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ABSTRACT
Differential privacy allows bounding the influence that training

data records have on a machine learning model. To use differential

privacy in machine learning, data scientists must choose privacy

parameters (𝜖, 𝛿). Choosing meaningful privacy parameters is key,

since models trained with weak privacy parameters might result in

excessive privacy leakage, while strong privacy parameters might

overly degrade model utility. However, privacy parameter values

are difficult to choose for two main reasons. First, the theoretical

upper bound on privacy loss (𝜖, 𝛿) might be loose, depending on

the chosen sensitivity and data distribution of practical datasets.

Second, legal requirements and societal norms for anonymization

often refer to individual identifiability, to which (𝜖, 𝛿) are only

indirectly related.

We transform (𝜖, 𝛿) to a bound on the Bayesian posterior belief

of the adversary assumed by differential privacy concerning the

presence of any record in the training dataset. The bound holds for

multidimensional queries under composition, and we show that it

can be tight in practice. Furthermore, we derive an identifiability

bound, which relates the adversary assumed in differential privacy

to previous work on membership inference adversaries. We for-

mulate an implementation of this differential privacy adversary

that allows data scientists to audit model training and compute

empirical identifiability scores and empirical (𝜖, 𝛿).
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1 INTRODUCTION
The application of differential privacy (DP) for machine learning

has received considerable attention by the privacy research com-

munity, leading to key contributions such as the tight estimation of

privacy loss under composition [22, 23, 32] and differentially pri-

vate stochastic gradient descent [1, 3, 41, 43] (DPSGD) for training

neural networks. Still, data scientists must choose privacy parame-

ters (𝜖, 𝛿) to train a machine learning (ML) model using DPSGD. If

the privacy parameters are stronger than necessary, model utility

is sacrificed, as these parameters only formulate a theoretic upper

bound that might not be reached when training an ML model with

differentially private stochastic gradient descent on real-world data.

If privacy parameters are too small, the trained model might be

prone to reidentification attacks.

Several privacy regulations [37, 38] consider individual identifia-

bility to gauge anonymization strength. Therefore, relatable scores

that quantify reidentification risk to individuals can strongly affect

the widespread implementation of anonymization techniques [34].

In consequence, if DP shall be used to comply with privacy regula-

tions and find widespread adoption [36, 39], quantifying the result-

ing identifiability from privacy parameters (𝜖, 𝛿) is required [7, 36].

Multiple approaches for choosing privacy parameters have been

introduced, yet they do not reflect identifiability [2, 17], part from

the original DP definition [5, 27, 40, 47], or lack applicability to

common DP mechanisms for ML [26]. Especially in ML, practical

membership inference (MI) attacks have been used to measure

identifiability [5, 6, 16, 20, 21, 40, 42, 47]. However, MI adversaries

are not assumed to have auxiliary information about the members

of datasets that they aim to differentiate, which DP adversaries

are assumed to possess. MI attacks thus offer intuition about the

outcome of practical attacks; nonetheless, bounds on MI attacks

in terms of 𝜖 are not tight [20], and consequently MI can only

represent an empirical lower bound on identifiability.

Rather than analyzing the MI adversary, we consider a DP ad-

versary with arbitrary auxiliary knowledge and derive maximum

Bayesian posterior belief 𝜌𝛽 as an identifiability bound related to

(𝜖, 𝛿), which bounds the adversary’s certainty in identifying a mem-

ber of the training data. Furthermore, we define the complementary

score expected membership advantage 𝜌𝛼 , which is related to the

probability of success in a Bernoulli trial over the posterior beliefs.
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𝜌𝛼 depends on the entire distribution of observed posterior beliefs,

not solely the worst case posterior belief, and allows direct com-

parison with the membership advantage bound of Yeom et al. [47]

for the MI adversary. We will show that the DP adversary achieves

greater membership advantage than an MI adversary, implying

that while both adversaries can be used to evaluate the protection

of DP in machine learning, our implementable instance of the DP

adversary comes closer to DP bounds.

A subsequent question is whether our identifiability bounds are

tight in practice, since the factual guarantee (𝜖, 𝛿) depends on the

difference between possible input datasets [35]. In differentially

private stochastic gradient descent, noise is scaled to global sensi-

tivity, the maximum change that any single record in the training

dataset is assumed to cause on the gradient during any training

step. However, since all training data records are likely to be within

the same domain (e.g., pictures of cars vs. pictures of nature scenes),

global sensitivity might far exceed the difference between gradients

over all training steps. We propose scaling the sensitivity to the

difference between the gradients of a fixed dataset and any neigh-

boring dataset and show for three reference datasets that we can

indeed achieve tight bounds. Our main contributions are:

• Identifiability bounds for the posterior belief and expected

membership advantage that are mathematical transforma-

tions of privacy parameters (𝜖, 𝛿) and used in conjunction

with RDP composition.

• The practical implementation of an adversary that meets

all assumptions on worst-case adversaries against DP and

allows us to audit DPSGD model instances w.r.t. to the em-

pirical privacy loss besides enabling comparison with mem-

bership inference adversaries.

• A heuristic for scaling sensitivity in differentially private sto-

chastic gradient descent. This heuristic leads to tight bounds

on identifiability.

This paper is structured as follows. Preliminaries are presented

in Section 2. We formulate identifiability scores and provide up-

per bounds on them in Sections 3 and 4. Section 5 specifies the

application of these scores for a deep learning scenario, and we

evaluate the scores for three deep learning reference datasets in

Section 6. Section 7 discusses the practical relevance of our findings.

We present related work and conclusions in Sections 8 and 9.

2 PRELIMINARIES
2.1 Differential Privacy
If the evaluation of a function 𝑓 : U → R on a dataset D from

domainU yields a result 𝑟 , 𝑟 inevitably leaks information about the

entries𝑥 ∈ D (cf. impossibility of Dalenius’ desideratum [9]). DP [9]

offers an anonymization guarantee for statistical query functions

𝑓 (·), perturbing 𝑟 such that the result could have been produced

from dataset D or some neighboring dataset D ′. A neighboring

dataset D ′ either differs from D in the presence of one additional

data point (unbounded DP) or in the value of one data point when a

data point from D is replaced by another data point (bounded DP).

In the context of this work, we will consider w.l.o.g. unbounded DP

where D contains one data point 𝑥 more than D ′ and D \ D ′ = 𝑥 .

To achieve differential privacy, noise is added to the result of 𝑓 (·)
bymechanismsM according to Definition 1. The impact of a single

member 𝑥 ∈ D on 𝑓 (·) is bounded. If this impact is low compared

to the noise specified by DP, plausible deniability is provided to this

member of D, even if D and the members’ properties 𝑥 (and thus

also D ′) are known. For example, a single individual participating

in a private analysis based on a census income dataset such as

Adult [25] could therefore plausibly deny census participation and

values of personal attributes. DP provides a strong guarantee, since

it protects against a strong adversary with knowledge of up to

all points in a dataset except one. As Definition 1 is an inequality,

the privacy parameter 𝜖 can be interpreted as an upper bound on

privacy loss.

Definition 1 ((𝜖, 𝛿)-Differential Privacy [10]). Amechanism
M preserves (𝜖, 𝛿)-differential privacy if for all independently sam-
pled D,D ′ ⊆ U, whereU is a finite set, with D and D ′ differing
in at most one element, and all possible mechanism outputs S

Pr(M(D) ∈ S) ≤ 𝑒𝜖 · Pr(M(D ′) ∈ S) + 𝛿

The Gaussian mechanism is the predominant DP mechanism in

ML for perturbing the outcome of stochastic gradient descent and

adds noise independently sampled from a Gaussian distribution

centered at zero. Prior work [11] has analyzed the tails of the normal

distributions and found that bounding the standard deviation as

follows fulfills (𝜖, 𝛿)-DP:

𝜎 > Δ𝑓
√
2 ln(1.25/𝛿)/𝜖 (1)

Rearranged to solve for 𝜖 , this is:

𝜖 > Δ𝑓
√
2 ln(1.25/𝛿)/𝜎 (2)

𝜎 depends not only on the DP guarantee, but also on a scaling

factor Δ𝑓 . Δ𝑓 is commonly referred to as the sensitivity of a query

function 𝑓 (·) and comes in two forms: global sensitivity 𝐺𝑆𝑓 and

local sensitivity 𝐿𝑆𝑓 . DP holds if mechanisms are scaled to 𝐺𝑆𝑓
of Definition 2, i.e., the maximum contribution of a record in the

dataset to the outcome of 𝑓 (·).

