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Abstract
The industrial machine learning pipeline requires iterating on
model features, training and deploying models, and monitoring
deployed models at scale. Feature stores were developed to manage
and standardize the engineer’s workflow in this end-to-end pipeline,
focusing on traditional tabular feature data. In recent years, how-
ever, model development has shifted towards using self-supervised
pretrained embeddings as model features. Managing these embed-
dings and the downstream systems that use them introduces new
challenges with respect to managing embedding training data, mea-
suring embedding quality, and monitoring downstream models
that use embeddings. These challenges are largely unaddressed in
standard feature stores. Our goal in this tutorial is to introduce
the feature store system and discuss the challenges and current
solutions to managing these new embedding-centric pipelines.
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1 Introduction
Building industrial machine learning pipelines is an iterative cycle
of gathering and curating training data, training and deploying
models, and monitoring the model once put into production. When
errors or undesirable behavior are found, the cycle is repeated.
Without tools to manage this process, production models become
hard to maintain and difficult to reproduce. In 2017, a subset of
the authors built the first industrial feature store [13]—a system
designed to standardize and manage model features and workflows.
The feature store both reduced engineer effort and improved model
quality. Feature stores, however, have yet to adapt to a growing
trend in model development: incorporating pretrained embeddings.

Pretrained embeddings are becoming standard inputs to mod-
ern machine learning pipelines. These embeddings are typically
trained in a self-supervised fashion over massive data sets and en-
code knowledge about words, entities, graphs, and images. Once
trained, they can provide lift in numerous downstream tasks like
recommendation systems [21], information retrieval [15], and data
integration [20]. A subset of the authors saw first-hand from their
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experience building and deploying an industrial self-supervised en-
tity disambiguation system that pretrained embeddings are shifting
industrial pipelines towards “hands-free” models that require lim-
ited hand-curated data and model engineering [14, 19, 24]. There is
therefore an increasing need for the next generation of feature store
systems to help manage and monitor the embedding training data,
pretrained embeddings, and downstream systems that consume the
embeddings.
Goal The goal of this tutorial is to expose the interplay between
data management and modern, self-supervised embedding ecosys-
tems. We will first introduce feature store systems and the chal-
lenges they address. We will then introduce self-supervised pre-
trained embeddings and explain the new challenges associated
with managing these embedding pipelines. We then explore how
data management can help build, monitor, and maintain these self-
supervised embedding ecosystems. Lastly, we will discuss future
data management challenges and research directions.
Scope This tutorial focuses on modern feature stores and the chal-
lenges with supporting embeddings as first class citizens in feature
stores. We highlight that managing these self-supervised embed-
ding systems is a fundamental data management problem. This
tutorial is intended for researchers with some familiarity with deep
learning and pretrained embeddings who are interested in the in-
teraction of data management and deep learning pipelines.
Outline This tutorial is split into three parts over 1.5 hours.1

(1) Feature Stores. We will give an overview of the modern
machine learning pipeline and feature store systems. We will
describe the core challenges these systems solve and give an
overview of the technical contributions.

(2) Embedding Ecosystems. We will introduce pretrained em-
beddings and discuss the new challenges faced by feature
stores in treating embeddings as first class citizens. We then
discuss recent solutions to some of these challenges.

(3) FutureDirections andChallenges. Wewill concludewith
a discussion of the future directions and challenges.

2 ML Feature Stores
In 2017, a subset of the authors built the first industrial feature
store [13]. Using this first-hand experience and the lessons learned,
we introduce the modern ML pipeline and describe the challenges
faced in maintaining and deploying models. We then introduce fea-
ture store systems and the technical innovations that help solve the
aforementioned challenges. We focus the first part of this tutorial
on traditional tabular feature data (i.e., not embeddings).

1This tutorial has not been presented in any venues prior and is most similar to recent
SIGMOD and VLDB tutorials in data integration and cleaning with machine learning.
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Figure 1: Modern machine learning pipeline with the challenges associated with managing a feature store (top row) and the
additional challenges with managing an embedding ecosystem (bottom row).

2.1 Machine Learning Pipelines
In industrial machine learning (ML) pipelines, as shown in Figure 1,
engineers need to quickly ingest training data for feature curation,
train and deploy models, and monitor and maintain the model once
deployed. We describe each step below.

