
TURL: Table Understanding through Representation Learning
Xiang Deng∗

The Ohio State University
Columbus, Ohio

deng.595@buckeyemail.osu.edu

Huan Sun∗
The Ohio State University

Columbus, Ohio
sun.397@osu.edu

Alyssa Lees
Google Research
New York, NY

alyssalees@google.com

You Wu
Google Research
New York, NY

wuyou@google.com

Cong Yu
Google Research
New York, NY

congyu@google.com

ABSTRACT
Relational tables on the Web store a vast amount of knowledge.
Owing to the wealth of such tables, there has been tremendous
progress on a variety of tasks in the area of table understanding.
However, existing work generally relies on heavily-engineered task-
specific features and model architectures. In this paper, we present
TURL, a novel framework that introduces the pre-training/fine-
tuning paradigm to relational Web tables. During pre-training, our
framework learns deep contextualized representations on relational
tables in an unsupervised manner. Its universal model design with
pre-trained representations can be applied to a wide range of tasks
with minimal task-specific fine-tuning.

Specifically, we propose a structure-aware Transformer encoder
to model the row-column structure of relational tables, and present
a new Masked Entity Recovery (MER) objective for pre-training to
capture the semantics and knowledge in large-scale unlabeled data.
We systematically evaluate TURL with a benchmark consisting of
6 different tasks for table understanding (e.g., relation extraction,
cell filling). We show that TURL generalizes well to all tasks and
substantially outperforms existing methods in almost all instances.

PVLDB Reference Format:
Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. TURL: Table
Understanding through Representation Learning. PVLDB, 14(3): 307 - 319,
2021.
doi:10.14778/3430915.3430921

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/sunlab-osu/TURL.

1 INTRODUCTION
Relational tables are in abundance on the Web and store a large
amount of knowledge, often with key entities in one column and
attributes in the others. Over the past decade, various large-scale
collections of such tables have been aggregated [4, 6, 7, 26]. For
example, Cafarella et al. [6, 7] reported 154M relational tables out of
∗Corresponding authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 3 ISSN 2150-8097.
doi:10.14778/3430915.3430921

Figure 1: An example of a relational table fromWikipedia.

a total of 14.1 billion tables in 2008. More recently, Bhagavatula et al.
[4] extracted 1.6M high-quality relational tables from Wikipedia.
Owing to the wealth and utility of these datasets, various tasks such
as table interpretation [4, 17, 30, 36, 48, 49], table augmentation
[1, 6, 12, 43, 46, 47], etc., have made tremendous progress in the
past few years.

However, previous work such as [4, 46, 47] often rely on heavily-
engineered task-specificmethods such as simple statistical/language
features or straightforward string matching. These techniques suf-
fer from several disadvantages. First, simple features only capture
shallow patterns and often fail to handle the flexible schema and
varied expressions in Web tables. Second, task-specific features and
model architectures require effort to design and do not generalize
well across tasks.

Recently, the pre-training/fine-tuning paradigm has achieved
notable success on unstructured text data. Advanced language mod-
els such as BERT [16] can be pre-trained on large-scale unsuper-
vised text and subsequently fine-tuned on downstream tasks using
task-specific supervision. In contrast, little effort has been extended
to the study of such paradigms on relational tables. Our work fills
this research gap.

Promising results in some table based tasks were achieved by the
representation learning model of [13]. This work serializes a table
into a sequence of words and entities (similar to text data) and learns
embedding vectors for words and entities using Word2Vec [29].
However, [13] cannot generate contextualized representations, i.e.,
it does not consider varied use of words/entities in different contexts

307

https://doi.org/10.14778/3430915.3430921
https://github.com/sunlab-osu/TURL
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3430915.3430921

and only produces a single fixed embedding vector for word/entity.
In addition, shallow neural models like Word2Vec have relatively
limited learning capabilities, which hinder the capture of complex
semantic knowledge contained in relational tables.

We propose TURL, a novel framework for learning deep contex-
tualized representations on relational tables via pre-training in an
unsupervised manner and task-specific fine-tuning.

There are two main challenges in the development of TURL:
(1) Relational table encoding. Existing neural network encoders are
designed for linearized sequence input and are a good fit with un-
structured texts. However, data in relational tables is organized
in a semi-structured format. Moreover, a relational table contains
multiple components including the table caption, headers and cell
values. The challenge is to develop a means of modeling the row-
and-column structure as well as integrating the heterogeneous
information from different components of the table. (2) Factual
knowledge modeling. Pre-trained language models like BERT [16]
and ELMo [32] focus on modeling the syntactic and semantic char-
acteristics of word use in natural sentences. However, relational
tables contain a vast amount of factual knowledge about entities,
which cannot be captured by existing language models directly. Ef-
fectively modelling such knowledge in TURL is a second challenge.

To address the first challenge, we encode information from dif-
ferent table components into separate input embeddings and fuse
them together. We then employ a structure-aware Transformer [39]
encoder with masked self-attention. The conventional Transformer
model is a bi-directional encoder, so each element (i.e., token/entity)
can attend to all other elements in the sequence.We explicitly model
the row-and-column structure by restraining each element to only
aggregate information from other structurally related elements. To
achieve this, we build a visibility matrix based on the table structure
and use it as an additional mask for the self-attention layer.

For the second challenge, we first learn embeddings for each
entity during pre-training. We then model the relation between
entities in the same row or column with the assistance of the visi-
bility matrix. Finally, we propose a Masked Entity Recovery (MER)
pre-training objective. The technique randomly masks out enti-
ties in a table with the objective of recovering the masked items
based on other entities and the table context (e.g., caption/header).
This encourages the model to learn factual knowledge from the ta-
bles and encode it into entity embeddings. In addition, we utilize
the entity mention by keeping it as additional information for a
certain percentage of masked entities. This helps our model build
connections between words and entities . We also adopt the Masked
Language Model (MLM) objective from BERT, which aims to model
the complex characteristics of word use in table metadata.

We pre-train our model on 570K relational tables fromWikipedia
to generate contextualized representations for tokens and entities
in the relational tables. We then fine-tune our model for specific
downstream tasks using task-specific labeled data. A distinguishing
feature of TURL is its universal architecture across different tasks
- only minimal modification is needed to cope with each down-
stream task. To facilitate research in this direction, we compiled a
benchmark that consists of 6 diverse tasks, including entity link-
ing, column type annotation, relation extraction, row population,
cell filling and schema augmentation. We created new datasets

Table 1: Summary of notations for our table data.

Symbol Description
T A relational table T = (C,H ,E, et)
C Table caption (a sequence of tokens)
H Table schema H = {h0, ...,hi , ...,hm }

hi A column header (a sequence of tokens)
E Columns in table that contains entities
et The topic entity of the table et = (eet , e

m
t)

e An entity cell e = (ee, em)

in addition to including results for existing datasets when pub-
licly available. Experimental results show that TURL substantially
outperforms existing task-specific and shallow Word2Vec based
methods.

Our contributions are summarized as follows:
• To the best of our knowledge, TURL is the first framework
that introduces the pre-training/fine-tuning paradigm to
relational Web tables. The pre-trained representations along
with the universal model design save tremendous effort on
engineering task-specific features and architectures.

• We propose a structure-aware Transformer encoder to model
the structure information in relational tables. We also present
a novel Masked Entity Recovery (MER) pre-training objec-
tive to learn the semantics as well as the factual knowledge
about entities in relational tables.

• To facilitate research in this direction, we present a bench-
mark that consists of 6 different tasks for table interpretation
and augmentation. We show that TURL generalizes well to
various tasks and substantially outperforms existing models.
Our source code, benchmark, as well as pre-trained models
will be available online.

2 PRELIMINARY
We now present our data model and give a formal task definition:

In this work, we focus on relational Web tables and are most
interested in the factual knowledge about entities. Each tableT ∈ T

is associated with the following: (1) Table caption C , which is a
short text description summarizing what the table is about. When
the page title or section title of a table is available, we concatenate
these with the table caption. (2) Table headers H , which define the
table schema; (3) Topic entity et , which describes what the table is
about and is usually extracted from the table caption or page title;
(4) Table cells E containing entities. Each entity cell e ∈ E contains
a specific object with a unique identifier. For each cell, we define
the entity as e = (ee, em), where ee is the specific entity linked to
the cell and em is the entity mention (i.e., the text string).

