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ABSTRACT
Machine learning techniques have been proposed to optimize the
databases. For example, traditional empirical database optimiza-
tion techniques (e.g., cost estimation, join order selection, knob
tuning, index and view advisor) cannot meet the high-performance
requirement for large-scale database instances, various applications
and diversified users, especially on the cloud. Fortunately, machine
learning based techniques can alleviate this problem by judiciously
selecting optimization strategy. In this tutorial, we categorize data-
base tasks into three typical problems that can be optimized by
different machine learning models, including NP-hard problems
(e.g., knob space exploration, index/view selection, partition-key
recommendation for offline optimization; query rewrite, join or-
der selection for online optimization), regression problems (e.g.,
cost/cardinality estimation, index/view benefit estimation, query
latency prediction), and prediction problems (e.g., query workload
prediction). We review existing machine learning based techniques
to address these problems and provide research challenges.
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1 INTRODUCTION
Machine learning (ML) techniques have been extensively studied
in recent years to optimize the databases. For example, traditional
database optimization techniques (e.g., cost estimation, join or-
der selection, knob tuning, index and view advisor) are based on
empirical methodologies and specifications, and requires human
involvement (e.g., DBAs) to tune and maintain the databases. Thus
existing empirical techniques cannot meet the high-performance
requirement for large-scale database instances, various applications
and diversified users, especially on the cloud. Fortunately, learning-
based techniques can alleviate this problem. For instance, deep
learning can improve the quality of cost estimation [7, 35, 36, 40],
reinforcement learning can be used to optimize join order selec-
tion [21, 26, 38, 42], and deep reinforcement learning can be used
to tune database knobs [2, 23, 46, 49].
Tutorial Overview. We plan to provide a 1.5 hours tutorial to
thoroughly review existing ML techniques for databases.
(1) Background andMotivation (10min).We first introduce the
background and motivation of learning based techniques.
(2) Machine learning for Optimizing NP Problems (30min).
Many database optimization problems can be modeled as exploring
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the optimal solutions for NP-hard problems. However traditional
empirical or heuristic based methods will fall in local optimums.
Fortunately, machine learning based techniques can efficiently learn
exploration models and utilize the learned models to optimize the
NP-hard problems [1, 17, 18, 23, 25, 26, 38, 42, 43, 46, 47]. There
are two main challenges here. First, it is challenging to select an
appropriate model based on the scenario requirements. Second, it is
challenging to select and characterize effective features. To present
existing solutions of addressing these challenges, we classify the
NP-hard problems into two cases based on exploring the solutions
online or offline. (1.1) Offline exploration: it first trains a machine
learning model to learn the exploration policy and then fine-tunes
the model during online exploration, e.g., deep reinforcement learn-
ing for knob tuning [1, 18, 23, 46, 47], index advisor [17, 17, 25], view
advisor [9, 43], join order selection [26, 27, 42], and partition-key
recommendation [11]; (1.2) Online exploration: it pre-learns a model
and utilizes the model to achieve online exploration, e.g., Monte
Carlo Tree Search for query rewrite and join order selection [38, 42].
(3)Machine learning for Regression Problems (30min).Many
database problems can be modeled as a regression problem. Cardi-
nality estimation aims to estimate the cardinality of a query and a
regression model (e.g., deep learning model) can be used [7, 10, 30,
35, 36, 40, 41]. Index/view benefit estimation aims to estimate the
benefit of creating an index (or a view), and a regression model can
be used to estimate the benefit [5, 19]. Latency prediction aims to
estimate the execution time of executing a query and a regression
model can be used to estimate the performance based on query and
concurrency features [28, 50].
(4) Machine learning for Prediction Problems (10min). It is
also vital to proactively optimize the database by predicting in-
coming queries. These prediction problems identify the temporal
workload patterns and rearrange query execution to maximize the
query performance or resource usage. And there are some machine
learning methods for such prediction problems, e.g., cluster-based
algorithms for trend prediction [24], reinforcement learning for
workload scheduling [44].
(5) Challenges and Opportunities (10min). Finally, we provide
research challenges and opportunities.
Target Audience. The audience includes VLDB attendees from
both research and industry communities that are interested in data-
base optimization and machine learning. The tutorial will be self-
contained, and wewill not require any prior background knowledge
in machine learning.
Difference with other Tutorials. There are tutorials on machine
learning and databases [20, 31, 32, 39]. Different from them, we
focus on the fundamental problems of ML4DB and how to select
suitable machine learning models to solve the problems.
Related Works from Authors. The authors did some works on
learning-based database configuration [9, 23, 43, 46], optimizer [35,
42], monitoring [50], and autonomous systems [21, 22, 48, 49].
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Table 1: Machine Learning Techniques for Databases

