
Machine Learning for Cloud Data Systems: the Progress so far
and the Path Forward

Alekh Jindal
Microsoft

alekh.jindal@microsoft.com

Matteo Interlandi
Microsoft

mainterl@microsoft.com

ABSTRACT
The goal of this tutorial is to educate the audience about the state
of the art in ML for cloud data systems, both in research and in
practice. The tutorial is divided in two parts: the progress, and the
path forward.

Part I covers the recent successes in deploying machine learning
solutions for cloud data systems. We will discuss the practical con-
siderations taken into account and the progress made at various
levels. The goal is to compare and contrast the promise of ML for
systems with the ground actually covered in industry.

Finally, Part II discusses practical issues of machine learning
in the enterprise covering the generation of explanations, model
debugging, model deployment, model management, constraints
on eyes-on data usage and anonymization, and a discussion of
the technical debt that can accrue through machine learning and
models in the enterprise.

PVLDB Reference Format:
Alekh Jindal and Matteo Interlandi. Machine Learning for Cloud Data
Systems: the Progress so far and the Path Forward. PVLDB, 14(12):
3202-3205, 2021.
doi:10.14778/3476311.3476408

1 INTRODUCTION
Modern cloud has democratized access to sophisticated and scalable
data processing systems. In contrast to the days of long hardware
and software procurement cycles, before any data processing could
be done, the modern cloud has transformed data processing capabil-
ities into commodities of instant gratification — the state of the art
data processing stack is available at one’s disposal in a matter of few
clicks. In addition to quick provisioning, cloud also offers managed
data services where many of the operational tasks are taken care by
the cloud provider. These could include security, updates, backups,
scaling up or down, reliability, tracking, and support for various
systems, among others, thus making the lives of system users much
easier. Finally, there is a newer trend for serverless data process-
ing infrastructures which further relieves users from deciding and
paying for a fixed set of resource configurations. Instead, the cloud
provider takes care of allocating resources for each of the user tasks
and they pay only for the actual processing incurred. All of this has
resulted in cloud becoming the destination when it comes to scale
and complexity in data processing.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476408

Unfortunately, the shift to modern cloud has also surfaced newer
pain. Today, while even non-expert users can quickly compose vari-
ous cloud data services into highly complex application workflows,
they quickly realize the challenges in stitching, configuring, tuning,
debugging, analyzing, or just getting the most out of their data
services. This is because cloud users often do not have the expertise
or domain knowledge, or access to database administrators (DBAs)
that were traditionally hired on-premise, or even the control to the
low level system components in managed services. This is painful
not just for the end users but also for cloud providers since the onus
is now on them to provide a good user experience. Furthermore,
cloud data systems also end up having too many moving parts,
with more layers of virtualization and abstraction, which makes
them much harder to manage and tune, leaving users and/or cloud
providers to deal with infeasible decision space, settle with sub-
optimal performance, and yet end up with much higher operational
costs. All of these become critical areas for the cloud to cover as it
embraces the next wave of digital transformation for businesses to
stay relevant and competitive, along with the next level of customer
expectations that include higher quality of service (QoS) and lower
total cost of ownership (TCO).

Luckily, cloud data systems also have an unfair advantage: they
have visibility to massive amount of workloads that capture the het-
erogeneity across many different users and applications, as well as
the changes over time. This global visibility coupled with advances
in machine learning (ML) tools and libraries, end-to-end system
control, and faster release cycles has several implications. First,
there is a push to make cloud data systems data-driven, i.e., move
from intuition and guesstimates to quantifiable insights. Second,
there is an opportunity to introduce self-tuning feedback-loops in
cloud data systems, i.e., learn from how things went in the past and
apply them to future workloads. And third, there is a need to evolve
the cloud data systems to newer user requirements, workload types,
hardware designs, and other things over time, i.e., adapt to the
newer trends and realities. In fact, leveraging cloud observability to
constantly learn and improve the system behavior is fast emerging
as a design principle for modern cloud data systems and presents
enormous potential to rebuild the cloud that was promised, i.e., one
which is simpler, faster, and cheaper.

