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ABSTRACT

Teradata Vantage is a platform for integrating a broad range of an-
alytical functions and capabilities with the Teradata’s SQL engine.
One of the main challenges in optimizing the execution of these
analytical functions is that many of them are not only black boxes,
but also have polymorphic nature, i.e., their behavior and properties
may change depending on the invocation context. In this paper,
we first demonstrate the inherent complexity in optimizing poly-
morphic functions, and then present the Vantage’s Collaborative
Optimizer, which is a cross-platform optimizer designed for optimiz-
ing the analytical functions invoked from within the SQL engine.
The Collaborative Optimizer is the industry-first effort towards en-
abling analytics-aware optimizations over polymorphic analytical
functions. We present a novel markup language-based approach
for expressing the functions’ polymorphic properties via a set of
well-defined instructions. The Collaborative Optimizer uses these
instructions at query time to infer the corresponding properties,
and then decide on the applicable optimizations. From several pos-
sible optimizations, we showcase two core optimizations, namely
“projection push” and “predicate push”, which aim at optimizing the
data movement to and from the analytical functions. The experi-
ments using the Teradata-MLE analytical system demonstrate the
expressiveness power and flexibility of the proposed markup lan-
guage. Moreover, benchmark and real-world customer queries show
the significant performance gain that the Collaborative Optimizer
brings to the Vantage system.
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1 INTRODUCTION

Analytics and SQL-style processing are two integral components
for most modern applications. Together, the two types of processing
(SQL and analytics) provide an enriched environment with a broad
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spectrum of operations ranging from data transformations and
filtering, aggregations, joins of multiple datasets, to data mining,
machine learning, and deep analytics. Most of Teradata’s customers
strive for such type of integrated processing especially at the ter-
abyte scale of big data.

In Teradata, the Teradata Vantage is an ecosystem that extends
the Teradata’s SQL engine with a broad range of analytical functions
and capabilities. The analytical functions can be either remote or
native. In the remote approach, the analytical functions run by
separate dedicated analytical systems, e.g., Teradata-MLE [26]1,
Spark [3], TensorFlow [31], etc., which may or may not be sharing
the same physical cluster with the database system. The users’
permanent data is stored in the database engine, and the data moves
to and from the remote systems only as needed at query time. In
contrast, in the native approach, the analytical functions along with
their executable code if any, e.g., jar files, are embedded in and
natively run within the database system.

The Vantage system enables treating the analytical functions as
first-class citizens within the system, where end-users can seam-
lessly invoke the analytical functions from the SQL queries (see the
invocation of SESSIONIZE() function in Figure 1), and build analyti-
cal pipelines of nested or joined functions intermixed with other
relational tables or SQL sub-queries. Moreover, from the system’s
point of view, the analytical functions are fully integrated within
the SQL query tree such that relational tables flow naturally from
the SQL operators to the analytical functions and vice versa, and
more importantly, the analytical functions are made eligible for and
subject to various types of SQL-related optimizations.

In this paper, we focus on the challenge of: How to optimize the
execution of the SQL queries involving polymorphic analytical func-
tions? Treating the functions as black boxes is very inefficient and
introduces unnecessary overheads both in resources and execution
time. In contrast, capturing the functions’ properties for the pur-
pose of query optimization is very challenging not only because
functions are too many and very diverse, but also because of their
polymorphic nature, which means that a function’s behavior and
properties may dynamically change based on the query and invoca-
tion context [9, 30]. The example illustrated in Figure 1 highlights
few questions central to the rest of this paper. For example, dis-
covering the output schema that the function will generate is an
essential step in query compilation, otherwise the rest of the query
plan cannot be decided (Q1 in the fig.). However, in polymorphic
functions, the output schema may totally depend on the schemas
of the input tables as well as the parameters passed to the function.

I The Teradata-MLE is previously known as the Aster Analytics system [4].
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o, Q1: What is the function’s

*
SELECT output schema?

FROM (SELECT * FROM SESSIONIZE
ON web_clicks----
PARTITION BY userid
ORDER BY clicktime
USING
TimeColumn (clicktime)
Timeout (60)
) AS output) »
WHERE q.userid = 0j---------"""""

””””” > Q2: What are the required
columns from this table?

> Q3: Can this predicate be
"7 pushed to the function’s
input?

Figure 1: Example Query in Teradata Vantage.

Similarity, deciding on which columns from the input table(s) are
actually needed by the function (Q2 in the fig.) may depend on the
passed parameters as well as the types of the other input tables
involved in the invocation. Moreover, deciding on whether or not
a post-function predicate can be pushed to the function’s input
entirely depends on the function’s internal logic and behavior (Q3
in the fig.).

In this paper, we present the Vantage’s Collaborative Optimizer[8],
which is a cross-platform optimizer that resides within the SQL
engine. The Collaborative Optimizer role is to optimize the exe-
cution of the analytical functions invoked from within the SQL
engine, and to address questions like those highlighted in Figure 1.
The proposed optimizer is equally applicable to both native and
remote functions alike. The Collaborative Optimizer approach is
novel and unique compared to all other existing techniques pro-
posed in literature, e.g., [5, 11, 15, 17] or adopted in commercial
systems, e.g., [6, 13, 20, 23], which only focus on the integration
aspect between the SQL and analytical processing. None of existing
systems address the challenges of optimizing the analytical function
execution, especially under the polymorphic execution model.

The integration aspect alone is a value-added feature to cus-
tomers, yet the real value proposition lies in the ability to perform
analytics-aware optimizations in the forthcoming next-generation
processing platforms. The scope of this paper focuses on the fol-
lowing three key properties of analytical functions:

Output Schema Property: This property concerns the infer-
ence of the output schema that the analytical function will generate,
which is essential for query compilation. Although the property
does not help triggering runtime optimizations, it is more efficient
compared to the existing mechanism highlighted in Section 3.

Input Schema Property: This property concerns the inference
of the minimal set of columns required by the function from its
input table(s) while still guaranteeing the generation of the same
output. This property enables a core optimization, referred to as the
“projection push”optimization, which entails the early elimination of
unneeded columns before passing the input tables to the function.

Predicate Push Property: This property concerns the feasibility
of pushing post-function predicates, i.e., predicates on the function’s
output, to the function’s input table(s) while still guaranteeing the
generation of the same output (e.g., Q3 in Figure 1). This property

enables another core optimization, referred to as the “predicate push”

optimization, which entails the early elimination of unneeded rows
before passing the input tables to the function.

To enable the inference of these properties, we design a novel
engine-independent markup language (protocol) for expressing the
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functions’ polymorphic properties via a set of well-defined instruc-
tions. These instructions are internally maintained as a function
metadata attribute, referred to as the function descriptor. The instruc-
tions are designed to have a good expressiveness power to cover a
wide range of functions. The Collaborative Optimizer retrieves the
desired descriptors at query time, interpret their instructions over
the invocation context to infer the properties, and then apply the
applicable optimizations, e.g., predicate and projection push.

Although the optimizations of predicate and projection push are
very primitive in the context of database systems over the well-
defined SQL operators, it is far more challenging to enable these
optimizations over analytical functions. This is because the analyti-
cal functions are too many, very diverse, involve complex logic, and
many of them are polymeric. Typically, end-users may have lim-
ited knowledge on both the SQL syntax and the functions’ internal
properties, and hence they are only expected to plug in the names
of the input tables and fill in the parameters’ values. Then, the sys-
tem should be responsible for enabling all applicable optimizations
transparently, which is the job of the Collaborative Optimizer.