Database Problem Method Performance Overhead Training Data Adaptivity

Offline
NP Problem

knob space exploration
gradient-based [1, 18, 47] High High High –
dense network [37] Medium High/Medium High – / instance
DDPG [23, 46] High High Low/Medium query

index selection q-learning [19] – High Low –

view selection q-learning [43] Medium High Low –
DDQN [9] High High Low query

partition-key selection q-learning [11] – High Low –

Online
NP Problem

join order selection
q-learning [27] High High Low –
DQN [26, 42] High High Low query
MCTS [38] Medium Low Low instance

query rewrite MCTS [21, 49] – Low Low query

Regression
Problem

cost estimation tree-LSTM [35] High High High query

cardinality estimation

tree-ensemble [7] Medium Medium High query
autoregressive [41] High High/Medium Low data
dense network [16] High High High query
sum-product [12] Medium High Low data

index benefit estimation dense network [5] – High High query
view benefit estimation dense network [9] – High High query

latency prediction dense network [28] Medium High High query
graph embedding [50] High High High instance

learned index dense network [3] – High High query
Prediction
Problem

trend prediction clustering-based [24] – Medium Medium instance
transaction scheduling q-learning [44] – High Low query

2 TUTORIAL OUTLINE
2.1 Optimizing NP-hard Problems
Many database optimization problems can be modeled as optimiz-
ing NP-hard problems. We can further categorize these NP-hard
problems into offline optimization and online optimization. The for-
mer does not care about the inference time (the inference time can
be seconds or even minutes); while the latter has instant inference
requirement (e.g., the inference time should be milliseconds). Thus,
the former trains a machine learning model to learn the exploration
policy and then fine-tunes the model during online exploration,
e.g., deep reinforcement learning for knob tuning [1, 18, 23, 46, 47],
index advisor [17, 17, 25], view advisor [9, 43], and partition-key
recommendation [11]; while the latter pre-learns a model and uti-
lizes the model to achieve online exploration, e.g., Monte Carlo Tree
Search for query rewrite and join order selection [26, 27, 38, 42].
Offline Optimizing NP-hard Problems [1, 11, 17, 18, 23, 25,
43, 46, 47]. We first train a model and then use the model to opti-
mize the NP-hard problems. The model can be fine-tuned during
optimizing the NP-hard problems, and thus may be heavy.
(1) Knob space exploration [1, 2, 18, 23, 45–47]. Databases have hun-
dreds of knobs and traditional databases rely highly on DBAs to
tune the knobs in order to support knob tuning in different scenar-
ios. Recently, learning-based techniques are proposed to improve
the tuning performance or resource utilization. There are three
types of models. (i) Gradient-based models [1, 18, 47] like Gaussian
Process are widely used to explore local-optimal knob settings based
on gradient descent. Besides, Zhang et al [47] share the learned
workload encoder across instances to improve the generalization
ability; (ii) Similarly, deep-learning models [37] estimate the per-
formance of selected knob settings. They take selected knobs and
internal metrics as input and output the predicted response time;

(iii) Reinforcement-learning-based methods [23, 46] take knob tun-
ing as a trail-and-error procedure, where the agent inputs tuning
factors (e.g., internal metrics, queries), outputs proper knobs, and
relies on the execution results to learn the tuning policy. We also
summarize the advantages and disadvantages of these three types
of models as shown in Table 1.
(2) Index/View selection [5, 9, 17, 19, 43]. Database indexes and views
are fairly crucial to achieve high performance. But it is expensive
to recommend and build appropriate indexes/views with a large
number of columns/tables and queries/subqueries. Hence, there are
some reinforcement-learning models that recommend indexes [17,
25] and materialized views [9, 43]. For example, they formalize view
selection as an integer programming problem and use RL models
like DDQN to solve this problem, where the state denotes the query
and view features, and the action is adding/removing a view.
(3) Database Partition [11]. Traditional methods heuristically select
columns as partition keys (single column mostly) and cannot bal-
ance between load balancing and access efficiency. Some work [11]
also utilizes reinforcement learning model to explore different par-
tition keys and implements a fully-connected neural network to
estimate partition benefits. The RL model encodes table, query, and
existing partition features, and iteratively selects new partition keys
or replicate tables to optimize the overall performance.
Online Optimizing NP-hard problems [26, 27, 38, 42]. Com-
pared with offline NP problems, some database problems (e.g., query
rewrite, online plan optimization) have instant feedback require-
ments (e.g., optimizing within milliseconds). Hence, it cannot tol-
erate a long time to update a model. Taking query rewriting as an
example, traditional methods rely on heuristic rules or greedy algo-
rithms to quickly select query plans, but the optimization quality
cannot be guaranteed, especially when the query is complicated.
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Hence, we want to select machine learning models that can (i)
adaptively learn the policy during optimization and (ii) balance
between performance and efficiency.
(1) SQL rewriter [21, 49]. Rule-based query rewriting methods may
not find high-quality rules and appropriate rule order. Instead,
learned tree search algorithms (e.g., MCTS) can be used to judi-
ciously select the appropriate rules and apply rules in a good order.
(2) Join order selection [26, 27, 38, 42]. A SQL query may have mil-
lions, even billions of possible plans and it is very important to
efficiently find a good plan. Traditional heuristics methods cannot
find optimal plans for dozens of tables and dynamic programming
is costly to explore the huge plan space. Thus there are some deep
reinforcement learning based methods [26, 27, 42] that automati-
cally select good plans. However, reinforcement learning models
take too long time (e.g., hours) to learn the join policy for specific
scenarios (e.g., workload, schema). Hence, there are works that
utilize tree search algorithms like MCTS to adaptively learn the
optimal join strategy while query execution [38].