In the remaining of this proposal, we outline the two parts of
the tutorial, namely the progress, and the path forward.

2 THE PROGRESS
The newfound excitement in ML for systems started with the case
for learned indexes [32]. Afterwards, there has been has been a
deluge of ideas from the academic and research community on
how to integrate ML into pretty much any system layer. In industry
however, the pace is more regulated as those ideas get hardened into

3202

https://doi.org/10.14778/3476311.3476408
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476408


Figure 1: Layers of the cloud data systems that will be cov-
ered during the tutorial.

products. In this tutorial we illustrate a snapshot of the progress
made in bringing ML for systems closer to practice in cloud data
systems. In order to achieve this, we will represent the cloud data
systems as layered into four different levels (Figure 1) sitting one
on each other.

• At the bottom level we have cloud platforms (Section 2.1).
ML solutions in this level tries to address questions such as
What are the right machine SKUs for my workload? How do
we meet VM provisioning SLAs given the current load?

• Query engines (Section 2.2) runs on top of cloud platforms.
At this level there are several interesting components that
can be tuned using ML. In general, at this level we are inter-
ested in knowingWhat can we learn from past query work-
loads? How can we improve query plans in the future?

• Higher level cloud services (Section 2.3) can be employed
on the query engines. At this level, cloud customers are
interested in solutions regarding questions such asWhat are
the peak and low load intervals? When do we backup? What
is the optimal scaling strategy given the current workload?

• Finally, developers (Section 2.4) are end users for all the above
levels. At this level we will be exploring works answering
questions such as How can I inject data science in my project?
What is the end-to-end experience when ML is part of my
software? How can I exploit ML to be more productive?

Next wewill double click on each of the levels starting bottom-up
from the cloud platforms.

2.1 Platforms
Cloud platforms are typically large and often unwieldy. Therefore,
frameworks designed specifically for tuning the hardware (SKU
design, power capping) and software (containers per machine and
other software configurations) are starting to emerge. For example,
one can model performance with various VM-level characteristics
such as storage type, network, CPU, etc., [49], select the best cloud
configurations [7], or choose the flash storage [6]. The next step
is to study cloud traces and provide recommendations based on
previous workloads [30]. In fact, cloud workloads are often recur-
rent [25], whereby past traces are good approximations for future
loads. At this point applying ML is the natural next step. Indeed, ML
applied to cloud platform and resource management is still in its

infancy [10] but the premises are appealing, and the trend is there.
Cluster-level tuning has become part of Cosmos [67], improving
resource management with machine learning in now in Azure [11],
SKU recommendations are available when migrating SQL Server
from on-premise to cloud [40], and similar tuning and migration
services are also available in AWS and GCP.

2.2 Query Engines
In the query engine domain, there has been tremendous excite-
ment and interest in the last few years, especially in academia. 1 In
general, the most common targets for ML for system approaches
over query engines are indexes and layout [22, 22, 32], cardinal-
ity [17, 23, 64], cost modeling [5, 20, 34], query planner and opti-
mizer [36, 37], query resources [35, 61, 66], and self-tuning [14, 18].

Nevertheless, there is a collective realization of the challenges
involved in bringing ML for query engines to industry. For instance,
bringing learned indexes into BigTable required a completely new
approach [2]. Similarly, recent discussion on the practical implica-
tions of learned cardinality [63] concluded that is better to narrow
down the focus to improving cardinality where it really matters [46].
This brought the first industry deployment of learned cardinality
in Cosmos [28]. Interesting enough, the same infrastructure used
for learned cardinality [28], can be reused for cost modeling [59],
as well as views [26, 29], automatic scaling [56], and steering the
query optimizer using learned query hints [47]. This brought to the
realization that what is really needed for injecting ML into query
engines at cloud scale is a broader infrastructure whereby learned
components can be plugged when appropriate. On this respect,
Cosmos currently embraces the Microlearning [28] architecture
and follows the workload optimization patterns of [27]. To prove
the generality of the approach, a similar infrastructure is currently
under development over the Spark stack as well [54].

