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ABSTRACT
Jet is an open-source, high-performance, distributed stream proces-
sor built at Hazelcast during the last five years. Jet was engineered
with millisecond latency on the 99.99th percentile as its primary
design goal. Originally Jet’s purpose was to be an execution engine
that performs complex business logic on top of streams generated
by Hazelcast’s In-memory Data Grid (IMDG): a set of in-memory,
partitioned and replicated data structures. With time, Jet evolved
into a full-fledged, scale-out stream processor that can handle out-
of-order streams and provide exactly-once processing guarantees.
Jet’s end-to-end latency lies in the order of milliseconds, and its
throughput in the order of millions of events per CPU-core. This
paper presents the main design decisions we made in order to max-
imize the performance per CPU-core, alongside lessons learned,
and an empirical performance evaluation.
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1 INTRODUCTION
Stream processing has completed more than twenty years of exis-
tence. Throughout the years, the database community has focused
on defining semantics for streaming queries as well as system de-
signs and optimizations. During the last seven years, stream pro-
cessing is becoming mainstream: it is used for real-time monitoring,
dynamic car-trip pricing, credit card fraud detection, real-time ana-
lytics, maintaining materialized views, and many other use cases
and applications.

The needs of these new applications are starting to push exist-
ing streaming systems to their limits and each application may
require a different system design. IoT applications and the bank-
ing industry, for example, have very different infrastructure and
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Figure 1: Jet’s Software Stack

system design requirements. In an attempt to cover different appli-
cation and deployment requirements, multiple streaming systems
are being developed, each specializing in different mostly functional
aspects. For instance, Apache Kafka [20] focuses on storing and
integrating streams, Apache Flink [8] enables out-of-order [22]
and exactly-once [7] processing with a very general programming
model, and Heron [21] focuses on flexible container-based execu-
tion with at-least-once processing guarantees.

While most of these systems were designed with specific use
cases in mind, their ability to adhere to strong SLAs has been an
afterthought: the way that these systems are architected does not
focus on low-latency deployments. When tested in practice, most
existing scale-out stream processing systems fail to keep the 99.99th
percentile latency at low levels (e.g. tens of milliseconds), even
under ideal conditions (no failures, stragglers, etc.). In fact, even
with resource over-provisioning, latency on the 99th percentile can
easily reach seconds in state of the art stream processors [18]. We
believe that this is the result of the design decisions behind these
systems: in order to provide easy programming models and out-of-
order processing [4] as well as flexibility in deploying streaming
jobs in the cloud, existing streaming systems abstract away from
the hardware and rely too much on the host language amenities
such as JVM’s default garbage collector.

At Hazelcast, around the end of 2015 we navigated the space
of streaming systems and we concluded that none fulfilled our
tight SLA requirements. In this paper we present Jet, a distributed
streaming system that was designed with the latency at the 99.99th
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Pipeline p = Pipeline.create();

p.readFrom(lineSource())
.flatMap(e -> traverseArray(e.

toLowerCase().split("\\W+")))
.filter(word -> !word.isEmpty())

.groupingKey(wholeItem())

.aggregate(AggregateOperations.counting())

.writeTo(someSink());

Listing 1: Word count in Jet’s Pipeline abstraction.

percentile as its primary focus. In the next paragraphs, we describe
the motivation and discuss why we developed Jet.
Hazelcast’s In-memory Data Grid. Hazelcast IMDG is an open-
source1, distributed, in-memory object store supporting a wide va-
riety of data structures and interfaces inspired by the standard Java
libraries. IMDG’s data structures include Map, Queue, Ringbuffer,
etc. For example, the Map interface, provides a distributed in-memory
key-value store that Jet uses for storing its snapshots (Section 4.4).
Hazelcast IMDG’s data structures are highly scalable and available:
keys are stored in data partitions which are replicated across multi-
ple machines in the cluster for fault resilience and parallelization.
As IMDG members join and leave the cluster, partitions are re-
balanced automatically. IMDG’s data structures have AP behavior
[6]: they maintain linearizability when there’s no network partition
and otherwise opt for availability.
From IMDG to Jet. With time, we noticed that more and more of
IMDG’s users employed it for computation-heavy tasks. Although
IMDG allows for very fast propagation of individual updates to
replicas of its data structures, our clients wanted to perform more
global operations: their tasks included joins among multiple dis-
tributed and replicated data structures, as well as aggregates that
had to be updated whenever updates happened to different dis-
tributed IMDG data structures. To allow for such global queries, our
team at Hazelcast first attempted to build a MapReduce-like proto-
type, only to realise after some time, that the requirements of our
clients for very low latency were not statisfied by a batch-oriented
architecture.

For this reason, that batch prototype was quickly discarded in
favor of a full blown streaming dataflow engine that makes use of
IMDG - both as a means to retrieve data but also to store data. To
eliminate latency issues we decided that the partitioning of IMDG
would have to align with the partitioning of our execution engine,
to avoid costly and slow data re-partitioning. To this end, we built
Jet2, an open-source3 parallel dataflow processor that can execute
custom business logic as well as SQL queries over data from an
IMDG cluster.
Main Design Decisions. Jet was initially designed for continuous,
low-latency computations over streams of changes, data structure
updates, etc. The system design first focused onmaking operators as
lightweight and performant as possible for scale-up computations
on a single node [24]. At the same time, our primary development
platform is the Java Virtual Machine (JVM) which is not ideal for
low-latency systems. To this end, we had to make careful design
1https://github.com/hazelcast/hazelcast
2http://jet-start.sh
3https://github.com/hazelcast/hazelcast-jet

decisions in order to: 𝑖) optimize the use of threads, 𝑖𝑖) minimize
the effects of the JVM and its garbage collector to the execution
engine, and 𝑖𝑖𝑖) minimize the system’s memory footprint. To be
amenable to embedded deployments in constrained environments,
our team has been working hard to make sure Jet does not have
any external dependencies; Jet can be deployed as a single Jar file.