(C,H , et) is also known as table metadata and E is the actual
table content. Notations used in the data model are summarized in
Table 1.

Explicitly, we study the unsupervised representation learning
on relational Web tables, which is defined as follows.

Definition 2.1. Given a relational Web table corpus, our repre-
sentation learning task aims to learn in an unsupervised manner a
task-agnostic contextualized vector representation for each token
in all table captionsC’s and headers H ’s and for each entity (i.e., all
entity cells E’s and topic entities et ’s).

308

3 RELATED WORK
RepresentationLearning.The pre-training/fine-tuning paradigm
has drawn tremendous attention in recent years. Extensive effort
has been devoted to the development of unsupervised representa-
tion learning methods for both unstructured text and structured
knowledge bases, which in turn can be utilized for a wide variety
of downstream tasks via fine-tuning.

Earlier work, including Word2Vec [29] and GloVe [31], pre-train
distributed representations for words on large collections of doc-
uments. The resulting representations are widely used as input
embeddings and offer significant improvements over randomly ini-
tialized parameters. However, pre-trained word embeddings suffer
from word polysemy: they cannot model varied word use across
linguistic contexts. This complexity motivated the development of
contextualizedword representations [16, 32, 44] . Instead of learning
fixed embeddings per word, these works construct language mod-
els that learn the joint probabilities of sentences. Such pre-trained
language models have had huge success and yield state-of-the-art
results on various NLP tasks [40].

Similarly, unsupervised representation learning has also been
adopted in the space of structured data like knowledge bases (KB)
and databases. Entities and relations in KB have been embedded into
continuous vector spaces that still preserve the inherent structure
of the KB [38]. These entity and relation embeddings are utilized
by a variety of tasks, such as KB completion [5, 41], relation ex-
traction [35, 42], entity resolution [19], etc. Similarly, [18] learned
embeddings for heterogeneous data in databases and used it for
data integration tasks.

More recently, there has been a corpus of work incorporating
knowledge information into pre-trained language models [33, 50].
ERNIE [50] injects knowledge base information into a pre-trained
BERT model by utilizing pre-trained KB embeddings and a de-
noising entity autoencoder objective. The experimental results
demonstrate that knowledge information is extremely helpful for
tasks such as entity linking, entity typing and relation extraction.

Despite the success of representation learning on text and KB,
few works have thoroughly explored contextualized representation
learning on relational Web tables. Pre-trained language models are
directly adopted in [27] for entity matching. Two recent papers
from the NLP community [21, 45] study pre-training on Web tables
to assist in semantic parsing or question answering tasks on tables.
In this work, we introduce TURL, a new methodology for learning
deep contextualized representations for relational Web tables that
preserve both semantic and knowledge information. In addition,
we conduct comprehensive experiments on a much wider range of
table-related tasks.
Table Interpretation. The Web stores large amounts of knowl-
edge in relational tables. Table interpretation aims to uncover the
semantic attributes of the data contained in relational tables, and
transform this information into machine understandable knowl-
edge. This task is usually accomplished with help from existing
knowledge bases. In turn, the extracted knowledge can be used for
KB construction and population.

There are three main tasks for table interpretation: entity link-
ing, column type annotation and relation extraction [4, 48]. Entity
linking is the task of detecting and disambiguating specific entities

mentioned in a table. Since relational tables are centered around
entities, entity linking is a key step for table interpretation, and
a fundamental component to many table-related tasks [48]. [4]
employed a graphical model, and used a collective classification
technique to optimize a global coherence score for a set of entities
in a table. [36] presented the T2K framework, which is an iterative
matching approach that combines both schema and entity matching.
More recently, [17] introduced a hybrid method that combines both
entity lookup and entity embeddings, which resulted in superior
performance on various benchmarks.

Column type annotation and relation extraction both work with
table columns. The former aims to annotate columns with KB types
while the latter intends to use KB predicates to interpret relations
between column pairs. Prior work has generally coupled these two
tasks with entity linking [30, 36, 49]. After linking cells to entities,
the types and relations associated with the entities in KB can then
be used to annotate columns. In recent work, column annotation
without entity linking has been explored [10, 11, 22]. These works
modify text classification models to fit relational tables and have
shown promising results. Moreover, relation extraction on web
tables has also been studied for KB augmentation [8, 14, 37].
TableAugmentation. Tables are a popular data format to organize
and present relational information. Users often have to manually
compose tables when gathering information. It is desirable to offer
some intelligent assistance to the user, which motivates the study
of table augmentation [46]. Table augmentation refers to the task of
expanding a seed query table with additional data. Specifically, for
relational tables this can be divided into three sub-tasks: row pop-
ulation for retrieving entities for the subject column [12, 46], cell
filling that fills the cell values for given subject entities [1, 43, 47]
and schema augmentation that recommends headers to complete
the table schema [6, 46]. For row population tasks, [12] searches
for complement tables that are semantically related to seed entities
and the top ranked tables are used for population. [46] further in-
corporates knowledge base information with a table corpus, and
develops a generative probabilistic model to rank candidate enti-
ties with entity similarity features. For cell filling, [43] uses the
query table to search for matching tables, and extracts attribute
values from those tables. More recently, [47] proposed the CellAu-
toComplete framework that makes use of a large table corpus and
a knowledge base as data sources, and incorporates preprocessing,
candidate value finding, and value ranking components. In terms
of schema augmentation, [6] tackles this problem by utilizing an
attribute correlation statistics database (ACSDb) collected from a
table corpus. [46] utilizes a similar approach to the row population
techniques and ranks candidate headers with sets of features.
Existing benchmarks. Several benchmarks have been proposed
for table interpretation: (1) T2Dv2 [26] proposed in 2016 contains
779 tables from various websites. It contains 546 relational ta-
bles, with 25119 entity annotations, 237 table-to-class annotations
and 618 attribute-to-property annotations. (2) Limaye et al. [28]
proposed a benchmark in 2010 which contains 296 tables from
Wikipedia. It was used in [17] for entity linking, and was also used
in [11] for column type annotation. (3) Efthymiou et al. [17] cre-
ated a benchmark (referred to as “WikiGS” in our experiments)
that includes 485,096 tables fromWikipedia. WikiGS was originally

309

Figure 2: Overview of our TURL framework.

used for entity linking with 4,453,329 entity matches. [11] further
annotated a subset of it containing 620 entity columns with 31 DB-
pedia types and used it for column type annotation. (4) The recent
SemTab 2019 [24] challenge also aims at benchmarking systems
that match tabular data to KBs, including three tasks, i.e., assigning
a semantic type to an column, matching a cell to an entity, and
assigning a property to the relationship between two columns. It
used sampled tables from T2Dv2 [26] and WikiGS [17] in the first
two rounds, and automatically generated tables in later rounds.

In contrast to table interpretation, few benchmarks have been
released for table augmentation. Zhang et al. [46] studied row
population and schema augmentation with 2000 randomly sam-
pled Wikipedia tables in total for validation and testing. [47] cu-
rated a test collection with 200 columns containing 1000 cells from
Wikipedia tables for evaluating cell filling.

Although these benchmarks have been used in various recent
studies, they still suffer from a few shortcomings: (1) They are
typically small sets of sampled tables with limited annotations. (2)
SemTab 2019 contains a large number of instances; however, most
of them are automatically generated and lack metadata/context of
the Web tables. In this work, we compile a larger benchmark cover-
ing both table interpretation and table augmentation tasks. We also
use some of these existing datasets for more comprehensive evalu-
ation. By leveraging large-scale relational tables on Wikipedia and
a curated KB, we ensure both the size and quality of our dataset.

4 METHODOLOGY
In this section, we introduce our TURL framework for unsupervised
representation learning on relational tables. TURL is first trained on
an unlabeled relational Web table corpus with pre-training objec-
tives carefully designed to learn word semantics as well as relational
knowledge between entities. The model architecture is general and
can be applied to a wide range of downstream tasks with minimal
modifications. Moreover, the pre-training process alleviates the
need for large-scale labeled data for each downstream task.

4.1 Model Architecture
Figure 2 presents an overview of TURL which consists of three
modules: (1) an embedding layer to convert different components of
an input table into input embeddings, (2) N stacked structure-aware
Transformer [39] encoders to capture the textual information and
relational knowledge, and (3) a final projection layer for pre-training
objectives. Figure 3 shows an input-output example.