Definition 2 (Global Sensitivity). Let D and D ′ be neigh-
boring. For a given finite setU and function 𝑓 the global sensitivity
𝐺𝑆𝑓 with respect to a distance function is

𝐺𝑆𝑓 = max

D,D′
| |𝑓 (D) − 𝑓 (D ′) | |

For the Gaussian mechanism, we use the global ℓ2-sensitivity

𝐺𝑆𝑓2 . Local sensitivity is specified in Definition 3 [35] and fixes

datasetD. Note that the absolute𝐺𝑆𝑓 as of Definition 2 can also be

defined relative to local sensitivity, as 𝐺𝑆𝑓 = max

D
𝐿𝑆𝑓 (D). The im-

pact of 𝐿𝑆𝑓 is that, compared to using𝐺𝑆𝑓 , less noise is added when

𝜖 is held constant, and 𝜖 is decreased when the noise distribution is

held constant.

Definition 3 (Local Sensitivity). Let D and D ′ be neighbor-
ing. For a given finite setU, independently sampled dataset D ⊆ U,
and function 𝑓 , the local sensitivity 𝐿𝑆𝑓 (D) with respect to a distance
function is

𝐿𝑆𝑓 (D) = max

D′
| |𝑓 (D) − 𝑓 (D ′) | |

In differentially private stochastic gradient descent, perturbed

outputs are released repeatedly in an iterative process.M is repre-

sented by a differentially private version of an ML optimizer such
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as Adam or SGD. The most basic form of accounting multiple data

releases is sequential composition, which states that for a sequence

of 𝑘 mechanism executions each providing (𝜖𝑖 , 𝛿𝑖 )-DP, the total pri-

vacy guarantee composes to (

∑
𝑖 𝜖𝑖 ,

∑
𝑖 𝛿𝑖 )-DP; however, sequential

composition adds more noise than necessary [1, 32].

A tighter analysis of composition is provided by Mironov [32].

(𝛼, 𝜖𝑅𝐷𝑃 )−Rényi differential privacy (RDP), with 𝛼 > 1 quantifies

the difference in distributionsM(D),M(D ′) by their Rényi di-

vergence [46]. For a sequence of 𝑘 mechanism executions each

providing (𝛼 , 𝜖𝑅𝐷𝑃,𝑖 )-RDP, the privacy guarantee composes to (𝛼 ,∑
𝑖 𝜖𝑅𝐷𝑃,𝑖 )-RDP. The (𝛼 , 𝜖𝑅𝐷𝑃 )-RDP guarantee converts to (𝜖𝑅𝐷𝑃 −

ln𝛿
𝛼−1 , 𝛿)-DP. The Gaussian mechanism is calibrated to RDP by:

𝜖𝑅𝐷𝑃 = 𝛼 · Δ𝑓 2/2𝜎2 (3)

2.2 Differentially Private Machine Learning
In machine learning a neural network (NN) is commonly provided

a training dataset D where each of the data points (𝑥,𝑦) ∈ D
consists of the features 𝑥 and the label 𝑦. The goal is to learn a

prediction function using an optimizer. A test set is used to eval-

uate generalization and utility of the trained model. This paper

focuses on applying DP to stochastic gradient descent optimizers

that output a gradient vector, which corresponds to the output

of function 𝑓 in DP. A variety of differentially private stochastic

gradient descent (DPSGD) optimizers are available for deep learn-

ing, all of which depend on the privacy parameters (𝜖, 𝛿) and the

clipping norm C [1, 31]. DPSGD updates weights 𝜃𝑖 of the NN per

training step 𝑖 ∈ 𝑘 with 𝜃𝑖 ← 𝜃𝑖−1 − 𝜂 · 𝑔𝑖 , where 𝜂 > 0 is the

learning rate. Differential privacy is achieved by perturbing the

gradient 𝑔𝑖 =M𝑖 (D) with Gaussian noise. To limit the sensitivity

Δ𝑓 , the length of each per-example gradient is limited to the clip-

ping norm C before perturbation, and the Gaussian perturbation is

proportional to C.

2.3 Membership Inference
Membership inference (MI) is a threat model for quantifying how

accurately an adversary can identify members of the training data

in ML. Yeom et al. [47] formalize MI in the following experiment:

Experiment 1. (Membership Inference Exp
MI) Let AMI be an

adversary,M be a differentially private learning algorithm, 𝑛 be a
positive integer, and Dist be a distribution over data points (𝑥,𝑦).
Sample D ∼ Dist𝑛 and let r =M(D). The membership experiment
proceeds as follows:

(1) Sample 𝑧D uniformly from D and 𝑧Dist from Dist
(2) Choose 𝑏 ← {0, 1} uniformly at random
(3) Let

𝑧 =

{
𝑧D if b=1
𝑧Dist if b=0

(4) AMI outputs 𝑏 ′ = AMI (r, 𝑧, Dist, 𝑛,M) ∈ {0, 1}. If 𝑏 ′ = 𝑏,
AMI succeeds and the output of the experiment is 1. It is 0
otherwise.

2.4 Differential Identifiability and the relation
to the DP adversary

Lee et al. [26, 27] introduce differential identifiability (DI) as a strong

inference threat model. DI assumes that the adversary calculates

the likelihood of all possible input datasets, so-called possible worlds
in a set Ψ, given a mechanism output 𝑟 . Li et al. [28] show that the

DI threat model maps to the worst case against which bounded DP

protects when |Ψ| = 2, since DP considers two neighboring datasets

D, D ′ by definition. The DI experiment Exp
DI

is similar to Exp
MI
,

since the adversary must decide whether the dataset contains the

member that differs between the known D ′ and D, or not. For

comparison we reformulate DI as a cryptographic experiment:

Experiment 2. (Differential Identifiability Exp
DI) Let ADI be

an adversary,M be a differentially private learning algorithm, D
and D ′ be neighboring datasets drawn mutually independently from
distribution Dist, using either bounded or unbounded definitions. The
differential identifiability experiment ExpDI proceeds as follows:

(1) Set r𝐷 :=M(D) and rD′ :=M(D ′)
(2) Choose 𝑏 ← {0, 1} uniformly at random
(3) Let

r =

{
rD , if 𝑏 = 1

rD′, if 𝑏 = 0

(4) ADI outputs 𝑏 ′ = ADI (r,D,D ′,M, Dist) ∈ {0, 1}. If 𝑏 ′ = 𝑏,
ADI succeeds and the output of the experiment is 1. It is 0
otherwise.

Since Experiment 2 precisely defines an adversary with access to

arbitrary background knowledge of up to all but one record in D
andD ′,ADI is an implementable instance of the DP adversary [12].

Compared to the MI adversary, the DI adversary is stronger, since

ADI knows the alternative dataset D ′ instead of only the distri-

bution Dist from which D ′ was chosen. The experiment defined

above is general and applies to deep learning using gradient descent

as follows: the knowledge of the mechanismM implies knowledge

about the architecture of the NN and the learning parameters 𝜂, C,
as well as number of iterations 𝑘 . The experiment is formulated

s.t. it could be applied for a single iteration, and the output r of the
mechanism is the perturbed gradient 𝑔𝑖 from iteration 𝑖 of the NN

training. However, after the entire learning process, consisting of 𝑘

rounds, ADI has more information 𝑅𝑘 = (r0, r1, . . . , r𝑘 ) and there-

fore a higher chance to win Experiment 2. In this case, the same

value of 𝑏 is chosen in every round, since the training data is kept

constant over all learning steps. This is the standard case consid-

ered in our paper and motivates the need for composition theorems.

According Experiment 2, the DI adversary could know almost all of

the training data from a public dataset of census data, for example,

and observe the NN gradient updates at every training step. The

assumption that ADI has access to all gradients during learning

may seem overly strong; however, this setting is of theoretical inter-

est, since the bounds that we prove for the DI adversary ADI will

also hold for weaker adversaries. Furthermore, the assumptions can

be fulfilled in federated learning, for example. In federated learn-

ing, multiple data owners jointly train a global model by sharing

gradients for their individual training data subsets with a central

aggregator. The aggregator combines the gradients and shares the
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aggregated update with all data owners. If ADI participates as a

data owner, ADI is able to observe joint model updates.

3 IDENTIFIABILITY SCORES FOR DP
In this section we formulate two scores for identifiability of indi-

vidual training records when releasing a differentially private NN.

The scores are compatible with DP under multidimensional queries

and composition. However, we first show that if Adv
DI

is bounded,

then this bound also holds for Adv
MI
. Equivalently,ADI is stronger

than AMI due to additional available auxiliary information. Con-

cretely, ADI knows both neighboring datasets D and D ′ instead
of only receiving one value 𝑧 and the size 𝑛 of the dataset from

which the data points are drawn. This leads us to Proposition 1,

which we formally prove by reduction in an extended version of

this paper [4].

Proposition 1. DI implies MI: if AMI wins ExpMI, then one can
construct ADI that wins ExpDI.

We define posterior belief 𝛽 , which quantifies identifiability for

iterative mechanisms in Section 3.1. Second, we define membership
advantage AdvDI forADI in Section 3.2, which is a complementary

identifiability score offering a scaled quantification of the adver-

sary’s probability of success.