A single node running Jet has been shown to aggregate 10 mil-
lion events per second with a 99.99th percentile latency below
10 milliseconds4. Jet can be deployed with minimal memory and
computational requirements, while it can support hundreds of con-
current jobs within the same JVM (Section 7). In the rest of the
paper we outline the design of Jet, its main contributions in systems-
engineering as well as the lessons learned from building it.

This rest of the paper is structured as follows. Section 2 provides
an overview of Jet’s core components: its programming model,
execution engine, and state backend. Section 3 elaborates Jet’s ex-
ecution model followed by Section 4, which presents Hazelcast’s
in-memory grid and how it supports state management, fault tol-
erance, and reconfiguration. Section 5 describes how Jet’s compo-
nents come together to achieve single-digit millisecond latency
at the 99.99th percentile. Section 6 narrates some of the interest-
ing use cases that Jet supports and Section 7 complements that
description with a thorough experiment including performance
microbenchmarks, fault tolerance measurements, and job multi-
plexing scenarios on queries of the NEXMark benchmark. Section 8
presents related work and how Jet resembles but also differs from
existing systems. Notably, Section 9 introduces our vision for Jet as
a serverless platform for running event-driven applications, such
as microservices and stateful applications. Finally, Section 10 con-
cludes this paper.

2 SYSTEM OVERVIEW
Jet adopts the standard streaming data flow model, in which compu-
tations form a directed acyclic graph of operators (vertices) that ap-
ply transformations on data streams (edges). Jet can operate equally
well as an embedded stream processor with a very low footprint,
as well as a scale-out system that spans many nodes.

Jet offers three main entry points for users (Figure 1): 𝑖) the Jet
Management Center – a web UI and REST API fromwhere users can
manage and monitor Jet jobs, 𝑖𝑖) the Pipeline API – a high-level
API that can be used to create streaming pipelines and 𝑖𝑖𝑖) the Core
API – a lower-level API that can be used to specify low-level exe-
cution strategies. Both APIs are used to create distributed, stateful,
and fault-tolerant dataflow programs. We detail those below.

2.1 The Pipeline API
The Pipeline API is designed to be the primary API that Jet users
face. It offers transformations such as map, filter, aggregate,
etc. that users can use to build complex data flows. It very much
resembles Java streams in that, it is a fluent API and it is type-safe:
the operators’ input and output types are checked at compile-time.
You can control some of the lower-level aspects at this level, too,
like operator parallelism and traffic rebalancing. The example in
Listing 1, shows the Java API of the typical “Word Count” program.

4https://jet-start.sh/blog/2020/08/05/gc-tuning-for-jet
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Pipeline p = Pipeline.create();
BatchStage<Person> persons = p.readFrom("persons");
BatchStage<Tuple2<Integer, Long>> countByAge = persons

.groupingKey(Person::age)

.aggregate(counting());
StreamStage<Order> orders = p.readFrom(kafka(...));
StreamStage<Entry<Order, Long>> ordersWithAgeCounts = orders

.hashJoin(countByAge, joiningMapEntries(Order::ageOfBuyer))

.writeTo(someSink());

Listing 2: Hybrid batch & streaming pipeline.

Unifying Batch & Streaming in a Single API. The Pipeline
API models computations as stages; a stage represents what is
known in different dataflow systems as an operator. Stages can be
either streaming or batch and they can be mixed and matched to
build hybrid stream-batch processing data flows. The difference
between the two is rather simple: streaming stages assume that
their inputs are infinite, while batch stages assume that their inputs
are finite. For instance, as listed in Listing 2, one can build a pipeline
that performs a hashjoin between a batch “build side” stage and a
streaming “probing side” stage. The batch side will pull all the inputs
of the batch stage performing complex batch filters, aggregates, etc.
when the pipeline initializes, and then the stream will simply probe
the hashtable for each incoming event on the streaming side.

In short, the Pipeline API serves as syntactic sugar that simpli-
fies building scalable Jet workflows: pipelines are actually translated
to parallel, distributed DAGs of operators at the Core API which
we detail in the following text.

2.2 The Core API
The Core API exposes all the capabilities of the dataflow execu-
tion engine. It can be used to build DAGs of operators with a finer
level of control than the Pipeline API, but at the cost of increased
complexity and the lack of sanity checks such as type safety. Even
though it is possible, this API is not intended to create DAGs by
hand. Instead, it offers the infrastructure to build high-level DSLs
and APIs that describe dataflows. It serves as a form of interme-
diate representation and requires familiarity with concepts like
partitioning schemes, distributed vs. local edges, watermarks, etc.

The Core API can be used to fine-tune the execution proper-
ties of streaming DAGs. For instance, one can define the size of
the queue between two vertices, a custom partitioning strategy of
a distributed edge, or create custom code on how to react to an
incoming watermark.

2.3 Execution Engine
The execution engine contains implementations of very efficient
operators for partitioning, window aggregation [31, 33], joins, as
well as the base source and sink operators, etc. Jet implements a
unique way of sharing the computational resources, called tasklets
(Section 3.2), a form of co-routines that are cooperatively sched-
uled in a fixed pool of worker threads as shown in Figure 4. The
execution engine also performs state management (Section 4) and
fault tolerance Section 4.4 that we present later in this paper.

2.4 State Backend: Hazelcast IMDG
Unlike most streaming systems that store their snapshots in stable
object storage like Amazon’s S3, Jet uses IMDG for storing snap-
shots in a partitioned and replicated manner. The partitioning of
the state stored in IMDG matches the partitioning of Jet. As a result
IMDG’s replicated partitions allow Jet to 𝑖) retain its low latency
by recovering very quickly from a node holding a state replica in
case of failure, and 𝑖𝑖) to be able to elastically scale-out when the
workload increases. We detail these in Section 4.4.

3 EXECUTION MODEL
Jet’s execution model involves the deployment of stateful dataflow
graphs that we explain in Section 3.1 and the execution of computa-
tions presented in Section 3.2. Section 3.3 clarifies how Jet handles
backpressure.