4.2 Embedding Layer
Given a table T=(C,H ,E, et), we first linearize the input into a
sequence of tokens and entity cells by concatenating the table meta-
data and scanning the table content row by row. The embedding
layer then converts each token inC and H and each entity in E and
et into an embedding representation.
Input token representation. For each tokenw , its vector repre-
sentation is obtained as follows:

xt = w + t + p. (1)
Here w is the word embedding vector, t is called the type em-

bedding vector and aims to differentiate whether tokenw is in the
table caption or a header, and p is the position embedding vector
that provides relative position information for a token within the
caption or a header.
Input entity representation. For each entity cell e = (ee, em) (
same for topic entity et), we fuse the information from the linked
entity ee and entity mention em together, and use an additional type
embedding vector te to differentiate three types of entity cells (i.e.,
subject/object/topic entities). Specifically, we calculate the input
entity representation xe as:

xe = LINEAR([ee; em]) + te; (2)
em = MEAN(w1,w2, . . . ,wj , . . .). (3)

Here ee is the entity embedding learned during pre-training. To
represent entity mention em, we use its average word embedding
wj ’s. LINEAR is a linear layer to fuse ee and em.

A sequence of token and entity representations (xt’s and xe’s)
are then fed into the next module of TURL, a structure-aware Trans-
former encoder, which will produce contextualized representations.

4.3 Structure-aware Transformer Encoder
We choose Transformer [39] as our base encoder block, since it
has been widely used in pre-trained language models [16, 34] and
achieves superior performance on various natural language process-
ing tasks [40]. Due to space constraints, we only briefly introduce
the conventional Transformer encoder and refer readers to [39]
for more details. Finally, we present a detailed explanation on our
proposed visibility matrix for modeling table structure.

Each Transformer block is composed of amulti-head self-attention
layer followed by a point-wise, fully connected layer [39]. Specifi-
cally, we calculate the multi-head attention as follows:

MultiHead(h) = [head1; ...; headi; ...; headk]WO ;

headi = Attention
(
hWQ

i , hW
K
i , hW

V
i

)
;

Attention(Q,K ,V) = Softmax
(
QKT
√
d

M

)
V .

(4)

Here h ∈ Rn×dmodel is the hidden state output from the previous
Transformer layer or the input embedding layer and n is the input
sequence length. 1√

d
is the scaling factor.WQ

i ∈ Rdmodel×d ,W K
i ∈

Rdmodel×d ,WV
i ∈ Rdmodel×d andWO ∈ Rkd×dintermediate are parameter

matrices. For each head, we have d = dmodel/k, where k is the
number of attention heads.M ∈ Rn×n is the visibility matrix which
we detail next.

310

Figure 3: Illustration of the model input-output. The input table is first transformed into a sequence of tokens and entity cells, and processed
for structure-aware Transformer encoder as described in Section 4.4. We then get contextualized representations for the table and use them
for pre-training. Here [15th] (which means 15th National Film Awards), [Satyajit], ... are linked entity cells.

Figure 4: Graphical illustration of visibility matrix (symmetric).

Figure 5: Graphical illustration of masked self-attention by our vis-
ibility matrix. Each token/entity in a table can only attend to its
directly connected neighbors (shown as edges here).

Visibility matrix. To interpret relational tables and extract the
knowledge embedded in them, it is important to model row-column
structure. For example, in Figure 1, [Satyajit] and [Chiriyakhana]
are related because they are in the same row, which implies that
[Satyajit] directs [Chiriyakhana]. In contrast, [Satyajit] should
not be related to [Pratidwandi]. Similarly, [Hindi] is a “language”
and its representation has little to do with the header “Film”. We
propose a visibility matrixM to model such structure information
in a relational table. Figure 4 shows an example ofM .

Our visibility matrix acts as an attention mask so that each token
(or entity) can only aggregate information from other structurally
related tokens/entities during the self-attention calculation.M is a
symmetric binary matrix withMi, j = 1 if and only if elementj is
visible to elementi . The element here can be a token in the caption
or a header, or an entity in a table cell. Specifically, we defineM as
follows:

• If elementi is the topic entity or a token in table caption,
∀j,Mi, j = 1. Table caption and topic entity are visible to all
components of the table.

• If elementi is a token or an entity in the table and elementj
is a token or an entity in the same row or the same column,
Mi, j = 1. Entities and text content in the same row or the same
column are visible to each other.

4.4 Pre-training Objective
In order to pre-train our model on an unlabeled table corpus, we
adopt the Masked Language Model (MLM) objective from BERT to
learn representations for tokens in table metadata and propose a
Masked Entity Recovery (MER) objective to learn entity cell repre-
sentations.
Masked Language Model. We adopt the same Masked Language
Model objective as BERT, which trains the model to capture the
lexical, semantic and contextual information described by table
metadata. Given an input token sequence including table caption
and table headers, we simply mask some percentage of the tokens
at random, and then predict these masked tokens. We adopt the
same percentage settings as BERT. The pre-training data processor
selects 20% of the token positions at random (note, we use a slightly
larger ratio compared with 15% in [16] as we want to make the
pre-training more challenging). For a selected position, (1) 80% of
the time we replace it with a special [MASK] token, (2) 10% of the
time we replace it with another random token, and (3) 10% of the
time we keep it unchanged.

Example 4.1. Figure 3 shows an example of the above random
process inMLM,where (1) “film”, “award” and “recipient” are chosen
randomly, and (2) the input word embedding of “film” is further
chosen randomly to be replaced with the embedding of [MASK],
(3) the input word embedding of “recipient” to be replaced with
the embedding of a random word “milk”, and (4) the input word
embedding of “award” to remain the same.

Given a token position selected for MLM, which has a contexu-
talized representation ht output by our encoder, the probability of
predicting its original tokenw ∈ W is then calculated as:

P(w) =
exp

(
LINEAR(ht) ·w

)∑
wk ∈W

exp
(
LINEAR(ht) ·wk

) (5)

311

Masked EntityRecovery. In addition toMLM,we propose a novel
Masked Entity Recovery (MER) objective to help the model capture
the factual knowledge embedded in the table content as well as the
associations between table metadata and table content. Essentially,
we mask a certain percentage of input entity cells and then recover
the linked entity based on surrounding entity cells and table meta-
data. This requires the model to be able to infer the relation between
entities from table metadata and encode the knowledge in entity
embeddings.

In addition, our proposed masking mechanism takes advantage
of entity mentions. Specifically, as shown in Eqn. 2, the input entity
representation has two parts: the entity embedding ee and the entity
mention representation em. For some percentage of masked entity
cells, we only mask ee, and as such the model receives additional
entity mention information to help form predictions. This assists
the model in building a connection between entity embeddings and
entity mentions, and helps downstream tasks where only cell texts
are available.

Specifically, we propose the following masking mechanism for
MER: The pre-training data processor chooses 60% of entity cells at
random. Here we adopt a higher masking ratio for MER compared
with MLM, because oftentimes in downstream tasks, none or few
entities are given. For one chosen entity cell, (1) 10% of the time
we keep both em and ee unchanged (2) 63% (i.e., 70% of the left
90%) of the time we mask both em and ee (3) 27% (i.e., 30% of the
left 90%) of the time we keep em unchanged, and mask ee (among
which we replace ee with embedding of a random entity to inject
noise in 10% of the time). Similar to BERT, in both MLM and MER
we keep a certain portion of the selected positions unchanged so
that the model can generate good representations for non-masked
tokens/entity cells. Trained with random tokens/entities replacing
the original ones, the model is robust and utilizes contextual infor-
mation to make predictions rather than simply copying the input
representation.

Example 4.2. Take Figure 3 as an example. [15th], [Satyajit],
[17th] and [Mrinal] are first chosen for MER. Then, (1) the input
mention representation and entity embedding of [Satyajit] remain
the same. (2) The input mention representation and entity embed-
ding of [15th] are both replaced with the embedding of [MASK] (3)
The input entity embedding of [Mrinal] is replaced with embedding
of [MASK], while the input entity embedding of [17th] is replaced
with the embedding of a random entity [10th]. In both cases, the
input mention representation are unchanged.

Given an entity cell selected for MER with a contexutalized rep-
resentation he output by our encoder, the probability of predicting
entity e ∈ E is then calculated as follows.