The rest of this paper is organized as follows. In Section 2, we
present preliminaries and background. In Sections 3 and 4, we
introduce the function descriptors, and the details of the markup
language, respectively. The exploitation of the descriptors in query
re-writing and optimization is presented in Section 5, and the related
work is presented in Section 6. Finally, the experimental evaluation
and the conclusion remarks are included in Sections 7 and 8.

2 PRELIMINARIES

For the sake of this paper, we assume that end-users interact with
the Vantage system by submitting SQL queries involving invoca-
tions to analytical functions as depicted in Figure 1. Each remote
analytical system must be registered in the Teradata Vantage to fa-
cilitate the communication with that system through the Vantage’s
network layer. In addition to the system-level registration, each
individual remote function needs to be also registered within the
SQL engine through a mechanism (SQL command) called CREATE
FUNCTION MAPPING. This mechanism simply links the remote func-
tion in a specific system to a unique internal user-defined alias,
which is later used for function invocation.

In the following subsections, we briefly overview the functions’
invocation interface within a SQL query, which is a SQL construct
called Table Operator, and the polymorphism property.

2.1 Table Operator and Execution Model

In Teradata Vantage, table operators [1] are the building blocks for
implementing and invoking the analytical functions from a SQL
query. They receive as inputs one or more data tables and a set of
parameters, and produce as output a table that can be consumed by
a parent SQL query. The basic invocation syntax of a table operator
from a SQL query is as illustrated in the examples of SESSIONIZE()
(Figure 1), UNPIVOT() (Figure 2(a)), and DTW() (Figure 3(a)). In general,
table operators accept two types of inputs:

(1) One or more data tables, each is specified in a separate ON
clause. Each ON clause may be optionally qualified with the sub-
clauses of PARTITION BY expressions>and ORDER BY <expressions>,



SELECT * FROM Unpivot (
ON (SELECT * FROM input_timeseries_table)

USING
Unpivot ({ 'unpivot_column' | 'unpivot range' }[,..])
Accumulate ({ 'accumulate column' | 'accumulate column_range' }[,..])

[ InputTypes ({'true'|'false'}) ]
[ AttributeColumn ('attribute_column') ]
[ ValueColumn ('value column') ]

(a) The Unpivot Function Syntax

Column Name* Data Description
Type
accumulate_column Sameasin  Columns specified in Accumulate parameter. Copied from the
input table input table.

attribute_column VARCHAR  Unpivoted attribute.

value_column VARCHAR  Appears when InputTypes('false'). Contains the unpivoted
value of the corresponding attribute. Numeric values are cast to

VARCHAR.

value_column_double ~DOUBLE Appears when InputTypes('true') and an unpivot column has a
real data type. Contains the unpivoted value of the

corresponding attribute if the value is real; NULL otherwise.

value_column_long LONG Appears when InputTypes('true') and an unpivot column has
an integer data type. Contains the unpivoted value of the

corresponding attribute if the value is integer; NULL otherwise.

VARCHAR  Appears when InputTypes('true') and an unpivot column has a
data type other than real or integer. Contains the unpivoted
value of the corresponding attribute.

value_column_str

Take the columns listed in parameter Accumulate
and add them to the output schema. The data type is
the same as that of the inputs.

Take the column name defined in this
parameter and add it to the output
schema. The data type is Varchar.

ValueColumn
parameter exists?

Terminate

InputTypes No

parameter exists & = true?

Take the column name defined in
ValueColumn parameter and add it
to the output. The data type is Varchar.

other

What is the data type o
unpivot column?

Take the column name defined in
ValueColumn parameter, postfix it with
“ str”, and add it to the output schema.

The data type is Varchar.

Take the column name defined in
ValueColumn parameter, postfix it
with “_double”, and add it to the output
schema. The data type is Double.

* The black italic part in the column names indicates that it is dynamic string that depends on the inputs.
Whereas, the blue non-italic part indicates that it is a fixed string.

(b) The Specifications of the Function’s Output Schema (from the Manual)

Take the column name defined in ValueColumn
parameter, postfix it with “_long”, and add it to the
output schema. The data type is Long.

(c) The Flowchart for Constructing the Function’s Output Schema

Figure 2: Unpivot Function from Teradata-MLE.

or labeled as a dimension table using keyword DIMENSION. Dimen-
sion tables are typically broadcasted to all worker machines (called
AMPs in Teradata). The ON clause tables can be either base tables
referenced by name, or derived tables generated from any arbitrary
SQL query, which may involve nested table operators.

(2) A set of parameters defined in the USING clause, each parame-
ter is in the form of name-value pair, where each value is either a
single string or multiple comma-separated strings. As defined in
the manual of each function, some parameters may be mandatory
while others are optional.

For example, referring to the SESSIONIZE() function in Figure 1,
the function receives one input table, i.e., web_clicks, and this table
is partitioned by the userid column and each partition gets sorted by
the clicktime column. The function also receives two input parame-
ters, namely TimeColumn, which specifies the name of the column
carrying the clicks timestamps, and the Timeout parameter, which
specifies the ideal time between consecutive clicks to break ses-
sions. If the PARTITION BY clause is not present for a non-dimension
input table, e.g., the input to the Unpivot() function in Figure 2(a),
then the table is randomly partitioned. Finally, the example of the
DTW() function in Figure 3(a), illustrates passing three tables to the
function, where one of them is a dimension table, as well as a set of
parameters, where the first four parameters are mandatory, and the
last three, i.e., the ones in-between square brackets, are optional.

Function Execution Model: The execution model of table op-
erators is very similar to the map-reduce model in Hadoop [32].

The processing of a table operator can be viewed as three phases;
record-level manipulation, data partitioning, and finally partition-
level manipulation. For example, referring to the SESSIONIZE () func-
tion in Figure 1, since the ON clause directly refers to a base table
name, i.e., web_clicks, then there is no record-level manipulation,
otherwise a full-fledged SELECT statement could have been used
to perform any of such manipulations. Then, the input table is par-
titioned by the userid column and each partition gets sorted by the
clicktime column. After that, each partition is sent to a worker node
(called “AMP” in the Teradata distributed system). These AMPs will
also receive any specified parameters and any dimension tables as
broadcasted tables.

In the case the table operator is implementing a native analytical
function, the code and logic of the table operator that gets executed
over each partition is defined in an external language, e.g., using
Java/C/C++/Python code. The external function is linked to the
table operator during its creation time using CREATE FUNCTION
command. After this logic is applied over each partition, the func-
tion produces its output in the form of a relational table to continue
the execution of the outer (parent) SQL query. In the case the analyt-
ical function is remote and executes in an external engine, then the
created table operator is just an interface to the remote function. In
this case, the SQL engine prepares all inputs, e.g., derived tables and
parameters, applies any specific partitioning or ordering defined
in the ON clauses, and then passes the data to the remote system.
Finally, the function’s output is sent back in the form of a relational
table to continue the execution of the outer SQL query.
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SELECT * FROM DTW (

ON input_table AS input_table
PARTITION BY i_partition_column [,...
ORDER BY i_ordering column [,...]

ON template_table AS template_table DIMENSION
ORDER BY t_ordering column [,...]

ON mapping_table AS mapping_table
PARTITION BY m partition_column [,...

USING
InputColumns ('i_value',
TemplateColumns ('t_value',
TimeseriesID ('timeseriesid'’
TemplateID ('templateid’' [,.
[ Radius ('radius') ]
[ DistMethod ('distance_metric') ]
[ WarpPath ({'true']|'false'})]

1

1

'i_timestamp')

't_timestamp')
[re--1)

«-1)

)i

* The blue aliases are mandatory aliases such that the function can identify the
different input tables (with mandatory aliases, the order is not important).