3.1 Deploying Stateful Dataflow Graphs
The logical dataflow graph from the Core API is parallelized as
in most streaming systems [5, 8], i.e., massively parallel operators
like maps and filters simply receive arbitrary parts of the stream,
while keyed operators such as joins, and aggregates execute in
a partitioned manner. However, Jet does not follow the typical
operator-per-core model. Instead, it deploys the complete dataflow
graph on every available CPU core as seen in Figure 3. Since the
source and sink connectors depend on 3rd-party APIs, and some of
these rely on blocking calls that cannot be made to work cooper-
atively, Jet must start dedicated threads for them. After empirical
experimentation we decided to deploy at most two such operators
per node. For instance, Figure 3 depicts one source and one sink on
each node.

Deploying the complete dataflow graph on every single CPU
core has several advantages with respect to performance. The most
important is that it allows to keep data exchange local to the ma-
chine as much as possible, avoiding expensive data transfers across
the network. Second it allows for a coroutine-based execution that
we discuss in the next section.

Jet further minimizes communication costs between operators
in three ways. First, it fuses (a.k.a. operator chaining) consecutive
stateless operators [15]. Second, it keeps data exchange local when-
ever possible, even on partitioned data exchanges, where it applies
a two-stage approach (local partial results followed by global com-
bining). Finally, when an operator needs to pass events to a remote
operator, Jet deploys an exchange operator [14] on the sender and
receiver sides that takes over the data partitioning and exchange.

Source FlatMap Sink
Group
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Aggregate
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Source
FlatMap

+
Filter

SinkCombine
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DAG
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Figure 2: Logical Pipeline of a Jet job (top) and a Core DAG
in which Jet applied operator fusion (bottom).
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In summary, Jet leverages both pipeline parallelism and data par-
allelism within each node but also across nodes. Together with
coroutine-based execution (Section 3) Jet manages extremely low-
latency stream processing.

3.2 Tasklets & Cooperative Threads
Jet’s execution model is based on tasklets, very small computational
units that share an execution thread by taking turns in using a
CPU core. As seen in Figure 4, Jet deploys as many JVM threads
as there are CPU cores. Instead of allocating one thread for each
parallel tasklet, a thread takes over the execution of a number of
tasklets. On each thread, Jet runs a loop that executes its tasklets in
a round-robin fashion.

Tasklets, are a concept similar to coroutines [17]: they are small
computation units that can be suspended and resumed at the pro-
gramming language level. More specifically, a tasklet voluntarily
yields control to the Jet framework after executing for a very short
period of time, typically under 1 millisecond. Then Jet can schedule
another tasklet to run on the same thread. This design achieves high
CPU utilization by avoiding the costly operating system context
switches and allowing execution threads to remain on the same
CPU core for longer time periods, thereby preserving the CPU
cache lines. A tasklet is guaranteed to perform meaningful work
(e.g., perform an aggregate or a join of two events) in each very
short execution period because it has no dependencies to the outside
world. Jet owes much of its performance capacity to tasklets.
Cooperative Threads. A collection of tasklets collectively occupy
a cooperative thread [1]. Tasklets start execution when their turn
comes, and stop execution on their own accord. Tasklets allow Jet to
sustain high load and extremely high numbers of tasks on modest
resources: Jet can host tens of thousands of tasklets on a single
execution thread, allowing for very large numbers of operators in
a single node. For the same reason, Jet lends itself really well to
multiplexing different jobs in a single deployment: one can run
thousands of concurrent jobs on the same set of resources with
very little overhead. This is because when a tasklet has no work
to do – typically because there is no input available – it backs off
from the thread and gives its place to another tasklet, without the
need for context switching.

Although very performant, the tasklets execution model entails
an important restriction: a tasklet should never block, because that
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Figure 4: Tasklet scheduling in Jet

would jeopardize the execution progress of all tasklets sharing the
execution thread. Although Jet could use a cooperative scheduler,
in practice we have seen that simply iterating over all tasklets
repeatedly works pretty well. However, Jet does schedule block-
ing computations on separate, non-cooperative, dedicated threads
so that they do not interfere with the execution of tasklets. Non-
cooperative computations are forced to frequently return control to
Jet – at least every second. Jet needs to gain control of all execution
threads in order to take state snapshots for fault tolerance strategy
(Section 4).
Jet Processors. A processor, implements the custom logic (e.g., the
UDF, or the operator logic such as joining two tuples) of a given
DAG vertex in a Jet dataflow graph. Each processor includes an
inbox of input records to be processed and an outbox of output
records to be dispatched downstream. A tasklet manages the pro-
cessor’s inbox and outbox, its state, and its inbound and outbound
queues. A tasklet repeatedly calls the processor’s process method
until the processor has consumed all the input records from the
inbox, and then the tasklet refills the processor’s inbox with more
input (possibly from a different input edge). For each output record
in the outbox, Jet, according to the record’s key, finds the record’s
downstream destination by computing the partition ID, and for-
wards that record to the respective downstream vertex.

Tasklets within the same node exchange data through shared-
memory, single-producer-single-consumer queues that use wait-
free algorithms. Specifically, a tasklet produces output to a queue
that connects it with a specific consumer tasklet downstream. The
consumer tasklet can retrieve its available input from the queue
to fill in its processor’s inbox by pulling the records from these
queues. The producer tasklet stops producing records if the con-
sumer tasklet’s queue fills up. In essence, a queue instance serves
the connection between a pair of tasklets, and on the receiver and
producer sides Jet uses wait-free algorithms for predictable and
performant data exchange.

3.3 Handling Backpressure
Jet employs a backpressure mechanism to limit the amount of items
a source vertex sends to the destination/consumer when that con-
sumer throttles. If this happens, streaming systems require a back-
pressure mechanism to signal back to the source to moderate its
operation so that the whole pipeline stays in balance and operates
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Figure 5: Snapshot partitioning and replication in IMDG.

at the speed of the slowest vertex. Local backpressure between
tasklets inside the same Jet node is simple: Jet uses bounded queues
and tasklets to back off as soon as all their output queues are full.