3.1 Posterior Belief in Identifying the Training
Dataset

To quantify individual identifiability from privacy parameters (𝜖, 𝛿),
we use the Bayesian posterior belief. After having observed gradi-

ents 𝑅𝑘 , the adversaryADI can update the probabilities for both the

training dataset D and the alternate dataset D ′, that differs from
D in an individual record 𝑥 = D \ D ′. The posterior belief quanti-
fies the certainty with which ADI is able to identify the training

dataset used by a NN and consequently the presence of the individ-

ual record 𝑥 . This belief is formulated as a conditional probability

depending on observations 𝑅𝑘 during training. For a census dataset

such as Adult, the posterior belief measures the probability that a

particular individual 𝑥 participated in the census after observing

training using dataD. Since this belief has an upper bound for each

possible member 𝑥 of the dataset, no member ofD can be identified.

Posterior belief therefore relates theoretical DP privacy guarantees

to privacy regulations and societal norms through its identifiabil-

ity formulation, since the noise, and therefore the posterior belief,

depends on (𝜖, 𝛿).

Definition 4 (Posterior Belief). Consider the setting of Ex-
periment 2 and denote 𝑅𝑘 = (r0, r1, . . . , r𝑘 ) as the result matrix,
comprising 𝑘 multidimensional mechanism results. The posterior be-
lief in the correct dataset D is defined as the probability conditioned
on all the information observed during the adaptive computations

𝛽𝑘 := Pr(D|𝑅𝑘 ) =
Pr(D, 𝑅𝑘 )

Pr(D, 𝑅𝑘 ) + Pr(D ′, 𝑅𝑘 )
where the probability Pr(D|𝑅𝑘 ) is over the random iterative choices
of the mechanisms up to step 𝑘 .

Each 𝛽𝑘 can be computed from the previous 𝛽𝑘−1. The final belief
can be computed using Lemma 1, which we will use to further

analyze the strongest possible attacker ADI of Experiment 2. The
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(b) Posterior belief

Figure 1: The decision boundary of ADI

proof for Lemma 1 is available in the extended version of this

paper [4].

Lemma 1 (Calculation of the posterior belief). Assuming
uniform priors and independent mechanisms M𝑖 (more precisely,
the noise of the mechanisms must be sampled independently), the
posterior belief on dataset D can be computed as

𝛽𝑘 =

∏𝑘
𝑖=1 Pr(M𝑖 (D) = r𝑖 )∏𝑘

𝑖=1 Pr(M𝑖 (D) = r𝑖 ) +
∏𝑘

𝑖=1 Pr(M𝑖 (D ′) = r𝑖 )

=
1

1 +
∏𝑘

𝑖=1 Pr(M𝑖 (D′)=r𝑖 )∏𝑘
𝑖=1 Pr(M𝑖 (D)=r𝑖 )

In our analysis ADI is a binary classifier that chooses the la-

bel with the highest posterior probability 𝛽𝑘 . If prior beliefs are

uniform, this decision process can be simplified. Consider 𝑋1 :=

M(D) and 𝑋0 :=M(D ′). Since ADI knows D,D ′ andM, ADI

also knows the corresponding probability densities 𝑔𝑋1
and 𝑔𝑋0

.

The densities are identical and defined byM, but are centered at

the different results 𝑓 (D) and 𝑓 (D ′), respectively, as visualized in

Figure 1a with 𝑓 (D) = 0, 𝑓 (D ′) = 1. When ADI has equal prior

beliefs, ADI decides whether 𝑅𝑘 is more likely to stem from 𝑋1 or

𝑋0 and therefore chooses

ADI (𝑅𝑘 ,D,D ′,M, Dist) = argmax

𝐷∈{D,D′ }
𝛽 (𝐷 |𝑅𝑘 )

= argmax

𝑏∈{0,1}
𝑔𝑋𝑏
(𝑅𝑘 )

(4)

𝛽 (D) and 𝛽 (D ′) for our example are visualized in Figure 1b.

ADI acts as a naive Bayes classifier whose decision is depicted by

the background color. The input features are the perturbed results

𝑅𝑘 , and the exact probability distribution of each class is known.

The distributions are entirely defined by D, D ′, andM, so ADI

does not use the knowledge of Dist. The posterior belief quantifies
the probability of 𝑅𝑘 ; however, in another instance, 𝑅𝑘 could differ.

In Section 4.1, we will therefore define an upper bound on 𝛽 (D).
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3.2 Advantage in Identifying the Training
Dataset

The posterior belief 𝛽𝑘 quantifies the probability of inferring mem-

bership of a single record 𝑥 . For example, when 𝛽𝑘 is low for a

census dataset, the individual 𝑥 can plausibly deny presence in D,

and thus presence in the census. In practice, it is also important

to know how often ADI makes a correct guess, which only occurs

when 𝛽𝑘 > 0.5. This is quantified by the advantage, which is the

success rate normalized to the range [−1, 1], where 𝐴𝑑𝑣 = 0 corre-

sponds to random guessing. Membership advantage was introduced

to quantify the success of AMI [47]; however, its definition can be

used for ADI of Exp
DI
. Generically:

Definition 5 (Advantage). Given an experiment 𝐸𝑥𝑝 the ad-
vantage is defined as

𝐴𝑑𝑣 = 2 Pr(𝐸𝑥𝑝 = 1) − 1
where the probability is over the random iterative choices of the mech-
anisms up to step 𝑘 . The advantage in Exp

DI is denoted AdvDI, while
the advantage in Exp

MI is AdvMI.

4 DERIVATION OF UPPER BOUNDS
Within this section we use the DP guarantee to derive upper bounds

for posterior belief and advantage in Sections 4.1 and 4.2. In Sec-

tion 4.3, we define expectedmembership advantage for the Gaussian

mechanism, since the original bound is loose.

4.1 Upper Bound for the Posterior Belief
We formulate a generic bound on the Bayesian posterior belief that

is independent of datasets D and D ′, the mechanismM, and the

result matrix 𝑅 = (r0, r1, . . . , r𝑘 ) comprising 𝑘 multidimensional

mechanism outputs. The proposed bound solely assumes that the

DP bound holds and makes no further simplifications, which results

in an identifiability-based interpretation of DP guarantees. Theo-

rem 2 shows that ADI operates under the sequential composition

theorem, for both for 𝜖-DP and for (𝜖, 𝛿)-DP.We refer the interested

reader to an extended version of this work for the proof [4].

Theorem 2 (Bounds for the Adaptive Posterior Belief).

Consider experiment ExpDI with neighboring datasetsD andD ′. Let
M1, . . . ,M𝑘 be a sequence of arbitrary but independent differentially
private learning algorithms.
(i) EachM𝑖 provides 𝜖1, . . . , 𝜖𝑘 -DP to functions 𝑓𝑖 with multidimen-
sional output. Then the posterior belief of ADI is bounded by

𝛽𝑘 (D|𝑅𝑘 ) ≤ 𝜌𝛽 =
1

1 + 𝑒−
∑𝑘

𝑖=1 𝜖𝑖

(ii) EachM𝑖 provides (𝜖𝑖 , 𝛿𝑖 )-DP to multidimensional functions 𝑓𝑖 .
Then the same bound as above holds with probability 1 −∑𝑘

𝑖=1 𝛿𝑖 .

Equivalently one can specify a desired posterior belief and cal-

culate the overall 𝜖 , which can be spent on a composition of differ-

entially private queries:

𝜖 = ln

(
𝜌𝛽

1 − 𝜌𝛽

)
(5)

The value for 𝛿 can be chosen independently according to the rec-

ommendation that 𝛿 ≪ 1

𝑁
with 𝑁 points in the input dataset [11].

4.2 Upper Bound for the Advantage in
Identifying the Training Dataset for
General Mechanisms

We now formulate an upper bound for the advantage Adv
DI

of

ADI in Proposition 2. The membership advantage of AMI has been

bounded in terms of 𝜖 and defines AMI’s success [47]. The general

bound for AMI also holds for ADI based on Proposition 1. Again, a

proof is provided in the extended version [4].

Proposition 2 (Bound on the Expected Membership Advan-

tage for ADI). For any 𝜖-DP mechanism the identification advan-
tage of ADI in experiment ExpDI can be bounded as

Adv
DI ≤ (𝑒𝜖 − 1) Pr(ADI = 1|𝑏 = 0)

Bounding Pr(ADI = 1|𝑏 = 0) by 1 results in Adv
DI ≤ 𝑒𝜖 − 1.

When ADI acts as a naive Bayes classifier, only a complete lack

of utility from infinite noise results in Pr(ADI = 1|𝑏 = 0) = 0.5.

