
Managing ML Pipelines: Feature Stores and the Coming Wave of
Embedding Ecosystems

Laurel Orr, Atindriyo Sanyal, Xiao Ling, Karan Goel, and Megan Leszczynski
Stanford University, Uber AI, Apple

{lorr1,kgoel,mleszczy}@cs.stanford.edu,atin@uber.com,xiaoling@apple.com

Abstract
The industrial machine learning pipeline requires iterating on
model features, training and deploying models, and monitoring
deployed models at scale. Feature stores were developed to manage
and standardize the engineer’s workflow in this end-to-end pipeline,
focusing on traditional tabular feature data. In recent years, how-
ever, model development has shifted towards using self-supervised
pretrained embeddings as model features. Managing these embed-
dings and the downstream systems that use them introduces new
challenges with respect to managing embedding training data, mea-
suring embedding quality, and monitoring downstream models
that use embeddings. These challenges are largely unaddressed in
standard feature stores. Our goal in this tutorial is to introduce
the feature store system and discuss the challenges and current
solutions to managing these new embedding-centric pipelines.

PVLDB Reference Format:
Laurel Orr, Atindriyo Sanyal, Xiao Ling, Karan Goel, and Megan
Leszczynski. Managing ML Pipelines: Feature Stores and the Coming Wave
of Embedding Ecosystems. PVLDB, 14(12): 3178-3181, 2021.
doi:10.14778/3476311.3476402

1 Introduction
Building industrial machine learning pipelines is an iterative cycle
of gathering and curating training data, training and deploying
models, and monitoring the model once put into production. When
errors or undesirable behavior are found, the cycle is repeated.
Without tools to manage this process, production models become
hard to maintain and difficult to reproduce. In 2017, a subset of
the authors built the first industrial feature store [13]—a system
designed to standardize and manage model features and workflows.
The feature store both reduced engineer effort and improved model
quality. Feature stores, however, have yet to adapt to a growing
trend in model development: incorporating pretrained embeddings.

Pretrained embeddings are becoming standard inputs to mod-
ern machine learning pipelines. These embeddings are typically
trained in a self-supervised fashion over massive data sets and en-
code knowledge about words, entities, graphs, and images. Once
trained, they can provide lift in numerous downstream tasks like
recommendation systems [21], information retrieval [15], and data
integration [20]. A subset of the authors saw first-hand from their

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476402

experience building and deploying an industrial self-supervised en-
tity disambiguation system that pretrained embeddings are shifting
industrial pipelines towards “hands-free” models that require lim-
ited hand-curated data and model engineering [14, 19, 24]. There is
therefore an increasing need for the next generation of feature store
systems to help manage and monitor the embedding training data,
pretrained embeddings, and downstream systems that consume the
embeddings.
Goal The goal of this tutorial is to expose the interplay between
data management and modern, self-supervised embedding ecosys-
tems. We will first introduce feature store systems and the chal-
lenges they address. We will then introduce self-supervised pre-
trained embeddings and explain the new challenges associated
with managing these embedding pipelines. We then explore how
data management can help build, monitor, and maintain these self-
supervised embedding ecosystems. Lastly, we will discuss future
data management challenges and research directions.
Scope This tutorial focuses on modern feature stores and the chal-
lenges with supporting embeddings as first class citizens in feature
stores. We highlight that managing these self-supervised embed-
ding systems is a fundamental data management problem. This
tutorial is intended for researchers with some familiarity with deep
learning and pretrained embeddings who are interested in the in-
teraction of data management and deep learning pipelines.
Outline This tutorial is split into three parts over 1.5 hours.1

(1) Feature Stores. We will give an overview of the modern
machine learning pipeline and feature store systems. We will
describe the core challenges these systems solve and give an
overview of the technical contributions.

(2) Embedding Ecosystems. We will introduce pretrained em-
beddings and discuss the new challenges faced by feature
stores in treating embeddings as first class citizens. We then
discuss recent solutions to some of these challenges.

(3) FutureDirections andChallenges. Wewill concludewith
a discussion of the future directions and challenges.

2 ML Feature Stores
In 2017, a subset of the authors built the first industrial feature
store [13]. Using this first-hand experience and the lessons learned,
we introduce the modern ML pipeline and describe the challenges
faced in maintaining and deploying models. We then introduce fea-
ture store systems and the technical innovations that help solve the
aforementioned challenges. We focus the first part of this tutorial
on traditional tabular feature data (i.e., not embeddings).

1This tutorial has not been presented in any venues prior and is most similar to recent
SIGMOD and VLDB tutorials in data integration and cleaning with machine learning.