Backpressure is trickier over a network link. Jet uses a design
very similar to the TCP/IP adaptive receive window: the producer
must wait for an acknowledgment from the consumer specifying
how many data items the producer can send. After processing item
n, the receiver sends a message that the sender can send up to item n
+ receive_window. The consumer sends the acknowledgment mes-
sage every 100ms: as long as the receive_window is large enough
to hold the number of events processed within 100 milliseconds
(plus network link latency), the receiver will always have data ready
to be processed. Jet calculates the size of the receive_window based
on the rate of event processing in a given tasklet and adaptively
shrinks and expands the receive_window as the flow changes. In
stable state the receive_window contains roughly 300milliseconds’
worth of data.

4 STATE MANAGEMENT
Jet stores state exclusively in memory, through the use of IMDG’s
IMap data structure. This section describes how Jet organizes com-
putation state across a cluster (Section 4.1) and then presents the
function of the in-memory grid and how it supports fault toler-
ance and reconfiguration (Section 4.2). Then, Sections 4.3 and 4.4
describe Jet’s overall approach to elasticity and fault tolerance. Fi-
nally, Section 4.5 explains how Jet interacts with external source
and sink systems to provide various levels of processing guarantees.

4.1 State Organization
State in Jet is a collection of key-value pairs, held in memory (Fig-
ure 5). Jet uses IMDG’s IMap data structure to partition the key space
into disjoint partitions that are allocated to parallel instances of a
stateful vertex. Partitioned distributed edges connect keyed stateful
computations such as aggregations, with all downstream vertices.
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Processor state

IMDG Map state
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P7 P9 P10 P12

Jet node 2
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P3 P6

P3, P6, P7, P9, P10, P12

Processor state

IMDG Map state

P7 P9 P10 P12

P4 P5 P8 P11

Jet node 3

P3 P6

P1 P2

Figure 6: Snapshot re-balancing on fault recovery.

Stateful computations in Jet are supported by equally distribut-
ing disjoint partitions of the state to a stateful vertex’s instances
across all cluster nodes as shown in Figure 5. State is partitioned
by a record key such that each vertex instance stores the state cor-
responding to a specific key space. Thus, each record is shipped
through the edge that links with the vertex holding the partition
that matches the record’s key.

4.2 In-Memory Data Grid (IMDG)
One key feature that distinguishes Jet from other modern scale-out
streaming systems is that, although fault-tolerant and highly avail-
able, Jet has zero dependency on disk storage. Instead, it uses the
in-memory data grid, for state management and disaster recovery.
The IMDG implements a concurrent, distributed, observable and
queryable map data structure. Figure 5 depicts how IMDG supports
a distributed dataflow graph.

A Jet processor operates directly on a local Map data structure
(e.g., HashMap), state snapshots of which are stored in IMap. To
optimize for locality, the partitioning of a Jet vertex matches the
partitioning of the IMap data structure running on the same node.
For each IMap partition, IMDG stores 𝑖) a primary replica on the
same node and 𝑖𝑖) one or more backup replicas on other nodes,
according to the IMDG cluster configuration. The backup replicas
of that state snapshot are distributed to other member nodes of the
cluster for high availability. Figure 5 highlights how state objects
of the processor instance in node 1 are stored in the local node’s
primary replicas matching the partitioning scheme used for both
processing and state snapshot storage. Additionally, backup replicas
of these state objects are sent to the 2nd and 3rd node.

When a member node in a Jet cluster fails, e.g. node 1 in Figure 5,
the stored replicas of that node are lost together with the state of
the Jet processor instances. In this case, IMDG has stored backup
replicas of node 1, in nodes 2 and 3. To recover node 1, Jet instructs
node 2 to promote partitions P1 and P4 from backup to primary as
Figure 6 shows. Node 3 performs the same for partitions P7 and
P10. Nodes 1 and 2 produce backup replicas for each other’s newly
added primary replicas. As a final step, Jet populates processor state
from the corresponding primary replicas.

4.3 Elasticity and Reconfiguration
Beyond fault tolerance, IMDG is the key enabler for Jet’s elasticity
and reconfiguration functionality. When a new node enters a Jet
cluster, Jet assigns replicas to that node in order to rebalance the
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partitions. During the rebalancing phase, Jet minimizes data mi-
gration between the nodes employing consistent hashing [30]. For
the job depicted in Figure 5, the new node is assigned the primary
replica of P1 from node 1 and the backup replica of P2 again from
node 1. Following the rebalancing phase, the job is restarted with
processor states initialized from the local primary replicas of the
latest state snapshot.

4.4 Fault Tolerance and Processing Guarantees
Jet’s approach to fault tolerance is based on the seminal work on
distributed snapshots by Chandy and Lamport[11] that has been
applied to stream processing [7, 8] and adopted by many streaming
systems [8, 10, 16]. The approach involves periodic checkpoints
that produce a consistent global snapshot of the system’s state.

At regular intervals, Jet instructs source vertices to take a state
snapshot. Then, all processors belonging to source vertices save
their state, emit a checkpoint barrier to the downstream processors
through the data flow, and resume processing.When the checkpoint
barrier reaches the sink processors, all processors have saved their
state to stable storage and the state snapshot is complete. To recover
from a failure, Jet will stop processing in all nodes and vertices,
reload the latest state snapshots from IMDG recorded at the latest
checkpoint, spawn a new instance to substitute the one that failed,
and ask the input sources to replay the input data following the
latest checkpoint.

The described protocol can offer exactly-once processing guaran-
tees [7], i.e., each input will leave its effects on the system’s state
exactly-once despite failures. Exactly-once consistency entails that
no processing is performed while a checkpoint takes place. In the
case of multiple input channels, once a checkpoint barrier arrives
at one input channel, that channel needs to block and wait for all
checkpoint barriers to arrive at the rest of the input channels of that
vertex. For at least-once processing guarantees channels do not need
to block, decreasing latency. Jet offers both levels of consistency as
part of its configuration.

