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ABSTRACT

In 2013, Amazon Web Services revolutionized the data warehousing
industry by launching Amazon Redshift [7], the first fully managed,
petabyte-scale enterprise-grade cloud data warehouse. Amazon
Redshift made it simple and cost-effective to efficiently analyze
large volumes of data using existing business intelligence tools.
This launch was a significant leap from the traditional on-premise
data warehousing solutions, which were expensive, not elastic, and
required significant expertise to tune and operate. Customers em-
braced Amazon Redshift and it became the fastest growing service
in AWS. Today, tens of thousands of customers use Amazon Red-
shift in AWS’s global infrastructure of 25 launched Regions and 81
Availability Zones (AZs), to process exabytes of data daily.

The success of Amazon Redshift inspired a lot of innovation in
the analytics segment, e.g. [1, 2, 4, 10], which in turn has benefited
customers. In the last few years, the use cases for Amazon Redshift
have evolved and in response, Amazon Redshift continues to deliver
a series of innovations that delight customers.

In this paper, we give an overview of Amazon Redshift’s system
architecture. Amazon Redshift is a columnar MPP data warehouse
[7]. As shown in Figure 1, an Amazon Redshift compute cluster
consists of a coordinator node, called the leader node, and multiple
compute nodes. Data is stored on Redshift Managed Storage, backed
by Amazon S3, and cached in compute nodes on locally-attached
SSDs in compressed columnar fashion. Tables are either replicated
on every compute node or partitioned into multiple buckets that are
distributed among all compute nodes. AQUA is a query acceleration
layer that leverages FPGAs to improve performance. CaaS is a
caching microservice of optimized generated code for the various
query fragments executed in the Amazon Redshift fleet.

The innovation at Amazon Redshift continues at accelerated
pace. Its development is centered around four streams. First, Ama-
zon Redshift strives to provide industry-leading data warehousing
performance. Amazon Redshift’s query execution blends database
operators in each query fragment via code generation. It com-
bines prefetching and vectorized execution with code generation
to achieve maximum efficiency. This allows Amazon Redshift to
scale linearly when processing from a few terabytes to petabytes
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of data. Figure 2 depicts the total execution time of the Cloud Data
Warehouse Benchmark Derived from TPC-DS 2.13 [6] while scaling
dataset size and hardware simultaneously. Amazon Redshift’s per-
formance remains nearly flat for a given ratio of data to hardware,
as data volume increases from 30TB to 1PB. This linear scaling to
the petabyte scale makes it easy, predictable and cost-efficient for
customers to on-board new datasets and workloads.

Second, customers needed to process more data and wanted to
support an increasing number of concurrent users or independent
compute clusters that are operating over the Redshift-managed
data and the data in Amazon S3. We present Redshift Managed
Storage, Redshift’s high-performance transactional storage layer,
which is disaggregated from the Redshift compute layer and allows
a single database to grow to tens of petabytes. We also describe
Redshift’s compute scaling capabilities. In particular, we present
how Redshift can scale up by elastically resizing the size of each
cluster, and how Redshift can scale out and increase its throughput
via multi-cluster autoscaling, called Concurrency Scaling. With
Concurrency Scaling, customers can have thousands of concurrent
users executing queries on the same Amazon Redshift endpoint. We
also talk about data sharing, which allows users to have multiple
isolated compute clusters consume the same datasets in Redshift
Managed Storage. Elastic resizing, concurrency scaling and data
sharing can be combined giving multiple compute scaling options
to the Amazon Redshift customers.

Third, as Amazon Redshift became the most widely used cloud
data warehouse, its users wanted it to be even easier to use. For
that, Redshift introduced ML-based autonomics. We present how
Redshift automated among others workload management, physical
tuning, the refresh of materialized views (MVs), along with auto-
mated MVs-based optimization that rewrites queries to use MVs.
We also present how we leverage ML to improve the operational
health of the service and deal with gray failures [8].

Finally, as AWS offers a wide range of purpose-built services,
Amazon Redshift provides seamless integration with the AWS
ecosystem and novel abilities in ingesting and ELTing semistruc-
tured data (e.g., JSON) using the PartiQL extension of SQL [9]. AWS
purpose-built services include the Amazon S3 object storage, trans-
actional databases (e.g., DynamoDB [5] and Aurora [11]) and the
ML services of Amazon Sagemaker. We present how AWS and Red-
shift make it easy for their customers to use the best service for each
job and seamlessly take advantage of Redshift’s best of class analyt-
ics capabilities. For example, we talk about Redshift Spectrum [3]
that allows Redshift to query data in open-file formats in Amazon
S3. We present how Redshift facilitates both the in-place querying
of data in OLTP services, using Redshift’s Federated Querying, as
well as the copy of data to Redshift, using Glue Elastic Views. We
also present how Redshift can leverage the catabilities of Amazon
Sagemaker through SQL and without data movement.
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Figure 1: Amazon Redshift Architecture
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Figure 2: Scaling Cloud Data Warehouse Benchmark derived
from TPC-DS from 30TB to 1PB

With a differentiating execution core, ability to scale to tens
of PBs of storage and thousands of concurrent users, ML-based
automations that make it easy to use, and tight integration with the
wide AWS ecosystem, Amazon Redshift is a best-of-class solution
for cloud data warehousing.
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