Finally, optimizing resources is critical on the Cloud. Automatic
resource management is becoming more practical. Examples are
resource optimizations such as memory grant feedback in SQL
Server [41] or degree of parallelism in big data workloads [8, 52, 56].
Auto-tuning of cloud-scale query engines looks like a far-away
dream, although commercial databases are already providing such
functionalities [38, 50].

2.3 Services
Cloud data platforms are often accompanied by a number of low-
level tasks and services to keep it functional. Several prior work
have looked into how cloud services can be managed at scale with-
out human intervention. Examples include auto-scaling [19], miti-
gating slow instances [62], auto-sharding [3], load prediction and
backup [53], among others. Even in this space, lately we are wit-
nessing a new set of ML-driven approaches to proactively adjust
the services given observed workloads. For example, predictive
auto-scaling is now available in many cloud data services such as
HDInsight [39] and EC2 [9]. Likewise, predictive backups are now
also possible [53], as well ML-driven checkpointing decisions [66].

1An extensive compilation of recent papers and developments can be found here [1].

3203



2.4 Developers
Finally, developers are at the core of data systems, and so improving
developer experience is paramount. More advanced ML-driven
developer experiences are, for instance, now available in Visual
Studio [43], VSCode, and Github (e.g., copilot [21]). While a large
amount of tooling has been developed for application developers,
there is also a push to improve the lives of system developers by
introducing newer ways to build ML infused software that is easy
to track, debug, evolve, and performance engineered over time [13].
This is also connected to the Software 2.0 trend [31].

3 THE PATH FORWARD
Wenow list many of the open problems that we see going forward as
ML for systems becomes more mainstream in industry and practice.
Experimentation. Getting good accuracy on train/test/validation
datasets is just the beginning for ML for systems. The major steps
in the workflow include testing the model over large production
workloads or on canary settings. This requires an experimentation
framework (e.g., Diametrics [15], SCOPE Flighting tool) for exten-
sive A/B testing, performance monitoring over diverse metrics,
storage and retrieval of historical runs, as well as anonymization.
A good experimentation frameworks allows the product support
team to build trust that the machine learning component will not
create problems over time.
Model Serving. Once the product team trusts the ML model, it can
be deployed in several flavors [33]: one can use containers (e.g., as
in Clipper [12]) or out of process execution; an alternative is to use
in-process execution by importing the models as a libraries (e.g., as
in ML.NET [4] or Scikit-Learn [51]), or by converting the model into
a target format that then can be called at runtime (e.g., achieved by
using ONNX [44] or Hummingbird [45]). Furthermore, predictions
can be served online (e.g., one-at-a-time) or batched. The former is
preferred when predictions are on the critical path (e.g., cardinality
estimation is used by the query optimizer and therefore only few
milliseconds are allowed to render the prediction) while the latter
approach is commonly used for achieving better throughput and
taking advantage of modern hardware accelerators.
Model Management Often multiple ML models have to be de-
ployed within the same ML-enabled-feature, e.g., one model for
operator, or because models are updated over time (e.g., every day,
week, month) in order to avoid staleness and follow the workload
trend. Having multiple models concurrently in the system, requires
not only a proper model management infrastructure [60] allowing
fast model retrieval, versioning, and update [55], but also a unified
API because different models could be implemented using differ-
ent frameworks (e.g., Scikit-Learn and PyTorch models could live
together in the same deployment because the former provides a
large set of “traditional” ML models such as tree-ensemble models,
while the latter allows the deployment of state of the art DNNs).
MLFlow [65] is an example of standard API for model inference
commonly adopted by any major cloud vendor.
PerformanceRegressions.Themost important requirementwhen
deploying ML models in cloud data system is minimization of per-
formance regressions: given the massive scale of cloud products,
any performance regression will likely generate a ticket that must

