Other than LightGBM,
all the models emphasize the importance of the UnionAll operator.
Some unimportant operators, like StreamGbAgg and Sequence, are
emphasized by some models. Most of these features relate to the

3370



Figure 8: Box plot of related

prediction interval errors.
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Figure 9: Quantile loss at 10𝑡ℎ ,
50𝑡ℎ and 90𝑡ℎ quantiles.

Figure 10: Pairwise correlation between the predictions of

different models and a target variable (Y).

difference in cardinality (both input and estimated) of the operators,
which is strong evidence that the models make decisions based on
features that are relevant to the query performance.

Convergence. Figure 11 illustrates the learning curve for these

models with 10 fold-cross validation, and utilizes negative mean ab-

solute error as the accuracy score (higher the better). In Figure 11a,
we observe that the MAE of Random Forest jumps to roughly 0.12
after an increased training size (to 100), and both training and vali-
dation error appear to flatten post-convergence. A MAE of 0.12 is
very significant; most of our target values are very close to zero, so
an overestimate or underestimate of 0.12 could likely move a pre-
diction to a different spectrum (regression becomes improvement,
or vice versa). A high training error for the Random Forest implies
that the model suffers from high bias and low variance, and fails
to fit the training data well – this is backed up by the high smape

error as well. XGBoost and Gradient Boosting both have lower
training error, and their curves indicate convergence. The higher
variance of XGBoost when compared to Gradient Boosting coupled
with XGBoost’s higher training score means Gradient Boosting is
likely more biased. Though Gradient Boosting appears to converge,
the predictions exhibit a similar trend to the one we saw with the
Random Forest. Interestingly, the training score decreases while
the validation score increases initially for the LightGBM, meaning
that it overfits at the start of training, but generalizes well.

In Figure 12a and Figure 12b we plot the learning curve for RNN
and PlanDiff. We trained the PlanDiff model for a higher number of
epochs, and it incurs a higher training loss and validation loss than
RNN. After roughly 4 epochs, both the training and the validation
loss flatten. The RNN model takes almost 15 times longer to train,
which is why we were only able to train the model for 4 epochs,

but we found that both training and validation loss of the RNN
decreased significantly within that timeframe.
Pair-wise correlation. Higher 𝑅2 does not always guarantee that
a model is doing better, so we also plot a pairwise Pearson correla-
tion for each model prediction along with our target variable (Y) in
Figure 10. The tree-based model predictions are highly correlated
with each other, and XGBoost displaying a higher correlation on
average with the target. Both neural network models are compara-
tively more correlated with our target variable than the tree based
models. This observation is also consistent with comparatively low
smape error of both these models. One significant advantage of
using an RNN or PlanDiff over the tree based models is that it
requires no feature engineering. Feature engineering has a high
labor cost, and furthermore the type and number of physical oper-
ators in an optimizer may change, which would mean recrafting
features to reflect those changes individually. The RNN model has
some further drawbacks, despite its comparable performance to the
graph model; the RNN model takes much longer time to train, and
can only process DAGs which leads to information loss.

6.5 Analyzing Prediction Intervals

In the previous section we saw how data constraints effect the
predictive power of the model. However, we must also consider
prediction uncertainty to discern the confidence of the model - in
tandem, measures of efficiency and uncertainty provide a holistic
model evaluation. We take a close look at the XGBoost model with
quantile loss to explain model uncertainty. From our base XGBoost
model, we trained two additional XGBoost models with the same
parameters with an quantile loss function to compute the upper
and lower boundaries for a prediction. Our prediction interval can
be thought of as the difference between the upper and lower bound.

First we measured the percentage of data that actually falls
within our prediction interval, and discovered that ≈ 85% of the
predictions are inside our calculated interval. This percentage alone
can be misleading; if the width of the interval is high, most of the
predictions will fall inside of it, indicating a high uncertainty in our
prediction. By calculating the previously defined Lower (𝑙𝑒 ), Upper
(𝑢𝑒 ) and Interval (𝑖𝑒 ) error, we can measure the distance between
the actual prediction and the lower and upper bound. Interval error
(𝑖𝑒 ) is the average of these two distances, and provides an overall
picture of a model’s total uncertainty.

In Figure 8, the box-plot describes these errors, showing that the
median absolute error for the upper bound prediction is higher than
median lower bound error. A higher upper bound error indicates
that most of the time the prediction is closer to lower bound than the
upper bound. This behaviour is desirable: we want our prediction
to be near the lower bound to avoid overestimation. However, the
median lower bound error is ≈ 0.15, and the median interval error
i.e. the width of the prediction interval is≈ 0.25, which is significant.
This implies that predictions near 0 for the upper and lower bounds
can indicate a different direction of performance shift. The XGBoost
model suffers from high uncertainty.