P(e) =
exp (LINEAR(he) · ee)∑

ek ∈E exp
(
LINEAR(he) · eek

) (6)

In reality, considering the entity vocabulary E is quite large, we only
use the above equation to rank entities from a given candidate set.
For efficient training, we construct the candidate set with (1) entities
in the current table, (2) entities that have co-occurred with those in
the current table, and (3) randomly sampled negative entities.

Table 2: Dataset statistics (per table) in pre-training.
split min mean median max

row
train 1 13 8 4670
dev 5 20 12 667
test 5 21 12 3143

ent. columns
train 1 2 2 20
dev 3 4 3 15
test 3 4 3 15

ent.
train 3 19 9 3911
dev 8 57 34 2132
test 8 60 34 9215

We use a cross-entropy loss function for both MLM and MER
objectives and the final pre-training loss is given as follows:

loss =
∑

log (P(w)) +
∑

log (P(e)), (7)

where the sums are over all tokens and entity cells selected in MLM
and MER respectively.

Pre-training details. In this work, we denote the number of Trans-
former blocks as N, the hidden dimension of input embeddings and
all Transformer block outputs as dmodel, the hidden dimension of
the fully connected layer in a Transformer block as dintermediate,
and the number of self-attention heads as k. We take advantage of
a pre-trained TinyBERT [23] model, which is a knowledge distilled
version of BERT with a smaller size, and set the hyperparameters
as follows: N = 4, dmodel = 312, dintermediate = 1200, k = 12. We ini-
tialize our structure-aware Transformer encoder parameters, word
embeddings and position embeddings with TinyBERT [23]. Entity
embeddings are initialized using averaged word embeddings in
entity names, and type embeddings are randomly initialized. We
use the Adam [25] optimizer with a linearly decreasing learning
rate. The initial learning rate is 1e-4 chosen from [1e-3, 5e-4, 1e-4,
1e-5] based on our validation set. We pre-trained the model for 80
epochs. Due to space constraints, we refer readers to the extended
version of our paper [15] for detailed ablation studies on the design
choices.

5 DATASET CONSTRUCTION FOR
PRE-TRAINING

We construct a dataset for unsupervised representation learning
based on theWikiTable corpus [4], which originally contains around
1.65M tables extracted fromWikipedia pages. The corpus contains a
large amount of factual knowledge on various topics ranging from
sport events (e.g., Olympics) to artistic works (e.g., TV series). The
following sections introduce our data construction process as well
as characteristics of the dataset.

5.1 Data Pre-processing and Partitioning
Pre-processing. The corresponding Wikipedia page of a table of-
ten provides much contextual information, such as page title and
section title that can aid in the understanding of a table topic. We
concatenate page title, section title and table caption to obtain a
comprehensive description.

In addition, each table in the corpus contains one or more header
rows and several rows of table content. For tables with more than
one header row, we concatenate headers in the same column to

312

obtain one header for each column. For each cell, we obtain hyper-
links to Wikipedia pages in it and use them to normalize different
entity mentions corresponding to the same entity. We treat each
Wikipedia page as an individual entity and do not use additional
tools to perform entity linking with an external KB. For cells con-
taining multiple hyperlinks, we only keep the first link. We also
discard rows that have merged columns in a table.
Identify relational tables.Wefirst locate all columns that contain
at least one linked cell after pre-processing. We further filter out
noisy columns with empty or illegal headers (e.g., note, comment,
reference, digit numbers, etc.). The columns left are entity-centric
and are referred to as entity columns. We then identify relational
tables by finding tables that have a subject column. A simple heuris-
tic is employed for subject column detection: the subject column
must be located in the first two columns of the table and contain
unique entities which we treat as subject entities. We further filter
out tables containing less than three entities or more than twenty
columns. With this process, we obtain 670,171 relational tables.
Data partitioning. From the above 670,171 tables, we select a high
quality subset for evaluation: From tables that have (1) more than
four linked entities in the subject column, (2) at least three entity
columns including the subject column, and (3) more than half of
the cells in entity columns are linked, we randomly select 10000
to form a held-out set. We further randomly partition this set into
validation/test sets via a rough 1:1 ratio for model evaluation. All
relational tables not in the evaluation set are used for pre-training.
In sum, we have 570171 / 5036 / 4964 tables respectively for pre-
training/validation/test sets.

5.2 Dataset Statistics in Pre-training
Fine-grained statistics of our datasets are summarized in Table 2.We
can see that most tables in our pre-training dataset have moderate
size, with median of 8 rows, 2 entity columns and 9 entities per
table. We build a token vocabulary using the BERT-based tokenizer
[16] (with 30,522 tokens in total). For the entity vocabulary, we
construct it based on the training table corpus and obtain 926,135
entities after removing those that appear only once.

6 EXPERIMENTS
To systematically evaluate our pre-trained framework as well as
facilitate research, we compile a table understanding benchmark
consisting of 6 widely studied tasks covering table interpretation
(e.g., entity linking, column type annotation, relation extraction)
and table augmentation (e.g., row population, cell filling, schema
augmentation).We include existing datasets for entity linking. How-
ever, due to the lack of large-scale open-sourced datasets, we create
new datasets for other tasks based on our held-out set of relational
tables and an existing KB.

Next we introduce the definition, baselines, dataset and results
for each task. Our pre-trained framework is general and can be
fine-tuned for all the independent tasks.

6.1 General Setup across All Tasks
We use the pre-training tables to create the training set for each
task, and always build data for evaluation using the held-out vali-
dation/test tables. This way we ensure that there is no overlapping

Table 3: An overview of our benchmark tasks and strategies to fine-
tune TURL.

Task Finetune Strategy

Ta
bl
e
In
te
rp
re
ta
tio

n
Ta

bl
e
A
ug

m
en
ta
tio

n

tables in training and validation/test. For fine-tuning, we initial-
ize the parameters with a pre-trained model, and further train all
parameters with a task-specific objective. To demonstrate the effi-
ciency of pre-training, we only fine-tune our model for 10 epochs
unless otherwise stated.

6.2 Entity Linking
Entity linking is a fundamental task in table interpretation, which
is defined as:

Definition 6.1. Given a tableT and a knowledge baseKB, entity
linking aims to link each potential mention in cells of T to its
referent entity e ∈ KB.

Entity linking is usually addressed in two steps: a candidate
generation module first proposes a set of potential entities, and an
entity disambiguation module then ranks and selects the entity that
best matches the surface form and is most consistent with the table
context. Following existing work [4, 17, 36], we focus on entity
disambiguation and use an existing Wikidata Lookup service for
candidate generation.
Baselines. We compare against the most recent methods for table
entity linking T2K [36], Hybrid II [17], as well as the off-the-shelf
Wikidata Lookup service. T2K uses an iterative matching approach
that combines both schema and entity matching. Hybrid II [17]
combines a lookup method with an entity embedding method. For
Wikidata Lookup, we simply use the top-1 returned result as the
prediction.
Fine-tuning TURL. Entity disambiguation is essentially matching
a table cell with candidate entities. We treat each cell as a poten-
tial entity, and input its cell text (entity mention em in Eqn. 2) as

313

well as table metadata to our Transformer encoder and obtain a
contextualized representation he for each cell. To represent each
candidate entity, we utilize the name and description as well as type
information from a KB. The intuition is that when the candidate
generation module proposes multiple entity candidates with similar
names, we will utilize the description and type information to find
the candidate that is most consistent with the table context. Specif-
ically, for a KB entity e , given its name N and description D (both
are a sequence of words) and types T , we get its representation ekb

as follows:
ekb = [MEANw ∈N (w) , MEANw ∈D (w) , MEANt ∈T (t)]. (8)

Here, w is the embedding for word w , which is shared with the
embedding layer of pre-trained model. t is the embedding for entity
type t to be learned during this fine-tuning phase. We then calculate
a matching score between ekb and he similarly as Eqn. 6. We do not
use the entity embeddings pre-trained by ourmodel here, as the goal
is to link mentions to entities in a target KB, not necessarily those
appear in our pre-training table corpus. The model is fine-tuned
with a cross-entropy loss.
Task-specific Datasets.We use three datasets to compare differ-
ent entity linking models: (1) We adopt the Wikipedia gold stan-
dards (WikiGS) dataset from [17], which contains 4,453,329 entity
mentions extracted from 485,096Wikipedia tables and links them to
DBpedia [3]. (2) Since tables in WikiGS also come from Wikipedia,
some of the tables may have already been seen during pre-training,
despite their entity linking information is mainly used to pre-train
entity embeddings (which are not used here). For a better com-
parison, we also create our own test set from the held-out test
tables mentioned in Section 5.1, which contains 297,018 entity men-
tions from 4,964 tables. (3) To test our model on Web tables (i.e.,
those from websites other than Wikipedia), we also include the
T2D dataset [26] which contains 26,124 entity mentions from 233
Web tables.1 We use names and descriptions returned by Wikidata
Lookup, and entity types from DBpedia.