be manually addressed by a support team—any increase in the num-
ber of tickets generated could be a blocker. To address this concern,
proper guards need to be put in place for making sure that models
behave accordingly [16, 24].
Debugging and Root Cause Analysis.When some performance
regressions or errors are generate by a ML-enhanced cloud data
system, the infrastructure should provide extensive logging, as
well as means to debug the predictions [48, 57]. Making direct use
of cloud ML offerings such as Azure ML, SageMaker or Google
Cloud AI allows to take advantage of their logging and debugging
tools, instead of having to build another system, specific for the
application.
Privacy and GDPR. Since models are likely trained over datasets
generated from customer workloads, any sensible information must
be properly anonymized. Furthermore, ML-for-systems product
must be built with GDPR (or CCPA) requirements in mind in order
to avoid regulatory and performance implications [58]. Finally,
customer may request some data to be deleted, whereby updatable
models [55] are a new interesting technique.
Common Platforms. All of the above aspects are relevant for
every cloud data system that we want to enhance with ML. Ma-
jor cloud provides such as Amazon, Google and Microsoft have
several managed data systems products, and building a new ML
for systems infrastructure each time is prohibitively expensive and
redundant. Consolidating data products over a unified service and
infrastructure whereby common ML components can be built once
and reused across different products is therefore preferred. Azure
Synapse [42] is a step forward in this direction.

4 PRESENTERS
Alekh Jindal is a Principle Scientist at Gray Systems Lab (GSL),
Microsoft and manages the Redmond site of the lab. His research
focuses on improving the performance of large-scale data-intensive
systems. Earlier, hewas a postdoc associate in theDatabase Group at
MIT CSAIL. Alekh received his PhD from Saarland University, work-
ing on flexible and scalable data storage for traditional databases as
well as for MapReduce. In the past 10 years, Alekh has served as a
chair, PC member and reviewer at top-tier conferences in the field
including SIGMOD, VLDB, ICDE, and SOCC. He received best paper
awards at VLDB 2014 and CIDR 2011, and an honorable mention at
SIGMOD 2021.
Matteo Interlandi is a Senior Scientist in the Gray Systems Lab
(GSL) at Microsoft, working on scalable Machine Learning Systems.
Before Microsoft, he was a Postdoctoral Scholar at the University
of California, Los Angeles. Prior to joining UCLA, he was Research
Associate at the Qatar Computing Research Institute and at the
Institute for Human and Machine Cognition. Matteo’s work have
received an honorable mention at SIGMOD 2021 and was featured
in the “Best of VLDB”.

REFERENCES
[1] 2021. GitHub - LumingSun/ML4DB-paper-list: Papers for database systems

powered by artificial intelligence (machine learning for database). https://github.
com/LumingSun/ML4DB-paper-list. (Accessed on 03/20/2021).

[2] Hussam Abu-Libdeh, Deniz Altinbüken, Alex Beutel, Ed H. Chi, Lyric Doshi,
Tim Kraska, Xiaozhou Li, Andy Ly, and Christopher Olston. 2020. Learned

3204

https://github.com/LumingSun/ML4DB-paper-list
https://github.com/LumingSun/ML4DB-paper-list


Indexes for a Google-scale Disk-based Database. CoRR abs/2012.12501 (2020).
arXiv:2012.12501 https://arxiv.org/abs/2012.12501

[3] Atul Adya and et al. 2016. Slicer: Auto-Sharding for Datacenter Applications.
[4] Zeeshan Ahmed and et al. 2019. Machine Learning at Microsoft with ML.NET.