Otherwise, Pr(ADI = 1|𝑏 = 0) ≪ 0.5; therefore, the membership

advantage bound is usually not tight. This is in line with Jayaraman

et al. [20] who expect that this would be the case for MI.

4.3 Upper Bound for the Advantage in
Identifying the Training Dataset for
Gaussian Mechanisms

In practice, ADI will be faced with a specific DP mechanism, and

we focus on the mechanism used in DPSGD to find a tighter bound

than the generic bound described in the previous section. We use

the notationADI,Gau andAdv
DI,Gau

to specify the adversary and ad-

vantage of an instantiation ofADI against the Gaussian mechanism

with (𝜖, 𝛿)-DP. We now derive a tighter bound 𝜌𝛼 on Adv
DI,Gau

.

Note that under the assumption of equal priors, the strongest possi-

ble adversary of Eq. (4) chooses 𝑏 = 1 if (𝑔𝑋1
(r) − 𝑔𝑋0

(r)) > 0 and

𝑏 = 0 otherwise. The resulting bound on Adv
DI,Gau

is constructed

from ADI,Gau’s strategy; however, the bound holds for all weaker

adversaries, including AMI. Since we argue that ADI,Gau precisely

represents the assumptions of DP, the bound should hold for other

possible attacks in the realm of DP and the Gaussian mechanism

under the i.i.d. assumption.

Since ADI,Gau is a naive Bayes classifier with known probability

distributions, we use the properties of normal distributions (we

refer to Tumer et al. [45] for full details). We find that the decision

boundary does not change under the Gaussian mechanismM𝐺𝑎𝑢

with different (𝜖, 𝛿) guarantees as long as the probability density

functions (PDF) are symmetric. HoldingM(D) = 𝑟 constant and

reducing (𝜖, 𝛿) solely affects the posterior belief ofADI,Gau, not the

choice of D or D ′. For example, consider the example of Figure 2.

If a (6, 10−6)-DPM𝐺𝑎𝑢 is applied for perturbation, ADI,Gau has to

choose between the two PDFs in Figure 2a. Increasing the privacy

guarantee to (3, 10−6)-DP in Figure 2b squeezes the PDFs and belief

curves. The corresponding regions of error are shaded in Figures 2a

and 2b, where we see that a stronger guarantee reduces Adv
DI,Gau

.

We assume throughout this paper that ADI,Gau has uniform

prior beliefs on the possible databases D and D ′. This distribution
is iteratively updated based on the posterior resulting from the

mechanism output 𝑟 . IfM𝐺𝑎𝑢 is used to achieve (𝜖, 𝛿)-DP, we can
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Figure 2: Error regions for varying 𝜖,M𝐺𝑎𝑢

determine the expected membership advantage of the practical at-

tackerADI,Gau analytically by the overlap of the resulting Gaussian

distributions [29, p. 321]. We thus consider two multidimensional

Gaussian PDFs (i.e.,M(D),M(D ′)) with covariance matrix Σ and

means (without noise) 𝜇1 = 𝑓 (D), 𝜇2 = 𝑓 (D ′). This leads us to
Theorem 3. We again refer to the extended version of this paper [4]

for the proof.

Theorem 3 (Tight Bound on the Expected AdversarialMem-

bership Advantage). For the (𝜖, 𝛿)-differentially private Gaussian
mechanism, the expected membership advantage of the strong proba-
bilistic adversary on either dataset D,D ′.

Adv
DI ≤ 𝜌𝛼 = 2Φ

(
𝜖

2

√
2 ln(1.25/𝛿)

)
− 1

where Φ is the cumulative density function of the standard normal
distribution.

We can calculate 𝜖 from a chosen maximum expected advantage

𝜖 =
√
2 ln(1.25/𝛿) Φ−1

(
𝜌𝛼 + 1

2

)
(6)

(𝜖, 𝛿) guarantees with 𝛿 > 0 can be expressed via a scalar value

𝜌𝛼 . Summarizing, we now have complementary interpretability

scores, where 𝜌𝛽 represents a bound on individual deniability and

𝜌𝛼 relates to the expected probability of reidentification. While 𝜌𝛽
holds for all mechanisms, 𝜌𝛼 was derived solely for the Gaussian

mechanism. We provide example plots of 𝜌𝛽 and 𝜌𝛼 for different

(𝜖, 𝛿) in Figure 3. To compute both scores, we use Theorems 2

and 3. We set 𝑓 (D) = (01, 02, . . . , 0𝑘 ) and 𝑓 (D ′) = (11, 12, . . . , 1𝑘 )
for all dimensions 𝑘 , so 𝐺𝑆𝑓2 =

√
𝑘 . Figure 3a illustrates that there

is no significant difference for 𝜌𝛽 between 𝜖-DP and (𝜖, 𝛿)-DP. In
contrast, 𝜌𝛼 strongly depends on the choice of 𝛿 .

4.4 RDP Instead of Sequential Composition
In iterative settings, such as NN training, the data scientist will

have to perform multiple mechanism executions, which necessi-

tates the use of composition theorems to split the total guarantee

into guarantees per iteration (𝜖𝑖 , 𝛿𝑖 ). Sequential composition only

offers loose bounds in practice [13, 23]; we suggest using RDP com-

position, which allows a tight analysis of the privacy loss over a

series of mechanisms. Therefore, we adapt both 𝜌𝛽 and 𝜌𝛼 to RDP.
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Figure 3: 𝜌𝛽 and 𝜌𝛼 for various (𝜖, 𝛿) when usingM𝐺𝑎𝑢

We first demonstrate that RDP composition results in stronger

(𝜖, 𝛿) guarantees than sequential composition for a fixed bound 𝜌𝛽 .

We start from the simple RDP belief:

𝛽𝑘 (D|𝑅) ≤
1

1 +∏𝑘
𝑖=1 𝑒

−(𝜖𝑅𝐷𝑃,𝑖+(𝛼−1)−1 ln(1/𝛿𝑖 ))

=
1

1 + 𝑒𝑘 (𝛼−1)−1 ln(𝛿𝑖 )−
∑𝑘

𝑖=1 𝜖𝑅𝐷𝑃,𝑖

(7)

=
1

1 + 𝑒 (𝛼−1)−1 ln(𝛿𝑘𝑖 )−
∑𝑘

𝑖=1 𝜖𝑅𝐷𝑃,𝑖

=
1

1 + 𝑒−(
∑𝑘

𝑖=1 𝜖𝑅𝐷𝑃,𝑖−(𝛼−1)−1 ln(𝛿𝑘𝑖 ))
= 𝜌𝛽 (8)

We assume the same value of 𝛿𝑖 is used during every execution

and can therefore remove it from the sum in Eq. (7). Eq. (8) and

the conversion (𝛼 , 𝜖𝑅𝐷𝑃 )-RDP to (𝜖𝑅𝐷𝑃 − ln𝛿
𝛼−1 , 𝛿)-DP imply that an

RDP-composed bound can be achieved with a composed 𝛿 equal

to 𝛿𝑘
𝑖
. We know that sequential composition results in a composed

𝛿 value equal to 𝑘𝛿𝑖 . Since 𝛿
𝑘 < 𝑘𝛿 , RDP offers a stronger (𝜖, 𝛿)

guarantee for the same 𝜌𝛽 , and results in a tighter bound for 𝜌𝛽
under composition. This behavior can also be interpreted as the

fact that holding the composed (𝜖, 𝛿) guarantee constant, the value
of 𝜌𝛽 is greater when sequential composition is used compared to

RDP.

A similar analysis of the expected membership advantage under

composition is required when considering a series of mechanisms

M. We restrict our elucidations to the Gaussian mechanism. The

𝑘-fold composition ofM𝐺𝑎𝑢𝑖 , each step guaranteeing (𝛼, 𝜖𝑅𝐷𝑃,𝑖 )-
RDP, can be represented by a single execution ofM𝐺𝑎𝑢 with 𝑘-

dimensional output guaranteeing (𝛼, 𝜖𝑅𝐷𝑃 = 𝑘𝜖𝑅𝐷𝑃,𝑖 )-RDP. We

use Eq. (3) and the fact that 𝐺𝑆𝑓2 bounds ∥𝜇1,𝑖 − 𝜇2,𝑖 ∥.