The training set for fine-tuning TURL is based on our pre-training
corpus, but with tables in the above WikiGS removed. We also re-
move duplicate entity mentions and mentions where Wikidata
Lookup fails to return the ground truth entity in candidates, and fi-
nally obtain 1,264,217 entity mentions in 192,728 tables to fine-tune
our model for the entity linking task.
Results. We set the maximum candidate size for Wikidata Lookup
at 50 and also include the result of a Wikidata Lookup (Oracle),
which considers an entity linking instance as correct if the ground-
truth entity is in the candidate set. Due to lack of open-sourced
implementations, we directly use the results of T2K and Hybrid II in
[17]. We use F1, precision (P) and recall (R) measures for evaluation.
False positive is the number of mentions where the model links to
wrong entities, not including the cases where the model makes no
prediction (e.g., Wikidata Lookup returns empty candidate set).

As shown in Table 4, our model gets the best F1 score and sub-
stantially improves precision on WikiGS and our own test set. The
disambiguation accuracy on WikiGS is 89.62% (predict the correct
entity if it is in the candidate set). A more advanced candidate
generation module can help achieve better results in the future.

1We use the data released by [17] (https://doi.org/10.6084/m9.figshare.5229847).

Table 4: Model evaluation on entity linking task. All three datasets
are evaluated with the same TURL + fine-tuning model.

Method WikiGS Our Test Set T2D
F1 P R F1 P R F1 P R

T2K [36] 34 70 22 - - - 82 90 76
Hybrid II [17] 64 69 60 - - - 83 85 81
Wikidata Lookup 57 67 49 62 62 60 80 86 75
TURL + fine-tuning 67 79 58 68 71 66 78 83 73

w/o entity desc. 60 70 52 60 63 58 - - -
w/o entity type 66 78 57 67 70 65 - - -
+ reweighting - - - - - - 82 88 77

WikiLookup (Oracle) 74 88 64 79 82 76 90 96 84

We also conduct an ablation study on our model by removing the
description or type information of a candidate entity from Eqn. 8.
From Table 4, we can see that entity description is very important
for disambiguation, while entity type information only results in
a minor improvement. This is perhaps due to the incompleteness
of DBpedia, where a lot of entities have no types assigned or have
missing types.

On the T2D dataset, all models perform much better than on
the two Wikipedia datasets, mainly because of its smaller size and
limited types of entities. The Wikidata Lookup baseline achieved
high performance, and re-ranking using our model does not fur-
ther improve. However, we adopt simple reweighting2 to take into
account the original result returned by Wikidata Lookup, which
brings the F1 score to 0.82. This demonstrates the potential of us-
ing features such as entity popularity (used in Wikidata Lookup)
and ensembling strong base models. Additionally, we conduct an
error analysis on T2D comparing our model (TURL + fine-tuning
+ reweighting) with Wikidata Lookup. From Table 5, we can see
that while in many cases, our model can infer the correct entity
type based on the context and re-rank the candidate list accord-
ingly, it makes mistakes when there are entities in the KB that look
very similar to the mentions. To summarize, Table 4 and 5 show
that there is room for further improvement of our model on entity
linking, which we leave as future work.

6.3 Column Type Annotation
We define the task of column type annotation as follow:

Definition 6.2. Given a table T and a set of semantic types L,
column type annotation refers to the task of annotating a column
in T with l ∈ L so that all entities in the column have type l . Note
that a column can have multiple types.

Column type annotation is a crucial task for table understanding
and is a fundamental step for many downstream tasks like data
integration and knowledge discovery. Earlier work [30, 36, 49] on
column type annotation often coupled the task with entity linking.
First entities in a column are linked to a KB and then majority
voting is employed on the types of the linked entities. More recently,
[10, 11, 22] have studied column type annotation based on cell
texts only. Here we adopt a similar setting, i.e., use the available
information in a given table directly for column type annotation
without performing entity linking first.
2We simply reweight the score of the top-1 prediction by our model with a factor of
0.8 and compare it with the top-1 prediction returned by Wikidata Lookup. The higher
one is chosen as final prediction.

314

https://doi.org/10.6084/m9.figshare.5229847

Table 5: Further analysis for entity linking on T2D corpus.
Mention Page title Header Wikidata Lookup result TURL + fine-tuning + reweighting result Improve

philip List of saints Saint Philip, male given name Philip the Apostle, Christian saint
and apostle Yes

bank of nova scotia The Global 2000
- Forbes.com Company Scotiabank,

Canadian bank based in Toronto
Bank of Nova Scotia,

bank building in Calgary No

purple finch The Sea Ranch Association List of Birds Common Name Haemorhous purpureus, species of bird Purple Finch,
print in the National Gallery of Art No

Baselines.We compare our results with the state-of-the-art model
Sherlock [22] for column type annotation. Sherlock uses 1588
features describing statistical properties, character distributions,
word embeddings, and paragraph vectors of the cell values in a
column. It was originally designed to predict a single type for a
given column. We change its final layer to |L| Sigmoid activation
functions, each with a binary cross-entropy loss, to fit our multi-
label setting. We also evaluate our model using two datasets in [11],
and include the HNN + P2Vec model as baseline. HNN + P2Vec
employs a hybrid neural network to extract cell, row and column
features, and combines it with property features retrieved from KB.
Fine-tuning TURL. To predict the type(s) for a column, we first
extract the contextualized representation of the column hc as fol-
lows:

hc = [MEAN
(
hti , . . .

)
; MEAN

(
hej , . . .

)
]. (9)

Here hti ’s are representations of tokens in the column header, hej ’s
are representations of entity cells in the column. The probability of
predicting type l is then given as,

P(l) = Sigmoid (hcWl + bl) . (10)
Same as with the baselines, we optimize the binary cross-entropy
loss, y is the ground truth label for type l

loss =
∑

ylog (P(l)) + (1 − y) log (1 − P(l)) (11)

Task-specific Datasets. We refer to Freebase [20] to obtain se-
mantic types L because of its richness, diversity, and scale. We
only keep those columns in our relational table corpus that have
at least three linked entities to Freebase, and for each column, we
use the common types of its entities as annotations. We further
filter out types with less than 100 training instances and keep only
the most representative types. In the end, we get a total number of
255 types, 628,254 columns from 397,098 tables for training, 13,025
(13,391) columns from 4,764 (4,844) tables for test (validation). We
also test our model on two existing small-scale datasets, T2D-Te
and Efthymiou (a subset of WikiGS annotated with types) from [11]
and conduct two auxiliary experiments: (1) We first directly test
our trained models and see how they generalize to existing datasets.
We manually map 24 out of the 37 types used in [11] to our types,
which results in 107 (of the original 133) columns in T2D-Te and
416 (of the original 614) columns in Efthymiou. (2) We follow the
setting in [11] and use 70% of T2D as training data, which contains
250 columns.3

Results. For the main results on our test set, we use the valida-
tion set for early stopping in training the Sherlock model, which
takes over 100 epochs. We evaluate model performance using F1,
Precision (P) and Recall (R) measures. Results are shown in Table

3We use the data released by [11] (https://github.com/alan-turing-institute/SemAIDA).
The number of instances is slightly different from the original paper.

Table 6: Model evaluation on column type annotation task.
Method F1 P R
Sherlock (only entity mention) [22] 78.47 88.40 70.55
TURL + fine-tuning (only entity mention) 88.86 90.54 87.23
TURL + fine-tuning 94.75 94.95 94.56

w/o table metadata 93.77 94.80 92.76
w/o learned embedding 92.69 92.75 92.63
only table metadata 90.24 89.91 90.58
only learned embedding 93.33 94.72 91.97

Table 7: Accuracy on T2D-Te and Efthymiou, where scores for
HNN + P2Vec are copied from [11] (trained with 70% of T2D and
Efthymiou respectively and tested on the rest). We directly apply
our models by type mapping without retraining.