In SIGKDD.
[5] Mert Akdere and et al. 2012. Learning-based query performance modeling and

prediction. In ICDE. 390–401.
[6] Christoph Albrecht and et al. 2013. Janus: Optimal Flash Provisioning for Cloud

Storage Workloads. In ATC. 91–102.
[7] Omid Alipourfard and et al. 2017. Cherrypick: Adaptively unearthing the best

cloud configurations for big data analytics. In NSDI. 469–482.
[8] Malay Bag and et al. 2020. Towards Plan-aware Resource Allocation in Serverless

Query Processing. In HotCloud.
[9] Jeff Barr. 2018. New – Predictive Scaling for EC2, Powered by Machine

Learning. https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-
powered-by-machine-learning/.

[10] Ricardo Bianchini and et al. 2020. Toward ml-centric cloud platforms. CACM 63,
2 (2020), 50–59.

[11] Eli Cortez and et al. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
SOSP. 153–167.

[12] Daniel Crankshaw and et al. 2017. Clipper: A Low-Latency Online Prediction
Serving System. In NSDI.

[13] Carlo Curino and et al. 2020. MLOS: An Infrastructure for Automated Software
Performance Engineering. In DEEM.

[14] Geoff Gordon Dana Van Aken and Andy Pavlo. 2017. Tuning Your DBMS Au-
tomatically with Machine Learning. https://aws.amazon.com/blogs/machine-
learning/tuning-your-dbms-automatically-with-machine-learning/.

[15] Shaleen Deep and et al. 2020. DIAMetrics: Benchmarking Query Engines at Scale.
PVLDB 13, 12 (Aug. 2020), 3285–3298. https://doi.org/10.14778/3415478.3415551

[16] Bailu Ding and et al. 2019. Ai meets ai: Leveraging query executions to improve
index recommendations. In SIGMOD. 1241–1258.

[17] Anshuman Dutt and et al. 2019. Selectivity estimation for range predicates using
lightweight models. PVLDB 12, 9 (2019), 1044–1057.

[18] Ayat Fekry and et al. 2020. To Tune or Not to Tune? In Search of Optimal
Configurations for Data Analytics. In SIGKDD. 2494–2504.

[19] Avrilia Floratou and et al. 2017. Dhalion: Self-Regulating Stream Processing in
Heron. PVLDB 10, 12 (2017), 1825–1836.

[20] Archana Ganapathi and et al. 2009. Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In ICDE. IEEE, 592–603.

[21] Github. 2021. GitHub Copilot. https://copilot.github.com/. (Accessed on
07/20/2021).

[22] Ali Hadian and Thomas Heinis. 2019. Considerations for Handling Updates in
Learned Index Structures. In aiDM. Article 3.

[23] Shohedul Hasan and et al. 2019. Multi-attribute selectivity estimation using deep
learning. arXiv:1903.09999

[24] H. Hossain and et al. 2020. PerfGuard: Deploying ML-for-Systems without
Performance Regressions.

[25] Virajith Jalaparti, P. Bodík, I. Menache, Sriram Rao, K. Makarychev, and
Matthew C. Caesar. 2015. Network-Aware Scheduling for Data-Parallel Jobs: Plan
When You Can. Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (2015).

[26] Alekh Jindal and et. al. 2018. Computation reuse in analytics job service at
microsoft. In ICDE. 191–203.

[27] Alekh Jindal and et al. 2019. Peregrine: Workload Optimization for Cloud Query
Engines. In SOCC. 416–427.

[28] Alekh Jindal and et al. 2021. Microlearner: A fine-grained Learning Optimizer
for Big Data Workloads at Microsoft. In ICDE.

[29] Alekh Jindal and et al. 2021. Production Experiences from Computation Reuse at
Microsoft. In EDBT. 623–634. https://doi.org/10.5441/002/edbt.2021.72

[30] Sangeetha Abdu Jyothi and et al. 2016. Morpheus: Towards automated slos for
enterprise clusters. In OSDI. 117–134.