Adv
DI,Gau = 2Φ

(
∥𝜇1 − 𝜇2∥2

2𝜎𝑖

)
− 1 = 2Φ

( √
𝑘 ∥𝜇1,𝑖 − 𝜇2,𝑖 ∥2

2𝐺𝑆𝑓2

√
𝛼/(2𝜖𝑅𝐷𝑃,𝑖 )

)
− 1

≤ 2Φ

( √
𝑘

2

√
𝛼/(2𝜖𝑅𝐷𝑃,𝑖 )

)
− 1 = 2Φ

(√
𝑘𝜖𝑅𝐷𝑃,𝑖

2𝛼

)
− 1

= 2Φ

(√
𝜖𝑅𝐷𝑃

2𝛼

)
− 1 = 𝜌𝛼
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The result shows that ADI,Gau fully takes advantage of the RDP

composition properties of 𝜖𝑅𝐷𝑃,𝑖 and 𝛼 ; as expected, 𝜌𝛼 takes on the

same value, regardless of whether 𝑘 composition steps with 𝜖𝑅𝐷𝑃,𝑖

or a single composition step with 𝜖𝑅𝐷𝑃 is carried out. Therefore, we

can calculate the final 𝜌𝛼 for functions withmultiple iterations, such

as the training of deep learning models, and 𝜌𝛼 can be decomposed

into a privacy guarantee per composition step with RDP.

5 APPLICATION TO DEEP LEARNING
In DPSGD, the stochastic gradient descent optimizer adds Gauss-

ian noise with standard deviation 𝜎 to the computed gradients.

The added noise ensures that the learned NN is (𝜖, 𝛿) differen-
tially private w.r.t. the training dataset. This section illustrates our

method for choosing DPSGD privacy parameters. Data scientists

may first choose upper bounds for the posterior belief, from which

𝜖 is obtained using Eq. (5). From 𝜖 and the sensitivity, the standard

deviation 𝜎 of the Gaussian noise is determined.

We discuss a heuristic for estimating the local sensitivity in Sec-

tion 5.1. Then, Section 5.2 formulates an algorithm for implementing

ADI,Gau, and discusses how this algorithm is used to empirically

quantify the posterior belief and the advantage. Finally, using the

implemented adversary ADI,Gau a method for auditing the privacy

loss 𝜖 and the bounds derived in Section 4 is provided in Section 5.3.

5.1 Setting Privacy Parameters and
Determining the Sensitivity

Based on the recommendation to set C to the median of the norms

of unclipped gradients [1] we set C = 3 in all experiments. In the

following, we describe how to determine the standard deviation of

Gaussian noise𝜎 . Wewant to limitADI,Gau’s belief of distinguishing

a training dataset differing in any chosen person by setting the

upper bound for the posterior belief 𝜌𝛽 . We then transform 𝜌𝛽
to an overall 𝜖 for the 𝑘 update steps in DPSGD using Eq. (5),

which in turn leads to 𝜎 for the DPSGD using Eq. (1). In Eq. (1) two

parameters need to be set: Δ𝑓 and 𝛿 . While we set 𝛿 to 1/|D| for
all experiments, the choice of Δ𝑓 is more challenging. The upper

bound for the privacy loss 𝜖 can only be reached when Δ𝑓 is set

specifically to the sensitivity of the dataset at hand. We calculate

the local sensitivity for bounded DP as

𝐿𝑆𝑔𝑖 (D) = 𝑛 · | |𝑔𝑖 (D ′) − 𝑔𝑖 (D)∥,
and for unbounded DP as

𝐿𝑆𝑔𝑖 (D) = | | (𝑛 − 1) · 𝑔𝑖 (D
′) − 𝑛 · 𝑔𝑖 (D)∥,

where 𝑔𝑖 (D) and 𝑔𝑖 (D ′) represent the average of all clipped,
unperturbed per-example gradients 𝑔𝑖 (𝑥)∀𝑥 ∈ D and 𝑥 ∈ D ′.

Since clipping is done before perturbation, the global sensitivity

𝐺𝑆𝑓 in DPSGD is set to the clipping norm for unbounded DP, i.e.,

𝐺𝑆𝑓 = C. The sensitivity bounds the impact of a data point on the

total gradient, equivalent to the difference between the gradients

differing between D and D ′, which is artificially bounded by C
for unbounded DP. For bounded DP where one record is instead

replaced with another inD ′, the lengths of the clipped gradients of
these two records could each be C and point in opposite directions

resulting in 𝑛 · | |𝑔𝑖 (D ′) − 𝑔𝑖 (D)∥2 ≤ 2C.
Although C bounds the influence of a single training record on

the gradient, Cmaywell be loose, since C does not necessarily reflect

the factual difference between the training dataset and possible

neighboring datasets. When C is loose, the DP bound on privacy

loss 𝜖 is not reached, and the identifiability metrics 𝜌𝛼 and 𝜌𝛽 will

not be reached either. Nissim et al. [35] proposed local sensitivity

𝐿𝑆𝑓 to specifically scale noise to the input data. The use of 𝐿𝑆𝑓
decreases the noise scale by narrowing the DP guarantee from

protection against inference on any possible adjacent datasets to

inference on the original dataset and any adjacent dataset. In ML

projects training and test data are often sampled from a static

holdout, where all data points stem from a domain of similar data.

If the holdout is a very large dataset, only the specific neighboring

datasets possible in this domain need to be protected under DP. To

reach the DP bound, we suggest fixation of the training dataset D
and considering only neighboring datasets D ′ adjacent to D.

However, approximating 𝐿𝑆𝑔𝑖 for NN training is difficult because

the gradient function output depends not only on D and D ′, but
also on the architecture and current weights of the network. To

ease this dilemma, we propose dataset sensitivity in Definition 6.

Dataset sensitivity is a heuristic with which we strive to consider

the neighboring dataset
ˆD ′ with the largest difference to D within

the overall ML dataset U in an effort to approximate 𝐿𝑆𝑔𝑖 . We

assume that similar data points will result in similar gradients.

While this assumption does not necessarily hold under crafted

adversarial examples [15], for which privacy protection cannot be

guaranteed, the malicious intent renders the necessity for their

protection debatable. In Definition 6 the dissimilarity measure of

specific datasets is not further specified.

Definition 6 (Dataset Sensitivity). Consider a given dataset
U, a training dataset D ⊆ U, all neighboring datasets D ′ ⊆ U and
a dissimilarity measure 𝑑 . The dataset sensitivity 𝐷𝑆 (D) w.r.t. dis-
similarity measure 𝑑 is then defined as

𝐷𝑆 (D) = max

D′
𝑑 (D,D ′)

and consequently

ˆD ′ := argmax

D′
𝑑 (D,D ′)

In practice, if a dissimilarity or distance measure 𝑑 of individual

data points is available, it can be used to find the most dissimi-

lar neighboring dataset
ˆD ′ that maximizes the dataset sensitivity.

The computation of D ′ depends on the neighboring datasets and

is different for unbounded and bounded DP. More precisely, for

unbounded DP one forms
ˆD ′ = D \ {𝑥 ′} by removing the most

dissimilar data point 𝑥 from the training data

𝑥 = argmax

𝑥1∈D

∑
𝑥2∈D\𝑥1

𝑑 (𝑥1, 𝑥2) (9)

The dataset
ˆD ′ is then used to approximate the local sensitivity

𝐿𝑆𝑔𝑖 by

𝐿𝑆𝑔𝑖 (D) ≈ 𝐿𝑆𝑔𝑖 (D) := ∥𝑔𝑖 (𝑥)∥, (10)

where 𝑔𝑖 (𝑥) is the clipped gradient of data point 𝑥 in step 𝑖 . The

simplification from 𝐿𝑆𝑔𝑖 to 𝐷𝑆 allows us to bypass the complex

gradient calculations to identify dissimilar D and D ′. The com-

putational complexity of computing the dataset sensitivity only

depends on the dataset size 𝑛, but not the number of iterations 𝑘 ,

like the local sensitivity does. For bounded DP where a neighboring
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dataset is formed by replacing an element {𝑥} ∈ D with an element

𝑥 ′ ∈ U \ D one searches for

(𝑥, 𝑥 ′) = argmax

𝑥 ∈D,𝑥 ′∈U\D
𝑑 (𝑥, 𝑥 ′) . (11)

and approximates the local sensitivity as

𝐿𝑆𝑔𝑖 (D) ≈ 𝐿𝑆𝑔𝑖 (D) := ∥𝑔𝑖 (𝑥) − 𝑔𝑖 (𝑥
′)∥ (12)

5.2 Empirical Quantification of Posterior
Beliefs and Advantages

In Section 5.1 the noise scale 𝜎 limits the upper bound for the

posterior belief of ADI on the original dataset D. According to

Theorem 2 this upper bound holds with probability 1 − 𝛿 . For a
given dataset, the posterior belief might be much smaller than the

bound, so it is desirable to determine the empirical posterior belief

onD. The same holds for the advantageAdv
DI

and the upper bound

𝜌𝛼 from Theorem 3 w.r.t. identifying dataset D. We formulate an

implementation of the adversaryADI,Gau which allows us to assess

the empirical posterior belief 𝛽 and membership advantage Adv
DI
,

and thus the empirical privacy loss of specific trained models.