4.5 Assumptions and External Systems
Jet and most streaming systems [5, 8, 16, 27] rely on two assump-
tions for ensuring exactly-once guarantees. In essence, these as-
sumptions complement the system’s fault tolerance approach. The
assumptions regard the capabilities of systems functioning as data
sources and data sinks to Jet.

Jet requires that source systems, which provide the input data,
are replayable or acknowledging. A replayable source can replay
the input data it produces from a specific offset. Jet needs this
functionality when it is recovering from a failure in order to provide
exactly-once processing guarantees as we described in Section 4.4.
In fact, Jet’s source vertices take part in the checkpoints to store
the source offset at which a checkpoint is taken so that a potential
replay in case of a failure is precise.

If a source system is not replayable, but accepts acknowledge-
ments that the data it stores can be safely deleted, then Jet can
provide exactly-once delivery guarantee by acknowledging items
only after they are processed by the entire pipeline and a success-
ful snapshot has been taken. Since completing the snapshot and
sending the acknowledgements isn’t atomic, it can happen that the

job fails before Jet acknowledges all the items. Because of this, Jet
uses record IDs to deduplicate messages when the remote system
re-sends unacknowledged messages after a recovery that had al-
ready been received by Jet prior to the failure. The record IDs are
stored in a global state snapshot.

The exactly-once delivery guarantee can also be achieved on the
output side of Jet if a sink system, which provides Jet’s output to
a consuming application, functions as a transactional sink [7] or
supports idempotent writes. A transactional sink withholds output
and only makes it available to the outside world when a checkpoint
is complete. In essence, it performs a two-phase commit on the
output received by Jet. The commit-prepare phase executes when a
checkpoint begins, with the second phase commit happening after
the checkpoint is complete. At this point, the state corresponding
to the output has been persisted.

Alternatively, the exactly-once delivery guarantee can be achieved
if the sink system supports idempotent writes. Idempotent writes
have the exact same effect irrespective of the number of times they
are applied. Idempotent writes obviate the need for deduplication.

4.6 Fault Tolerance via Active Replication
From our experience with clients and Jet users we have noticed a
very interesting trade-off: by implementing an algorithm formaking
snapshots in streaming computations such as the seminal Chandy-
Lamport algorithm or one of its variants, the system has to pay the
price of synchronizing barriers and blocking pipelines - especially
to ensure exactly-once processing. During the Jet development
journey we have made an important design decision: instead of fo-
cusing on creating low-latency snapshots, we opted for optimizing
our system towards the efficient use of the available resources. In
our experiments (Section 7) we show that Jet can easily handle a
throughput of 2M events per second per CPU core, with very low
overhead in latency. Thus, instead of running large deployments
of a stream processor and requiring very efficient fault-tolerance
mechanisms, we opted for enabling users to use less resources for
a given workload, allowing them to run active-active deployments
in which the job is executed twice (one active and one as active
stand-by). The result is that in the absence of book-keeping and
overhead for fault tolerance such a deployment can sustain failures,
but it also performs extremely efficiently. In fact, this has proven
quite a useful trade-off for our users and has simplified our system
design. At the same time, we are considering alternative solutions
like speculative replication [35].

5 MILLISECOND LATENCY ON THE JVM
The key competence of Jet is its capacity to perform ultra low-
latency processing. Four design decisions drive this achievement.
First, Jet schedules and executes threads at the programming lan-
guage level leveraging the JVM in a way that resembles coroutines
and green threads as we described in Section 3.2. Second, it mini-
mizes the interference of concurrent garbage collection. Third, it
utilizes the distributed IMDG to provide scalable and reliable state
management in memory. Finally, Jet deploys a full dataflow graph
instance to each member node of a cluster, thereby minimizing
network connections for data transfers, which introduce latency.
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Optimized data path. Jet optimizes the data path from source
to sink: in fact, virtually all components involved in the datapath
have been (re)implemented multiple times in the course of the
last four years. Source vertices are local to each node and connect
only with local vertices. Input data is received by each vertex’s
concurrent queues, which supply the data to the tasklet that will
process it. Because tasklets do not depend on other computations,
they can make progress in very short periods of time. When a
tasklet’s window of execution expires, it voluntarily yields control
back to Jet, which selects the next tasklet to execute on the same
thread without depending on operating system level schedulers.
Periodically, Jet stores a state snapshot of the stateful vertex’s state
in the node’s local IMDG space and replicates it to other nodes
for high availability. Consequently, the datapath remains local to
a node as much as possible passing through fast execution stages,
which operate on data kept exclusively in-memory.
Garbage collection. A lot of attention and experimentation has
been devoted to garbage collection in order tominimize its overhead
to Jet’s operation. Notably, garbage collection is recognized as one
of the hidden performance enemies of stream processing, especially
in terms of latency, due to its interference with the scheduling of
computations.

As we described in Jet’s executionmodel in Section 3, Jet employs
a thread pool with as many threads as a member node’s CPUs,
however it can be configured to use a few cores less. The rationale
for this choice is to allow garbage collection to be concurrent to
the execution of tasklets by functioning as a background service
without interfering with the scheduling of computation threads
on a CPU. Dedicating a few threads to garbage collection and the
remaining threads to computations optimizes the scheduling of
threads to CPUs and ensures that each thread remains longer at
a CPU. This design allowed Jet to bring its latency to under 10ms
without impacting the throughput, as we show in the experiments.