In Figure 9, we visualize the variance in quantile loss with in-
curred error for each quantile. The median quantile (50𝑡ℎ percentile)
is symmetric around zero, while the 10𝑡ℎ percentile assigns higher
loss to negative errors and lower loss to positive errors. Intuitively,
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Figure 11: Learning curves of (a) Random Forest (b) XgBoost (c) Gradient Boosting and (d) LightGBM using cross validation

Table 5: Accuracy, Precision (Pr), Recall (Re), and F1 score of different classifierswith Imputed (I) and Zero imputed (Z) features.

Algorithm Accuracy[Z] Improve (%) [Z] Regress (%) [Z] Accuracy[I] Improve (%) [I] Regress (%) [I]
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

Random Forest 50 51 48 50 50 52 51 51 55 46 50 53 62 57
XgBoost 52 53 53 53 52 52 52 55 57 47 52 54 63 58
Gradient Boosting 53 54 52 53 52 54 53 53 54 45 49 52 62 57
LightGBM 52 53 50 52 52 55 54 54 56 48 52 54 62 57
RNN 55 53 50 52 52 55 54 57 60 48 52 55 69 61
PlanDiff 54 52 48 50 58 61 60 58 61 49 54 57 69 62

(a) RNN (b) PlanDiff

Figure 12: Learning curves of RNN and PlanDiff

the 10𝑡ℎ percentile connotes a 10% chance that the true value is
below the predicted value and 90𝑡ℎ percentile means 90% chance
that the true value is higher than predicted. Our results suggest that
the algorithm properly assigns a higher error for overestimates.

We further scrutinize each model for the performance intervals
defined in Figure 4c. How do the models perform at different in-
tensities of performance shift? Figure 13 highlights the box-plot
of absolute error for each model at previously defined different
intervals. All of the algorithms perform similarly for query plans
with marginal shift, but there is a noticeable performance difference
for both RNN and PlanDiff for jobs that demonstrate significant im-
provement. Predictions from most of the models are skewed, with
large variability for jobs that experience performance regressions.

6.6 Classification Task Results

As we previously discussed, the task of identifying performance
improvements/regressions can be reduced to a binary classification
problem. In Table 5, we summarize the accuracy of our models
in this classification problem framing, with the expectation that
they have higher recall for the Regression class. The neural network
based models perform much better compared to the models with
manually engineered features. In the classification problem fram-
ing, data imputation decreases recall and increases precision of the
Improvements class for most of the models. Just like with the regres-
sion task, we inspect the classification performance across different

interval “bins.” In Figure 14, we present the classification accuracy
of the models at each interval. PlanDiff and the RNN perform better
for jobs with significant improvement – this result is analogous to
that which we observed when calculating the same metrics for the
regression problem framing. Surprisingly, LightGBM does better
on average than most of the other tree models. Overall PlanDiff
demonstrates balanced performance across different region of the
test dataset with higher confidence conforming to Figure 13.

6.7 Results on Spark

Our proposed architecture is engine agnostic. PerfGuard can quan-
tify the similarity of a pair of plans from any big data query system
by analyzing a physical query execution plan and/or associated
compile-time metrics. To validate PerfGuard’s extensibility, we
ran experiments using TPC-DS [6] queries on Spark SQL, and per-
formed query optimization focused on learned cardinality models
(as we did with SCOPE). Our Spark experimentation produced sim-
ilar results to our SCOPE experiments, as we detail here.

The graph kernels reported a mean structural similarity score of
0.35 with the Propagation Kernel and 0.96 with the Pyramid Kernel.
We used the same manual feature engineering approach as with
the SCOPE experiments (besides EstCost, which Spark lacks). The
lowest observed MAE was the Gradient Boosting regressor (0.03),
and all models had a negative𝑅2. Approximately 43% of the data had
target values between -0.30 and 0.30, implying the Spark regression
models did not perform as well as the SCOPE models. That our
TPC-DS query set is small (only 99 queries), and possibly caused
the models to overfit, might explain the worse performance. The
high positive 𝑅2 scores for the models on the training dataset and
the negative 𝑅2s on the test dataset strongly indicate overfitting.

Hyperparameter tuning did not help to improve our scores on
the test dataset. In Spark, the target distribution was heavily skewed
and the range of the values were smaller than they were for the
SCOPE data (the lowest value was -0.18 and highest value was
0.35). However, some of the models, including the PlanDiff model,
performed better in the binary classification setting. In other words,
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Figure 13: Boxplot of absolute error for each interval defined

in Figure 4c.