(a) The DTW Function Syntax

Input table Mandatory Columns
(ON Clause) (Needed by the function)
The column(s) defined in its PARTITION BY
input_table The column(s) defined in its ORDER BY

The columns defined in parameter InputColumns

The column(s) defined in its ORDER BY
template_table

The columns defined in parameter

TemplateColumns

(b) The Specifications of the input Schemas (from the Manual)

Figure 3: Dynamic Time Warping Function from Teradata-MLE.

2.2 Functions Polymorphism

Polymorphic functions, which are part of SQL:2016 [19], are func-
tions that accept different types of inputs, their behavior and pro-
cessing may change based on these inputs, and their outputs may
also differ depending on the inputs they receive. Most analytical
functions are inherently polymorphic. In the following examples,
we demonstrate the polymorphism property using functions from
the Teradata-MLE system, which offers approximately 180 analyt-
ical functions ranging from clustering, classification, predication,
sentiment analysis, statistical methods, among others [2].

Example 1: Output Schema of Unpivot Function

The Unpivot () function pivots data that is stored in columns into
rows. The invocation syntax of the function and the specifications
of its output schema from the function’s manual are depicted in
Figures 2(a) and (b). The function accepts one input table (one ON
clause), two mandatory parameters, i.e., Unpivot and Accumulate,
and three optional parameters, i.e., InputTypes, AttributeColumn, and
ValueColumn. For the sake of clarity, we translate the output schema
specifications in Figure 2(b) to the flowchart presented in Figure 2(c).
Few observations from the flowchart include: (1) the output column
names are dynamic and they are listed in some parameters, e.g.,
Accumulate, and these names are referencing columns in the input
table, (2) the data types of output columns inherit the corresponding
types from the input table, (3) there are branching and conditional
actions based on the presence or absence of some parameters as well
as the data types of some columns, (4) the listing of the column names
within a parameter can be explicit or by column positions and ranges,
and (5) there are manipulation operations on the column names to,
for example, postfix the names of some columns with fixed string (see
the blue-marked string {"_double", "_long", "_str"} in Figure 2(b)).

>

"on
>
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Example 2: Input Schema of DTW Function

Dynamic Time Warping (DTW) is a similarity measure algorithm
over time series data. The invocation syntax of the function is depicted
in Figure 3(a), where it takes three mandatory input tables (three ON
clauses), four mandatory parameters, and three optional parameters.
The function accepts any schema and any number of columns in
each of the three ON clauses. However, the columns of interest to the
function must be defined inside the parameters. The table in Figure 3(b)
shows the required columns needed by the function for each input ON
clause. Few observations from Figure 3 include: (1) Each ON clause has
a pre-defined alias, which is indicated in blue in Figure 3 (a). Given
these pre-defined aliases, the order among the ON clauses is arbitrary.
For other functions, there might not be pre-defined aliases, and in these
cases, the order of the ON clauses is strict. (2) The mandatory columns
needed by the function from each ON clauses are different as illustrated
in Figure 3(b). For example, the table with alias “input_table" may
have 100s of columns, but the relevant ones for the function are only
those defined in the Partition By and Order By sub-clauses as well
as the names listed in parameter InputColumns. (3) The mandatory
columns of a given ON clauses can be either coming from its sub-
clauses or parameters, and they cannot reference other ON clauses (as
exemplified in Figure 3(b)).

3 FUNCTION DESCRIPTOR LIFECYCLE

The analytical functions in Teradata Vantage are made eligible for
optimizations through a metadata object, referred to as the “function
descriptor”. The descriptor of a function is a JSON-based document
that captures specific properties of interest to the query optimizer
to help generating better execution plans, e.g., the “outputSchema”,
“inputSchema”, and “predicatePush” properties. Each of these prop-
erties is an array of other JSON documents containing instructions
for inferring the property’s value at query time (Sections 4 and 5).
In this section, we describe the lifecycle of a descriptor, which
includes:

(1) Creation. In the first release of the Collaborative Optimizer
feature, the descriptors are solely created by the Teradata system
engineers who are implementing and integrating the function with
the Vantage system. Therefore, the descriptors are shipped as part
of the entire system. In the experiment section, we provide more
details on the descriptors’ creation process.

(2) Loading: During the installation of the function in the Vantage
system, the descriptors are uploaded to the database system and
stored in a dictionary table, which maintains one entry per installed
function. For performance reasons, we opt to store the descriptors
in BSON binary format, which allows for better storage utilization
and faster retrieval and parsing at query time.

(3) Retrieval and Parsing: Given a query involving one or more
analytical functions, the Collaborative Optimizer retrieves the corre-
sponding descriptors from the dictionary table at query compilation
time, parses the JSON fields of a descriptor, and then builds a main
memory data structure containing all the details of the stored in-
structions. This structure is cached for the query lifetime such that
if a query invokes the same function multiple times, there will be a
single retrieval from the dictionary table.



(4) Interpretation and Optimizations: The last phase involves
applying the descriptor’s instructions over a specific function invo-
cation within the query. This step is context dependent and results
in inferring the function’s properties given that context, e.g., the
required columns that the function needs given the input schemas.
Finally, the Collaborative Optimizer triggers the applicable re-write
optimizations by, for example, projecting out certain columns or
pushing a post-function predicate to the function’s inputs.

4 MARKUP LANGUAGE

4.1 Design Principles and Language Coverage

The proposed markup language is the language in which the func-
tion descriptors are expressed, and it consists of a set of instructions
in JSON format. The key design principles guiding the design of
the markup language are:

Interoperability: The language is engine-independent and is de-
signed to facilitate the communication between heterogeneous
analytical engines, including built-in analytical functions within a
database system, and the Collaborative Optimizer.

Expressiveness: The language is expressive enough to cover a
wide range of functions. We analyzed dozens of functions and ex-
tracted polymorphic patterns regarding what needs to be referenced
within a function’s invocation body and how it is referenced. The
language’s instructions are designed to cover these patterns.

Extensibility: As needed, additional instructions can be added
to the language to expand its coverage and expressiveness power.
Moreover, the two optimization types explored in this paper, namely
projection push and predicate push, are only two examples of many
other optimizations. The language can be extended to capture func-
tion properties for enabling cardinality estimation, i.e., the expected
output size based on a given input size and other invocation pa-
rameters, and join-related optimizations, i.e., switching the order
between a join operator and an analytical function based on the
function’s semantics.

Transparency: The language and its detailed instructions can be
viewed as part of the engine’s backend, which is entirely transpar-
ent to end-users who submit their analytical queries to the system.
Even more, for the system admins and engineers who are expected
to generate the functions’ descriptors, they typically express the
function’s properties through a user-friendly interface, which auto-
matically generates the descriptor. Therefore, the learning curve to
leverage the markup language is minimal.

Coverage: The language is not intended to cover all possible
functions and scenarios as that may excessively increase the lan-
guage complexity. In general, the markup language is designed
to cover the class of functions exhibiting “Invocation-dependent
polymorphism”, i.e., functions whose polymorphic characteristics
can be decided solely based on the invocation content rather than
the input data content passed to the function. Nevertheless, other
function classes that exhibit “data-dependent polymorphism”,
i.e., depend on the input content or intermediate data state, or
exhibit “cluster-dependent polymorphism”, i.e., depend on the
cluster configuration are not currently supported.