3178

https://doi.org/10.14778/3476311.3476402
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476402

!"#$%$%&'(#)#

!"#$%&"'
($)&"

(*+%,)"-#.'/0,)-.,

!"#$$%&'%(!"#$%&'($")*+$,&)-*"%*."
%'&/-()*+0",&%&)1"%*.",&($%2)*+".%&%

!"#$$%&'%(!"2-.$3"2-*)&-()*+"
2$&()1,0")*#-(2$."#$%&'($",$3$1&)-*

)**+,-.

)-+,-.

!"#$$%&'%(!"2%)*&%)*)*+"#($,/"
#$%&'($,0"3-453%&$*16"#$%&'($",$(7)*+

"/0"11234'
($)&"

!"#$$%&'%(!"2%*%+)*+"&(%)*)*+".%&%"
&-")28(-7$"$29$..)*+":'%3)&6

!"#$$%&'%(!"#)*$5+(%)*$."2-.$3"
2-*)&-()*+0"8%&1/)*+"29..)*+,

!"#$$%&'%(!"2$%,'()*+"$29$..)*+"
:'%3)&6"),,'$,0"$29$..)*+",$%(1/

)*+,-.*/
*0120**.201/3/

*45*66201/
,.+20201

476*8/
6*987:4*0,

1-#)2"-34.5-66$%&'/)*"-

476*8/
,.+20201/

$56,-.7'/87.+

1.9+8:.7'/87.+

476*8/
4702,7.201/

+06/
4+20,+20*0!*

6+,+/;,7.*

6+,+/;,.*+4

Figure 1: Modern machine learning pipeline with the challenges associated with managing a feature store (top row) and the
additional challenges with managing an embedding ecosystem (bottom row).

2.1 Machine Learning Pipelines
In industrial machine learning (ML) pipelines, as shown in Figure 1,
engineers need to quickly ingest training data for feature curation,
train and deploy models, and monitor and maintain the model once
deployed. We describe each step below.

(1) Training Data. Data is scraped, mined, or retrieved from
a variety of different sources. The data needs to be cleaned,
checked, and featurized for downstream models.
Challenges: Engineers author custom features that, if not
shared and managed, can result in repeated work and lack
of definitional consistency. Feature definitions can become
stale if not kept up-to-date as data changes over time.

(2) Model Training and Deployment. Using a set of features,
engineers need to train and deploy models.
Challenges: As data changes over time and updates occur at
different intervals, models can become stale if not given the
most up-to-date features. Further, model reproducibility be-
comes a challenge as engineers try to keep up with changing
data and model parameters.

(3) ModelMaintenance andMonitoring. Once deployed,mod-
els need to be monitored and maintained.
Challenges: Models can struggle in the face of distribution
shift and out-of-domain inputs [26]. Further, once model
errors are detected, engineers are often lacking guidance as
to what features need to be corrected.

2.2 Feature Stores
Feature stores (FSs) arose to address these challenges by providing
a centralized repository of reusable features across the ML pipeline
and automating the management of this pipeline [1–3, 13]. Below,
we dive into how feature stores address the three challenges above.

2.2.1 Training Data
Structured data can be in the form of raw tables as well as streams
that users access when curating features. To facilitate sharing of
features across an organization and maintaining features if they
get updated, feature stores allow for feature authoring and pub-
lishing [4]. Users provide simple definitional metadata, e.g., the
feature update cadence and a definition SQL query, and upload the
definition to the FS. When the underlying data changes, the FS
orchestrates the updates to the features based on the user-defined
cadence.

For streaming features, users provide aggregation functions that
are applied on the raw streaming features. The aggregated features
are persisted to the online store and logged to the offline store.

2.2.2 Model Training and Deployment

Feature Storage Once features are curated, users need the abil-
ity to construct feature sets on the most recent data to train and
deploy models. FSs support this workflow by partitioning features
on date and providing APIs to allow for time based joins. Further,
FSs must support feature quality metrics to support the detection
and mitigation of feature errors. For example, FSs measure feature
freshness, null counts, and mutual information across features.
Model Storage Once a model is trained, relevant parameters
and artifacts need to be stored for provenance and reproducibil-
ity. Although model storage is not traditionally part of a FS, some
FSs [3, 13] do support model management by integrating a separate
model store [8, 28].
Online Feature Serving Once a model is deployed, features need
to be continuously provided to deployed models even as the feature
data is updated over time. To provide low latency feature serving,
FSs are typically a dual datastore: one for offline training (e.g., SQL
warehouse) and for online serving (e.g., in-memory DBMS).