The adversary ADI,Gau strives to identify the training dataset,

having the choice between neighboring datasets D and D ′. In
addition to D and D ′, ADI,Gau is assumed to have knowledge

of the NN learning parameters and updates after every training

step 𝑖 ≤ 𝑘 : learning rate 𝜂, weights 𝜃𝑖 , perturbed gradients 𝑔𝑖 ,

privacy mechanismM𝑖 , parameters (𝜖, 𝛿), C, the resulting standard
deviation 𝜎 of the Gaussian distribution and the prior beliefs. The

implementation of ADI for DPSGD is provided in Algorithm 1.

In each learning stepADI first computes the unperturbed, clipped

batch gradients for both datasets based on the resulting weights

from the previous step of the perturbed learning algorithm (Steps 3

and 4). Then ADI,Gau calculates the sensitivity. The 𝜖𝑖 and 𝛿𝑖 for

each iteration is calculated using RDP composition (cf. Eq. (3)). Con-

sequently, the Gaussian mechanism scale 𝜎 is calculated from (𝜖, 𝛿)
and Δ𝑓 using Eq. (1). Using the standard deviation 𝜎 , the poste-

rior belief 𝛽𝑖 is updated in Step 9 based on the observed perturbed

clipped gradient 𝑔𝑖 and the unperturbed gradients from Steps 3

and 4. The calculation is based on Lemma 1. After the training

finished, ADI,Gau tries to identify the used dataset based on the

final posterior beliefs 𝛽𝑘 on the two datasets. ADI,Gau wins the

identification game, if ADI,Gau chooses the used dataset D. The

advantage to win the experiment is statistically estimated from

several identical repetitions of the experiment. Adv
DI,Gau

and 𝛿 are

empirically calculated by counting the cases in which 𝛽𝑘 for D
exceeds 0.5 and 𝜌𝛽 , respectively.

One pass over all records in D (i.e., one epoch), can comprise

multiple update steps. In mini-batch gradient descent, a number

of 𝑏 records from D is sampled for calculating an update and one

epoch results in |D|/𝑏 update steps. In batch gradient descent,

all records in D are used within one update step, and one epoch

consists of a single update step. We operate with batch gradient

descent, since it reflects the auxiliary side knowledge of ADI; thus

𝑘 denotes the overall number of epochs and training steps. In some

of the following experiments we will set Δ𝑓 = 𝐿𝑆𝑔𝑖 (D) in Step 6

by calculating the local sensitivity 𝐿𝑆𝑔𝑖 for the clipped gradients 𝑔𝑖

Table 1: Time complexity for 𝐷𝑆 , 𝛽 and 𝐴𝑑𝑣

Algorithm Complexity Comment

𝐷𝑆 𝑂 (𝑛2) One-time effort for D.

𝛽 𝑂 (𝑛𝑘) Computing belief from

clipped Batch gradients.

𝐴𝑑𝑣 𝑂 (1) Computing 𝐴𝑑𝑣 for individual

training (cf. 14 in Algorithm 1).

(cf. Definition 3). These assumptions are similar to those of white-

box MI attacks against federated learning [33].

The time complexities for calculating dataset sensitivity, pos-

terior belief and advantage are stated in Table 1. Note that the

calculation effort will either lie with ADI or the data scientist, de-

pending on whether an audit or an actual attack is performed. The

calculation of dataset sensitivity was well parallelizable for the

dissimilarity measures considered in this paper.

Algorithm 1 ADI,Gau in Deep Learning for Unbounded DP

Require: Neighboring datasets D,D ′ with 𝑛,𝑛′ records, respec-
tively, 𝑘 , 𝜃0, 𝜂, 𝑔𝑖 per training step 𝑖 ≤ 𝑘 ,M𝑖 , (𝜖𝑖 , 𝛿𝑖 ), prior
beliefs 𝛽0 (D) = 𝛽0 (D ′) = 0.5,

1: for 𝑖 ∈ [𝑘] do
2: Calculate clipped Batch gradients
3: 𝑔𝑖 (D) ← M𝑖 (D, 𝜎 = 0)
4: 𝑔𝑖 (D ′) ← M𝑖 (D ′, 𝜎 = 0)
5: Calculate Sensitivity and 𝜎

6: Δ𝑓 ← 𝐺𝑆𝑔 = C

7: 𝜎𝑖 = Δ𝑓
√
2 ln(1.25/𝛿𝑖 )/𝜖𝑖

8: Calculate Belief
9: 𝛽𝑖+1 (D) ← 𝛽𝑖 (D) ·𝑃𝑟 [M𝑖 (D,𝜎=𝜎𝑖 )=𝑔𝑖 ]

𝛽𝑖 (D)∗𝑃𝑟 [M𝑖 (D,𝜎=𝜎𝑖 )=𝑔𝑖 ]+𝛽𝑖 (D′) ·𝑃𝑟 [M𝑖 (D′)=𝑔𝑖 ]
10: 𝛽𝑖+1 (D ′) ← 1 − 𝛽𝑖+1 (D)
11: Compute weights
12: 𝜃𝑖+1 ← 𝜃𝑖 − 𝜂𝑔𝑖
13: end for
14: Output D if 𝛽𝑘 (D) > 𝛽𝑘 (D ′), D ′ otherwise

5.3 Method for Auditing 𝜖
In this section we introduce a method to empirically determine

the privacy loss 𝜖 . This empirical loss is denoted 𝜖 ′ and is relevant

for data scientists. If 𝜖 ′ is close to 𝜖 , the DP perturbation does not

add more noise than necessary. However, if 𝜖 ′ is far below 𝜖 , too

much noise is added, and utility is unnecessarily lost. We repeat

the training process multiple times and use the set of results to

calculate 𝜖 ′. The empirical loss 𝜖 ′ can be calculated from different

quantities 𝐿𝑆𝑔 , 𝛽𝑘 , and Adv
DI,Gau

observed during model training:

• From 𝐿𝑆𝑔1 , . . . , 𝐿𝑆𝑔𝑘 , the empirical 𝜖 ′ is calculated as follows:
(i) calculate 𝜎1, . . . , 𝜎𝑘 as 𝜎𝑖 = 2C/𝐿𝑆𝑔𝑖 · 𝜎 (cf. Eq. (2)) for

each repetition of the experiment, (ii) calculate 𝜖 ′ with RDP

composition with target 𝛿 , epochs 𝑘 , and 𝜎 using Tensorflow

privacy accountant
1
, and (iii) choose the maximum value

𝜖 ′max
over all repetitions of the experiment.

1
We use Tensorflow Privacy for experiments: https://github.com/tensorflow/privacy.
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• From posterior beliefs 𝛽 , 𝜖 ′ is calculated by (i) choosing the

maximum final posterior belief 𝛽max

𝑘
for all experiments and

(ii) setting 𝜖 ′ = 𝛽max

𝑘
/(1 − 𝛽max

𝑘
) using Eq. (5).

• From Adv
DI,Gau

: (i) counting the number of wins 𝑛𝑤𝑖𝑛 , i.e.,

how often 𝛽𝑘 > 0.5 over all 𝑛𝐸𝑥𝑝 experiments, (ii) estimate

Adv
DI,Gau = 2𝑛𝑤𝑖𝑛/𝑛𝐸𝑥𝑝 − 1, and (iii) calculate

𝜖 ′ =
√
2 ln(1.25/𝛿) Φ−1

(
Adv

DI,Gau+1
2

)
using Eq. (6).

This empirical loss 𝜖 ′ will only be close to 𝜖 if noise is added ac-

cording to the sensitivity of the dataset. Of the three variants above,

the calculation from the sensitivities is the most direct method.

The calculation from the posterior belief is less direct. Since the

identification advantage ignores the size of the belief it is expected

to be the least accurate way to estimate 𝜖 .

Furthermore, we also implement the MI adversary AMI defined

by Yeom et al. [47] and compare the resulting advantage to the

advantage achieved by ADI,Gau. This instance of AMI uses the loss

of a neural network prediction in an approach similar to ADI,Gau,

who analyzes the gradient updates instead.

6 EVALUATION
We empirically show that we can train models which yield an em-

pirical privacy loss 𝜖 ′ close to the privacy loss bound 𝜖 . We achieve

an advantage equal to 𝜌𝛼 and tightly bound posterior belief 𝜌𝛽
when the sensitivity is set to 𝐿𝑆𝑔𝑖 for the clipped batch gradients at

every update step 𝑖 . Privacy is specified by setting the upper bound

for the belief, e.g., to 𝜌𝛽 = 0.9. Together with the sensitivity (cf. Sec-

tion 5.1) this determines the noise of the Gaussian mechanism

and yields 𝜖 . The posterior belief 𝛽 and the advantage Adv
DI,Gau

are then empirically determined using the implemented adversary

ADI,Gau as described in Section 5.2. The empirical privacy loss 𝜖 ′

is determined as described in Section 5.3. We evaluate ADI,Gau for

three ML datasets: the MNIST image dataset
2
, the Purchase-100

customer preference dataset [42], and the Adult census income

dataset [25]. To improve training speed in our experiments, we

set training dataset D to a randomly sampled subset of size 100

for MNIST and 1000 for both Purchase-100 and Adult. Multiple

trainings and perturbations are evaluated on the sampled D.