In the rest of this section, we present the three main instructions
of the markup language, namely ADD, CASE, and LOOP.
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4.2 Building Block ADD Instruction

The ADD instruction is used to add column information to the
target list, either the output or input schema list. The main design
elements of the ADD instruction are: (1) Ability to reference the
different fragments within a function’s invocation from which the
columns will be inherited. This includes the input clause(s) and their
PARTITION BY and ORDER BY clauses, and the input parameters,
(2) Ability to add columns newly introduced by the function and
in this case defining their data types, (3) Ability to apply some
manipulations (if needed) on these columns, e.g., concatenating
multiple column names into one or prefixing the column names
with sequential numbers, etc., and (4) Ability to control the position
in which the column names are augmented. The order of columns
matters especially for the input schema. The design of the ADD
instruction illustrated in Figure 4(a) captures these requirements.

The ADD instruction involves three levels (types) of nested JSON
documents as illustrated in Figure 4(a). For ease of reference, we
refer to them as ADD-D1, ADD-D2, and ADD-D3.

® ADD-D2. “source”: The added columns come from one of three
possible sources as follows: (1) “inputTable”, which is one of the
ON clauses in the invocation body, (2) “parameter”, which is one of
the parameters in the USING clause, or (3) “predefined”, which are
columns that do not depend on the inputs, e.g., columns that the
function adds to the output regardless of the input.

e ADD-D2. “name”: The exact columns’ information from the
specified source are defined in the “name”field. The value of this
field is one of the simple regular expressions depicted at the bottom
of Figure 4(a). For example, in the case the “source” = "predefined”,
then the name of the column is specified in the “name” field. In
contrast, in the case the “source” = "inputTable", then there are six
regular expressions possibilities, which for example, allow referenc-
ing all columns from a specific input, e.g., “inputld.””, the columns in
the Partition By clause, e.g., “inputld.PartitionBy.*”, specific column
range, e.g., “inputld.[i,j]”, among few other options. The “inputld”
is a unique identifier specific to each ON clause in the invocation
body. We will discuss later in this section the two possible refer-
encing mechanisms for the ON clauses, namely position-based or
alias-based referencing.

e ADD-D2. “manipulations”: This field is optional and contains
an array of possible manipulation operations that can be applied
over the column names before inserting them into the list. The
current supported operations are highlighted in document type
ADD-D3, which include concatenating the column names together
to form one column name (“concat” operation), and prefixing (or
postfixing) each of the column names with a specific string (“prefix”
(or “postfix”) operations, respectively).

Example 3: Applying the ADD Instruction to DTW()

Referring to the DTW function in Figure 3, lets define the input
schema of one of its tables, say the one with alias “input_table”. We
need one ADD instruction with three arguments as illustrated in Fig-
ure 4(b). Notice that the first two documents under “arguments” array
indicate that the columns will come from the Partition By and Order
By sub-clauses of the ON clause with alias “input_table”. Whereas
the 3¢ document indicates that the rest of the needed columns by the
function will come from parameter “inputColumns”. It is also worth



{ “instruction”: “ADD’, 1 el
o - ., "instruction": "ADD" "instruction”: "ADD"
“placement”: “begin” | “end” | “before <ColName>"| "after <ColName> § " ;'llzcz:l:nt?[} “end" ! § ,,;Illzc;:;nt?r_l "end" !
: , : '
“arguments”: <array of documents> 4 "arguments': [ 4 “"arguments": [
} " 5 { 5 {"source": "parameter",
Document Type ADD-D1 [3 "source": "inputTable", 6 "name": "Accumulate.*",
7 "name": "input_table.PartitionBy.*", 7 "dataType": "unchanged"
8 "manipulations": [] 8 }
9 Y 9 { "source": "parameter",
{“source”: “inputTable” | “parameter”| “predefined”, 10 { 10 "name": "AttributeColumn.*",
& —|— “name”: <name of the source>, 11 "source": ) "inputhllﬂe" ,d 11 ) "dataType": "varchar"
c « . T N 12 "name": "input_table.OrderBy.*", 12 ,
_g ‘dataType”: “unchanged [(</nputld>)]" | “<dataType>’, 13 "manipulations”: [] 13 { "source": "parameter",
4 “manipulations”: <array of manipulation ops> 14 }, 14 "name": "ValueColumn.*",
S } 15 { 15 "dataType": "varchar"
3 Document Type ADD-D2 | 16 "source": "parameter", 16 s
§ 17 "name": "InputColumns.*", 17 { "source": "parameter",
g, 18 "manipulations": [] 18 "name": "ValueColumn.*",
2 19 } 19 "dataType": "double",
3 {“operation”: “concat” | “prefix” | “postfix”, 20 1 20 "manipulations": [
H “argument”: “<constant>” | “valueFromParameter(<para name>)’ 21} 21 {"operation": "postfix",
T " " " 22 "argument": "_double”
° ) Document Type ADD-D3 (b) I_Example ADD ln_structlon for DTW function 23 1
[ (input schema of input_table table). 24 }
251
“source’i: “‘inputTable” i“source": “parameter” “source”:ipredefined" 26}
-Inputld.* -Inputld.PartitionBy.* -ParameterName.” -ColName (c) Example ADD instruction for Unpivot func.
-Inputld.ColName _pytid OrderBy.* -ParameterName.ColName (mocked output schema scenario).
-Inputld.[i,j] -ParameterName.[ij]

(a) Specifications of the ADD Instruction in the Markup Language.

Figure 4: Specifications and Examples of the ADD Instruction.

noting that the “manipulations” field can be set to an empty array as
in the figure, or totally omitted. Each of the other two inputs, namely
“template_table” and “mapping_table” will have very similar ADD
instructions to define minimal columns from their schemas needed by
the function.

Example 4: Applying the ADD Instruction to Unpivot()

Referring to the Unpivot function in Figure 2, lets assume for the
sake of simplicity that the output schema specifications of this function
contain only the first four rows in Figure 2(b) without any conditions
involved. Later, the Unpivot function will be revisited after introducing
the CASE instruction. Under this simplifying scenario, the first four
rows can be translated to the ADD instruction in Figure 4(c).

Input Table Referencing: An analytical function may have
multiple input tables specified in its invocation, which is expressed
as multiple ON clauses in the invocation body (see Figure 3(a)
for an example). The markup language supports two referencing
mechanisms that can be used depending on the specifications of
each function.

Position-Based Referencing, in which a reference to a specific
input is achieved by the position of its ON clause relative to the
other ON clauses, ie., “inputl” and “input2” are keywords that
reference the 15¢ and 2"¢ ON clauses, respectively. This referencing
scheme is applicable only if the order of the inputs in the function’s
invocation is fixed and there are no optional ON clauses.

Alias-Based Referencing, in which a reference to a specific in-
put is achieved by its alias. For example, referring to the DTW()
function in Figure 3(a), the main and template tables to the func-
tion can be referenced using their aliases, i.e., “input_table” and
“template_table", respectively. This referencing scheme is applicable
only if the function’s manual mandates specific aliases to be given

to the inputs. In this case, the relative order among the ON clauses
in not important, and hence the instructions must use the table
aliases (see Figure 4(b) for an example).

4.3 Building Block CASE Instruction

The CASE instruction is used in the scenarios where a branching or
conditional action is needed, e.g., the conditions in the Unpivot ()
flowchart in Figure 2(b). The main design elements of the CASE
instruction are: (1) Ability to reference and check parameters, either
checking their presence or absence or checking the value in a given
parameter, and (2) Ability to specify a list of actions under each
branch, which includes defining ADD and LOOP instrcutions. The
markup language does not currently support nested CASE instruc-
tions as we did not find a strong need for such complexity based
on the observed functions.