2.2.3 Model Monitoring and Maintenance
FSs must additionally support model quality metrics (as well as fea-
ture quality metrics described above) [28]. For example, FSs support
critical model metrics such as training-deployment data skew and
near real-time outlier and input drift detection. These metrics allow
users to be informed of potential ‘gremlins’ in the system. Once an
error is discovered, engineers can use the FS metrics to detect the
offending set of features and select a more optimal feature set for
serving (or retraining).

3 Data Management and Embedding
Ecosystems

Drawing on our first-hand experiences developing entity embed-
dings across numerous downstream products at a large technology
company, we now introduce self-supervised pretrained embeddings
and the ecosystems around them. We then discuss new challenges
and solutions with managing these ecosystems. We believe treating
embeddings as first class citizens is the next evolution of feature
stores.

3179

3.1 Embedding Ecosystem
We define the embedding ecosystem as the embedding training
data, embeddings, and downstream systems that consume them. As
shown in Figure 1, the embedding ecosystem pipeline is similar to
that of the feature store. However, FSs are unable to support end-to-
end embedding management. With embeddings, standard metrics
and tools for managing tabular features are no longer adequate as
embeddings are derived data. For example, embeddings are often
compared by dot product similarity, and existing FS metrics such
as null value count do not capture drifts or changes in embeddings
with respect to this metric.

We now highlight the additional challenges associated with each
step of the ML pipeline when incorporating embeddings (the same
challenges from FSs still apply to embedding ecosystems).

(1) Training Data: In an embedding ecosystem, the raw train-
ing data is used to pre-train the embeddings. As this data is
self-supervised, it will not be hand-labeled or curated.
Challenges: Embeddings will encode any inherent biases that
exist in the self-supervised training data, e.g., the embed-
dings do not well represent rare things [22, 27].

(2) Model Training and Deployment: Once embeddings are
trained, they need to be stored and served to downstream
systems that use embeddings for training and deployment.
Challenges: As embeddings get retrained and updated, just
like features, the downstream models can become stale and
out-of-date. Users need to understand and monitor the em-
bedding changes and search over possible embeddings and
select the best ones for their task. Unlike features, standard
tabular metrics are inadequate for embeddings.

(3) Model Maintenance and Monitoring: Like with FSs, de-
ployed models need to be monitored and maintained, espe-
cially with respect to the embedding inputs.
Challenges: Any inherent embedding quality issue will im-
pact all downstream models using those embeddings. Users
need to be able to understand and isolate downstream qual-
ity issues in the underlying embeddings. Once found, users
need methods for correcting errors in downstream products.

3.1.1 Self-Supervised Training Data
Unlike feature curation data, which is tabular and pre-labeled, self-
supervised training data is often unstructured and is not hand-
curated. This lack of manual curation results in data that may not
accurately represent the data seen upon deployment [5, 11, 16] and
is often biased toward popular things [22]. Embeddings trained on
this data can inherit these biases.

To improve embedding quality of rare things through training
data management, recent work from [22] explored incorporating
structured data into entity embedding pretraining through named
entity disambiguation, the task of mapping from strings to things
in a knowledge base. They showed that by adding structured data
of the type of an entity and its knowledge graph relations, they
could boost performance over rare entities by 40 F1 points. We
believe merging structured and unstructured data is a promising
management technique for improving quality in training data.

3.1.2 Embedding Management
Both traditional features and pretrained embeddings are served to

downstream models. The uniqueness of an embedding ecosystem is
that users need to be able to understand the difference in embedding
quality as embeddings are updated over time and need guidance
over what embeddings to use for their task.

To measure quality, Wendlandt et al. [29] and Hellrich and Hahn
[12] discuss analyzing word embeddings with respect to an em-
bedding’s nearest neighbors. The work of Leszczynski et al. [17]
is uniquely looking at the quality of an embedding with respect to
a downstream task. The authors define the metric of downstream
instability, the number of predictions that change with different
embeddings, to measure downstream embedding instability.

There is little available work on finding the right embedding to
use, especially given compute or memory constraints. The work
of May et al. [18] takes a first step by a variant of the eigenspace
overlap score as a way of predicting downstream performance.
However, their work is focused on measuring the performance of
non-contextualized word embeddings.

3.1.3 Fine-Grained Monitoring and Patching
Downstream models in traditional FSs and embedding ecosystems
need to be monitored and maintained. In an embedding ecosystem,
however, the challenge is in giving users the tools to findmeaningful
subpopulations of errors and connecting the downstream errors to
embedding quality issues. These errors then need to be corrected
through the underlying embedding.

In terms of monitoring downstream models, recent works pro-
vide toolkits for measuring languagemodel performance at a seman-
tic, fine-grained level [10, 25]. Goel et al. [10] in particular focuses
on allowing users to define custom sub-population functions to
explore performance across different models.