(1) Training Data. Data is scraped, mined, or retrieved from
a variety of different sources. The data needs to be cleaned,
checked, and featurized for downstream models.
Challenges: Engineers author custom features that, if not
shared and managed, can result in repeated work and lack
of definitional consistency. Feature definitions can become
stale if not kept up-to-date as data changes over time.

(2) Model Training and Deployment. Using a set of features,
engineers need to train and deploy models.
Challenges: As data changes over time and updates occur at
different intervals, models can become stale if not given the
most up-to-date features. Further, model reproducibility be-
comes a challenge as engineers try to keep up with changing
data and model parameters.

(3) ModelMaintenance andMonitoring. Once deployed,mod-
els need to be monitored and maintained.
Challenges: Models can struggle in the face of distribution
shift and out-of-domain inputs [26]. Further, once model
errors are detected, engineers are often lacking guidance as
to what features need to be corrected.

2.2 Feature Stores
Feature stores (FSs) arose to address these challenges by providing
a centralized repository of reusable features across the ML pipeline
and automating the management of this pipeline [1–3, 13]. Below,
we dive into how feature stores address the three challenges above.

2.2.1 Training Data
Structured data can be in the form of raw tables as well as streams
that users access when curating features. To facilitate sharing of
features across an organization and maintaining features if they
get updated, feature stores allow for feature authoring and pub-
lishing [4]. Users provide simple definitional metadata, e.g., the
feature update cadence and a definition SQL query, and upload the
definition to the FS. When the underlying data changes, the FS
orchestrates the updates to the features based on the user-defined
cadence.

For streaming features, users provide aggregation functions that
are applied on the raw streaming features. The aggregated features
are persisted to the online store and logged to the offline store.

2.2.2 Model Training and Deployment

Feature Storage Once features are curated, users need the abil-
ity to construct feature sets on the most recent data to train and
deploy models. FSs support this workflow by partitioning features
on date and providing APIs to allow for time based joins. Further,
FSs must support feature quality metrics to support the detection
and mitigation of feature errors. For example, FSs measure feature
freshness, null counts, and mutual information across features.
Model Storage Once a model is trained, relevant parameters
and artifacts need to be stored for provenance and reproducibil-
ity. Although model storage is not traditionally part of a FS, some
FSs [3, 13] do support model management by integrating a separate
model store [8, 28].
Online Feature Serving Once a model is deployed, features need
to be continuously provided to deployed models even as the feature
data is updated over time. To provide low latency feature serving,
FSs are typically a dual datastore: one for offline training (e.g., SQL
warehouse) and for online serving (e.g., in-memory DBMS).

2.2.3 Model Monitoring and Maintenance
FSs must additionally support model quality metrics (as well as fea-
ture quality metrics described above) [28]. For example, FSs support
critical model metrics such as training-deployment data skew and
near real-time outlier and input drift detection. These metrics allow
users to be informed of potential ‘gremlins’ in the system. Once an
error is discovered, engineers can use the FS metrics to detect the
offending set of features and select a more optimal feature set for
serving (or retraining).

3 Data Management and Embedding
Ecosystems

Drawing on our first-hand experiences developing entity embed-
dings across numerous downstream products at a large technology
company, we now introduce self-supervised pretrained embeddings
and the ecosystems around them. We then discuss new challenges
and solutions with managing these ecosystems. We believe treating
embeddings as first class citizens is the next evolution of feature
stores.
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3.1 Embedding Ecosystem
We define the embedding ecosystem as the embedding training
data, embeddings, and downstream systems that consume them. As
shown in Figure 1, the embedding ecosystem pipeline is similar to
that of the feature store. However, FSs are unable to support end-to-
end embedding management. With embeddings, standard metrics
and tools for managing tabular features are no longer adequate as
embeddings are derived data. For example, embeddings are often
compared by dot product similarity, and existing FS metrics such
as null value count do not capture drifts or changes in embeddings
with respect to this metric.

We now highlight the additional challenges associated with each
step of the ML pipeline when incorporating embeddings (the same
challenges from FSs still apply to embedding ecosystems).

(1) Training Data: In an embedding ecosystem, the raw train-
ing data is used to pre-train the embeddings. As this data is
self-supervised, it will not be hand-labeled or curated.
Challenges: Embeddings will encode any inherent biases that
exist in the self-supervised training data, e.g., the embed-
dings do not well represent rare things [22, 27].