The MNIST NN consists of two convolutional layers with kernel

size (3, 3) each, batch normalization and max pooling with pool

size (2, 2), and a 10-neuron softmax output layer. For Purchase-100,

the NN comprises a 600-neuron input layer, a 128-neuron hidden

layer and a 100-neuron output layer. Our NN for Adult consists of

a 104-neuron input layer due to the use of dummy variables for

categorical attributes, two 6-neuron hidden layers and a 2-neuron

output layer. We used relu and softmax activation functions for the

hidden layers and the output layer. For all experiments we chose

the learning rate 𝜂 = 0.005 and set the number of iterations 𝑘 = 30

which led to converging models. Preprocessing comprised removal

of incomplete records, and data normalization.

6.1 Evaluation of Sensitivities
While local sensitivity is favored when striving to reach the pri-

vacy bound, we evaluate and compute both Δ𝑓 = 𝐿𝑆𝑔𝑖 (D) and
Δ𝑓 = 𝐺𝑆𝑔 , as described in Section 5.1. In addition, we consider

2
Dataset and detailed description available at: http://yann.lecun.com/exdb/mnist/
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Figure 4: Distribution of the local sensitivity 𝐿𝑆𝑔𝑖 (D) com-
puted by the adversary using Eq. (9) frommax to min differ-
ence in D and D ′ for all 30 epochs 𝑖, repeated 250 times

bounded and unbounded DP in our experiments. In order to find

the most dissimilar data point for the construction of
ˆD ′ in Eq. (9)

and Eq. (11) we require a dissimilarity measure. We considered do-

main specific candidates for the dissimilarity measures: the negative

structural similarity index measure (SSIM) and Euclidean distance

for MNIST, and the Hamming, Euclidean, Manhattan, and Cosine

distance for the datasets Purchase-100 and Adult. We chose these

metrics because we expect them to contain information relevant

to the gradients of data points. However, for example we quickly

noticed for the Euclidean distance on MNIST image data that it

does not capture the meaning or shapes pictured and thus falls

short. Instead, the SSIM captures structure in images, and images

with a small SSIM dissimilarity values resulted in similar gradients,

while images with greater dissimilarity resulted in very different

gradients. This observation supports the hypothesis that an ap-

propriate domain-specific measure can be used to estimate local

sensitivity 𝐿𝑆𝑔𝑖 from dataset sensitivity 𝐷𝑆 . For Purchases-100 the

Hamming distance was superior, and for Adult the Manhattan dis-

tance worked best. For the sensitivity experiments the bound for

the posterior belief is set to 𝜌𝛽 = 0.9. Each experiment concerning

dataset sensitivity is repeated 𝑛𝐸𝑥𝑝 = 250 times.

To confirm that maximizing dataset sensitivity from Definition 6

allows us to approximate 𝐿𝑆𝑔𝑖 , we train with several differing D ′
and evaluate the sensitivities for all𝑘 = 30 iterations. For theMNIST

dataset, the top three choices ofD ′ that maximize 𝐷𝑆 and the three

choices that minimize 𝐷𝑆 are used. As expected, the resulting local

sensitivities 𝐿𝑆𝑔𝑖 shown in Figure 4a are clearly larger for the three

top choices. The outliers for the second and third smallest dataset

sensitivities only account for 1.6% and 5.2% of the 7500 overall

observed sensitivity norms. More importantly, no far outliers occur

for the largest and smallest sensitivities. The same general trend

holds for Purchase-100 and Adult in Figures 4b and 4c, which we

limit to the maximum and minimum 𝐷𝑆 due to space constraints.

If the chosen global sensitivity is too large compared to the local

sensitivity of a specific dataset too much noise will be added when

using 𝐺𝑆𝑔 , as described in Section 5.1. Global sensitivity 𝐺𝑆𝑔 and

local sensitivity 𝐿𝑆𝑔𝑖 are determined for bounded and unbounded

DP over 𝑛𝐸𝑥𝑝 = 1000 repetitions for 𝜌𝛽 = 0.9 (𝜖 = 2.2) according to

Eq. (10) and Eq. (12). They can be compared in Figure 5.
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Figure 5: Sensitivities over the course of the training for 𝜌𝛽 =

0.9 (𝜖 = 2.2) and C = 3

Table 2: EmpiricalAdvDI,Gau and 𝛿 ′ for 𝜌𝛽 = 0.9 using 𝐿𝑆𝑔𝑖 and
𝐺𝑆𝑔 with bounded (B) and unbounded (U) DP

MNIST Purchase-100 Adult

Adv
DI,Gau 𝛿 ′ Adv

DI,Gau 𝛿 ′ Adv
DI,Gau 𝛿 ′

LS B 0.24 2e-3 0.25 0 0.17 0

LS U 0.23 2e-3 0.23 0 0.22 0

GS B 0.18 0 0.1 0 0.13 0

GS U 0.27 4e-3 0.24 1e-3 0.18 0

6.2 Quantification of Identifiability for DPSGD
For each of the 1000 experiment repetitions, the posterior belief

𝛽𝑘 and the membership advantage Adv
DI,Gau

are experimentally

determined using the implementation of ADI,Gau for DPSGD. We

set 𝜌𝛽 = 0.9 (𝜖 = 2.2) and compare bounded and unbounded DP.

Table 2 shows the analytically obtained values for privacy loss 𝜖 ,

and the bound 𝜌𝛼 for the advantage. The parameters 𝜖 , 𝛿 , and 𝜌𝛼
for 𝜌𝛽 = 0.9 can be read from Table 3; 𝜖 is determined from Eq. (5),

whereas 𝜌𝛼 is calculated from 𝜖 from Theorem 3.

First, we verify that the upper bound 𝜌𝛽 on the posterior belief

holds. The posterior beliefs 𝛽𝑘 of these experiments are described

in Figures 6a, 6b and 6c. For a single experiment the posterior belief

on the training dataset D is on average only slightly above 0.5.

While for most cases the posterior belief is far below the bound of

0.9 (specified by the blue, dashed line), the upper bound is violated

with a small probability. The relative frequency of these violations

is denoted as 𝛿 ′. Since the DP bound, and thus 𝜌𝛽 , only holds with

probability 1 − 𝛿 according to Theorem 2 violations are accept-

able as long as 𝛿 ′ ≤ 𝛿 . Indeed, the experimentally obtained 𝛿 ′ for
𝜌𝛽 = 0.9 in Table 2 is always smaller than the corresponding 𝛿 in

Table 3. Similarly, the advantage should be close to the estimate

𝜌𝛼 stated in Table 3. The advantage is experimentally estimated

as the relative frequency of experiments where the implemented

adversary ADI,Gau correctly chooses D and is stated in Table 2.

Figure 6 illustrates the influence of sensitivity in the bounded

and unbounded DP settings. In Figures 6a, 6b and 6c, the chosen

upper bound 𝜌𝛽 = 0.9 (blue line) is clearly not reached for the

bounded case when global sensitivities are used. Similarly, the ad-

vantage ofADI,Gau in Table 2 is smaller when the global sensitivity

is used. Here it holds that 𝐿𝑆𝑔𝑖 (D) < 2C = Δ𝑓 , which implies that

the examples differing between D ′ and D do not point in opposite

directions in the bounded setting. For the unbounded DP case, this

effect is not observed with the MNIST and Purchase-100 datasets.
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Figure 6: Distribution of empirical posterior beliefs 𝛽𝑘 (pan-
els a to c) and an example for test accuracy after training
with 𝜌𝛽 = 0.9 (𝜖 = 2.2), for local and global sensitivity,
bounded and unbounded DP (panel d)

Instead, the use of local and global sensitivity leads to the same

distribution of posterior beliefs and approximately the same advan-

tage. This result stems from the fact that the per-example gradients

over the course of all epochs were close to or greater than C = 3, i.e.,

the differentiating example inD must have the gradient magnitude

C = 3. However, in the Adult dataset, 𝐿𝑆𝑔𝑖 (D) < C = 3, so too much

noise is added using 𝐺𝑆𝑔 in the unbounded DP setting as well.

From a practical standpoint, these observations are critical, since

unnecessary noise degrades the utility of the model when the global

sensitivity is too large, as shown in Figure 6d. While all experiments

were done with C = 3, we expect a similar relationship between 𝐿𝑆𝑔𝑖
and 𝐺𝑆𝑔 for different values of C, since we observed the unclipped

gradients to usually be greater than C = 3.