The CASE instruction consists of three levels of documents as
illustrated in Figure 5(a), referred to as CASE-D1, CASE-D2, and
CASE-D3. The instruction is designed in a very similar way to the
CASE statement in programming languages. For example, the in-
struction consists of an array of conditions (branches), and a set
of actions associated with each branch. At most one branch can
evaluate to True and get executed, and then all subsequent branches
are skipped. It is possible that none of the branches evaluates to
True, and as a result none of actions is executed. In the following,
we highlight the description of some fields in the instruction.

e CASE-D2.“condition”: This is an array of conjunctive con-
ditions, i.e., an array of documents of type CASE-D3, that together
represent the condition part of one branch. If these conditions evalu-
ate to True, then the action(s) associated with this branch, which are
specified in the CASE-D2. “action” field, get executed. The actions
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(a) Specifications of the CASE Instruction in the Markup Language.

{ “instruction”: “CASE”,

>: <array of d
Document Type CASE-D1

ar s>

h 4

(conjunctive conditions) >,

”: <array of doc

“action”: <array of ADD instruction documents>

Document Type CASE-D2 |

v

{“leftOperand”: valueFromParameter(<parameterName=>) |
dataTypeOfColumn(<parameterName=>) ,

“operator”: “Exists” | “Not Exists” | “In” | “Not In” | 3

“Contains” |

ike” | “Between” |

<

“valueType”: © | “double™ | “string”,

D)

-~

"instruction"
"placement"”
"arguments": [
{"source": "parameter",
"name": ”ValueColumn.*",
"dataType": "varchar”

ADD",
end",

"placement"
"arguments" :

[

{"source":

"parameter",
"name": ”ValueColumn.*",
"dataType": ”varchar”

Branch 2 Action Branch 3 Action

(b) Example of the CASE Instruction for Unpivot() Output Schema.
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37
38
39
40

46
47
48
49

"instruction":
"placement"
"arguments"
{"sour "parameter",
“name" alueColumn.*",
"dataType": "long”,
"manipulations": [
{"operation": "postfix",
"argument": "_long”

H

"instruction":
"placement”
"arguments
{"sour
"name": ”
"dataType" :
“manipulations”:
{"operation":
"argument" :

“ADD",
end",

"parameter",

alueColumn.*",

“double”,

[

"postfix",
"_double”

31

Branch 4 Action

Branch 5 Action

65

66
67
68
69
70

//ADD instr.
}
{

for Accumulate & AttributeColumn (Lines 2-12) in Fig 4(c)

"instruction": "CASE",
"arguments": [
{"condition": [
{"leftOperand: "valueFromParameter(ValueColumn)",
Branch 1 , "operator": "Not Exists"
1,
"action": []

{"condition": [

{"leftOperand": "valueFromParameter (InputTypes)",
"operator": "Not Exists"
Branch 2 }
1.
"action [
Y,
{"condition": [
{"leftOperand": "valueFromParameter (InputTypes)",
"operator": ,
"valueType tring",
Branch 3 "rightOperand": "false"
}
1,
raction”: Lg
""" T )
Y,
{"condition": [
{"leftOperand": "dataTypeOfColumn(Unpivot)",
"operator" n",
"valueType": "string",
Branch 4 "rightOperand": "real, double, decimal"
}
1,
"action [
7777777777777777 === )
Y,
{"condition": [
{"leftOperand "dataTypeOfColumn(Unpivot)",
"operator ",
"valueType" string",
Branch 5 "rightOperand": "int, integer"
- }
1, {
feceeel___laction”: 7[’ "instruction": ”ADD",
N ] "placement": "end",
{"condition": [1, ,
Branch 6 "action": [. "dataType"
] EREEN "manipulations": [
I {"operation": "postfix",
"argument": "_str”
1 31 i
i Y1r Branch 6 Action |

Figure 5: Specifications and Examples of the CASE Instruction.

in CASE-D2. “action” are simply an array of the ADD instruction
introduced in Section 4.2.

o CASE-D3: This is a document for expressing one condition. As
illustrated in Figure 5(a), the document includes specifications for:
the left-side and right-side operands, the comparison operator, and
the data type used for the comparison. The left-side operand is
either a value retrieved from an invocation parameter in the USING
clause, i.e, the “valueFromParameter(<parameterName>)” syntax,
or a data type of a column name specified in a parameter, i.e, the
“dataTypeOfColumn(<parameterName>)” syntax. In contrast, the
right-side operand is either a constant value or a value retrieved
from a parameter.

Example 5: Applying the CASE Instruction to Unpivot()

We can now re-visit Example 4, and consider the complete output
schema flowchart of the Unpivot () function depicted in Figure 2(b).
The flowchart can be expressed using the ADD and CASE instructions
as illustrated in Figure 5(b). We will use this example to highlight
few additional features of the markup language. Lines 2-12 express a
single ADD instruction to inserting the column names in parameters
Accumulate and AttributeColumn to the output schema (identical to
those in Figure 4(c)).
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Following the ADD instruction, a CASE instruction is expressed to
insert the remaining columns (Lines 15-70). As illustrated, there are six
main branches, each including a condition-action elements. Branches
are evaluated in sequence, and once a branch’s condition is matched,
the subsequent branches are not considered. The action element of
branches 4, 5, and 6 involves a “manipulation” operation to postfix the
column name specified in parameter ValueColumn with a constant
string.

4.4 Building Block LOOP Instruction

The following example shows a type of functions for which the
number (and possibly the name) of the inserted columns to the
target schema, e.g., the output schema, depends on a value of a
parameter. For these functions, the ADD and CASE instructions are
not sufficient to express their polymorphic properties, and there is
a need for the LOOP instruction introduced in this section.

Example 6: Output Schema of PCAPlot Function

The PCAPlot () function calculates a set of principal components,
and each principal component is a linear combination of the set of
original predictors. The invocation syntax and the output schema
specifications are illustrated in Figures 6(a) and (b), respectively. More



SELECT * FROM PCAPlot (
ON input_table AS inputtable PARTITION BY ANY
ON pca_table AS pca_table DIMENSION

SELECT *
FROM PCAPlot ( ON ... ON ...
USING Components (3)
USING Accumulate('pid, strokes’));
Components ('num_components')
[Accumulate({ 'accumulate column'}[,...]) ] ‘
)i {pid, strokes,principal_component 1,

(a) The PCAPIlot Function Syntax

principal_component 2, principal_component 3}

(c) Example of an output schema

Column Name Data
Type

Description

accumulate_column Sameasin  Columns specified in Accumulate parameter. Copied from the input table.

input table

principal_component i double The principal component columns. The number of columns depends on the value of parameter

Component. The postfix “7" is the component number ranging from 1 to the parameter value.

(b) The Specifications of the Function’s Output Schema (from the Manual)

Figure 6: Principal Component Analysis Func. from Teradata-
MLE.

specifically, the output schema consists of the column names specified
in the Accumulate parameter plus a set of columns whose number
matches the value specified in the Components parameter and their
names start with string “principal_component_" followed by a sequen-
tial number. Figure 6(c) shows an example of invocation parameters
and the corresponding output schema.

The LOOP instruction adds iteration capabilities to the markup
language for expressing the type of functions highlighted in Ex-
ample 6. The main design elements of the LOOP instruction are:
(1) Ability to specify the number of iterations, which may come
from a predefined constant, a parameter’s value, or an enumerated
list of values within a parameter, (2) Ability to reference the itera-
tion index, which either gets modified in a static manner, e.g., gets
incremented in each iteration, or hops over enumerated list, and
(3) Ability to integrate the iteration index into the specifications of
the column names, i.e., within the ADD instruction.