Method T2D-Te Efthymiou
HNN + P2Vec (entity mention + KB) [11] 0.966 0.865
TURL + fine-tuning (only entity mention) 0.888 0.745

+ table metadata 0.860 0.904

Table 8: Accuracy on T2D-Te and Efthymiou. Here all models use
T2D-Tr (70% of T2D) as training set, following the setting in [11].

Method T2D-Te Efthymiou
HNN + P2Vec (entity mention + KB) [11] 0.966 0.650
TURL + fine-tuning (only entity mention) 0.940 0.516

+ table metadata 0.962 0.746

Table 9: Further analysis on column type annotation: Model perfor-
mance for 3 selected types. Results are F1 on validation set.

Method person pro_athlete actor
Sherlock [22] 96.85 74.39 29.07
TURL + fine-tuning 99.71 91.14 74.85

only entity mention 98.44 87.11 58.86
only table metadata 98.26 88.80 70.86
only learned embedding 98.72 91.06 73.62

6. Our model substantially outperforms the baseline, even when
using the same input information (only entity mention vs Sherlock).
Adding table metadata information and entity embedding learned
during pre-training further boost the performance to 94.75 under
F1. In addition, our model achieves such performance using only
10 epochs for fine-tuning, which demonstrates the efficiency of the
pre-training/fine-tuning paradigm. More detailed results for several
types are shown in Table 9, where we observe that all methods work
well for coarse-grained types like person. However, fine-grained
types like actor and pro_athlete are much more difficult to pre-
dict. Specifically, it is hard for a model to predict such types for a
column only based on entity mentions in cells. On the other hand,
using table metadata works much better than using entity mentions
(e.g., 70.86 vs 58.86 for actor). This indicates the importance of
table context information for predicting fine-grained column types.

Results of the auxiliary experiments are summarized in Table
7 and 8. The scores shown are accuracy, i.e., the ratio of correctly
labeled columns, given each column is annotated with one ground

315

https://github.com/alan-turing-institute/SemAIDA

Table 10: Model evaluation on relation extraction task.
Method F1 P R
BERT-based 90.94 91.18 90.69
TURL + fine-tuning (only table metadata) 92.13 91.17 93.12
TURL + fine-tuning 94.91 94.57 95.25

w/o table metadata 93.85 93.78 93.91
w/o learned embedding 93.35 92.90 93.80

Table 11: Relation extraction results of an entity linking based sys-
tem, under different agreement ratio thresholds.

Min Ag. Ratio F1 P R
0 68.73 60.33 79.85
0.4 82.10 94.65 72.50
0.5 77.68 98.33 64.20
0.7 63.10 99.37 46.23

truth label. For HNN + P2Vec, the scores are directly copied from
the original paper [11]. Note that in Table 7, the numbers from
our models are not directly comparable with HNN + P2Vec, due to
mapping the types in the original datasets to ours as mentioned
earlier. However, taking HNN + P2Vec trained on in-domain data as
reference, we can see that without retraining, our models still obtain
high accuracy on both Web table corpus (T2D-Te) and Wikipedia
table corpus (Efthymiou). We also notice that adding table metadata
slightly decreases the performance on T2D while increasing that on
Efthymiou, which is possibly due to the distributional differences
between Wikipedia tables and general web tables. From Table 8 we
can see that when trained on the same T2D-Tr split, our model with
both entity mention and table metadata still outperforms or is on
par with the baseline. However, when using only entity mention,
our model does not perform as well as the baseline, especially when
generalizing to Efthymiou. This is because: (1) Our model is pre-
trained with both table metadata and entity embedding. Removing
both creates a big mismatch between pretraining and fine-tuning.
(2) With only 250 training instances, it is easy for deep models to
overfit. The better performance of models leveraging table meta-
data under both settings demonstrates the usefulness of context for
table understanding.

6.4 Relation Extraction
Relation extraction is the task of mapping column pairs in a table
to relations in a KB. A formal definition is given as follows.

Definition 6.3. Given a tableT and a set of relations R in KB. For
a subject-object column pair inT , we aim to annotate it with r ∈ R

so that r holds between all entity pairs in the columns.

Most existing work [30, 36, 49] assumes that all relations be-
tween entities are known in KB and relations between columns
can be easily inferred based on entity linking results. However,
such methods rely on entity linking performance and suffer from
KB incompleteness. Here we aim to conduct relation extraction
without explicitly linking table cells to entities. This is important as
it allows the extraction of new knowledge from Web tables for tasks
like knowledge base population.

Baselines.We compare ourmodel with a state-of-the-art text based
relation extraction model [50] which utilizes a pretrained BERT
model to encode the table information. For text based relation
extraction, the task is to predict the relation between two entity

Figure 6: Comparison of fine-tuning our model and BERT for rela-
tion extraction: Our model converges much faster.

mentions in a sentence. Here we adapt the setting by treating the
concatenated table metadata as a sentence, and the headers of the
two columns as entity mentions. Although our setting is different
from the entity linking based relation extraction systems in [30, 36,
49], here we implement a similar system using our entity linking
model described in Section 6.2, and obtain relation annotations
based onmajority voting of linked entity pairs, i.e., predict a relation
if it holds between a minimum portion of linked entity pairs in KB
(i.e., the minimum agreement ratio is larger than a threshold).
Fine-tuning TURL. We use similar model architecture as column
type annotation as follows.

P(r) = Sigmoid ([hc ; hc ′]Wr + br) . (12)
Here hc , hc ′ are aggregated representation for the two columns

obtained same as Eqn. 9. We use binary cross-entropy loss for
optimization.
Task-specific Datasets. We prepare datasets for relation extrac-
tion in a similar way as the previous column type annotation task,
based on our pre-training table partitions. Specifically, we obtain
relations R from Freebase. For each table in our corpus, we pair its
subject column with each of its object columns, and annotate the
column pair with relations shared by more than half of the entity
pairs in the columns. We only keep relations that have more than
100 training instances. Finally, we obtain a total number of 121 rela-
tions, 62,954 column pairs from 52,943 tables for training, and 2072
(2,175) column pairs from 1467 (1,560) tables for test (validation).
Results. We fine-tune the BERT-based model for 25 epochs. We
use F1, Precision (P) and Recall (R) measures for evaluation. Results
are summarized in Table 10.

From Table 10 we can see that: (1) Both the BERT-based baseline
and our model achieve good performance, with F1 scores larger
than 0.9. (2) Our model outperforms the BERT-based baseline under
all settings, even when using the same information (i.e., only table
metadata vs BERT-based). Moreover, we plot the mean average pre-
cision (MAP) curve on our validation set during training in Figure
6. As one can see, our model converges much faster in comparison
to the BERT-based baseline, demonstrating that our model learns a
better initialization through pre-training.

As mentioned earlier, we also experiment with an entity linking
based system. Results are summarized in Table 11. We can see that
it can achieve high precision, but suffers from low recall: The upper-
bound of recall is only 79.85%, achieved at an agreement ratio of 0
(i.e., taking all relations that exist between the linked entity pairs as
positive). As seen from Table 10 and 11, our model also substantially
outperforms the system based on a strong entity linker.

316

6.5 Row Population
Row population is the task of augmenting a given table with more
rows or row elements. For relational tables, existing work has tack-
led this problem by retrieving entities to fill the subject column
[46, 48]. A formal definition of the task is given below.

Definition 6.4. Given a partial tableT , and an optional set of seed
subject entities, row population aims to retrieve more entities to
fill the subject column.