6 USE CASES
Hazelcast clients and open-source users deploy Jet in many dif-
ferent ways; many of which we found surprising. Here we report
on a subset of them that we believe are closest to the interest of
the SIGMOD community, and were not typical (e.g., windowed
aggregates) uses of streaming technology. We gathered these use
cases from our internal engineering teams, our mailing lists, and
Jet’s Slack channels.
Real-time Rule Execution. A user from the banking industry
aims at performing transactions. In order to check if a transaction
is fraudulent or not, they need to first inspect multiple terabytes of
data stored in a Hazelcast IMDG gathering ML features of a client
and their previous transactions, before they can execute custom
business logic, and decide whether a transaction is fraudulent. Be-
cause of the complexity of the process, Jet is assigned a maximum
of 2ms for executing the complete set of tens of business rules. Sim-
ilarly, another user from the banking industry combines complex
business rules executing against the streaming operator state kept
inside Jet operators.
Internet of Things. Since Jet is very lightweight and has very few
dependencies, we have seen a set of interesting IoT deployments.

Deployments in factories and vehicles perform typical metrics ag-
gregation (speed, temperatures, etc.) used for monitoring purposes,
with relaxed latency requirements (hundreds of ms latency).
View Maintenance. We observed that a lot of Jet users use it
to maintain views: they subscribe to different IMDG objects and
external databases and capture changes in data items in the form
of Change Data Capture (CDC)5. Subsequently, they consume the
CDC stream and build materialized views that are updated with
every change that happens to the external data sources.
Stateful AI. Finally, one of the most interesting use cases of Jet is
its deployment as a stateful backend for a chatbot: the chatbot per-
forms lookups for information that are related to humans’ questions
in a chatbox. The chatbot is deployed as an automaton where Jet
operators are states and edges represent transitions. On each inter-
action with the human, the chatbot updates its state and responds
to users. Our client scaled the chatbot to thousands of messages
per second in a limited amount of computational resources.
Oil Rig Drilling. The operating costs of a drilling rig are very
high and any downtime throughout the drilling process can have
a significant effect on the rig operator’s bottom line. The rigs are
equipped with a large number of sensors to detect small vibrations
during the drilling process. Hazelcast Jet enables human operators
to immediately act on the streaming data in near real-time to pre-
vent costly, catastrophic failures in the drilling process. It enables
managing physical resources better through high-frequency feed-
back on a per-well basis, which amounts to reducing the drilling
time by as much as 20 percent, from a typical 15 days to 12 days
thereby saving up to millions of dollars.

The data input to Jet are generated from sensors. At any time
during rig operations, up to 70 channels of high-frequency data
enter Jet at various frequencies. Jet records and analyzes the data or
events that occur, and then applies proprietary algorithms to make
very fine-tuned adjustments to the drilling process. An example
of this is the real-time adjustment of the revolutions per minute
(RPM) of the drilling string and bit. A drill bit is a type of drill
that must be operated at a very precise level to prevent equipment
failure and costly delays to the drilling process. Jet computes stateful
aggregates over 10K messages/second maintaining latency under
10ms. The workload resembles query 6 of NEXMark queries that
we include in the experiments.
Real-time Payments.Hazelcast Jet is used as the backbone frame-
work of an instant payment processing application. Within this
application, Jet operates as a processing pipeline for each step of
the payment process. The payment management application acts as
an orchestrator which analyzes XML payment instructions and for-
wards them to the respective card’s issuing bank or card association
for verification, and also carries out a series of anti-fraud measures
against the transaction before settling the payment transaction.

The computation is a stateful complex workflow of 150 stages in
total, which communicate with external systems, such as databases.
Multiple Jet processing jobs (tens of jobs) are involved as pipeline
components where Jet’s DAG API is used for stream processing
while its pipeline API is used for batch processing. Jet’s API of-
fers considerable flexibility in expressing sophisticated multi-stage

5https://debezium.io
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computations and combining stream and batch processing stages.
The pipeline components rely on the distributed IMaps of Hazel-
cast IMDG for transaction ingestion and messaging through high-
performance connectors that enable low-latency operations. Fi-
nally, the quick recovery mechanisms of the Jet cluster provides
high availability to the instant payments application protecting it
against failures.

The payments workload is CPU-bound with current throughput
at the input side averaging at 10K transactions per second. It is
served by a 3-node Jet cluster with 8GB RAM and an 8-core CPU
per node. In this setting, throughput scales linearly with CPU cores
until it reaches 65K operations per node. Then adding another node
is necessary to keep the latency flat. Jet keeps latency stable at 85ms
on the input and 150 ms on the output depending on the number
of workflow steps in a specific transaction flow. Each workflow
updates in-memory business entities at a rate of 75 updates per
transaction on average.

7 EXPERIMENTS
In this section, we present the experiments we performed with
Jet. First, we describe our experimental methodology (Section 7.1).
Second, we show experiment results with respect to throughput
(Sections 7.3, 7.4) and latency (Sections 7.2 and 7.5). Then, we mea-
sure the overhead of the fault tolerance approach to Jet’s normal
operation in terms of latency (Section 7.6). Finally, we demonstrate
Jet’s capacity for running a big number of jobs on a small cluster
with low latency (Section 7.7).

7.1 Experiments Methodology
We evaluate Jet v4.3 in an Amazon Cloud cluster comprising 1, 5
and 10 c5.4xlarge machines with 16 vCPUs and 32 GB RAM each.
Jet runs on Oracle OpenJDK v15.0.1 with 12 cooperative threads
per node and the G1 garbage collector is configured with a GC
pause target of at most 5 milliseconds. It does most of the GC work
concurrently.
Query Workload. The workload used in the experiments consists
of queries 1, 2, 5, and 8 of the NEXMark benchmark [34] as described
in the Apache Beam project.6 The benchmark defines queries over
people participating in auctions.

• Query 1 is a simple map converting an amount from one
currency to another.

• Query 2 is a simple filter that selects auctions based on auc-
tion numbers.

• Query 3 is a join and filter that selects sellers in particular
US states.

• Query 4 is a join with custom window functions and aggre-
gation that reports the average selling price for each auction
category.

• Query 5 is a sliding window with an aggregation to report
which auctions have seen the most bids in a given window.

• Query 6 illustrates a specialized combiner that reports the
average selling price per seller for their last ten closed auc-
tions.