The LOOP instruction consists of a single JSON document, re-
ferred to as LOOP-D1, as depicted in Figure 7(a). The example in
Figure 7(b) illustrates the usage of the LOOP instruction to define
the output schema of the PCAPlot () function.

5 QUERY OPTIMIZATION

In this section, we zoom out from the markup language instruc-
tions to the top-level function descriptor, which is one JSON file
per function. The structure of the descriptor is highlighted in Fig-
ure 8(a), where it contains one JSON element for each of the main
properties. In this section, we focus on two semantic properties,
namely inputSchema and predicatePush, which enable the two core
optimizations of projection push (Section 5.1) and predicate push
(Section 5.2) , respectively. These two optimizations are examples
of rule-based optimizations since they are guaranteed to improve
performance and there is no potential benefit from carrying and pro-
cessing unnecessary data. Nevertheless, other optimization types,
including cost-based optimizations, are also applicable but beyond
the scope of this paper.

5.1 Input Schema Specifications

Document Structure: Since functions may have multiple input
tables (see the DTW() function in Figure 3(a)), the “inputSchema”
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“numlterations™: “<constant>

valueFromParameter(<parName>)

> |
“EnumFromParameter(<parName>)”,

“startIndex”: <07 | “17,

“arguments”: <array of ADD or CASE instruction documents>

} Document Type LOOP-D1

(a) Specifications of the LOOP Instruction in the Markup Language.
Two reserved variables inside the LOOP instruction:
“iteration.index”: returns the iteration number.

“iteration.value”: Only valid when “EnumFromParameter()” is used.
In each iteration, it carries the next value from the comma-
separated values specified in “numilterations” field.

1

2 "instruction": "ADD",

3 "placement": "end",

4 "arguments": [

5 {"source": "parameter",

6 "name": "Accumulate.*"

7 "dataType": "unchanged"

8 1

9}

10 {

11 "instruction": "LOOP",

12 "numIterations": "valueFromParameter (Components)",
13 "startIndex": "1",

14 "arguments": [

15 {"instruction": "ADD",

16 "placement": "end",

17 "arguments": [

18 {"source": "predefined",

19 "name": "principal_ component_",

20 "dataType": "double",

21 "manipulations": [

22 {"operation": "postfix",

23 "argument": "iteration.index"
24 3

25 H

26 }1

27 } (b) PCAPIlot() Instructions

Figure 7: Specifications and Examples of the LOOP Instruction.

JSON element in the descriptor contains an array of documents,
each describes the minimal columns required for a specific ON
clause. The structure of a single inputSchema document is depicted
in Figure 8(b). The document contains two straightforward fields
“inputld” and “instructions”. The former references a specific ON
clause either by its position or by its alias depending on the function
(refer to the last paragraph in Section 4.2 for the description of the
alias-based vs. position-based referencing mechanisms). The latter
field contains an array of instructions (ADD, CASE, LOOP) that specify
how to infer the minimal input schema at query time.

The document contains an additional field, namely “surplus”,
which is important in deciding the projection push optimization
and the elimination of the unneeded input columns. This field
specifies the behavior of the function with respect to the additional
columns beyond the mandatory ones if passed to the function. The
allowed values are:

o “surplus” = “notAllowed™ This value indicates that it is not
allowed to send additional columns to the function beyond what
it needs, otherwise the function fails. For functions conforming
to this behavior, the elimination of the unneeded columns can be
viewed as a value-added functionality since the end-users do not
need to exactly know the columns needed by the function. Instead,
the Collaborative Optimizer projects out the extra columns, which
leads to a successful function execution.

o “surplus” = “ignored”™ This value indicates that if additional
columns are sent to the function beyond the needed ones, these
columns are ignored (dropped) by the function. Clearly, applying



the projection push optimization to early eliminate these columns
is very critical for better performance.

o “surplus” = “propagatedBack™ This value indicates that if ad-
ditional columns are sent to the function beyond the needed ones,
these columns are carried (copied) from the input to the output.
These extra columns are called “pass-through” columns. Functions
that conform to this behavior are typically row-based functions
that operate on each row independently.

Exploitation in Query Optimization: The goal from the input
schema specification is to identify the minimal columns required
by the function for each ON clause and the elimination of any
unnecessary columns. For the cases of “surplus” = “notAllowed” and
“surplus” = “ignored”, the projection push optimization is guaranteed
that passing any extra columns to the function will not bring any
benefit to the entire SQL query, and hence it is applied as a rule-
based optimization. The following example demonstrates this case.

Example 7: Case (“surplus” = “ignored”)
Consider the following SQL query involving the DTW() function.
Recall that the function’s properties are highlighted in Figure 3.

SELECT * FROM DTW (
ON timeSeriesPrimary AS input_table
PARTITION BY tsiid ORDER BY timestampl
ON ... ON ...
USING
InputColumns ('temperature', 'timestampl')

)i

Now, lets assume that table timeSeriesPrimary has the following
schema:

timeSeriesPrimary(ts_id, timestampl, temperature,
metaCol_1, metaCol_2, .., metaCol_k)

Focusing on the input schema specifications of the 15* ON clause
for which the instructions are presented in Figure 4(b). The re-written
query is thus:

SELECT * FROM DTW (

ON (SELECT ts_id, timestampl, temperature
FROM timeSeriesPrimary) AS input_table
PARTITION BY ts_id
ORDER BY timestampl

ON ...

ON ...

USING
InputColumns ('temperature', ’‘timestampl’)

)i

5.2 Predicate Push Specifications

Document Structure: The “predicatePush” property in the de-
scriptor (refer to Figure 8(a)) specifies some properties that help de-
ciding whether or not a post-function predicate can be safely pushed
to the function’s input. A predicate can be pushed to the function’s
inputs on either a single ON clause or multiple ON clauses. For
example, a function may have three ON clause inputs, the first two
specify primary tables that are co-grouped, i.e., partitioned in the
same way and have the same schema, while the 374 ON clause is a
dimension broadcast table. It can be the case that a predicate p on
the function’s output can be pushed to only the first two ON clauses.

2967

(a) Top-Level descriptor JSON document

{ i 1 “<Fl

“inputSchema”: [<array of Input-Schema docs>],

“predicatePush”: [<array of Predicate-Push docs>],

.}

{ “property” : “predicatePush”,
“outputld”: “<output-unique-Id>",
“targetinputld”: “<inputPosition>" | “<alias>",
“rowindependence™: “Yes”|“No”,
“partitionindependence”: “Yes” | “No” }

{ “property” : “inputSchema”
“inputld”: “<inputPosition>" | “<alias>",
“surplus”: “notAllowed” | “ignored” | “propagatedBack”,
“instructions”: <array of instructions>}

(b) Input Schema JSON document
(c) Predicate Push JSON document

Figure 8: Function Descriptor Structure and its Sub-Documents.

The two key fields in the document for capturing the function’s
semantics regarding predicate pushing are:

o ‘rowIndependence”™ This property is set to “Yes” only if the
function satisfies the following three conditions, otherwise the
property is set to “No" (1) The function operates on each row
independent of the other rows, and (2) The function does not alter
the values of the input rows although subset of the columns may
be dropped, and (3) The function does not alter the input column
names.

e “partitionIndependence™ This property is set to “Yes” only if
the function satisfies the following three conditions, otherwise the
property is set to “No": (1) The function operates on each partition
independent of the other partitions, and (2) The function does not
alter the values of the partitioning columns rows although subset
of the columns may be dropped, and (3) The function does not alter
the names of the partitioning columns.