Baselines.We adopt models from [46] and [13] as baselines. [46]
uses a generative probabilistic model which ranks candidate entities
considering both table metadata and entity co-occurrence statistics.
[13] further improves upon [46] by utilizing entity embeddings
trained on the table corpus to estimate entity similarity. We use the
same candidate generation module from [46] for all methods, which
formulates a search query using either the table caption or seed
entities and then retrieves tables via the BM25 retrieval algorithm.
Subject entities in those retrieved tables will be candidates for row
population.
Fine-tuning TURL.We adopt the same candidate generation mod-
ule used by baselines. We then append the [MASK] token to the
input, and use the hidden representation he of [MASK] to rank
these candidates as shown in Table 3. We fine-tune our model with
multi-label soft margin loss as shown below:

P(e) = Sigmoid
(
LINEAR(he) · ee

)
,

loss =
∑
e ∈EC

ylog (P(e)) + (1 − y) log (1 − P(e)) . (13)

Here EC is the candidate entity set, and y is the ground truth label
of whether e is a subject entity of the table.
Task-specific Datasets. Tables in our pre-training set with more
than 3 subject entities are used for fine-tuning TURL and developing
baseline models, while tables in our held-out set with more than 5
subject entities are used for evaluation. In total, we obtain 432,660
tables for fine-tuning with 10 subject entities on average, and 4,132
(4,205) tables for test (validation) with 16 (15) subject entities on
average.
Results. The experiments are conducted under two settings: with-
out any seed entity and with one seed entity. For experiments
without the seed entity, we only use table caption for candidate
generation. For entity ranking in EntiTables [46], we use the combi-
nation of caption and label likelihood when there is no seed entity,
and only use entity similarity when seed entities are available. This
strategy works best on our validation set. As shown in Table 12,
our method outperforms all baselines. In particular, previous meth-
ods rely on entity similarity and are not applicable or have poor
results when there is no seed entity available. Our method achieves
a decent performance even without any seed entity, which demon-
strates the effectiveness of TURL for generating contextualized
representations based on both table metadata and content.

6.6 Cell Filling
We examine the utility of our model in filling other table cells,
assuming the subject column is given. This is similar to the setting
in [43, 47], which we formally define as follows.

Table 12: Model evaluation on row population task. Recall is the
same for all methods because they share the same candidate gener-
ation module.

seed 0 1
Method MAP Recall MAP Recall
EntiTables [46] 17.90 63.30 42.31 78.13
Table2Vec [13] - 63.30 20.86 78.13
TURL + fine-tuning 40.92 63.30 48.31 78.13

Table 13: Model evaluation on cell filling task.

Method P @ 1 P @ 3 P @ 5 P @ 10
Exact 51.36 70.10 76.80 84.93
H2H 51.90 70.95 77.33 85.44
H2V 52.23 70.82 77.35 85.58
TURL 54.80 76.58 83.66 90.98

Table 14: Model evaluation on schema augmentation task.

Method #seed column labels
0 1

kNN 80.16 82.01
TURL + fine-tuning 81.94 77.55

Definition 6.5. Given a partial table T with the subject column
filled and an object column header, cell filling aims to predict the
object entity for each subject entity.

Baselines. We adopt [47] as our base model. It has two main com-
ponents, candidate value finding and value ranking. The same can-
didate value finding module is used for all methods: Given a subject
entity e and object header h for the to-be-filled cells, we find all
entities that appear in the same row with e in our pre-training table
corpus , and only keep entities whose source header h′ is related to
h. Here we use the formula from [47] to measure the relevance of
two headers P(h′ |h),

P(h′ |h) =
n(h′,h)∑
h′′ n(h′′,h)

. (14)

Here n(h′,h) is the number of table pairs in the table corpus that
contain the same entity for a given subject entity in columns h′ and
h. The intuition is that if two tables contain the same object entity
for a given subject entity e in columns with headings ha and hb ,
then ha and hb might refer to the same attribute. For value ranking,
the key is to match the given header h with the source header h′,
we can then get the probability of the candidate entity e belongs to
the cell P(e |h) as follows:

P(e |h) = MAX
(
sim(h′,h)

)
. (15)

Here h′’s are the source headers associated with the candidate
entity in the pre-training table corpus. sim(h′,h) is the similarity
between h′ and h. We develop three baseline methods for sim(h′,h):
(1) Exact: predict the entity with exact matched header, (2) H2H:
use the P(h′ |h) described above. (3) H2V: similar to [13], we train
header embeddings with Word2Vec on the table corpus. We then
measure the similarity between headers using cosine similarity.
Fine-tuning TURL. Since cell filling is very similar to the MER
pre-training task, we do not fine-tune the model, and directly use
[MASK] to select from candidate entities same as MER (Eqn. 6).
Task-specificDatasets. To evaluate different methods on this task,
we use the held-out test tables in our pre-training phase and extract
from them those subject-object column pairs that have at least

317

Table 15: Case study on schema augmentation. Here we show average precision (AP) for each example. Support Caption is the caption of the
source table that kNN found to be most similar to the query table. Our model performs worse when there exist source tables that are very
similar to the query table (e.g., comparing support caption vs query caption).

Method Query Caption Seed Target AP Predicted Support Caption

kNN 2010 santos fc season out pos. name,
moving to

1.0 moving to, name, player,
moving from, to 2007 santos fc season out

Ours 0.58 moving to, fee/notes,
destination club, fee, loaned to -

kNN list of radio stations in
metro manila am stations name format,

covered location
1.0 format, covered location, company,

call sign, owner
list of radio stations in

metro manila fm stations

Ours 0.83 format, owner, covered location,
city of license, call sign -

three valid entity pairs. Finally we obtain 9,075 column pairs for
evaluation.
Results. For candidate value finding, using all entities appearing in
the same rowwith a given subject entity e achieves a recall of 62.51%
with 165 candidates on average. After filtering with P(h′ |h) > 0,
the recall drops slightly to 61.45% and the average number of candi-
dates reduces to 86. For value ranking, we only consider those test
instances with the target object entity in the candidate set and eval-
uate them under Precision@K (or, P@K). Results are summarized
in Table 13, from which we show: (1) Simple Exact match achieves
decent performance, and usingH2H orH2V only sightly improves
the results. (2) Even though our model directly ranks the candidate
entities without explicitly using their source table information, it
outperforms other methods. This indicates that our model already
encodes the factual knowledge in tables into entity embeddings
through pre-training.

6.7 Schema Augmentation
Aside from completing the table content, another direction of table
augmentation focuses on augmenting the table schema, i.e., discov-
ering new column headers to extend a table with more columns
[6, 13, 43, 46]. Following [13, 43, 46], we formally define the task
below.

Definition 6.6. Given a partial table T , which has a caption and
zero or a few seed headers, and a header vocabulary H , schema
augmentation aims to recommend a ranked list of headers h ∈ H

to add to T .

Baselines. We adopt the method in [46] which searches our pre-
training table corpus for related tables, and use headers in those
related tables for augmentation. More specifically, we encode the
given table caption as a tf-idf vector and then use the K-nearest
neighbors algorithm (kNN) [2] with cosine similarity to find the
top-10 most related tables. We rank headers from those tables by
aggregating the cosine similarities for tables they belong to. When
seed headers are available, we re-weight the tables by the overlap
of their schemas with seed headers same as [46].
Fine-tuning TURL. We concatenate the table caption, seed head-
ers and a [MASK] token as input to our model. The output for
[MASK] is then used to predict the headers in a given header vo-
cabulary H . We fine-tune our model use binary cross-entropy loss.
Task-specific Datasets. We collect H from the pre-training table
corpus. We normalize the headers using simple rules, only keep
those that appear in at least 10 different tables, and finally obtain

5652 unique headers, with 316,858 training tables and 4,646 (4,708)
test (validation) tables.
Results. We fine-tune our model for 50 epochs for this task, based
on the performance on the validation set. We use mean average
precision (MAP) for evaluation.

From Table 14, we observe that both kNN baseline and our model
achieve good performance. Our model works better when no seed
header is available, but does not perform as well when there is one
seed header. We then conduct a further analysis in Table 15 using a
few examples: One major reason why kNN works well is that there
exist tables in the pre-training table corpus that are very similar
to the query table and have almost the same table schema. On the
other hand, our model oftentimes suggests plausible, semantically
related headers, but misses the ground-truth headers.

7 CONCLUSION
This paper presents a novel pre-training/fine-tuning framework
(TURL) for relational table understanding. It consists of a structure-
aware Transformer encoder to model the row-column structure
as well as a new Masked Entity Recovery objective to capture
the semantics and knowledge in relational Web tables during pre-
training. On our compiled benchmark, we show that TURL can
be applied to a wide range of tasks with minimal fine-tuning and
achieves superior performance in most scenarios. Interesting future
work includes: (1) Focusing on other types of knowledge such as
numerical attributes in relational Web tables, in addition to entity
relations. (2) Incorporating the rich information contained in an
external KB into pre-training.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their helpful
comments. Authors at the Ohio State University were sponsored
in part by Google Faculty Award, the Army Research Office under
cooperative agreements W911NF-17-1-0412, NSF Grant IIS1815674,
NSF CAREER #1942980, Fujitsu gift grant, and Ohio Supercom-
puter Center [9]. The views and conclusions contained herein are
those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notice herein.