6https://beam.apache.org/documentation/sdks/java/testing/nexmark/
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Figure 7: Throughput per CPU-core vs. Latency for Q5 on a
single node (12 CPU cores) with 10ms window slide.

• Query 7 illustrates fanout using side input and selects the
highest bids per period.

• Query 8 is a join of the stream of (new) users with the stream
of auctions, reporting users that created an auction in the
last period.

• Query 13 is a join between a stream of auctions and a bounded
side-input.

Data Generator Configuration. We use the NEXMark data gen-
erator configured as follows. We define 10 thousand distinct keys
that correspond to persons and auctions in the input dataset; we
generate 1M records per second, by drawing keys randomly.
Window size and slide. In all windowed queries (Q5, 8, 13), unless
stated otherwise, we use a 10-second sliding window join with
a sliding step of 10ms. We choose to push Jet to its limits and
show how it performs under pressure: triggering every 10ms is
something that, to the best of our knowledge, no other scale-out
stream processor can perform at the time of writing.
Metrics & Experiment Setup. We first let the JVM warm up by
letting the streaming job run for 20 seconds, then we run the mea-
surements over a period of 240 seconds. With 100 sliding window
results per second, that gives us 24,000 data points. The primary
metric of interest in our experiments is the processing latency.
Specifically, the latency clock starts for each event at its predeter-
mined time of occurrence. At that point the source tasklet is allowed
to emit it, but any delay in actually emitting it is already affecting
the reported latency number. If the event’s timestamp is such that
it is the first event after a given window’s end time, it will trigger
the aggregating stage to start emitting that window’s result. The
clock stops when Jet has started emitting the window results.

In order to measure latency we control for input throughput,
which we fix it at 1 million events per second. In the fault tolerance
experiments of Section 7.6, we configure Jet to take a state snapshot
every second and replicate the snapshots to another 1 member node
of the cluster.

7.2 Latency Under Normal Operation
In this experiment we want to investigate the effect of scaling out
to multiple machines (from 1 to 20), while keeping the input rate
constant. The results are depicted in Figure 8. Overall, we observe
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Figure 8: 99th percentile latency for all NEXMark queries for fixed input throughput of 1M events/s.
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Figure 9: Distribution of latencies of all NEXMark queries
for 1M events per second and DOP=240 (20 nodes).

that the latency at the 99.99th percentile never exceeds 16ms (in
the case of DOP=240 on Q5). Moreover, we observe that Jet adds
very little latency to simple queries (e.g., filters, etc.) while the most
challenging one seems to be Q5 and Q8. Moreover, in Figure 9 we
depict the distribution of latencies.We observe that 99.9th percentile
latency is, in the worst case 10ms. The low latency, though, is to be
expected as the input throughput was set well below the limits of
what Jet can sustain. We do increase the throughput for Q5 in the
next experiment, in order to see the effect to latency.

7.3 Throughput vs. Latency: 10ms Slide on Q5
In this experiment we want to push Jet to its limit with respect to
throughput per CPU-core on a windowed aggregate of a tiny slide
of 10ms on Query 5. We deployed Jet on a single node (c5.4xlarge,
using 12 out of the 16 vCPUs) and used the size of the key set to
vary the total input+output throughput. One sliding window results
consists of many key-value pairs, so the output throughput scales
linearly with the key set size. We increased the total throughput
gradually: from less than half a million items per second per CPU
core, up to 2 million events per second per core. Our goal is to
establish the maximum throughput that the system can sustain
and the effect of throughput on the latency of the system. Figure 7
depicts the results. What we observe is that when throughput is
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Figure 10: Throughput as we increase the cluster size from
one VM (12 cores) to 45 VMs (560 cores), for Q5with a sliding
window of 500ms.

relatively low (around half a million events per second) Jet can
sustain the system’s latency very well: around 13ms on the 99.99𝑡ℎ
percentile. When pushed further, a single Jet processor on a single
CPU core can sustain up to 2M events per second raising the 99.99𝑡ℎ
percentile latency up to 98ms. The take away message from this
experiment is that for windowed aggregates, more than 1.75M
events per second can put a burden on Jet’s processors, increasing
its latency quite considerably.

7.4 Throughput: 500ms Slide on Q5
In this experiment we wanted to evaluate Jet’s ability to ingest
massive data streams. To this end, we increased the slide of the
windows in Q5 to 500ms, a very reasonable number for this type of
queries. As seen in Figure 10 as we increase the cluster size from 12
cores on one VM to 45 VMs and a total of 560 cores, Jet manages
to ingest up to 1 billion events per second (with 26ms latency 99th
percentile latency). By further increasing the cluster size to 45
nodes, Jet In fact, this was possible due to the use of combiners as
after some point the pre-aggregates on the keys (we are using 10K
keys) reach a maximum number and the data exchanged is constant.
At the same time, the 99.99th latency never exceeded 26ms. Note
that this is possible due to the large window (500ms); in fact, in
the previous experiment (Figure 7) with the 10ms sliding window,
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Figure 11: Latency for NEXMark queries, 5-node cluster.

we have seen a very big increase in the latency, as the throughput
increased.

7.5 Latency: Windowed Aggregates & Joins
In this experiment we want to show the capacity of Jet to compute
very low-latency aggregates and windowed joins. To this end, we
have disabled fault tolerance: as explained in Section 4.6 a lot of
Jet users prefer to execute jobs in an active-active fashion since Jet
allows them to handle very high-throughput streams.

Figures 11 and 12 depict the latency for all queries on 5 and
10 nodes respectively. A general observation is that with simple
queries that contain only map or filter Jet shows extremely low
latency. This is to say that the 99.99th percentile stays at or below
1ms. At the same time, queries with joins exhibit 99.99th latencies
in the order of 11-13ms. Bear in mind that the window triggers
every 10ms, meaning that this is an extreme query example that
exemplifies the capacity of Jet for low-latency processing. At the
same time, more than 90% of the events exhibit a latency of 2ms or
less for joins and equal or less than a millisecond for the windowed
aggregates.