Exploitation in Query Optimization: The predicate push opti-
mization can significantly reduce the data transfer overhead as well
as the function’s execution time. Moreover, it can enable the gener-
ation of more efficient query plans by possibly leveraging available
access paths. In the case where “rowIndependence = Yes”, a post-
function predicate on any of the input columns can be pushed as a
pre-function predicate and gets evaluated on the function’s input(s).
Similarly, if “partitionIndependence = Yes”, then a post-function
predicate on any of the partitioning columns of the specified ON
clause can be pushed as a pre-function predicate to that ON clause.

Example 8: Consider the SQL query presented in Section 1 in Figure 1
involving the SESSIONIZE () function. The predicate push specifications
for the function (the left-hand side) and the function invocation re-
writing (the right-hand side) are as follows:

SELECT * FROM (SELECT *
FROM SESSIONIZE (
ON (SELECT * FROM web clicks
WHERE userid = 0)

"property" :"predicatePush",
"outputId": "standard",
"targetInputId": "1,
"rowIndependence": "No" , PARTITION BY userid
"partitionIndependence": "Yes"” ORDER BY clicktime

} USING ...) AS output) AS q;

o~

The Collaborative Optimizer will recognize that the post-function
predicate is on the same partitioning column of the 1* ON clause,
which is the same ON clause referenced in the JSON document. There-
fore, the depicted re-writing becomes applicable.



6 RELATED WORK

Several projects have been proposed in literature or adopted in
commercial systems for enabling seamless integration between
the SQL engines and analytical functions and systems [11, 16—
18, 20, 23, 25, 33]. However, to the best of our knowledge, there
is no previous effort on addressing the challenges of optimizing
the analytical functions within such integrated ecosystems, espe-
cially under the complex model of polymorphism. In that sense,
the Collaborative Optimizer is fundamentally distinct from existing
work. The support for polymorphic functions is reported in several
systems such as Oracle [7] and SAP databases [28]. Nevertheless,
optimizing these functions is not previously proposed.

The MLog project [17] introduces a set of new well-defined
operators, e.g., slicing, linear algebra, and matrix manipulation op-
erators, to operator on relations (aka “tensors”). They propose some
optimizations over these operators. Nevertheless, any function not
expressed in these operators is treated as black box, and hence not
subject to optimizations. In contrast, the work in [5, 11] proposes a
scalable in-database analytics library, called MADIib, implementing
a handful of analytical functions using extended SQL and Python
scripts. MADIib is adopted by some commercial DBMSs such as
Greenplum [13]. Other DBMSs such as Snowflake [6] runs its an-
alytics through integration with external analytical engines, e.g.,
R, SAS, alteryx, among others. However, these existing projects
focus only on the integration aspect and they do not offer analytics-
aware optimizations as proposed by the Collaborative Optimizer
approach.

The work in [14] proposes a UDF model for capturing specific
UDF semantics as a composition of local map or reduce functions,
and then leverages this model for re-using previous results. The
work in [14] is engine specific and targets Map-Reduce frameworks
like apache Hive and Pig, whereas the Collaborative Optimizer
markup language is engine-independent. Second, the work in [14]
cannot model polymorphic functions unless the each possible in-
vocation signature is modeled as a separate function, whereas the
Collaborative Optimizer markup language allows expressing the
polymorphism programmatically (using instructions), which gets
interpreted at run-time to derive the function’s properties. Third,
the two approaches target distinct optimizations, i.e., the Collabo-
rative Optimizer optimizes a function’s input, whereas the work
in [14] optimizes the usability of the function’s output.

More recent work such as the Froid system [27] proposes op-
timizing imperative UDFs in relational database systems by au-
tomatically transforming the UDF logic into relational algebraic
expressions and embeds them into the calling SQL query. Froid
system, however, focuses only on scaler open-box functions ex-
pressed in languages such as Transact-SQL (T-SQL). In contrast, the
Collaborative Optimizer focuses on complex black-box and possibly
non-scaler functions. Therefore, the Collaborative Optimizer and
Froid are two complementary approaches that can co-exist in the
same database system.

Some analytical engines, especially those executing polymorphic
functions, use either mocked function execution or API interfaces
to communicate with the functions at runtime to learn their prop-
erties [24]. These approaches are considered and evaluated by our
team, yet we opt for the markup language and descriptor approach
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for several reasons including: (1) The API and mocked execution
approaches are applicable to proprietary analytical engines, e.g.,
Teradata MLE in our case, but it does not easily extend to third-
party external engines, e.g., Spark, Tensorflow, etc., without internal
code changes, which is often not feasible. In contrast, the adopted
approach is engine-independent. (2) The API and mocked execution
approaches involve higher performance penalty due to the remote
calls, which adds up especially under highly concurrent workloads
and multiple functions per query. (3) The descriptor approach does
not require any execution of the function runtime, which in the
other approaches, needs to occur by either running the function
code in the optimizer runtime, which is not preferred, or providing
a higher-overhead service that runs the function code via a generic
APl e.g. REST.

In some systems, e.g., SCOPE system [33] and SAP HANA [10],
the authors allow annotating the function’s code to reveal some of
the function’s properties to the optimizer, e.g., partitioning prop-
erties and pass-through columns from inputs to outputs, which
can be then used for optimizations. However, the code-annotated
approach tightly couples the semantic properties to the code, which
inherits the critical limitation mentioned above, i.e., this approach
is only applicable to proprietary functions and does not extend to
third-party engines. Moreover, the annotation approach in [10, 33],
with its limited expressiveness, is not applicable to polymorphic
functions. The work in [12] adopts static code analysis to discover
dependencies (or conflicts) across five pre-defined operator types
(map, reduce, cross, match, and cogroup). However, static code anal-
ysis does not extend to functions not adhering to these operator
types. Moreover, its conflict graph targets operator-reordering op-
timization, but cannot be applied to the proposed optimizations
addressed in this paper.

Finally, some systems use plan directives (or optimizer hints) for
directing the optimizer towards selecting (or disabling) a specific
execution plan for a given query [21, 22, 29]. Directives, which only
target the standard SQL operators, are typically used by expert
users either for debugging purposes or enforcing specific execution
plan. Unlike directives, a function descriptor only provides facts
about its function (in other words, it is part of the function), and it
is up to the Collaborative Optimizer to leverage these properties as
it decides. For example, a descriptor may indicate that a join on the
function’s output can be pushed to its inputs, but the Collaborative
Optimizer may decide not to apply the push based on the cost
estimates.

7 EXPERIMENTS

In this section, we provide some insight on the performance benefits
that can be achieved by the Collaborative Optimizer.

Testing Environment: The cluster used in the experiments, re-
ferred to as Vantage Cluster, consists of 5 machines. Two machines
run the SQL engine version 17.00, each has the hardware config-
uration of 2 CPUs, 223 GB of hard drive storage, and 20 GB main
memory. Another two machines run the MLE analytics engines,
each consists of 6 CPUs, 250 GB of hard drive storage, and 28 GB
main memory. The 5th machine, referred to as the queen node, is
the master node in the MLE engine and it is responsible for the



execution of the analytical functions in a distributed way over the
MLE machines.

Functions: We present results from six Teradata MLE ana-
lytical functions [26], namely ExtractSentiment(), Sessionize(),
GLM(), ForestDrive(), NaiveBayes (), and Attribution(). They cover
the different combinations of leveraging either one or both of the
projection and predicate push optimizations.