Once an error is discovered, the challenge is in how to correct
that error in the underlying embedding. By correcting the error
in the embedding, all downstream systems using those embed-
dings will be patched, which maintains product consistency. The
work in Orr et al. [22] gives a proof-of-concept that using data
management techniques such as augmentation [7], weak supervi-
sion [23], and slice-based learning [6] can correct underperforming
sub-populations of data [22].

4 Future Directions
We end with a discussion of future directions.
Embedding Enhanced Feature Stores We believe the next evolution
of a feature store is one with native support for embeddings. While
we discussed some challenges and potential solutions, this is just
the beginning. Users need tools for searching and querying these
embeddings as well as support for versioning, provenance, and
downstream quality metrics. For example, if an embedding gets
updated but a model that uses it does not, the dot product of the
embedding with model parameters can lose meaning which leads to
incorrect model predictions. Further, performing these operations
at industrial scale will be non-trivial as the size of embeddings and
their associated models are continuing to increase.
End-to-EndModel Patching Through Data An open area of research
is in automatically correcting the errors discovered in the down-
stream model error analysis through the underlying embedding.
While prior work showed you can patch errors through methods

3180

like data augmentation and slice finding [9, 22], there are remain-
ing challenges in how to automate and manage this process. How
can you predict if an augmentation strategy will have the desired
result? If an embedding gets patched, what is the optimal way to
propagate that patch downstream?

5 Biographical Sketches
Laurel Orr is a PostDoc in the Computer Science Department
at Stanford University advised by Christopher Ré. She graduated
from the University of Washington in the Database group and is
a lead on the Bootleg project, a self-supervised system for entity
disambiguation. Bootleg is in production at Apple and used by
academic research groups. She was awarded the NSF GRFP as a
graduate student and is a current IC Postdoc Fellow.
Atindriyo Sanyal is a technical lead on the Michelangelo team at
Uber AI. He leads various feature engineering efforts across Uber.
Prior to that, he worked at LinkedIn and Apple where he was a
Senior Software Engineer on Siri and was the founding engineer
behind SiriKit (Siri API). He did his Masters at UCLA, where he
worked at the Networks Research Lab building routing algorithms
for pedestrians with skin conditions on open source navigation
systems. He’s one of the winners of Microsoft’s Imagine Cup, won
many hackathons at university, an IEEE presidential Award nomi-
nee, and a Math Olympiad winner.
Xiao Ling is a Machine Learning engineer at Apple where his work
spans from information extraction for knowledge base construction
to open-domain question answering. He earned his PhD in Com-
puter Science and Engineering from the University of Washington
in 2015. He was an early engineer at Lattice Data Inc., which was
acquired by Apple in 2017.
Megan Leszczynski is a PhD student in the Computer Science De-
partment at Stanford University advised by Christopher Ré. She is
one of the original developers of Bootleg, a self-supervised system
for named entity disambiguation, which has since been deployed
in industry. She has also given an invited lecture to the Stanford
CS224N (NLP with Deep Learning) course led by Christopher Man-
ning. Her research has been recognized with a NSF GRFP.
Karan Goel is a 3rd year CS PhD student at the Stanford AI Lab.
He leads the Robustness Gym (RG) project, whose goal is to facili-
tate fine-grained evaluation and maintenance of ML models. RG is
actively deployed at Salesforce with users in academia and indus-
try. He wrote one of the first papers on "model patching", and his
work has been recognized with a Siebel Scholarship (2018) and a
Salesforce Research Grant (2020).
AcknowledgementsWe acknowledge the support of the IC Postdoctoral Research
Fellowship Program and NSF Graduate Research Fellowship under No. DGE-1656518.

References
[1] 2021. Feast: An Open Source Feature Store for Machine Learning. https://feast.

dev/.
[2] 2021. Feature Store for ML. https://www.featurestore.org/.
[3] 2021. Hopsworks: The Enterprise Feature Store. https://www.hopsworks.ai/.
[4] Wail Alkowaileet, Sattam Alsubaiee, Michael J Carey, Chen Li, Heri Ramampiaro,

Phanwadee Sinthong, and Xikui Wang. 2018. End-to-end machine learning with
Apache AsterixDB. In Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning. 1–10.

[5] Michael S Bernstein, Jaime Teevan, Susan Dumais, Daniel Liebling, and Eric
Horvitz. 2012. Direct answers for search queries in the long tail. In SIGCHI.

[6] Vincent S Chen, Sen Wu, Zhenzhen Weng, Alexander Ratner, and Christopher
Ré. 2019. Slice-based learning: A programming model for residual learning in

critical data slices. Advances in neural information processing systems 32 (2019),
9392.