318

REFERENCES
[1] Ahmad Ahmadov, Maik Thiele, Julian Eberius, Wolfgang Lehner, and Robert

Wrembel. 2015. Towards a hybrid imputation approach using web tables. In 2015
IEEE/ACM 2nd International Symposium on Big Data Computing (BDC). IEEE,
21–30.

[2] Naomi S. Altman. 1992. An Introduction to Kernel and Nearest Neighbor Non-
parametric Regression.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary G. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In
ISWC/ASWC.

[4] Chandra Sekhar Bhagavatula, ThanaponNoraset, andDougDowney. 2015. TabEL:
Entity Linking in Web Tables. In Proceedings of the 14th International Conference
on The Semantic Web-ISWC 2015-Volume 9366. 425–441.

[5] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS.

[6] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang.
2008. Webtables: exploring the power of tables on the web. Proceedings of the
VLDB Endowment 1, 1 (2008), 538–549.

[7] Michael J. Cafarella, Alon Y. Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene
Wu. 2008. Uncovering the Relational Web. In 11th International Workshop on the
Web and Databases, WebDB 2008, Vancouver, BC, Canada, June 13, 2008.

[8] Matteo Cannaviccio, Lorenzo Ariemma, Denilson Barbosa, and Paolo Merialdo.
2018. Leveraging wikipedia table schemas for knowledge graph augmentation.
In Proceedings of the 21st International Workshop on the Web and Databases. 1–6.

[9] Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. http://osc.edu/
ark:/19495/f5s1ph73

[10] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles A. Sutton. 2018.
ColNet: Embedding the Semantics of Web Tables for Column Type Prediction. In
AAAI.

[11] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles A. Sutton. 2019.
Learning Semantic Annotations for Tabular Data. In IJCAI.

[12] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,
Reynold Xin, and Cong Yu. 2012. Finding Related Tables. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. ACM,
817âĂŞ828.

[13] Lei Min Deng, Shuo Zhang, and Krisztian Balog. 2019. Table2Vec: Neural Word
and Entity Embeddings for Table Population and Retrieval. In SIGIR’19.

[14] Xiang Deng and Huan Sun. 2019. Leveraging 2-hop Distant Supervision from
Table Entity Pairs for Relation Extraction. arXiv preprint arXiv:1909.06007 (2019).

[15] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: Table
Understanding through Representation Learning. https://arxiv.org/abs/2006.
14806. arXiv:2006.14806 [cs.IR]

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186.

[17] Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis
Christophides. 2017. Matching Web Tables with Knowledge Base Entities: From
Entity Lookups to Entity Embeddings. In International Semantic Web Conference.

[18] Raul Castro Fernandez and Samuel Madden. 2019. Termite: a system for tunneling
through heterogeneous data. In Proceedings of the Second International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management. 1–8.

[19] Xavier Glorot, Antoine Bordes, JasonWeston, and Yoshua Bengio. 2013. A seman-
tic matching energy function for learning with multi-relational data. Machine
Learning 94 (2013), 233–259.

[20] Google. 2015. Freebase Data Dumps. https://developers.google.com/freebase/
data.

[21] JonathanHerzig, P. Nowak, ThomasMüller, Francesco Piccinno, and JulianMartin
Eisenschlos. 2020. TAPAS: Weakly Supervised Table Parsing via Pre-training. In
ACL.

[22] Madelon Hulsebos, Kevin Zeng Hu, Michiel Bakker, Emanuel Zgraggen, Arvind
Satyanarayan, Tim Kraska, cCaugatay Demiralp, and C’esar A. Hidalgo. 2019.
Sherlock: A Deep Learning Approach to Semantic Data Type Detection. Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (2019).

[23] Xiaoqi Jiao, Y. Yin, Lifeng Shang, Xin Jiang, Xusong Chen, Linlin Li, Fang Wang,
and Qun Liu. 2019. TinyBERT: Distilling BERT for Natural Language Under-
standing. ArXiv abs/1909.10351 (2019).

[24] Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Vasilis Efthymiou, Jiaoyan Chen, and
Kavitha Srinivas. 2020. SemTab 2019: Resources to Benchmark Tabular Data
to Knowledge Graph Matching Systems. In European Semantic Web Conference.
Springer, 514–530.

[25] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2015).

[26] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016. A
Large Public Corpus of Web Tables containing Time and Context Metadata. In
Proceedings of the 25th International Conference Companion on World Wide Web.
75–76.

[27] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. arXiv preprint
arXiv:2004.00584 (2020).

[28] LimayeGirija, SarawagiSunita, and ChakrabartiSoumen. 2010. Annotating and
searching web tables using entities, types and relationships. In VLDB 2010.

[29] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[30] Varish Mulwad, Timothy W. Finin, Zareen Syed, and Anupam Joshi. 2010. Using
Linked Data to Interpret Tables. In COLD.

[31] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In EMNLP.

[32] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In NAACL-HLT.

[33] Matthew E Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi,
Sameer Singh, and Noah A Smith. 2019. Knowledge Enhanced Contextual Word
Representations. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). 43–54.

[34] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[35] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. 2013.
Relation Extraction with Matrix Factorization and Universal Schemas. In HLT-
NAACL.

[36] Dominique Ritze, Oliver Lehmberg, and Christian Bizer. 2015. Matching HTML
Tables to DBpedia. InWIMS ’15.

[37] Yoones A Sekhavat, Francesco Di Paolo, Denilson Barbosa, and Paolo Merialdo.
[n.d.]. Knowledge Base Augmentation using Tabular Data.

[38] Qi shan Wang, Zhendong Mao, Biwu Wang, and Li Guo. 2017. Knowledge Graph
Embedding: A Survey of Approaches and Applications. IEEE Transactions on
Knowledge and Data Engineering 29 (2017), 2724–2743.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[40] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. 353–355.

[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zhigang Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In AAAI.

[42] Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. 2013.
Connecting Language and Knowledge Bases with EmbeddingModels for Relation
Extraction. ArXiv abs/1307.7973 (2013).

[43] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.
2012. Infogather: entity augmentation and attribute discovery by holistic match-
ing with web tables. In Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data. ACM, 97–108.

[44] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-
nov, and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In NeurIPS.

[45] Pengcheng Yin, GrahamNeubig,Wen tau Yih, and Sebastian Riedel. 2020. TaBERT:
Pretraining for Joint Understanding of Textual and Tabular Data. In ACL.

[46] Shuo Zhang and Krisztian Balog. 2017. Entitables: Smart assistance for entity-
focused tables. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 255–264.

[47] Shuo Zhang and Krisztian Balog. 2019. Auto-completion for data cells in relational
tables. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management. 761–770.

[48] Shuo Zhang and Krisztian Balog. 2020. Web Table Extraction, Retrieval, and
Augmentation: A Survey. ACM Transactions on Intelligent Systems and Technology
(TIST) 11 (2020), 1 – 35.

[49] Ziqi Zhang. 2017. Effective and efficient Semantic Table Interpretation using
TableMiner+. Semantic Web 8 (2017), 921–957.

[50] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu.
2019. ERNIE: Enhanced Language Representation with Informative Entities.
In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 1441–1451.

319

http://osc.edu/ark:/19495/f5s1ph73
http://osc.edu/ark:/19495/f5s1ph73
https://arxiv.org/abs/2006.14806
https://arxiv.org/abs/2006.14806
https://arxiv.org/abs/2006.14806
https://developers.google.com/freebase/data
https://developers.google.com/freebase/data

	Abstract
	1 Introduction
	2 Preliminary
	3 Related Work
	4 Methodology
	4.1 Model Architecture
	4.2 Embedding Layer
	4.3 Structure-aware Transformer Encoder
	4.4 Pre-training Objective

	5 Dataset Construction for Pre-training
	5.1 Data Pre-processing and Partitioning
	5.2 Dataset Statistics in Pre-training

	6 Experiments
	6.1 General Setup across All Tasks
	6.2 Entity Linking
	6.3 Column Type Annotation
	6.4 Relation Extraction
	6.5 Row Population
	6.6 Cell Filling
	6.7 Schema Augmentation

	7 Conclusion
	Acknowledgments
	References