[31] Andrej Karpathy. 2017. Software 2.0. https://medium.com/@karpathy/.
[32] Tim Kraska and et al. 2018. The Case for Learned Index Structures. In SIGMOD.

ACM, 489–504. https://doi.org/10.1145/3183713.3196909
[33] Yunseong Lee and et al. 2018. From the Edge to the Cloud: Model Serving in

ML.NET. DEB 41, 4 (2018).
[34] Jiexing Li and et al. 2012. Robust estimation of resource consumption for sql

queries using statistical techniques. PVLDB 5, 11 (2012), 1555–1566.
[35] Hongzi Mao and et al. 2019. Learning scheduling algorithms for data processing

clusters. In SIGCOM. 270–288.
[36] Ryan Marcus and et al. 2019. Neo: A Learned Query Optimizer. PVLDB 12 (2019),

1705–1718.
[37] Ryan Marcus and et al. 2020. Bao: Learning to Steer Query Optimizers. ArXiv

abs/2004.03814 (2020).
[38] Microsoft. [n.d.]. SQL Server Auto-Tune. https://docs.microsoft.com/en-

us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-
server-ver15. Accessed on 07/20/2021.

[39] Microsoft. 2019. Azure HDInsight—Autoscale is now generally avail-
able. https://azure.microsoft.com/en-us/updates/autoscale-for-azure-hdinsight-
is-now-general-available/.

[40] Microsoft. 2019. Identify the right Azure SQL Database or SQL Managed Instance
SKU for your on-premises database. https://docs.microsoft.com/en-us/sql/dma/
dma-sku-recommend-sql-db?view=sql-server-2017.

[41] Microsoft. 2019. Intelligent query processing in SQL databases. https:
//docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-
query-processing?view=sql-server-ver15.

[42] Microsoft. 2021. Azure Synapse Analytics. https://azure.microsoft.com/en-
us/services/synapse-analytics/.

[43] Microsoft. 2021. Visual Studio IntelliCode. https://visualstudio.microsoft.com/
services/intellicode/. (Accessed on 07/20/2021).

[44] Microsoft and Facebook. 2018. Open Neural Network Exchange (ONNX). https:
//onnx.ai.

[45] Supun Nakandala and et al. 2020. A Tensor Compiler for Unified Machine
Learning Prediction Serving. In OSDI.

[46] Parimarjan Negi and et al. 2021. Flow-Loss: Learning Cardinality Estimates That
Matter. arXiv:2101.04964 (2021).

[47] Parimarjan Negi and et al. 2021. Steering Query Optimizers: A Practical Take on
Big Data Workloads. In SIGMOD.

[48] Harsha Nori and et al. 2019. InterpretML: A Unified Framework for Machine
Learning Interpretability. CoRR abs/1909.09223 (2019).

[49] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying andManaging Performance
Interference in Virtualized Environments. In 2013 USENIX Annual Technical
Conference (USENIXATC 13). USENIXAssociation, San Jose, CA, 219–230. https://
www.usenix.org/conference/atc13/technical-sessions/presentation/novakovi{ć}

[50] Oracle. [n.d.]. Oracle Auto-Tune. https://docs.oracle.com/cd/B19306_01/server.
102/b14211/sql_tune.htm#i36217. Accessed on 07/20/2021.

[51] F. Pedregosa and et al. 2011. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research 12 (2011), 2825–2830.

[52] Anish Pimpley and et al. 2021. Optimal Resource Allocation for Serverless Queries.
(Under Submission) (2021).

[53] Olga Poppe and et al. 2020. Seagull: An Infrastructure for Load Prediction and
Optimized Resource Allocation. PVLDB 14, 2 (2020).

[54] Abhishek Roy, Alekh Jindal, Hiren Patel, Ashit Gosalia, Subru Krishnan, and
Carlo Curino. 2019. SparkCruise: Handsfree Computation Reuse in Spark. Proc.
VLDB Endow. 12, 12 (2019), 1850–1853. https://doi.org/10.14778/3352063.3352082

[55] Ted Dunning Sebastian Schelter, Stefan Grafberger. 2021. HedgeCut: Maintaining
Randomized Trees for Low-Latency Machine Unlearning. In SIGMOD.