[7] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim
Kraska, and David Karger. 2020. ARDA: automatic relational data augmentation
for machine learning. arXiv preprint arXiv:2003.09758 (2020).

[8] Gharib Gharibi, Vijay Walunj, Sirisha Rella, and Yugyung Lee. 2019. ModelKB:
towards automated management of the modeling lifecycle in deep learning. In
2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE). IEEE, 28–34.

[9] Karan Goel, Albert Gu, Yixuan Li, and Christopher Ré. 2020. Model Patching:
Closing the Subgroup Performance Gap with Data Augmentation. arXiv preprint
arXiv:2008.06775 (2020).

[10] Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason Wu, Stephan Zheng,
Caiming Xiong, Mohit Bansal, and Christopher Ré. 2021. Robustness Gym:
Unifying the NLP Evaluation Landscape. arXiv preprint arXiv:2101.04840 (2021).

[11] Ben Gomes. 2017. Our latest quality improvements for Search. https://blog.
google/products/search/our-latest-quality-improvements-search/.

[12] Johannes Hellrich and Udo Hahn. 2016. Bad company—neighborhoods in neural
embedding spaces considered harmful. In Proceedings of coling 2016, the 26th
international conference on computational linguistics: Technical papers. 2785–2796.

[13] Jeremy Hermann and Mike Del Blaso. 2021. Meet Michelangelo: Uber’s Ma-
chine Learning Platform. https://eng.uber.com/michelangelo-machine-learning-
platform/.

[14] Andrej Karpathy. 2020. Software 2.0. https://medium.com/@karpathy/software-
2-0-a64152b37c35.

[15] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 39–48.

[16] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Sara Beery, et al. 2020. WILDS: A Benchmark of in-the-Wild Distribution
Shifts. arXiv preprint arXiv:2012.07421 (2020).

[17] Megan Leszczynski, Avner May, Jian Zhang, Sen Wu, Christopher R Aberger,
and Christopher Ré. 2020. Understanding the downstream instability of word
embeddings. arXiv preprint arXiv:2003.04983 (2020).

[18] Avner May, Jian Zhang, Tri Dao, and Christopher Ré. 2019. On the downstream
performance of compressed word embeddings. Advances in neural information
processing systems 32 (2019), 11782.

[19] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. 2019. Ludwig: a type-
based declarative deep learning toolbox. arXiv preprint arXiv:1909.07930 (2019).

[20] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep learning for entity matching: A design space exploration. In Proceedings of
the 2018 International Conference on Management of Data. 19–34.

[21] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[22] Laurel Orr, Megan Leszczynski, Simran Arora, Sen Wu, Neel Guha, Xiao Ling,
and Christopher Re. 2021. Bootleg: Chasing the Tail with Self-Supervised Named
Entity Disambiguation. CIDR 2021, 11th Conference on Innovative Data Systems
Research (2021).

[23] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: Rapid training data creationwithweak supervision.
In Proceedings of the VLDB Endowment. International Conference on Very Large
Data Bases, Vol. 11. NIH Public Access, 269.

[24] Christopher Ré, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. 2020.
Overton: A Data System for Monitoring and Improving Machine-Learned Prod-
ucts. In CIDR 2020, 10th Conference on Innovative Data Systems Research, Amster-
dam, The Netherlands, January 12-15, 2020, Online Proceedings.

[25] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020.
Beyond accuracy: Behavioral testing of NLP models with CheckList. arXiv
preprint arXiv:2005.04118 (2020).

[26] Sebastian Schelter, Felix Biessmann, Tim Januschowski, David Salinas, Stephan
Seufert, and Gyuri Szarvas. 2018. On challenges in machine learning model
management. (2018).

[27] Timo Schick and Hinrich Schütze. 2020. Rare words: A major problem for con-
textualized embeddings and how to fix it by attentive mimicking. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34. 8766–8774.

[28] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: a system
for machine learning model management. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. 1–3.

[29] Laura Wendlandt, Jonathan K Kummerfeld, and Rada Mihalcea. 2018. Fac-
tors influencing the surprising instability of word embeddings. arXiv preprint
arXiv:1804.09692 (2018).

3181

https://feast.dev/
https://feast.dev/
https://www.featurestore.org/
https://www.hopsworks.ai/
https://blog.google/products/search/our-latest-quality-improvements-search/
https://blog.google/products/search/our-latest-quality-improvements-search/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://medium.com/@karpathy/software-2-0-a64152b37c35
https://medium.com/@karpathy/software-2-0-a64152b37c35