(2) Model Training and Deployment: Once embeddings are
trained, they need to be stored and served to downstream
systems that use embeddings for training and deployment.
Challenges: As embeddings get retrained and updated, just
like features, the downstream models can become stale and
out-of-date. Users need to understand and monitor the em-
bedding changes and search over possible embeddings and
select the best ones for their task. Unlike features, standard
tabular metrics are inadequate for embeddings.

(3) Model Maintenance and Monitoring: Like with FSs, de-
ployed models need to be monitored and maintained, espe-
cially with respect to the embedding inputs.
Challenges: Any inherent embedding quality issue will im-
pact all downstream models using those embeddings. Users
need to be able to understand and isolate downstream qual-
ity issues in the underlying embeddings. Once found, users
need methods for correcting errors in downstream products.

3.1.1 Self-Supervised Training Data
Unlike feature curation data, which is tabular and pre-labeled, self-
supervised training data is often unstructured and is not hand-
curated. This lack of manual curation results in data that may not
accurately represent the data seen upon deployment [5, 11, 16] and
is often biased toward popular things [22]. Embeddings trained on
this data can inherit these biases.

To improve embedding quality of rare things through training
data management, recent work from [22] explored incorporating
structured data into entity embedding pretraining through named
entity disambiguation, the task of mapping from strings to things
in a knowledge base. They showed that by adding structured data
of the type of an entity and its knowledge graph relations, they
could boost performance over rare entities by 40 F1 points. We
believe merging structured and unstructured data is a promising
management technique for improving quality in training data.

3.1.2 Embedding Management
Both traditional features and pretrained embeddings are served to

downstream models. The uniqueness of an embedding ecosystem is
that users need to be able to understand the difference in embedding
quality as embeddings are updated over time and need guidance
over what embeddings to use for their task.

To measure quality, Wendlandt et al. [29] and Hellrich and Hahn
[12] discuss analyzing word embeddings with respect to an em-
bedding’s nearest neighbors. The work of Leszczynski et al. [17]
is uniquely looking at the quality of an embedding with respect to
a downstream task. The authors define the metric of downstream
instability, the number of predictions that change with different
embeddings, to measure downstream embedding instability.

There is little available work on finding the right embedding to
use, especially given compute or memory constraints. The work
of May et al. [18] takes a first step by a variant of the eigenspace
overlap score as a way of predicting downstream performance.
However, their work is focused on measuring the performance of
non-contextualized word embeddings.

3.1.3 Fine-Grained Monitoring and Patching
Downstream models in traditional FSs and embedding ecosystems
need to be monitored and maintained. In an embedding ecosystem,
however, the challenge is in giving users the tools to findmeaningful
subpopulations of errors and connecting the downstream errors to
embedding quality issues. These errors then need to be corrected
through the underlying embedding.

In terms of monitoring downstream models, recent works pro-
vide toolkits for measuring languagemodel performance at a seman-
tic, fine-grained level [10, 25]. Goel et al. [10] in particular focuses
on allowing users to define custom sub-population functions to
explore performance across different models.

Once an error is discovered, the challenge is in how to correct
that error in the underlying embedding. By correcting the error
in the embedding, all downstream systems using those embed-
dings will be patched, which maintains product consistency. The
work in Orr et al. [22] gives a proof-of-concept that using data
management techniques such as augmentation [7], weak supervi-
sion [23], and slice-based learning [6] can correct underperforming
sub-populations of data [22].

4 Future Directions
We end with a discussion of future directions.
Embedding Enhanced Feature Stores We believe the next evolution
of a feature store is one with native support for embeddings. While
we discussed some challenges and potential solutions, this is just
the beginning. Users need tools for searching and querying these
embeddings as well as support for versioning, provenance, and
downstream quality metrics. For example, if an embedding gets
updated but a model that uses it does not, the dot product of the
embedding with model parameters can lose meaning which leads to
incorrect model predictions. Further, performing these operations
at industrial scale will be non-trivial as the size of embeddings and
their associated models are continuing to increase.
End-to-EndModel Patching Through Data An open area of research
is in automatically correcting the errors discovered in the down-
stream model error analysis through the underlying embedding.
While prior work showed you can patch errors through methods
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like data augmentation and slice finding [9, 22], there are remain-
ing challenges in how to automate and manage this process. How
can you predict if an augmentation strategy will have the desired
result? If an embedding gets patched, what is the optimal way to
propagate that patch downstream?
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