2.2 Optimizing Regression Problems
Regression Problems [5–8, 13, 13–15, 19, 28–30, 35, 50]. Some
database problems, like cardinality estimation and index/view ben-
efit estimation, can be modeled as regression problems, which fit
the input variables (e.g., data tuples, query features) into estimation
features. Traditional methods are based on empirical functions to
estimate the execution costs or index benefit, which cannot handle
complex scenarios (e.g., multiple index) and have low accuracy.
Hence, we want to develop deep probabilistic models to achieve
high estimation accuracy.
(1) Cardinality/Cost estimation [7, 10, 30, 35, 36, 40, 41]. Database
optimizer relies on cardinality and cost estimation to select an
optimized plan, but traditional techniques cannot effectively cap-
ture the correlations between different columns/tables and thus
cannot provide high-quality estimation. Recently, deep learning
based techniques (e.g., CNN [7], RNN [35], Mixture Model [30])
are proposed to estimate the cost and cardinality by using deep
neural networks to capture data and query correlations. Based on
different input features, we can categorize existing learning-based
works into query-driven models [7, 35, 36] that learn a mapping
from a query to its cardinality, data-driven models [10, 41] that
learn the data distributions and use the distributions to estimate the
cardinality of a query, and mixture models [30, 40] that combine
the query model and data model.
(2) Index/view benefit estimation [5, 19]. To verify the effectiveness of
selected indexes/views, it will be time consuming to actually build
the indexes (or materializing views) and run the workload. Hence,
there are learning based methods that replace empirical equations
with neural networks to estimate the index/view benefit [5, 19], i.e.,
the neural network inputs the plans with/without index/view, and
output the reduced costs.
(3) Query latency prediction [14, 28, 50]. Traditional methods rely
on database administrators to monitor most database activities and
report the problems, which is incomplete and inefficient. Thus,
machine learning based techniques [14, 28, 50] are proposed to
automatically predict query performance. For example, graph-
embedding-based work [50] first characterizes the execution state

as a graph model, where the vertices are operators being executed
and edges are operator correlations (e.g., table share/conflict). And
then they apply a graph convolution network to input the graph
and learn the execution time of each vertex in the graph.

2.3 Optimizing Prediction Problems
Machine learning for Prediction Problems [24, 33, 34, 44].
Query workload prediction (or transaction prediction) is also im-
portant to database optimization (e.g., resource control, transaction
scheduling). Traditional workload prediction methods are rule-
based. For example, a rule-based method [4] uses domain knowl-
edge of database engines (e.g., internal latency, resource utilization)
to identify signals that are relevant to workload characteristics,
e.g., memory utilization. However, rule-based methods waste much
time to rebuild a statistics model when workload changes. Hence,
learning based methods [24] predict the future trend of different
workloads. First, they model the workload features based on query
structures and arrival rate. Second, they cluster queries with similar
arrival rates based on clustering algorithm like DBSCAN. Third,
they predict the arrival rate patterns of queries in each cluster. Be-
sides, for transaction management, traditional techniques are based
on static transaction protocols, e.g., OCC, PCC, MVCC, which may
cause sub-optimum. Hence, there are studies that utilize learned
models to predict and schedule the transactions [33, 34, 44]. For
example, in Q-learning [44], they character the state of memory
blocks as input features, and output queries that execute together.

2.4 Open Problems
There are several research challenges that utilize ML techniques to
optimize databases.
(1)Model Selection. It aims to select an appropriate model. There are
two challenges. First, there are different kinds of ML models (e.g.,
forward-feeding, sequential, graph embedding) and it is inefficient
to try out those models and manually adjust the parameters. Second,
it is hard to evaluate whether a learned model is effective in most
scenarios, for which a validation model is required.
(2) Training data.Most learning-based models require large-scale,
high-quality, diversified training data to achieve high performance.
However, it is hard to get training data, because the data either is
security critical or relies on DBAs.
(3) Adaptability. Learning-based models are generally trained on
specific scenarios and the adaptability is a big challenge, e.g., adapt-
ing to dynamic data updates, new workloads, datasets, hardware
environments, and other systems.
(4) Model convergence. It is important to know whether a learned
model can converge. If the model cannot converge, we need to
provide alternative ways to avoid making inaccurate decisions.
(5) Learning for OLAP. Traditional OLAP focuses on relational data
analytics. However, in the big data era, many new data types have
emerged, e.g., graph data, time-series data, spatial data, it calls for
new data analytics techniques to analyze these multi-model data.
(6) Learning for OLTP. Transaction modeling and scheduling are im-
portant to OLTP systems, because different transactions may have
conflicts. However, it is not free to model and schedule transactions,
and it calls for more efficient models that can instantly model and
schedule the transactions in multiple cores and multiple machines.
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