Dataset Setup and Impacted Execution Phases: In general,
the execution phases of an analytical query can be divided into the
following phases: (1) I/O phase for reading the input tables from
teradata distributed file system, (2) Export phase in which the data
is transferred to the analytical function, (3) Function-Execution
phase, and (4) Import phase in which the data is transferred from
the analytical function back to the database system. The 2"d and
4th phases are only applicable in a remote setup. Depending on
the database organization and whether the analytical functions
are built-in or remote, we expect to see the optimization benefits
shifting across these four phases.

In our experimental evaluation, the analytical functions are re-
mote as highlighted above. Moreover, the input tables to the an-
alytical functions are row-oriented with no specific indexing or
partitioning in place. This implies that the expected benefits from
the targeted optimizations will mostly reflect on the data transfer
phases (the export and import phases) and the function execution
phase. The I/O phase will not be impacted by the predicate and
projection push optimizations since all data (rows and columns)
will be read anyway from disk. Nevertheless, it is important to high-
light that under different setup, the benefit’s distribution across
phases might take a different shape. For example, if functions are
built-in within the database, the tables are columnar, and predicate-
related partitioning is present, then the export and import phases
will be eliminated, while most of the benefit will shift to the I/O
and function-execution phases.

Descriptors Creation and Storage: As mentioned in Section 3,
the descriptors are created by the Teradata system engineers who
are implementing and integrating the function with the Vantage
system. We currently have the descriptors created for 20+ functions
from the Teradata MLE analytical engine. In Figure 9, we illustrate
the size of these descriptors inside the database catalog table. Recall
that the descriptors are stored in BSON format, which provides
around 30% storage reduction compared to the JSON text format.
In the figure, we also include the length of each descriptor, which
represents the number of lines in the JSON file.

Query Processing and Effect of Triggered Optimizations:
In Figures 10 and 11, we illustrate the performance gain in terms
of the wall-clock query execution time from the different func-
tions. Figure 10 presents the break up of the execution time into
the different phases, which are: the export, execution, and import
phases (the I/O phase is ignored under the current setup). Moreover,
Figures 11(a)-(f) present the performance of each function under
varying dataset sizes, predicate selectivity, and projection list sizes.

Sessionize() Function: For Sessionize(), the query before re-
writing is as presented in Figure 1. The descriptor only enables
the predicate push optimization on this function, where the query
can be re-written as in Example 8. The input table “web_clicks”
consists of 10 million records, where each user has on average
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20 records. The results in Figure 10 are obtained under predicate
selectivity of 0.0002% (which is an equality predicate on the userld
column). The break up over the different phases show that all phases
encounter big savings due to exporting less data (reduction from
238MB to 5KB), the execution of the function on very small amount
of data, and consequently the function’s output is also very small. In
Figure 11(a), we execute the same query but under varying predicate
selectivity, where the x-axis indicates the percentage of records to
qualify the predicate.

ExtractSentiment() Function: The query before re-write is as
follows (the left-hand side):

SELECT * FROM ExtractSentiment(
ON (SELECT Id, categoryId,
feedback
FROM product_review
WHERE categoryId > 95)
ON dictionary AS DIMENSION
USING
TextColumn( 'feedback')
Level ( 'document’)
Accumulate('[1:2]') )AS dt;

SELECT * FROM ExtractSentiment(
ON product_review
ON dictionary AS DIMENSION
USING
TextColumn( 'feedback')
Level ( 'document')

Accumulate('[1:2]") )AS dt
WHERE categoryId > 95;

Both the predicate push and projection push optimizations are ap-
plicable over ExtractSentiment(), which results on the re-written
query in the right-hand side. The function’s required columns are
only the columns specified within parameters TextColumn and Ac-
cumulate. Parameter TextColumn specifies the column containing
the text reviews to be analyzed for sentiment extraction, whereas
parameter Accumulate specified a set of pass-through columns (ref-
erencing {Id, categoryld} by position) that function will just pass
from its input to its output. The product_review table consists of
500,000 records and its schema contains 660 columns, which con-
forms with the schema from real customer workloads. All columns
are of numeric data type except for the column containing the
products’ reviews is of type varchar(20000).

The break-up results in Figure 10 are obtained under predicate
selectivity of 5% and the projection of only three columns out
of the 660 columns, which include the feedback column and the
column range specified in parameter Accumulate. The results show
a very similar behavior to that of the Sessionize() function. The
savings are even bigger due to the combination of the predicate
and projection push optimizations. In Figure 11(b), we execute the
same query but under a varying range of the projected columns, i.e.,
expanding the column range specified in parameter Accumulate.
As expected, the more columns to be sent to the function, the less
the effect of the projection push optimization, but the predicate push
optimization still yields considerable savings.

ForestDrive() Function: The ForestDrive() function takes as
input a training dataset and generates a predictive model that feeds
subsequent functions. This is a real-world customer query, where
the training dataset consists of around 280 columns of a mix data
types between numeric and string data types. From these columns,
the function needs around 140 columns. Based of the function’s
descriptor only the projection push optimization is applicable. In Fig-
ure 10, we present the results under a dataset of 10 million records.
The figure shows that unlike the other two functions, ForestDrive()
is a heavy time-consuming function, which is usually the case for
modeling function, and hence, the function’s execution phase domi-
nates the other three phases. As the figure shows, the Collaborative
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Optimizer achieves around 20% savings due to the early elimination

of unneeded columns. In Figure 11(c), we execute the same query
under different datasets sizes. As illustrated, the larger the input
dataset, the more effective the Collaborative Optimizer in speeding
up the execution. It is also worth highlighting that as the dataset
gets larger, the savings are not only due to the reduction in the
transferred data, but also because it reduces the chances that the
analytical engine will face memory issues such as thrashing and
buffer overflow.

GLM() & NaiveBayes() Functions: GLM() (Generalized Linear Model)
and NaiveBayes() classifier are two additional examples where the
projection push optimization is applicable. The detailed function
invocation and input dataset schemas for both functions can be
found in [26]. Each function receives a single input table, which

consists of one million records, and each record consists of five
primary columns of approximately 250 bytes altogether. These are
the columns needed by the function. In Figure 11(d) and (e), we
vary the number of the extra payload columns from 1X to 64X, each
of size 250 bytes. As can be observed, without the Collaborative

Optimizer, the system blindly pays the cost of transferring these

un-needed columns.
Attribution() Function: This function calculates attributions

with a wide range of distribution models, often used in web page
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Figure 11: Evaluation of Analytical Functions under Different Parameters (dataset size, predicate selectivity, and projection sizes)

analysis. The function takes 6 input tables, and the projection and
predicate push specifications can be defined on each of the input
tables [26]. Nevertheless, in our experiment, we focus on only apply-
ing the optimizations to the primary (large) table, which consisted
of 10 million records. Figure 11(f) depicts the optimizations’ savings
under different predicate selectivity and projection list elimination.
The zoom-in analysis for the different phases presented in Fig-
ure 10 is under predicate selectivity equals to 0.5% and 16X payload

columns.

8 CONCLUSION
We presented the Teradata Collaborative Optimizer, an analytics-
aware optimizer that treats the analytical functions as first-class
citizens by exposing them to various types of optimizations in
the SQL engine. The new optimizer is based on a novel markup
language that is carefully designed to support the complex poly-
morphic nature of the analytical functions while still preserving the
desired characteristics of simplicity, expressibility, and extensibility.
Few enabled optimization types have been presented in the pa-
per including the projection push and predicate push. Nevertheless,
the Collaborative Optimizer infrastructure supports optimizations
beyond these types, which will be the focus of future work.
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