7.6 Latency: Fault Tolerance
Fault tolerance experiments suggest the overhead of Jet’s snapshot
mechanism under normal operation. As seen in Figure 13 Jet’s
latency at the 99.99th percentile when checkpoints are enabled
is about 350ms. Latency remains very low for 70% of the events
approximately, then spikes up to approximately 200ms at the 90%,
and continues to rise sharply up to the 99%th percentile where it
smoothens until it stabilizes at the 99.99th percentile.

As discussed in Section 4.6, the Jet team has not focused on fur-
ther optimizing the fault-tolerance mechanism, but rather focused
on optimizing the datapath under normal operation. We do have
plans on optimizing the datapath with fault-tolerance enabled in the
future, especially focusing on at-least once processing guarantees.

7.7 Latency: Multiplexing Jobs
Jet’s lightweight execution model allows numerous jobs to execute
on the same thread without a considerable performance lag. This is
a feature of Jet that comes for free, given its design with tasklets and
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Figure 12: Latency for NEXMark queries, 10-node cluster.
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Figure 13: Latency in Query 5, with checkpointing enabled.

cooperative threads. In fact, we executed one hundred Query 5 jobs
concurrently on a single node, to observe the effect of concurrent
jobs to the latency of the system. We observed roughly 200ms
99.99th percentile latency, when running 100 concurrent jobs with
an aggregate throughput of one million events per second.

8 RELATEDWORK
A lot of streaming systems have made their debut in the previous
years driving important advances. Some systems, such as Twitter’s
Storm [32] and Heron [21], prioritize performance over consis-
tency, while others like Google’s Millwheel [3] and Microsoft’s
Timestream [28] and Streamscope [23] favor results with strict con-
sistency guarantees. Academia has also developed novel streaming
systems such as Apache Spark [5], Apache Flink [8], and Seep [12],
which have paved new roads in fault tolerance, scalability, and
performance. Notably, open source communities have contributed
significantly to the success of such systems. At the same time, sys-
tems like Naiad [25] and IBM Streams [16] expand the traditional
DAG streaming model of computation to include cycles for instance.
Another class of systems such as Microsoft’s Trill [9] inspired a
library implementation of a stream processor that can be easily em-
bedded to an application. Finally, LinkedIn’s Samza [27] has been
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built around the concept of a messaging system, i.e. Apache Kafka,
which has comfortably found a place in the architecture of modern
event-driven applications. A survey on the evolution of streaming
systems with respect to out-of-order data management, state man-
agement, fault tolerance and high availability, and elasticity and
reconfiguration is provided in reference [13].

Hazelcast Jet has certainly been inspired by existing streaming
systems. The design of its programming model, out-of-order pro-
cessing, fault tolerance, and elasticity are notable examples. On
the other hand, because Jet is driven by the need for low-latency
performance, it introduces two aspects that are novel in the stream
processing domain. First, Jet involves an execution model based
on user-level scheduling of cooperative threads that take turns on
the same CPU, where each thread corresponds to an operator in-
stance. With this design a single CPU typically runs an instance of
the whole operator graph of a job and data transmissions over the
network are minimized. Second, Jet performs state management
completely in memory leveraging in-memory data replication to
protect a job’s checkpointed state from failures. These novel fea-
tures enable Jet to provide reliably high performance that qualifies
for strict service level agreements in production use cases.

9 EVENT-DRIVEN APPLICATIONS AS
STATEFUL DATAFLOW GRAPHS

Jet aims at becoming an execution platform for event-driven applica-
tions [19], such as microservices [26] and stateful functions [2, 29],
and offer a novel high-level programmingmodel that allows users to
convey the business logic of their application by means of standard
functions. In this model, functions can simply call other functions
and they can maintain state. Moreover, functions can be involved
in a transaction with other functions while Jet guarantees that
changes to the state are applied ensuring atomicity. Transactions
can be marked by programmers with annotations and data flows
and dependencies can be automatically derived with static analysis.
Finally, Jet can take care of partitioning and replicating the state
while keeping the operational state local to the function it belongs
for fast access.
Jet’s as a Backend for Stateful Functions. The inherent design
of Jet offers a number of key features that make it a good candidate
platform for running event-driven applications. First, Jet is partic-
ularly good at providing low-latency event processing, and keeps
state local to computations. In addition, the IMDG can be used for
fault tolerance, and especially high availability by ensuring that
state is partitioned and replicated across the cluster. Furthermore,
as we described in Section 3, Jet maintains a pool of threads that
corresponds to the available CPUs of a member node. Since Jet
can share a thread among numerous lightweight tasklets, it can
overload a thread with tasklets scheduling only those that have
pending requests and parking all others until a new request arrives
for them. This design entails that Jet can deal with tens of thou-
sands of tasklets on a single execution thread and take advantage of
lightweight statistical multiplexing for e.g., stateful functions [2].
OpenProblems.At the same time, Jet lacks a high-level application
programming model and lacks support for transactions. In addition,
dynamic reconfiguration, which is required for updating application
components like microservices without disrupting the service, is

also missing. Finally, Jet requires a query interface that can perform
ad-hoc queries or maintain views over distributed state much like
a database system. This is just a small subset of a long list of open
problems that we are currently tackling at Hazelcast.

10 CONCLUSIONS
In this paper we present Jet, a high performance distributed stream
processor built from the grounds up with the goal of minimizing
latency at the 99.99th percentile. Jet has been the favorite choice of
customers for a big variety of use cases, such as banking transac-
tions, internet of things, and stateful AI.We elaborate Jet’s execution
model and in-memory state backend, the IMDG, which are the key
architectural components that make Jet special. In addition, we de-
scribe Jet as a full-fledged streaming system offering fault tolerance
with varying consistency guarantees, elasticity and reconfiguration
for scale-in scale-out actions, and out-of-order processing. Experi-
ments with Jet show that it can support service-level agreements
on less than 10ms latency at the 99.99th percentile. We envision
the future of Jet as a serverless platform for running event-driven
applications, like microservices and stateful functions.
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