Figure 14: Accuracy of classification of different algorithm

in each interval defined in Figure 4c.

some of the models could predict the direction of performance shift,
but struggled with predicting the intensity of performance shift.

Gradient Boosting had the highest classification accuracy of 79%,
which is significantly higher than what we observed for SCOPE
data. However, given the small training query set, any model would
likely have lower generalized accuracy. Both the RNN and PlanDiff
further demonstrate good results in regression setting with MAEs
0.04 and 0.03 respectively. The MAE we observed for the RNN and
PlanDiff were comparable to Gradient Boosting, but the 𝑅2 was
0.45 and 0.49 respectively, which implies a better fit. Neither model
replicated performance in the classification setting – both had lower
accuracy than feature engineering based models. Overall, using the
best model, PerfGuard is able to correctly predict regressions for
21 out of 30 actually regressing TPC-DS test queries (70% accuracy)
when learned cardinalities are enabled in Spark, thus showing the
effectiveness of PerfGuard outside of Cosmos.

6.8 Job Subset Selection Results

We now evaluate PerfGuard for our overall goals, i.e., minimizing
performance regressions and flighting costs. Recall that our pri-
mary target is to select a set of jobs to flight based on our budget
constraint 𝐵, where 𝐵 could be the number of jobs or the processing
costs. We look at the jobs for which our models predict a positive
performance shift and select a 𝑡𝑜𝑝 − 𝑘 subset. If there are 𝑁 test
jobs with ranked cost𝐶 = {𝑐1, 𝑐2, . . . 𝑐𝑁 } and top 𝑘 jobs are flighted

then saved flighting cost is defined as:
∑𝑁−𝑘

𝑖=1 𝑐𝑖
∑𝑁

𝑖=1 𝑐𝑖
. The left subfigure

of Figure 15 shows the savings in flighting costs over 𝑘 . Here we
consider flighting hours as cost. On the y-axis we chart the ratio of
total flighting costs saved and sum of costs of flighting all jobs in our
test dataset. Note that as the percentage of jobs to flight increase,
XGboost and PlanDiff save the most hours. For the first 50% of the
jobs, the PlanDiff model saves more hours than the other models,
and XGboost saves more in the latter 50%. Although both RNN and
PlanDiff have moderately high correlations with other approaches
in Figure 10, both outperform others. One explanation is that both
PlanDiff and RNN correlate more with the target variable, and so
more accurately predict the direction of performance shift (if we
consider only prediction sign (+/-)). We recommend experimenting

Figure 15: Resource saving (left) and cost (right) of job subset

selection using different models.

both with PlanDiff and XGBoost, our two highest performing mod-
els, and note that XGBoost is comparatively inexpensive to train,
although PlanDiff performs best overall.

Only considering total saved flighting costs does not accurately
depict the whole picture; there might be jobs for which the ground
truth indicates performance regression that we decide not to flight.
To address this possibility, we further track the ratio of such cases
with respect total number of jobs. If there are 𝑝 jobs out of 𝑘 selected
jobs which are actually regressing while our algorithm predicted
improvement, then we consider them as missed selection and per-
formance regression ratio is defined as

𝑝
𝑘 . In the right subfigure

of Figure 15 we plot the progression of missed selections as we
increase the number of jobs to flight. Despite saving more flighting
costs using XGboost, we risk not flighting a large number of crucial
jobs to flight. Both PlanDiff and the RNN, along with the ensemble
models, experience a much lower performance regression ratio.
Clearly the PlanDiff model saves more costs than the other models,
while exhibiting a similar performance regression ratio to the RNN
and ensemble models. Interestingly the majority vote ensemble
model has lower flighting costs along with a similar performance
regression ratio to PlanDiff ; the weighted linear ensemble model
performs much better than majority voting. While service provider
can vary the number of jobs to be flighted, we recommend to flight
60% of the jobs as a good starting point for Cosmos, resulting in
30% cost savings with only ≈ 5% false positive rate.

7 CONCLUSION

We presented PerfGuard, an end-to-end system that assists in
avoiding performance regressions with the new breed of ML-based
system optimizations, also referred to as ML-for-systems. We for-
malized the performance regression problem for big data systems
and investigated a number of approaches to correlate changes in
the query plans with those in query performance. The key idea is to
leverage the large volumes of pre-production workloads and learn
from the performance differences of queries that were tested in the
past. Our results show that neural network based models perform
better compared to models with manually engineered features or
models based on graph kernels. The resulting PlanDiff model can
design efficient experiments that save significant experimentation
costs in pre-production and minimize performance regressions in
production. We showed the applicability of PerfGuard over both
SCOPE and Spark query engines and believe such a framework can
also be applied to other domains, such as compiler optimization, in
the future.
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