6.3 Auditing DPSGD
This section details the audit of 𝜖 . As shown in Section 5.3, the

calculation of the empirical loss 𝜖 ′ can be based on (i) the local

sensitivity, (ii) the posterior beliefs 𝛽𝑘 or (iii) on the advantage

Adv
DI,Gau

. To validate that 𝜖 ′ is close to the target privacy loss 𝜖

we use the setting described in Section 6.2 and Table 3.

The resulting empirical loss 𝜖 ′ is compared to the the target

privacy loss 𝜖 for the bounded case in Figures 7 to 9. As expected

Figures 7a, 8a and 9a support that the privacy loss 𝜖 can be best

estimated from the local sensitivity: the red curve lies on the ideal

green curve. The estimation is less precise from the posterior beliefs

and shown in Figures 7b, 8b and 9b. The estimation is worst from

the advantage in Figures 7c, 8c and 9c, where the red curve deviates

most from the ideal green curve for all datasets. It is evident that
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Table 3: Experiment setting for posterior belief 𝜌𝛽 and 𝛿 with analytically determined privacy loss 𝜖 and advantage bound 𝜌𝛼

MNIST Purchase-100 Adult

𝜌𝛽 0.52 0.75 0.9 0.99 0.53 0.75 0.9 0.99 0.53 0.75 0.9 0.99

𝛿 0.01 0.001 0.001

𝜖 0.08 1.1 2.2 4.6 0.12 1.1 2.2 4.6 0.12 1.1 2.2 4.6

𝜌𝛼 0.01 0.14 0.28 0.54 0.01 0.12 0.23 0.46 0.01 0.12 0.23 0.46

the use of global sensitivity (blue lines) results in an underestima-

tion of 𝜖 for all datasets. When local sensitivity is used, the small

deviation from the ideal curve confirms that ADI,Gau comes close

to the theoretical privacy guarantees offered by DP. A data scientist

who specifies 𝜖 via the identifiability bounds 𝜌𝛼 and 𝜌𝛽 can audit

𝜖 using the implementation of ADI,Gau. We see that in some cases

𝜖 ′ > 𝜖 , or equivalently 𝛽𝑘 (D) > 𝜌𝛽 . These variations are due to

the probabilistic nature of the estimation and the bound only holds

with probability 1-𝛿 . Furthermore, we observe in some occasions

that Adv
DI,Gau > 𝜌𝛼 which stems from the fact that Adv

DI,Gau
is

an expected value for a series of experiments, which falls within a

confidence interval around 𝜌𝛼 .

To enable comparison with membership inference we imple-

mented AMI by expanding the implementation of Jayaraman and

Evans [20], which implements the attack suggested by Yeom et

al. [47]. Figures 7d, 8d, and 9d visualize the advantage resulting

from both ADI,Gau and AMI for our setting, as well as the bounds

provided by the DP guarantee and the MI bound of Yeom et al. [47].

We see that the MI bound is very loose for all evaluated datasets, as

previously noted by Jayaraman and Evans [20]. Furthermore, we

see that our implementation of ADI,Gau significantly outperforms

AMI on all datasets and values of 𝜖 .

7 DISCUSSION
ADI diverges from other attacks against DP or ML, which neces-

sitates a discussion of ADI’s properties in relation to alternative

approaches. Our goal is to construct an adversary that most closely

challenges DP, and can be connected to societal norms and legis-

lation via identifiability score. To this end, ADI has knowledge of

all but one element of the training data and the gradients at every

update step. Since the DP guarantee must hold in the presence of all

auxiliary information, both of these assumptions relate the attack

model ADI directly to the DP guarantee. Since ADI has knowl-

edge of all but one element instead of only the distribution, ADI

possesses significantly more information than MI adversaries.

A natural question arises w.r.t. ADI’s practical relevance. Es-

pecially in a federated learning setting ADI knows the gradients

during every update step, if participating as a data owner. Fur-

thermore,ADI could realistically obtain knowledge of a significant

portion of the training data, since public reference data is often used

in training datasets and only extended with some custom training

data records, necessitating the notion of DP in general.

To further comment on the utility that can be achieved from a

differentially private model, we note that the optimal choice for C
may stray from the original recommendation of Abadi et al. [1]. We

follow this recommendation and set C = 3, which limits the utility

loss that results when C is too large (unnecessary noise addition)

and too small (loss of information about the gradient). Since this

balance holds for unbounded DP and does not consider the notion

of local sensitivity, we expect that a different C may yield better

utility than what we report. Varying Cmay also change the balance

between local sensitivity and global sensitivity from Figures 7 to 9.

Furthermore, since gradients change over the course of training,

the optimal value of C at the beginning of training may no longer be

optimal toward the end of training according toMcMahan et al. [30].

Adaptively setting the clipping norm as suggested by Thakkar et

al. [44] may improve utility by changing C as training progresses.
We expect that doing so might bring 𝜖 ′ closer to 𝜖 when auditing

the DP guarantee, and achieve similar by using local sensitivity.

8 RELATEDWORK
Choosing and interpreting DP privacy parameters has been ad-

dressed from several directions.

Lee and Clifton [26, 27] proposed DI as a Bayesian privacy notion

which quantifies 𝜖 w.r.t. an adversary’s maximum posterior belief

𝜌𝛽 on a finite set of possible input datasets. Yet, both papers focus

on the scalar 𝜖 Laplace mechanism without composition, while

we consider the (𝜖, 𝛿) multidimensional Gauss mechanism under

RDP composition. Li et al. [28] demonstrate that DI matches the

DP definition when an adversary decides between two neighboring

datasetsD,D ′. Kasiviswanathan et al. [24] also provide a Bayesian

interpretation of DP. While they also formulate posterior belief

bounds and discuss local sensitivity, they do not cover expected

advantage and implementation aspects such as dataset sensitivity.

The choice of privacy parameter 𝜖 has been tied to economic

consequences. Hsu et al. [17] derive a value for 𝜖 from a probability

distribution over a set of negative events and the cost for compen-

sation of affected participants. Our approach avoids the ambiguity

of selecting bad events. Abowd and Schmutte [2] describe a social

choice framework for choosing 𝜖 , which uses the production pos-

sibility frontier of the model and the social willingness to accept

privacy and accuracy loss. We part from their work by choosing 𝜖

w.r.t. the advantage of the DP adversary. Eibl et al. [14] propose a

scheme that allows energy providers and consumers to negotiate

DP parameters by fixing a tolerable noise scale of the Laplace mech-

anism. The noise scale is transformed into the individual posterior

belief of the DP adversary per energy consumer. We part from their

individual posterior belief analysis and use the local sensitivity

between two datasets chosen by the dataset sensitivity heuristic.

The evaluation of DP in a deep learning setting has largely fo-

cused on MI attacks [5, 6, 16, 20, 21, 40, 42]. From Yeom et al. [47]

we take the idea of bounding membership advantage in terms of

DP privacy parameter 𝜖 . However, while MI attacks evaluate the

DP privacy parameters in practice, DP is defined to offer protection

from far stronger adversaries, as Jayaraman et al. [20] empirically

validated. Humphries et al. [18] derive a bound for membership
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Figure 7: Audit of 𝜖 (a-c) and comparison with AMI (d) for MNIST data (bounded case)
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(b) 𝜖′ from posterior belief 𝛽𝑘
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(c) 𝜖′ from advantage AdvDI,Gau
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Figure 8: Audit of 𝜖 (a-c) and comparison with AMI (d) for Purchase-100 data (bounded case)
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(b) 𝜖′ from posterior belief 𝛽𝑘
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Figure 9: Audit of 𝜖 (a-c) and comparison with AMI (d) for Adult data (bounded case)

advantage that is tighter than the bound derived by Yeom et al. [47]

by analyzing an adversary with additional information. Their work

analyzes the impact of giving up the i.i.d. assumption and does not

suggest an implementation of the DP adversary. Jagielski et al. [19]

estimate empirical privacy guarantees based on Monte Carlo ap-

proximations. While they use active poisoning attacks to construct

datasets D and D ′ that result in maximally different gradients

under gradient clipping, we define dataset sensitivity, which does

not require the introduction of malicious samples.

9 CONCLUSION
We defined two identifiability bounds for the DP adversary in ML

with DPSGD: maximum posterior belief 𝜌𝛽 and expected member-

ship advantage 𝜌𝛼 . These bounds can be transformed to privacy

parameter 𝜖 . In consequence, with 𝜌𝛼 and 𝜌𝛽 , data owners and data

scientists can map legal and societal expectations w.r.t. identifia-

bility to corresponding DP privacy parameters. Furthermore, we

implemented an instance of the DP adversary for ML with DPSGD

and showed that it allows us to audit parameter 𝜖 . We evaluated the

effect of sensitivity in DPSGD and showed that our upper bounds

are reached under composition. To reach the bounds and thus im-

prove utility the sensitivity must reflect the local sensitivity of the

training dataset which we approximate for DPSGDwith a heuristic.
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