[56] Rathijit Sen and et al. 2020. AutoToken: Predicting peak parallelism for big data
analytics at Microsoft. PVLDB 13, 12 (2020), 3326–3339.

[57] Liqun Shao, Yiwen Zhu, Siqi Liu, Abhiram Eswaran, Kristin Lieber, Janhavi
Mahajan, Minsoo Thigpen, Sudhir Darbha, Subru Krishnan, Soundar Srinivasan,
et al. 2019. Griffon: Reasoning about Job Anomalies with Unlabeled Data in
Cloud-based Platforms. In SOCC.

[58] Supreeth Shastri and et al. 2020. Understanding and Benchmarking the Impact
of GDPR on Database Systems. PVLDB 13, 7 (March 2020), 1064–1077.

[59] Tarique Siddiqui and et al. 2020. Cost models for big data query processing:
Learning, retrofitting, and our findings. In SIGMOD. 99–113.

[60] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: A System
for Machine Learning Model Management (HILDA).

[61] L. Viswanathan, A. Jindal, and K. Karanasos. 2018. Query and Resource Opti-
mization: Bridging the Gap. In ICDE. 1384–1387.

[62] KeWang and et al. 2020. Spur: Mitigating Slow Instances in Large-Scale Streaming
Pipelines. In SIGMOD. 2271–2285.

[63] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2020. Are We Ready For Learned Cardinality Estimation? arXiv:2012.06743

[64] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.
PVLDB 12, 3 (2018), 210–222.

[65] M. Zaharia and et al. 2018. Accelerating the Machine Learning Lifecycle with
MLflow. DEB 41 (2018), 39–45.

[66] Yiwen Zhu, Krishnadhan Das, Matteo Interlandi, Abhishek Roy, and et al. 2021.
Phoebe: A Learning-based Checkpoint Optimizer. (Under Submission) (2021).

[67] Yiwen Zhu, Subru Krishnan, Konstantinos Karanasos, Isha Tarte, and et al. 2021.
KEA: Tuning an Exabyte-Scale Data Infrastructure. In SIGMOD.

3205

https://arxiv.org/abs/2012.12501
https://arxiv.org/abs/2012.12501
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-learning/
https://aws.amazon.com/blogs/machine-learning/tuning-your-dbms-automatically-with-machine-learning/
https://aws.amazon.com/blogs/machine-learning/tuning-your-dbms-automatically-with-machine-learning/
https://doi.org/10.14778/3415478.3415551
https://copilot.github.com/
https://arxiv.org/abs/1903.09999
https://doi.org/10.5441/002/edbt.2021.72
https://medium.com/@karpathy/
https://doi.org/10.1145/3183713.3196909
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15
https://azure.microsoft.com/en-us/updates/autoscale-for-azure-hdinsight-is-now-general-available/
https://azure.microsoft.com/en-us/updates/autoscale-for-azure-hdinsight-is-now-general-available/
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-processing?view=sql-server-ver15
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://azure.microsoft.com/en-us/services/synapse-analytics/
https://visualstudio.microsoft.com/services/intellicode/
https://visualstudio.microsoft.com/services/intellicode/
https://onnx.ai
https://onnx.ai
https://www.usenix.org/conference/atc13/technical-sessions/presentation/novakovi{�}
https://www.usenix.org/conference/atc13/technical-sessions/presentation/novakovi{�}
https://docs.oracle.com/cd/B19306_01/server.102/b14211/sql_tune.htm##i36217
https://docs.oracle.com/cd/B19306_01/server.102/b14211/sql_tune.htm##i36217
https://doi.org/10.14778/3352063.3352082
https://arxiv.org/abs/2012.06743

